
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2020-10-26

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 25. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
All material form the course.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Determine whether or not the functions below are convex.

a. f1 : Rn → R such that

f1(x) = 1
g(x)

for each x ∈ Rn, where g : Rn → R is concave and satisfies g(x) > 0 for each
x ∈ Rn. (1 p)

b. f2 : Rn → R such that

f(x) =
√

xT LT Lx

for each x ∈ Rn, where L ∈ Rm×n. (1 p)

c. f3 : R2 → R such that

f3(x) =


√

x1x2 if x = (x1, x2) ∈ R2
++,

∞ if x ∈ R2 \ R2
++.

(1 p)

d. f4 : Rn → R such that

f4(x) =
r∑

i=1
x(i) = x(1) + . . . + x(r)

for each x ∈ Rn, where r is an integer such that 1 ≤ r ≤ n and x(i) denote the
ith largest component of x, i.e.,

x(1) ≥ . . . ≥ x(n).

(1 p)
Remark: In each subproblem, you are allowed to assume that norms are convex.
This remark also holds for all other problems in this exam.

Solution

a. Convex. Define the convex function h : R → R ∪ {∞} such that

h(u) = 1
u

+ ιR++(u)

for each u ∈ R, where R++ = {u ∈ R : u > 0} (e.g., show that h satisfies the
second-order condition for convexity on dom h). The function f1 can be written
as

f1 = h ◦ g.

Since h is convex and nonincreasing, and g is concave, the composition rule
gives that f1 is convex.
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b. Convex. Note that

f2(x) =
√

(Lx)T Lx

= ∥Lx∥2
= (∥·∥2 ◦ L)(x)

for each x ∈ Rn. Thus, f2 can be written as a composition between the convex
function ∥·∥2 and the affine mapping given by L. The composition rule gives
that f2 is convex.

c. Not convex. Let x = (1, 1) and y = (4, 1). Then f3(x) = 1 and f3(y) = 2.
However, considering the convex combination

1
2

x + 1
2

y = (2.5, 1)

gives

f3

(1
2

x + 1
2

y

)
=

√
2.5 > 1.5 = 1

2
f3(x) + 1

2
f3(y),

which violates the definition of convexity.

d. Convex. Note that the function f4 can be written as

f4(x) = max {xi1 + . . . + xir : ∀i1, . . . , ir ∈ N, 1 ≤ i1 < . . . < ir ≤ n}

for each x = (x1, . . . , xn) ∈ Rn. Note that each function in the maximum can
be written as ai1,...,ir : Rn → R such that

ai1,...,ir (x) = xi1 + . . . + xir

for each x = (x1, . . . , xn) ∈ Rn. Note that each of the ai1,...,ir are affine, and
therefore also convex. We conclude that f4 is given by a point-wise supremum
of convex functions, and therefore itself convex.

2. Determine if the following sets are convex or not:

a. S1 = {x ∈ Rn : x1 + . . . + xn = 1}. (1 p)

b. S2 = {x ∈ Rn : ∥x − a∥2 ≤ ∥x − b∥2}, where a, b ∈ Rn and a ̸= b. (1 p)

c. S3 =
{

x ∈ R3 : 2x1 ≥
√

x2
2 + x2

3

}
. (1 p)

d. S4 =
{

x ∈ R2 : 2 ≤ ex2
1+x2

2 ≤ 4
}

. (1 p)

e. S5 =
{

x ∈ Rn : xT y ≤ 1, ∀y ∈ C
}

, where C ⊆ Rn. (1 p)

Solution
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a. Convex. The set

S1 =
{

x ∈ Rn : 1T x = 1
}

defines a hyperplane in Rn, which we know is convex.

b. Convex. Since norms are nonnegative, we have that

∥x − a∥2 ≤ ∥x − b∥2

⇔
∥x − a∥2

2 ≤ ∥x − b∥2
2

⇔
(x − a)T (x − a) ≤ (x − b)T (x − b)

⇔
2(b − a)T x ≤ ∥b∥2

2 − ∥a∥2
2,

which defines a halfspace in x ∈ Rn. Thus, the set

S2 =
{

x ∈ Rn : 2(b − a)T x ≤ ∥b∥2
2 − ∥a∥2

2

}
is convex.

c. Convex. The set S3 can be written as the zero:th sublevel set of the function
f : R3 → R such that

f(x) = ∥Lx∥2 − 2x1

for each x = (x1, x2, x3) ∈ R3, where

L =
[

0 1 0
0 0 1

]
.

I.e.,

S3 =
{

x ∈ R3 : f(x) ≤ 0
}

.

The first term ∥Lx∥2 of f is convex by 1.b.. The second term −2x1 is affine
and therefore convex. There, f is convex since it is a sum of convex functions.
However, the set S3 is then a sublevel set of a convex function, and therefore
a convex set.

d. Not convex. The set S4 can be written as

S4 =
{

x ∈ R2 : log 2 ≤ x2
1 + x2

2 ≤ log 4
}

.

The set S4 is nonempty since, e.g., (0,
√

log 4) ∈ S4. Consider any x ∈ S4. Then
−x ∈ S4. However, the convex combination

1
2

x + 1
2

(−x) = 0,

is not in S4. Thus, the set S4 is not convex.
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e. Convex. Note that the set S5 can be written as

S5 =
⋂

y∈C

{
x ∈ Rn : xT y ≤ 1

}
,

i.e., an intersection of halfspaces, which we know is convex, since halfspaces
are convex and arbitrary intersections of convex sets are convex.

3. Consider the convex function f : Rn → R such that

f(x) =
(
aT x − b

)2

for each x ∈ Rn, where a ∈ Rn \ {0}, b ∈ R and n ≥ 2.

a. Prove or disprove that f is strongly convex. (1 p)

b. Find the conjugate function f∗. (2 p)

c. Let γ > 0. Find the proximal operator proxγf . (1 p)

Solution

a. Note that

∇f(x) = 2aaT x − 2ab and ∇2f(x) = 2aaT

for each x ∈ Rn. Since a ∈ Rn and n ≥ 2, we know that there exists a vector
z ∈ Rn \ {0} such that aT z = 0. Let x ∈ Rn and note that

zT ∇2f(x)z = 2
(
aT z

)2
= 0.

This shows that the second-order condition for strong convexity fails for f .
Hence, f is not strong convexity.

b. Let s ∈ Rn. Note that we can write s as

s = aT s

∥a∥2
2
a +

(
s − aT s

∥a∥2
2
a

)

where the first term is parallel to a and the second term is orthogonal to a,
i.e., aT

(
s − aT s

∥a∥2
2
a

)
= 0. Then

f∗(s) = sup
x∈Rn

(
sT x − f(x)

)

= sup
x∈Rn

 aT s

∥a∥2
2
aT x +

(
s − aT s

∥a∥2
2
a

)T

x −
(
aT x − b

)2
. (1)

First, suppose that

s − aT s

∥a∥2
2
a ̸= 0.
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Then, by picking x = t

(
s − aT s

∥a∥2
2
a

)
for t ∈ R in (1), we get that

f∗(s) ≥ t
aT s

∥a∥2
2

aT

(
s − aT s

∥a∥2
2
a

)
︸ ︷︷ ︸

=0

+t

∥∥∥∥∥s − aT s

∥a∥2
2
a

∥∥∥∥∥
2

2
−

t aT

(
s − aT s

∥a∥2
2
a

)
︸ ︷︷ ︸

=0

−b


2

= t

∥∥∥∥∥s − aT s

∥a∥2
2
a

∥∥∥∥∥
2

2︸ ︷︷ ︸
>0

−b2 → ∞ as t → ∞.

Thus, f⋆(s) = ∞ in this case.
Second, suppose that

s − aT s

∥a∥2
2
a = 0.

Then (1) becomes

f∗(s) = sup
x∈Rn

(
aT s

∥a∥2
2
aT x −

(
aT x − b

)2
)

. (2)

By the orthogonal decomposition theorem, any x ∈ Rn can uniquely be de-
composed into

x = αa + c,

for some α ∈ R and c ∈ Rn such that aT c = 0. Using this observation, (2) can
be written as

f∗(s) = sup
α∈R

(
αaT s −

(
α ∥a∥2

2 − b
)2
)

= sup
α∈R

(
− ∥a∥4

2 α2 +
(
2b ∥a∥2

2 + aT s
)
α − b2

)
= − inf

α∈R

(
∥a∥4

2 α2 −
(
2b ∥a∥2

2 + aT s
)
α + b2

)
.

Let g : R → R denote the objective function of the minimization problem
above, i.e.,

g(α) = ∥a∥4
2 α2 −

(
2b ∥a∥2

2 + aT s
)
α + b2

for each α ∈ R. Note that

∇2g(α) = 2 ∥a∥4
2 > 0

for each α ∈ R. The second-order condition for (strong) convexity gives that
g is (strongly) convex. Fermat’s rule gives that α⋆ ∈ R is a minimizer to the
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minimization problem above if and only if

0 = ∇g(α⋆)
⇔

0 = 2 ∥a∥4
2 α⋆ − 2b ∥a∥2

2 − aT s

⇔

α⋆ = 2b ∥a∥2
2 + aT s

2 ∥a∥4
2

,

since g is differentiable and convex. Therefore,

f∗(s) = −g(α⋆)

= − ∥a∥4
2

(
2b ∥a∥2

2 + aT s

2 ∥a∥4
2

)2

+
(
2b ∥a∥2

2 + aT s
)(2b ∥a∥2

2 + aT s

2 ∥a∥4
2

)
− b2

= −

(
2b ∥a∥2

2 + aT s
)2

4 ∥a∥4
2

+

(
2b ∥a∥2

2 + aT s
)2

2 ∥a∥4
2

− b2

=

(
2b ∥a∥2

2 + aT s
)2

4 ∥a∥4
2

− b2

=
4b2 ∥a∥4

2 + 4b ∥a∥2
2 aT s +

(
aT s

)2

4 ∥a∥4
2

− b2

= b
aT s

∥a∥2
2

+ 1
4

(
aT s

∥a∥2
2

)2

.

To summarize, we have that

f∗(s) =


b

aT s

∥a∥2
2

+ 1
4

(
aT s

∥a∥2
2

)2

if s = aT s

∥a∥2
2
a,

∞ if s ̸= aT s

∥a∥2
2
a.

c. Let z ∈ Rn. Then

proxγf (z) = argmin
x∈Rn

((
aT x − b

)2
+ 1

2γ
∥x − z∥2

)
.

Note that the objective in the minimization problem above is differentiable and
convex. Fermat’s rule gives that x⋆ ∈ Rn is a minimizer of the optimization
problem above if and only if

0 = 2a(aT x⋆ − b) + 1
γ

(x⋆ − z)

⇔
0 = 2γaaT x⋆ − 2γab + x⋆ − z

⇔(
I + 2γaaT

)
x⋆ = 2γab + z.
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Note that
(
I + 2γaaT

)
is invertible—its smallest eigenvalue is greater or equal

to 1. Therefore,

x⋆ =
(
I + 2γaaT

)−1
(2γab + z)

and

proxγf (z) =
(
I + 2γaaT

)−1
(2γab + z).

4. Let C ⊆ Rn be a nonempty, closed and convex set. Its support function
σC : Rn → R ∪ {∞} is defined as

σC(y) = sup
x∈C

yT x

for each y ∈ Rn.

a. Show that the support function σC is convex, independent of the convexity of
the set C. (1 p)

b. Show that σ∗
C = ιC . (1 p)

c. Find an expression for proxγσC
, where γ > 0, that involves ΠC , i.e., the (Eu-

clidean) projection onto the set C. (1 p)

Solution

a. Alternative 1: Note that

σC(y) = sup
x∈Rn

(
yT x − ιC(x)

)
= ι∗

C(y)

for each y ∈ Rn. I.e., σC is equal to the conjugate function to the indicator
function of C. Thus, σC is a convex function since conjugate functions are
always convex.
Alternative 2: Note that σC is a points-wise supremum of convex functions
(linear to be precise) and therefore itself a convex function.

b. Note that σ∗
C = ι∗∗

C = ιC since ιC is a proper, closed and convex function.

c. Let z ∈ Rn. Moreau decomposition gives that

proxγσC
(z) = z − γproxγ−1σ∗

C

(
γ−1z

)
= z − γproxγ−1ιC

(
γ−1z

)
= z − γproxιC

(
γ−1z

)
= z − γΠC

(
γ−1z

)
.
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5. Consider the problem

minimize
x∈Rn

1
2

∥Ax − b∥2
2

where A ∈ Rn×n satisfies

A = diag(a1, . . . , an), ai ≠ 0, ∀i ∈ {1, . . . , n},

and b = (b1, . . . , bn) ∈ Rn. Let f : Rn → R such that

f(x) = 1
2

∥Ax − b∥2
2

for each x ∈ Rn.

a. Give a closed-form expression of the solution. (0.5 p)

b. Show that β = maxi∈{1,...,n} a2
i is a smoothness constant for f . (1 p)

c. Show that βi = a2
i is a coordinate-wise smoothness constants for f , for each

coordinate i = 1, . . . , n. (1 p)

d. Consider the gradient method with step-size 1/β, where β is the smoothness
constant in b.. Suppose you are given the iterate xk ∈ Rn, where k ∈ N0 is the
iteration number. For each coordinate i = 1, . . . , n, provide the update formula
for xk

i . Utilize that A = diag(a1, . . . , an). (1 p)

e. Let bi = 0 for each i = 1, . . . , n and provide an exact linear convergence rate
for each of the coordinates for the gradient method in d.. This means, find the
ρi ∈ [0, 1) such that ∥∥∥xk+1

i

∥∥∥
2

= ρi

∥∥∥xk
i

∥∥∥
2

,

for each coordinate i = 1, . . . , n. (Each coordinate will converge linearly to
x⋆

i = 0 in this case.) (1 p)

f. Now drop the assumption that bi = 0 for each i = 1, . . . , n. Consider the
coordinate gradient method (i.e., no proximal operator) with step-sizes 1/βi,
where βi are the coordinate smoothness constants in c.. Provide an update
formula for each coordinate i = 1, . . . , n. Utilize that A = diag(a1, . . . , an).
Show that xk+1

i = x⋆
i with x⋆

i from a., independent on xk ∈ Rn. (1 p)

Solution

a. The objective function f in the problem is convex and differentiable. Fermat’s
rule gives that x⋆ ∈ Rn is a minimizer of the problem if and only if

0 = ∇f (x⋆)
⇔

0 = AT (Ax⋆ − b)
⇔

x⋆ = (AT A)−1(AT b)
⇔

x⋆
i = bi

ai
, for each i = 1, . . . , n,

since AT A = diag
(
a2

1, . . . , a2
n

)
is invertible as ai ̸= 0 for each i = 1, . . . , n.
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b. Alternative 1: Note that

∥∇f(x) − ∇f(y)∥2
2 =

∥∥∥AT (Ax − b) − AT (Ay − b)
∥∥∥2

2

=
∥∥∥AT A(x − y)

∥∥∥2

2

=
∥∥∥diag

(
a2

1, . . . , a2
n

)
(x − y)

∥∥∥2

2

=
n∑

i=1

(
a2

i (xi − yi)
)2

=
n∑

i=1
a4

i (xi − yi)2

≤
(

max
i∈{1,...,n}

a4
i

)
n∑

j=1
(xj − yj)2

=
(

max
i∈{1,...,n}

a4
i

)
∥x − y∥2

2 .

for each x, y ∈ Rn. Taking square root gives the result, i.e.,

∥∇f(x) − ∇f(y)∥2 ≤
√

max
i∈{1,...,n}

a4
i ∥x − y∥2

=
(

max
i∈{1,...,n}

a2
i

)
∥x − y∥2

for each x, y ∈ Rn, which is the definition of maxi∈{1,...,n} a2
i -smoothness.

Alternative 2: Since f is convex and twice differentiable, β ≥ 0 is a smoothness
constant if and only if

∇2f(x) ⪯ βI

for each x ∈ Rn. This is equivalent to that

0 ≤ yT (βI − ∇2f(x))y

for each x, y ∈ Rn. Note that

∇2f(x) = AT A

= diag
(
a2

1, . . . , a2
n

)
for each x ∈ Rn. The condition on β reduces to

0 ≤ yT diag
(
β − a2

1, . . . , β − a2
n

)
y

=
n∑

i=1
y2

i (β − a2
i )

for each y ∈ Rn. This holds if and only if

β ≥ max
i∈{1,...,n}

a2
i

and the smallest such β is

β = max
i∈{1,...,n}

a2
i .

10



FRTN50

c. Fix a coordinate i = 1, . . . , n. Coordinate-wise smoothness with parameter
βi ≥ 0 can be written as

|(∇f(x))i − (∇f(y))i| ≤ βi |xi − yi|

for each x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. In our setting, we
have

|(∇f(x))i − (∇f(y))i| = |ai(aixi − bi) − ai(aiyi − bi)|
= |aiai(xi − yi)|
≤ a2

i |xi − yi| .

for each x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. So we identify a2
i as

a coordinate smoothness constant for coordinate i.

d. The gradient method with step-size γ = 1/β reads

xk+1 = xk − 1
β

∇f(xk)

= xk − 1
maxj∈{1,...,n} a2

j

AT (Axk − b).

Since A = diag(a1, . . . , an), this reads as

xk+1
i = xk

i − 1
maxj∈{1,...,n} a2

j

ai(aix
k
i − bi)

for each coordinate i = 1, . . . , n.

e. Fix a coordinate i = 1, . . . , n. Note that

∥∥∥xk+1
i

∥∥∥
2

=
∥∥∥∥∥xk

i − 1
maxj∈{1,...,n} a2

j

a2
i xk

i

∥∥∥∥∥
2

=
(

1 − a2
i

maxj∈{1,...,n} a2
j

)
︸ ︷︷ ︸

=ρi

∥∥∥xk
i

∥∥∥
2

where ρi ∈ [0, 1).

f. Fix a coordinate i = 1, . . . , n. The coordinate gradient method when updating
coordinate i is

xk+1
i = xk

i − 1
βi

(
∇f(xk)

)
i

= xk
i − 1

a2
i

ai

(
aix

k
i − bi

)
= bi

ai

= x⋆
i .
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6. Consider minimizing a function f : Rn → R, with minimizer x⋆ ∈ Rn, using
a stochastic optimization algorithm, starting at some predetermined (deter-
ministic) point x0 ∈ Rn. Analysis of the algorithm resulted in the following
inequality

E
[
∥xk+1 − x⋆∥2

2 | xk

]
≤ ∥xk − x⋆∥2

2 − 2γ(f(xk) − f(x⋆)) + γ2G, ∀k ∈ N0,

where G is a deterministic positive constant and γ is a deterministic fixed pos-
itive step-size of the algorithm. In particular, (xk)k∈N0 is a stochastic process.

a. Apply an expectation to the above inequality to derive a Lyapunov inequality
for the algorithm. (1 p)

b. Use the obtained Lyapunov inequality to show that

k∑
i=0

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + G(k + 1)γ2

2γ
, ∀k ∈ N0. (3)

(1.5 p)

c. The upper bound (3) goes to infty as k → ∞ unless G = 0. Consider the step-
size γ = θ/

√
K + 1, where K ∈ N0 is the total number of iterations we wish to

run the algorithm and θ > 0. Show that we get a O(1/
√

K + 1) convergence
bound. In particular, show that

min
i∈{0,...,K}

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + Gθ2

2θ
√

K + 1
.

(1 p)

Solution

a. We start from the inequality

E
[
∥xk+1 − x⋆∥2

2 | xk

]
≤ ∥xk − x⋆∥2

2 − 2γ(f(xk) − f(x⋆)) + γ2G, ∀k ∈ N0.

By monotonicity and linearity of expectation, we get that

E
[
E
[
∥xk+1 − x⋆∥2

2 | xk

]]
≤ E

[
∥xk − x⋆∥2

2 − 2γ(f(xk) − f(x⋆)) + γ2G
]

= E
[
∥xk − x⋆∥2

2

]
− 2γE [f(xk) − f(x⋆)] + γ2G,

holds for each k ∈ N0. The law of total expectation yields

E
[
∥xk+1 − x⋆∥2

2

]
≤ E

[
∥xk − x⋆∥2

2

]
− 2γE [f(xk) − f(x⋆)] + γ2G, ∀k ∈ N0.

This is the Lyapunov inequality we pick.
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b. Recursively applying the Lyapunov inequality above gives

E
[
∥xk+1 − x⋆∥2

2

]
≤ E

[
∥x0 − x⋆∥2

2

]
− 2γ

k∑
i=0

E [f(xi) − f(x⋆)] + Gγ2(k + 1)

= ∥x0 − x⋆∥2
2 − 2γ

k∑
i=0

E [f(xi) − f(x⋆)] + Gγ2(k + 1), ∀k ∈ N0,

since ∥x0 − x⋆∥2
2 is deterministic. Again, by monotonicity of expectation, we

know that

0 ≤ E
[
∥xk+1 − x⋆∥2

2

]
, ∀k ∈ N0,

since

0 ≤ ∥xk+1 − x⋆∥2
2, ∀k ∈ N0.

We conclude that

0 ≤ ∥x0 − x⋆∥2
2 − 2γ

k∑
i=0

E [f(xi) − f(x⋆)] + Gγ2(k + 1), ∀k ∈ N0,

or by rearranging

k∑
i=0

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + Gγ2(k + 1)

2γ
, ∀k ∈ N0, (4)

as desired.

c. We first note that

(K + 1) min
i∈{0,...,K}

E[f(xi) − f(x⋆)] ≤
K∑

i=0
E[f(xi) − f(x⋆)].

Using this in the bound in b. with γ = θ/
√

K + 1 and k = K give

min
i∈{0,...,K}

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + G(K + 1)γ2

2γ(K + 1)

= ∥x0 − x⋆∥2
2 + Gθ2

2θ
√

K + 1
,

as desired.
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