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Introduction

Exercises marked with (H) have hints available, listed in the end of each chapter. Chal-
lenging exercises are marked with (x). Even more challenging exercises are marked
with (xx). Solutions to the exercises are provided in the end of the document.



Chapter 0

Mathematical preliminaries

Exercise 0.1
Suppose that x € R”. Show that

Tim el = 7] -

Exercise 0.2

Let (V, ||-||) be a normed vector space and x,y € V. Prove the reverse triangle inequality,
ie.,

Nzl =yl < [l =yl -

Exercise 0.3
Suppose that f : R> — R is a function such that

f(z) =1

for each (z1, 29, 23) = 2 € R3. Let
1 —100 1
X = 2/, w | .
3 e 10"
What is mingc x f(z)?
What is argmin,c y f(x)?
What is Argmin,y f(z)?

What is max,cx f(z)?

What is Argmax,cx f(z)?

A A



Hints



Chapter 1

Convex sets

Exercise 1.1
Consider the following sets:

C. d.

1. Which of the sets are convex. Motivate.
2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

Exercise 1.2

Which of the following sets are convex? If convex, prove it using the definition of convex
sets, if not convex, disprove it by finding a counterexample.

1. S={x € R": Az = b} with A €e R™*" and b € R™

2. S={zeR": Az < b} with A € R"™*" and b € R™

3. S={zeR":2>0}

4. S={zeR": I <z <u}withl,u e R"suchthat! <u
5

.S ={zeR":|z|2 <1}



S={zeR": |l < —1}

S={zeR": —|af» <1}

S={(z,t) e R*" xR : ||z]|2 < t}

S={XeR"™:X >0}

10. S={ze€R":2=a} witha e R"

11. S={z €R":z=aorz =>b} witha,b € R” such that a # b

© ® N>

Exercise 1.3
Which of the following sets are affine?
1. V={x € R": x = a} for some a € R"
2.V ={x € R": Ja € [0,1] such that + = aa + (1 — a)b} for some a,b € R" such
that a # b

3. V={z € R": Ja € R such that z = aa + (1 — a)b} for some a,b € R" such that
a#b

Exercise 1.4

A set K is a cone if for each z € K also ax € K for each o > 0. Which of the following
figures represent cones? Which of them are convex?

Exercise 1.5

Which of the following sets are convex cones? Prove or disprove.

1. S ={z e R": Az = 0} with A € R™*"



S={x eR": Ax = b} with A € R™*" and b € R™ such that b # 0. Assume that
S is nonempty

S={xeR": Az <0} with A € R"™*"

S ={r € R": Ax < b} with A € R™*" and b € R™ such that there exists an
index j € {1,...,m} such that b; < 0. Denote row j of A as a column vector a;.
Assume that S is nonempty

S ={xr € R": Az < b} with A € R™*" and b € R™ such that there exists an
index j € {1,...,m} such that b; > 0. Denote row j of A as a column vector a;.
Assume that there exist a point x € S such that aJTx >0

.S={zeR":2>0}

S={(x,t) ER" xR : ||z[|s < t}

.S ={X eR™": X =0}

Exercise 1.6

Suppose that C; and C, are convex sets in R™.

1.

2.

Is the set C = {x € R" : z € (] and = € Cy} the union or intersection of C; and
C5? Is it convex? Prove or provide a counterexample

Is the set C = {x € R" : x € Cy or z € C5} the union or intersection of C; and
C5? Is it convex? Prove or provide a counterexample

Exercise 1.7

Let {C;};jcs be an indexed family of convex sets in R", with index set J (J can be finite,
countable or uncountable). Show that

N¢

jeJ

is convex.

Exercise 1.8

Prove convexity for each of the following sets:

1.

Affine hyperplanes. Recall that affine hyperplanes are written as h,, = {z €
R" : sTx = r} for some s € R"” and r € R

. Halfspaces. Recall that halfspaces are written as Hs, = {z € R" : sTx < r} for

some s eER*andr e R

Polytopes. Recall that a polytope C can be represented as

C={zecR":slz<riforic{l,....myandslz=r;foric{m+1,...,p}},



where s; € R” and r; € R for each ¢ € {1,...,p}. Here, m and p are positive
integers such that m <p

Exercise 1.9 (H)

Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex set:

1. S={zeR": Az = b} with A ¢ R"™*" and b € R™

2. S ={zreR": Ax < b} with A € R™" and b € R™

3. S={zeR":2>0}

4. S={reR": I <z <u}withl,u e R"suchthat! <u
5

. S={xeR":x=a}witha € R"

Exercise 1.10 (%)
Let f : R" - R™, C C R" and D C R™. The image of C under f, denoted f(C), is
defined by

f(@)={f(@):z€C}.
The inverse image of D under f, denoted f~!(D), is defined by
fY(D)={z eR™: f(z) € D}.

Suppose that f is an affine function (or map), i.e., f(z) = Az + b for some A € R™*"
and b € R™, and let both sets C and D be convex. Show that
1. f(C) is convex

2. f~Y(D) is convex

Hints

Hint to exercise 1.9
Use the results from Exercise 1.8.



Chapter 2

Convex functions

Exercise 2.1

Show or disprove that the following functions are convex.

1.

S

f

: R — R such that f(z) = e** for each = € R, where o € R
: R™ — R such that f(z) = ||z| for each x € R"

: R™ — R such that f(z) = —||z|| for each z € R"

: R? — R such that f(x,y) = xy for each (x,y) € R?

: R" — R such that f(z) = 127Qx for each z € R", where Q € S"

: R" — R such that f(z) = distc(x) = infyec ||z — y|| for each x € R", where

f
f
/
f:R"™ = R such that f(z) = a”2 + b for each z € R, where a € R" and b € R
f
f
C

C R™ is a nonempty closed convex set

Exercise 2.2

Draw the epigraph of the following functions f : R — R:

* flx) = |zl

* fla) =2

* fl@) =lz| +a?

* f(z) = max(|z|,2?)
* f(z) = min(|z],2?)

Exercise 2.3 (»)

Recall the following two definitions.

Definition 1: Let f : R™ — R U {co}. The function f is said to be convex if

F(02+ (1= 0)y) < 0f(x) + (1 — 0)£(y) (2.1)



for each =,y € R™ and each 6 € [0, 1].
Definition 2: Let f : R” — R U {oc}. The effective domain of f is the set
dom f = {x e R": f(x) < o0}.
Now, let f : R — R U {oo}. Show that f is convex if and only if dom f is convex and
that
fOz+ (1 —0)y) <0f(z)+(1—-0)f(y) (2.2)
for each =,y € dom f and each 6 € [0, 1].

Exercise 2.4 (x)
Let f : R — RU{oc}. Recall that the epigraph of f is given by epi f = {(x,r) e R" xR :
f(z) < r}. Show that f is convex if and only if epi f is convex.

Exercise 2.5 (%)
Let C C R" be a set and ¢ : R — R U {0} be equal to the indicator function of the

set C,i.e.,
0 ifzeC,
(@) = .
oo ifxeR"\C.

Show that .¢ is convex if and only if C is convex.

Exercise 2.6
Let f : R™ — R be an affine function defined by

f(x)=aTz+b
for each = € R", where a € R” and b € R. Show that epi f is a halfspace in R"*!.

Exercise 2.7 (H)

Foreachi =1,...,m, assume that the function f; : R — RU{c0} is a convex. Prove the
following explicitly, without resorting to convexity preserving operations on functions.

1. Show that f(z) = >, a;fi(x) is convex, where o; > 0 foreachi=1,...,m

2. Show that f(z) = max;—1__n fi(z) is convex

Exercise 2.8

Show that the following functions f : R — RU{oc} are convex. You may use convexity
preserving operations.



1. f(z) = ||z||P wherep > 1

2. f(x) = |Azx — b||3 + ||x||; where A € R™*" and b € R™

3. f(z) = max(||z], [|l=]/?, ||=[°)

4. f(z) =327 max(0, 1+ x4) + [|=]|3

5. f(z) = sup,egn(’y — g(y)) where g : R” — R U {oo} is proper

Exercise 2.9
Let f: R" - RU{o0} and « € R. The a-sublevel set, denoted C,,, is defined by

Co={zeR": f(z) < a}.

1. Suppose that f is convex. Show that C, is convex.
2. For n = 1, construct a nonconvex function f such that Cy is convex.

3. For n = 1, construct a nonconvex function f such that Cj is nonconvex.

Exercise 2.10

Let f : R™ — R U {oo} be a convex function and define a function g : R™ x R™ —
R U {oo} such that

g(xa y) = f('r)

for each (z,y) € R™ x R™. Show that g is a convex function.

Exercise 2.11 (H)

Prove, without explicitly using the definition of convex sets, that each of the following
sets are convex.

1. S={zeR":|z|2 <1}
2. S={(z,t) e R" xR : ||z|2 < t}

Exercise 2.12 (H)

Let f: R™ — R U {co} be a convex function. Suppose that z* € R" is a local minimum
of f,i.e., there exists an ¢ > 0 such that

f@") < f(z)

for each = € R" such that |z — z*|| < §. Show that z* is a global minimum of f, i.e.,

f(@®) < f()

10



for each = € R".

Exercise 2.13

Let f : R" — R U {oco} be a proper and strictly convex function. Recall that f is called

strictly convex if dom f is convex and

fOz+ (1 —=0)y) <6f(x)+(1—-6)f(y)
for each =,y € dom f such that = # y and for each 6 € (0, 1).
1. Suppose that z* € R" is a (global) minimizer of f, i.e.,
f@®) < f(z)
for each x € R™. Show that z* is the unique minimizer of f.

2. Provide a strictly convex f whose infimum is not attained by any point z*.

(2.3)

Remark: For proper, closed and strongly convex functions, a minimizer always exists.
Moreover, since strongly convex functions are strictly convex, the minimizer is unique.

Exercise 2.14

Decide which of the following convex functions f : R — R U {oco} are

* smooth,
e strictly convex,

¢ strongly convex,

or none of the above. In this exercise, you only need to draw/plot the functions and

decide from the drawings.

1. fa) = {—log(w) ifz >0

00 ifz <0
.
2 fx)= {7z ifz >0
oo ifz<0
3. flx)==x
L f5) = o
5. f@) = la
1,2 :
5T if [z| <1
6. 1 )_{|xl—§ else
7. f(z)=¢€"
8. f(x)=a*

11



Exercise 2.15 (H)

Suppose we are given some function f : R — R U {co} where we only know that
f(=1) = 0 and f(1) = 1. For z € [-1,1], draw the known bounds on f(z) given the
following assumptions:

¢ fis convex
* fis convex and 2-smooth
* fis 2-smooth and %-strongly convex

For each case, draw an example of a function that satisfies the assumptions.

Exercise 2.16 (H)

Suppose we are given some differentiable function f : R — R where we only know that
f(1) =1and f/'(1) = 1. Draw the known bounds on f given the following assumptions:

* fis strictly convex.
* fis strictly convex and 2-smooth.
* fis 2-smooth and 1-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 2.17 (H)
Suppose that p, ¢ > 1 such that 1% + % =1.
1. Let a,b > 0. Show that
popa
ab< L 4= (2.4)
p q
Inequality (2.4) is called Young’s inequality.

2. Let x,y € R™. Show that
lz ©ylly < llll, [lyll, - (2.5)

Inequality (2.5) is called Holders’s inequality. It is not hard to show that Holders’s
inequality also holds in the case p = 1 and ¢ = oo (or p = co and ¢ = 1 symmetri-
cally). However, you are not required to show this.

3. Let a,b >0 and 6 € [0,1]. Show that
a®p'=% < fa + (1 — 0)b. (2.6)

Inequality (2.6) is called the weighted inequality of arithmetic and geometric
means (weighted AM—-GM inequality). The special case § = 0.5, i.e.,

Vab < “;L , @.7)

is called the inequality of arithmetic and geometric means (AM—-GM inequality).

12



Exercise 2.18 (H) ()

Consider the following statement: A differentiable function f : R” — R is convex if
and only if

fy) = f@) + V@) (y - o) 2.8)
for each z,y € R"™.

1. Show that the statement is true.

2. Provide a nonconvex differentiable function f and a point = for which (2.8) does
not hold.

Exercise 2.19 (H)

Let f : R™ — R be convex and differentiable. Suppose that the point = € R" satisfies
V f(z) = 0. Show that x is a global minimizer of f.

Exercise 2.20 (x)

Suppose that f : R™ — R is a differentiable function. Show that f is strictly convex if
and only if

f) > f@)+ V@) (y— =) (2.9)

for each x,y € R™ such that = # y.

Exercise 2.21 (H)

Suppose that f : R” — R is a differentiable function and let & > 0. Show that f is
o-strongly convex if and only if

) 2 fl@) + V@) (- 2)+ 3 =yl (2.10)

for each z,y € R"™.

Exercise 2.22 (%)

1. Let Ac R™", b€ R"™ and C' = {z € R" : Az = b}. Show that

vo(x) = sup pul (Az —b)
pHER™

for each x ¢ R"™.

13



2. Letg: R" - R™and C = {z € R": g(z) < 0}. Show that

e(z) = sup plg(x)
MGRT

for each x € R"™.

Exercise 2.23 (H) (x)
Solve the following problems:

1. Suppose that h : R — R is differentiable with nondecreasing derivative. Show

that & is convex.

2. Let p > 1. Show that the function » : R — R given by

P ifx >0
h(z) = S
0 otherwise

is a nondecreasing convex function.

Exercise 2.24 (H) (»)

Let f : R™ — RU{oc} be a convex function. Letn € N, z1,...,z, € R"and 0, ...

such that )" , 6; = 1. Show that

f (Z 9i$i> < Zeif(xi)-
i—1

=1

Inequality (2.11) is called Jensen’s inequality.

Exercise 2.25 (xx)

Let f : R™ — R. Show that f is affine if and only if f is convex and concave.

Exercise 2.26 (*)

,0n >0

(2.11)

Let f : R™ — RU{oo} andlet o > 0. Recall that f is called o-strongly convex if f — ¢ || |12

is convex. Show that f is o-strongly convex if and only if

f0z + (1= 0)y) < Of(z) + (1 0)f(y) — 501 = 0)]lx — y]*

for each z,y € R™ and for each 6 € [0, 1].

Exercise 2.27

14
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Let f : R™ — R and let 8 > 0. Suppose that f is S-smooth, i.e., f is differentiable and
V f is p-Lipschitz continuous. Let A € R"*™ and b € R". Let g : R™ — R such that

g(x) = f(Az+1b)

for each = € R™. Show that g is 3 || A||3-smooth.

Remark: Recall that || A|, is the spectral norm of the matrix A and that || A, = || A,
holds.

Exercise 2.28 (x%)

Let f : R® — R be a differentiable function and let 5 > 0. Consider the following
properties

D [|[Vf(x) = Vf(yl2 < Bllz — yl2, for each z,y € R", i.e., f is S-smooth
IT) For each z,y € R™

{f(y) < f2) + V@) (y — ) + 5 —yl3,
> f(x) + V@) (y — ) — 2l —y|l3

IID) 5|3~ fand f + 2| - |} are convex
IV) For each z,y € R" and for each ¢ € [0, 1]

{fw:c +(1—0)y) < Of(z) + (1 —0)f(y) + 501 — )|z -y,
FOz+ (1—0)y) > 0f(x) + (1 —0)f(y) — 50(1 — )]z — ylI3

Show that these properties are equivalent.

Exercise 2.29 (H)(%)

Let f : R™ — R be a twice differentiable function and let 8 > 0. Show that the following
properties are equivalent:

D [|[Vf(z) =V f(y)ll2 < Bllz — yl2, for each z,y € R", i.e., f is f-smooth
II) —BI < V2f(x) < BI, for each z € R”

Exercise 2.30(x)
Consider the function f : R — R such that

f()=In(14+€e®)

for each = € R. The function f is sometimes called the logistic loss function. Show
that f is 0.25-smooth and convex.

15



Note the following consequence: Exercise 2.27 gives that the function = — In (1 + €*)
from R to R is 0.25-smooth, and that the affine composition rule for convex functions
gives that the function is convex.

Hints

Hint to exercise 2.7

For the second subproblem, you can use the fact that a function is convex if and only
if its epigraph is convex, i.e., use Exercise 2.4.

Hint to exercise 2.11
Use the results from Exercise 2.9 and 2.10.

Hint to exercise 2.12
Use a proof by contradiction.

Hint to exercise 2.15
Recall that f is convex if

f0z+(1—0)y) <Of(x)+(1—0)f(y)
for each 2,y € R and each # € [0, 1], than f is 2-smooth if and only if

fOx + (1= 0)y) < 0f(x) + (1= 0)f(y) +0(1—0)llz — yl3,

fOx + (1= 0)y) = 0f(x) + (1= 0)f(y) — 0(1 = 0)[]a — ylI3

for each =,y € R and each 6§ € [0, 1] and that f is %-strongly convex if and only if
FOz+ (1= 0)y) <Of(x) + (1 —0)f(y) — 101 = 0)[|lz — ylI”

for each z,y € R and each 6 € [0, 1].

Hint to exercise 2.16
Recall that f is convex if and only if

fy) > (@) + V(@) (y —2)
for each z,y € R, z # y, that f is 2-smooth if and only if

{f(y) < fla)+ V@) (y— ) + |z — yll3,
Fly) > f@) + V@) (y—2) |z —yl3

16



for each z,y € R and that f is 1-strongly convex if and only if

fy) 2 f@) + V(@) (y - 2) + 5]z — yll3

for each x,y € R.

Hint to exercise 2.17

1. Consider the case a = 0 or b = 0 and the case a > 0 and b > 0 separately. In the
latter case, note that

x = exp(lnz)

for each = > 0.

2. Consider the case x = 0 or y = 0 and the case z # 0 and y # 0 separately. In

the latter case, use Young’s inequality with a = ﬁ and b = H|3Ii|‘ , and then sum
P P

overi=1,...,n.

3. Consider the case a = 0 or b = 0 and the case a > 0 and b > 0 separately. In the
latter case, note that

x = exp(Inz)

for each = > 0.

Hint to exercise 2.18

The directional derivative of f at x € R™ in direction d € R" satisfies

oy, (@ +0d) = £ (@)

6—0 0

= Vf(z)ld.

Hint to exercise 2.19
Use Exercise 2.18.

Hint to exercise 2.21
Use Exercise 2.18.

Hint to exercise 2.23

17



1. The mean value theorem might be helpful.

2. Consider the cases p =1 and p > 1 separately.

Hint to exercise 2.24

Use induction on n.

Hint to exercise 2.29
Use Exercise 2.28 and the second-order condition for convexity.

18



Chapter 3

Subdifferentials

Exercise 3.1

Prove Fermat’s rule. L.e., suppose that f : R — RU {0} is proper. Show that x € R"
is a minimizer of f if and only if

0€df(x).
Expressed differently, show that

x € Argmin f(y) <& 0€df(x).
yeR?

Exercise 3.2
Compute the subdifferentials for the following proper, closed and convex functions:

1. f:R™ — R such that f(z) = }|z|3 for each z € R"

2. f:R" — R such that f(z) = 22" Hz + h"z for each z € R", where H € S? and
h e R"

. [ R — Rsuch that f(z) = |z| for each x € R
. f R — RU{oco} such that f(z) = ¢|_; 1)() for each z € R

ot B~ W

. [+ R — R such that f(z) = max(0,1 + z) for each z € R. This is known as the
hinge loss

6. f:R — R such that f(z) = max(0,1 — x) for each x € R

You are allowed to rely on graphical arguments in this exercise.

Exercise 3.3
Consider the following even nonconvex function f : R — R:

19



W RS

1. Compute (approximate) gradient and subdifferential at z;, =2, and x3.

2. At which of the points z1, z2, and z3 does Fermat’s rule hold?

Exercise 3.4
Assume that f and g are two real-valued functions. Figure (a) depicts 0f(z) and Figure

(b) depicts dg(y).
a. |
—

(a) (b)

1. What are the domains for f and ¢? Note that we are not asking for the effective
domains dom f and dom g.

Is £ a minimum to f?
Is y a minimum to ¢?
Is f differentiable at x?

Is g differentiable at y?

S ok N

Draw/explain examples of functions f and g that comply with the figures

Exercise 3.5
Suppose that f : R — R satisfies

f=H =1, 0f(-1) ={-1}
and
F) =1, 9f(1) ={1}.
1. Draw a function that lower bounds f

2. Compute a lower bound to the minimum value of f

3. Draw a function f that complies with the requirements

20



Exercise 3.6
Below a list of set-valued operators A : R — 2F are given.

¢ Which of them are monotone?

* Which of them can be a subdifferential of a proper, closed and convex function?

A A
x x
a b.
A A
c d.

Exercise 3.7

Let A : R® — 2R" be an operator and let ¢ > 0. Show that A is o-strongly monotone if
and only if A — o] is monotone.

Remark: In particular, note that if f : R” — R U {oc}, the subdifferential 0f is o-
strongly monotone if and only if f — oI is monotone.

Exercise 3.8 (x)

Provide a monotone operator A : R” — 2%" that is monotone but not the subdifferential
of a function.

Exercise 3.9 (H)(»)

Let f : R" — R be a differentiable function. Then the following properties are equiva-
lent:

D f(y) > f(z) + Vf(z)'(y — z) for each z,y € R, i.e., f is convex
I (Vf(y) —Vf(x)T(y —x) >0 for each 2,y € R", i.e., Vf is monotone

21



1. Show that I) implies IT)
2. Show that II) implies I)

Exercise 3.10
The subdifferential df of two functions f : R — R are drawn below.

of of
/

a. b.

1. Are the corresponding functions f closed and convex?
2. Can you find an z* that minimizes f. If so, where is it?
3. Can you compute the optimal value f(z*)?

4. Draw examples of corresponding f

Exercise 3.11 (%)

Let f : R® — R U {oo} be proper and closed, and let > 0. We denote the effective
domain of the subdifferential 0f as dom df and define it as

domdf ={z € R": df(x) # 0}.

Assume that f is o-strongly convex. Show that
g
f@) 2 f@) + 5"y = 2) + 3 |l — wl;

for each y € R, for each x € dom df and for each s € 9f(x).

Exercise 3.12

The subdifferentials of four proper, closed and convex functions f : R — R are drawn
below. State for each if

¢ fis differentiable,
e Vf is Lipschitz continuous and
* [ is strongly convex.

Also, if they exists, estimate the Lipschitz and the strong convexity parameters (given
that the axes are equal).

22



(a) (b)

() (d)

/
/

Exercise 3.13
Let f : R — R U {oo} proper and f; : R — R U {oc} proper for each i = 1,...,n.
Suppose that

f(z) = Zfz’(%')

for each x = (x1,...,2,) € R". Let x = (x1,...,2,) € R"” and let s = (s1,...,s,) € R™.
Show that s € 0f(z) if and only if s; € 0f;(x;) foreachi =1,...,n.

Remark: Another way to express this relation is

Of(x) ={(s1,...,8n) € R" 1 5; € Ofi(z;) foreach i =1,...,n}.

Exercise 3.14 (%)

Let f : R® — R U {oco} be convex and let y € R" be a point such that f(y) < co. Show
that 0f(x) is empty for each x ¢ dom f.

Exercise 3.15 (%)

Show that the subdifferential of the indicator function of a nonempty set C' C R" is
the normal cone to C.

Hints

Hint to exercise 3.9
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1. Add I) and I) with = and y swapped.
2. Let z,y € R" and t € R. Then
0
5if @ty =) = Vi@ +ty - 2)"(y - 2).

This gives that

1
f6) = 1(@) = [ Vit =)= ). 3.1
Subtracting V f(x)” (y — x) from the expression above yields

fly) = f(x) = Vi) (y—=)
1
/ (VF(z+tly — V(@) (y — z)dt

0

1
/0 U (2 + tly — 2) — V@) (@ + Hy - 2)) — 2)dt.
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Chapter 4

Proximal operators

Exercise 4.1
Compute the proximal mapping for the following proper, closed and convex functions:

1. f:R" — R such that f(z) = | z||3 for each z € R"

2. f:R" — R such that f(z) = {2"Hz + h"z for each z € R", where H € S? and
h € R"

3. f:R — R such that f(z) = |z| for each x € R

4. f:R = RU{oc} such that f(z) = ¢y y)(z) for each x € R
5. f:R — R such that f(z) = max(0,1+ z) for each z € R
6. f:R — R such that f(z) = max(0,1 — z) for each z € R

Exercise 4.2

Let f : R — R U {oo} be a proper, closed and convex function. Suppose that there
exist proper, closed and convex functions f; : R - RU {oco} for each i = 1,...,n, such
that

for each z = (x1,...,2,) € R". Let z = (z1,..., 2,) € R" and let v > 0. Show that

prox, s, (21)
proxvf(z) = :

prox. s, (2n)

Hints
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Chapter 5

Conjugate functions

Exercise 5.1
Compute the conjugates for the following proper, closed, and convex functions:

1. f:R" — R such that f(z) = | z||3 for each z € R"

2. f:R" — R such that f(z) = {2"Hz + h"z for each z € R", where H € S? and
h € R"

3. f:R = RU{oc} such that f(r) = ¢y y(z) for each x € R
4. f:R — R such that f(z) = |z| for each x € R

5. f:R — R such that f(z) = max(0,1+ z) for each z € R
6. f:R — R such that f(z) = max(0,1 — z) for each z € R

Exercise 5.2
Let f,g : R” - R U {oo} be two functions.

1. Show that f** < f

2. Show that f < g implies that f* > ¢*

3. Show that f < g implies that f** < ¢**

4. Suppose that [ is proper. Show that / = f* if and only if f = %H 13

Exercise 5.3 (H)
Let p € (1,00) and ¢ = p/(p — 1). Show that

(-5
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Exercise 5.4
Let f,g: R" - RU {0} and a € (0,1). Show that

(af +(1—a)g)" <af +(1-a)g”

Exercise 5.5
Let f: R" - RU{oo} and f; : R — RU {oo} proper for each i = 1,...,n such that

n

fla)=>" filw)

=1

for each z = (x1,...,2,) € R", i.e, f is separable. Show that
Fr(s)=>_ f(si)
i=1

for each s = (s1,...,s,) € R", i.e, f* is also separable.

Exercise 5.6 (H)
Compute the conjugates of the following functions.

1. f:R"™ — R such that f(z) = ||z||; for each z € R"

2. f: R" - RU {co} such that f(z) = ¢_11)(z) for each z € R", where 1 =
(1,...,1) e R"

Exercise 5.7
Let f : R — R U {oo} be the nonconvex function in the figure below. It satisfies

0 ifzx=-1,
ifx =0,
flx)y=<¢ -1 ifz=1,
0 ifz=2,

oo otherwise.

(-1,0) (2,0)
X

(1,-1)
X
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1. Draw the conjugate f* of f
2. Draw the biconjugate f** of f

Exercise 5.8 (H) (x)
Let f : R" — R U {oo} such that
f(x) = =2
for each z € R™.
1. Compute the conjugate f* via the following steps:
(a) Show that f*(s) > 0 for each s € R"
(b) Show that f*(s) < 0 for each s € R" such that ||s|j2 < 1
(c) Show that f*(s) = oo for each s € R™ such that ||s|2 > 1
(d) Combine the results and give f*
2. Use the conjugate to compute the subdifferential of f

Exercise 5.9 (x)
Let A be the n-dimensional probability simplex, i.e.,

A:{xER”:xEOanlele}.
Similarly, let D be the set
D:{xeR":xZOanlexgl}.
1. Show that

tals) = max s

for each s = (s1,...,s,) € R”
2. Find /¥
3. Show that

tp(s) = max <O, max si>
i=1,...,n

i=1,...,
for each s = (s1,...,8,) € R”

4. Find .}

Exercise 5.10
Consider the set-valued operators A : R — 28 drawn below.
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1. Draw the inverses A~! : R — 2R
2. Which operators A are functions f : R — R?

3. Which operator inverses A~! are functions f : R — R?

/
NS

Nl \ \\

Exercise 5.11

Consider the subdifferentials 0f of some proper, closed, and convex functions f drawn
below. Decide 0f*, i.e., the subdifferential of the conjugate function of f.

of () = {oa} df (z) = {0}
a b.
af (z) of (z)
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Exercise 5.12
Let v > 0and f : R — R U {oo} proper, closed, and convex. Show that

prox, (z) = (I +70f) 7 (2)

for each z € R", where the inverse denotes the operator inverse.

Exercise 5.13 (H)

Compute the proximal mapping for the following convex functions on R. Use graphical
arguments and that prox. ;(z) = (I +~9f)"!(z).

L f(z) = |z|

Exercise 5.14

Let v > 0, f : R" — R U {oo} proper, closed and convex, and s, z € R". We will prove
the Moreau decomposition of proximal operators in a sequence of step below:

1. Show that prox(z) + prox«(z) = 2
2. Show that (vf)*(s) = vf* (v 's)
3. Show that prox(, )« (z) = yprox,—1 (v~ '2)
4. Show that prox, ;(2) + yprox, -1 (v l2) =2
Prove the following variant:
5. prox, «(z) + yprox,—1,(y7'z) = z
Prove the following relationship:

6. pProx,(fo_14)(2) = —prox,s(—z)

Exercise 5.15
Let v > 0. Compute the prox, ). for the following f:

1. f:R" — R such that f(z) = 327 Hx + h'z for each z € R", where H € S| and
h e R"

2. f:R — R such that f(z) = max(0,1+ z) for each 2 € R
3. f:R — R such that f(z) = max(0,1 — z) for each x € R

30



Exercise 5.16
Let f : R" - RU {oo}.
1. Show that

inf f(z) = —f(0)

zeR™

2. Suppose that f is proper, closed, and convex. Show that

Argmin f(x) = 0f*(0)
TER™

Exercise 5.17 (%)

Let f : R® — R U {oo} be a proper function. Let x,s € R"™. Fenchel-Young’s equality
states that

f*(x) =sTe — f(s) ifandonlyif s < df(x). (5.1)

Prove (5.1) via the following steps:
1. Prove Fenchel-Young’s inequality, i.e., f*(s) > s’z — f(x)
2. Suppose that s € 3f(x). Show that f*(s) < s’z — f(x)

Remark: Combining the first and second subproblems, we conclude that s €
Of(z) implies f*(s) = sTx — f(x)

3. Suppose that f*(s) = s — f(x). Show that s € 9f(x)
Remark: Combining the second and third subproblems, we conclude that (5.1) holds.

Exercise 5.18 (%)
Let f: R™ — RU {oo} be a proper function. Let z, s € R”. Show that:

1. s € Of(z) implies z € 9f*(s)

2. x € 0f*(s) implies s € 9f**(x)

3. Suppose that f in addition is closed and convex. Then
s€edf(x) e xedf(s)

i.e., (Of)~! = 0f* (the inverse of the subdifferential is the subdifferential of the
conjugate)
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Hints

Hint to exercise 5.3
Note that % is differentiable with gradient

| p—2
(v”) @) = {:13|33| fo¢0,
p 0 ifz =0.

Hint to exercise 5.6
Use the results from Exercise 5.1 and 5.5.

Hint to exercise 5.8
Cauchy-Schwarz inequality sz < ||z||2||s||> holds for each z,s € R™.

Hint to exercise 5.13

The subdifferential for each function have already been computed in Exercises 3.2.
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Chapter 6

Duality

Exercise 6.1
Consider a primal problem of the form

minimize f(z) + g(x), (6.1)
zeR™

where f : R” - RU{oco} and g : R” — RU{oo} are proper, closed and convex functions.
Suppose that the constraint qualification relint dom f N relint dom g # () holds.

1. Show that solving the primal problem is equivalent to finding =,z € R™ such
that

{x € af*(n),

z € 09" (—p)

2. Show that this inclusion problem is equivalent to the following dual optimality
condition
0€df (n) — 09" (—p), (6.2)
that solves the Fenchel dual problem

minimize f*(u) + ¢*(—p) (6.3)
pER?

3. Suppose you are given a solution p* to the dual condition (6.2) and a subgradient
selector function sy« : domdf* — R" such that

sp+(u) € 0 (n)

for each 1 € dom df*. Can you recover a primal optimal solution x*? What if f*
is differentiable?

Exercise 6.2
Let f : R™ — RU{o0} and g : R" — RU{oo} be proper, closed and convex functions, and
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L € R™*™, Assume that the constraint qualification relint dom(f o L) Nrelint dom g #
holds. Consider the primal problem of the form

minimize f(Lz) + g(z). (6.4)

zeR™

Derive the Fenchel dual problem

minimize f*(u) + ¢* (=L p). (6.5)
peRrR™

Exercise 6.3

Let f: R™ — RU{o0}, g : R" - RU{oo} and L € R™*". Consider the primal problem
of the form

minimize f(Lz) + g(z).
TER™
State a Fenchel dual problem and show how to recover a primal optimal solution from
a dual optimal solution for the following particular cases:

1.

A

fw) =3 llyl3

for each y € R™, where A > 0 and

n

g(@) = (i + y-1,0/(2:))

=1

for each = = (z1,...,2,) € R". Assume that L is square (i.e. m = n) and invert-
ible.

) =1-1®)
for each y € R™ and

A

2 T
= 3 Nl — ¥

g9(z)

for each z € R™, where A > 0 and b € R"™.

Exercise 6.4 (x)

Let f : R™ — RU{oo} be proper, closed and convex, and L € R™*™ and ¢ € R". Define
g:R" - RU{oo} such that

g9(x) = f(Lz +c)
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for each x € R". Assume that relint dom g # () and that there exists an z* € R" such
that

g*(s) = sup (s'z —g(x))
reR?

= sTai — g(27)

for each s € R*. Show that

* _ : * T
g'(s)= inf (f* () — ')
s.t. s=LTp

for each s ¢ R™.

Exercise 6.5 (x)

In this exercise we study a type of duality in a nonconvex setting called Toland duality.
Let f,g : R" — RU {co} be two functions, where f is proper, closed and convex, g is
proper, and dom g C dom f. Show that

sup (f(z) — g(x))

reR™
is equal to
sup (g% () — f* (1)) -
pHER™
Hints
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Chapter 7

Proximal gradient method -
basics

Exercise 7.1

Suppose that f : R™ — R is convex and differentiable. Consider the gradient method
with constant step-size:

* Pick some initial guess 2° € R" and step-size v > 0.

* Fork=0,1,2,...,1let
.’L’k+1 — xk _ ’}/Vf(IEk)

Let 2* € R"™ be a fixed-point of the gradient method. Show that x* is a global minimizer
of f.

Exercise 7.2

Let v > 0and f : R" — RU {co} proper, closed and convex. Suppose that z € R" is
such that

x = prox, ;(z).

Show that x is a global minimizer of f.

Exercise 7.3

Let f,g : R" — R U {co} be proper, closed and convex. Assume that f is differentiable.
Let v > 0. Suppose that = € R™ is such that

x = prox.,,(z — YV f(z)).

Show that x is a global minimizer of f + g.
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Exercise 7.4
Which of

* the gradient method, and
* the proximal gradient method

are applicable to the minimization problem

minimize h(x)
TeR™

where h : R™ — R U {oo} is the proper closed convex function:

1.
1 2
h@) = 5 14z — b3

for each x € R" where A ¢ R™*" b ¢ R™ and m < n

1
h(z) = §xTQ:1: + 0Tz + ||z,

for each x € R" where Q € ST}

1
h(w) = 5 [[ Az — bl}3 + 1ol

for each x € R" where A ¢ R™*" b e R™ and m < n

1
h(z) = 5 [| Az = bll; + |12,

for each x € R" where A ¢ R™*" b e R™ and m < n

h(z) = tzern:a=p} (T) + ¢—1,1)(T)

for each z € R” where A e R™*", b e R, m <nand {z € R": Az =b} #0

h(z) = ele=vllz 4 t1a)(@)

for each x € R™ where y € R"

1
h(@) = 527 Qu + | Dal,

for each x € R" where Q € S}, and D € R"*" is diagonal
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1
h(z) = QxTQ:L" + ¢—1,1(L)

for each x € R" where Q € S}, and L € R™*"

h(x) = log (1 + e*“’T”> + % z": max (0, 2;)*
i=1

for each z = (z1,...,2,) € R” where w € R"

Exercise 7.5

For the optimization methods and objective functions in Excercise 7.4, which are ap-
plicable to some dual formulation of the minimization problem?

Exercise 7.6
Consider the problem

L I
mlilelﬂr{g}zeHmHl—i-ix Qx

where @ € S7 . The goal of this exercise is to state a Fenchel dual problem and find
the proximal gradient update for this dual problem. Define the functions f, g : R* - R
such that

flx) =z, and g(z)= 32" Qx
for each x € R™. The problem can be written as

minimize f(z) + g(z).
TER™

Compute f*
Compute g*

State a Fenchel dual problem using general /* and ¢*

L A e

State a proximal gradient method step for this general dual problem. Specif-
ically, assume that f is proper, closed, convex and proximable, and that ¢ is
proper, closed and strongly convex (which is true in our particular case). Con-
struct a proximal gradient method step that is computationally reasonable based
on this information

5. Specify the proximal gradient method step for the dual problem with our partic-
ular choice of f and g
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Exercise 7.7 (x)
Consider a primal problem of the form

minimize f(Lz) + g(z)

rER™

where f : R™ — RU{oc} is proper, closed, convex and prox friendly, g : R" — RU{oco} is
proper, closed and strongly convex, L € R™*" and relint dom (f o L) Nrelint dom g # §.
We know that a Fenchel dual problem can be written as

minimize f*(p) + g* (—L" 1) .
pER™

We also know that f* is proper, closed, convex and prox friendly and that ¢* is convex
and smooth. If v, > 0, a proximal gradient method step can be written as
pka1 = prox,, g (e — %V (9" 0 —L") (1r)) -
Show that this equivalently can be written as
zp = argmingepn (9(z) + pf L) |

Vg = pg + Vi Lag, (7.1)

Hhet1 = Uk — YkPTOX -1 ¢ (’Yk_lvk) :

I.e., we can perform the proximal gradient method step for the dual problem using
only primal information (f and g).

Exercise 7.8

Consider the Fenchel dual problem obtained in Exercise 7.6. For this particular choice
of f and g, explicitly evaluate the dual proximal gradient method step and show that
the resulting step is the same as the implicit step (7.1) obtained in Exercise 7.7.

Exercise 7.9 (H) (%)

Let f : R™ — R be a $-smooth function for some 8 > 0. Consider the gradient method
step

Ty = 2k — %V f(2r)

for some v, € (0,1/53). Show that the gradient method is a majorization-minimization
algorithm. A majorization-minimization algorithm is an algorithm on the form

Tpy1 = argmin g(y)
yeR”

for some function g : R® — R such that f < g, i.e. g is a majorizer of f. Thus, the goal
is to find such a g.
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Hints

Hint to exercise 7.9
Start from the decent lemma, i.e.

F(w) < 1)+ V@)~ 2)+ 2 lly

for each z,y € R™ and use that v, < 1/8.
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Chapter 8

Algorithm convergence

Exercise 8.1

For a given optimization problem, we used two algorithms to solve it up to a desired
precision.

1. The first algorithm, performed 5000 floating point operations in each iteration
and we ran it for 10° iterations

2. The second algorithm, performed 50 floating point operations in each iteration
and we ran it for 2 x 10 iterations

Which algorithm had better performance?

Exercise 8.2

Match the following rates with the corresponding curve given in figure below. For
each rate, specify if it is linear, sublinear or superlinear.

1. O(p}), with0 < p; < 1
2. O(p )Wlthp1<p2<1
3. O(1/ log(k))

4. O(1/k )

5. O(
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Exercise 8.3

Let (Vi)72, be a nonnegative convergence measure.

1. Suppose that (V});2, has a Q-linear rate, i.e., there exists a p € [0, 1) such that
Vir1 < pVi

for each integer k& > 0. Show that (V)2 , has a R-linear rate, i.e., there exists a
pr €10,1) and Cf, > 0 such that

Vi < phor

for each integer & > 0

2. Suppose that (V)72 has a Q-quadratic rate, i.e., there exists a p € [0,1) such
that

Vi1 < oV (8.1)
for each integer k£ > 0. Show that there exist pg > 0 and Cg > 0 such that
Vi < p3 Cq (8.2)

for each integer k£ > 0

3. Suppose that (V)22 , has a Q-quadratic rate as in (8.1). If pg € [0, 1) in (8.2), we
say that (V)72 , has a R-quadratic rate and can conclude that

Vi, -0 as k — oo.

However, pg € [0,1) will only hold for certain initial values ;) — which?

Thus, R-quadratic rate is only achived localy, i.e., for certain initial values 1}
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Exercise 8.4
Let f : R®™ — R and consider the problem

inf
zeR"™

f(@).

Suppose that some iterative descent algorithm generates a sequence (z)7°, in R”,
ie.,

f(@rs1) < flag)
for each integer k£ > 0. We call such a sequence (z;);2, a descent sequence for f.

1. Give an example of a function f and descent sequence (z})7° , for f such that the
sequence of function values (f(xy)),—, does not convergence

2. In addition, assume that the function f is bounded from below, i.e., there exists
a B € R such that f(z) > B for all z € R™. Prove that the sequence of function
values (f(zy)),—, converges

3. Give an example of a function f that is bounded from below and descent sequence
(21)32, of f such that (f(x)),—, does not converge to infycpn f()

Exercise 8.5
Let f : R — R such that

f(z) = e* — 2z + 2*

for each x € R. Consider finding a minimizer of f using the standard Newton’s method

without line search: Pick some initial point zy € R and let

Tht1 = T — (VQf(a?k))_l Vf(xk)

for each integer k& > 0. Below you find the 10 first iterations for when zy = 5.

Tk

|z) — 2*]

O© 00 IO ULk WNhHOF

Calculate the ratios

and

5.000000000000000
3.960109873126804
2.888130487596392
1.799138129515975
0.849076217909656
0.379763183818023
0.315791881094192
0.314923211324986
0.314923057845411
0.314923057845406

4.685076942154594
3.645186815281398
2.573207429750986
1.484215071670569
0.534153160064250
0.064840125972617
0.000868823248786
0.000000153479580
0.000000000000005
0.000000000000000

| g1 — 27
|z — ¥

|[Tt1 — 2
|lzp — a2

43



Based on these ratios, estimate whether the sequence (|z; — 2*|)72, is Q-linear or
(-quadratic convergent and find the corresponding rate parameter.

Exercise 8.6

A sequence (Q1);2,in R is generated by some iterative algorithm. It is found to satisfy
the following inequality

v D
P1(k)  Pa(k)

for each integer £ > 0, where D and V are positive constants and 1,12 : R — R
are functions that depend on the algorithm that generated (Q)3°,,.

1. Show that Q; — 0 as k — oo if

0<Qr <

P1(k) 00 as k— oo,
Po(k) 00 as k— oo

2. Let ¢ > 0 and decide the rate of convergence for the following cases:

(a) When
. 1 ifk<l1
1 ifk<0 -
k) = - d k)=
Yi(k) {m/% ifp>o o veb) { VE iepe
clogk
(b) When
1 ifk <1,
k; = 1—0(_
P1(k) = q 2¢(k D ere
11—«
and

{1 if k <1,

Po(k) =9 (1—2a)(k'">—1) .

=)kl —2q) TF>1
where « € (0,0.5)

(c) When

1 ifk <1,
]{j = 1—04_
Y1(k) = q 2¢(k D ere

11—«
and

1 ifk <1,
Po(k) = { (1 —2a)(k'=> 1)
(1 — a) (k=22 — 2a)

ifk>1
where a € (0.5,1)
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3. Which case above gives the fastest convergence rate?

Exercise 8.7

An iterative algorithm for minimizing a function f : R® — R produces a sequence
()32, in R™. Suppose that z* is a minimizer of f and ; > 0, for each integer i > 0, are
the step-sizes used by the algorithm. A convergence analysis results in the following
inequality:

k
V+D Z’yf
[ e p—

for each integer k > 0, where V', D and b are positive constants.

1. Show that (f(zx));2, converges to f(z*) if (v2).- is summable and (v;){2 is not,
ie.,if

oo oo
Z 7} < oo and Z i = 00
i=0 i=0

2. Let ¢ > 0 and estimate the convergence rates for the following step-sizes:
(a) vi =c¢/(i+ 1) for each integer i > 0
(b) v; = ¢/(i + 1)* for each integer i > 0, where a € (0.5,1)

3. Which step-size +; above gives the fastest convergence rate?

Exercise 8.8

Let 3 > 0and f : R* — R be a $-smooth and convex function. Let z* € R" be
a minimizer of f. Consider finding a minimizer of f, not necessarily z*, using the
gradient method:

Tpp1 = x — YV ()

for each integer &k > 0, where zg € R” is some given initial point and the step-size
v € (0,1/p] is constant. In this case, the gradient method can be shown to be a descent
algorithm, i.e.,

f(@rs1) < flag)

for each integer k£ > 0. Put differently, (z1);°, is a descent sequence for f. Moreover,
the Lyapunov inequality

lz = "3 < llon—1 — 2*[13 = 2v(f () — f(2*)) (8.3)

for each integer k£ > 1 can be shown to hold. Show that f(z;) — f(2*) as k — oo and
find the convergence rate.
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Exercise 8.9

Consider minimizing a function f : R® — R, with a minimizer z* € R", using a
stochastic optimization algorithm and starting at some predetermined (deterministic)
initial point zy € R". Analysis of the algorithm resulted in the inequality

E [|lzgsr — 2|3 | ax] < llog — (13 — 29 (f (2x) — f(27)) + 176G

for each integer k£ > 0, where G is a positive constant and v, > 0 for each integer &k > 0
are the deterministic step-sizes of the algorithm satisfying

oo o0
Zyk:oo and Zy,%<oo.
k=0

k=0
In particular, (z);2, is a stochastic process.

1. Apply an expectation to the above inequality to derive a Lyapunov inequality for
the algorithm

2. Use the obtained Lyapunov inequality to show that

k k
2> WELf (@) — f@*)] < lloo — 2* 3+ G2+
=0

1=0

for each integer k£ > 0

Exercise 8.10 (H) ()

Let 3 > 0and f : R® — R be a -smooth and convex function. Consider finding a
minimizer of f using Nesterov’s accelerated gradient method, i.e.,

Ykl = T — ;Vf(wk%

Try1 = (1 = V) Yrt1 + Yk

for each integer k > 0, for some initial points zo = yo € R", where

1— Mg
k= Akt1
and
1 if k =0,
Ae =9 1+ /1442,
5 otherwise

for each integer & > 0. Suppose that the function f has a minimum at z* € R".
Nesterov’s accelerated gradient method can be shown to satisfy

2
Vit — Vi < 2gk<f<xk> — F@) = L (fag) — f(2)) (8.4)

where
Vi = [ = 1) (@1 — 25) — g + ¥

for each integer k > 1.
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1. Show that f(z;) — f(z*) as k — oo and find the rate of convergence

2. Show that if the number of iterations % is as large or greater than
max<|r 0—2-‘ ,2)
€

C = 26V1 + 4N (f(a1) — f(2*))

where

the methods achieves an c-accurate objective value, i.e.,

flae) = f(z7) <€

Hints

Hint to exercise 8.10
For the first part, show that

Mg > 14 -

\V]

for each integer k£ > 0.
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Chapter 9

Proximal gradient method -
theory

Exercise 9.1

Let 8 > 0 and suppose that f : R” — R is S-smooth. Consider the gradient method
with constant step-size:

* Pick some initial guess xg € R" and step-size v > 0.

e Fork=0,1,2,..., let
Try1 =z — YV [ (k). 9.1)

Suppose that z* € R" is a global minimizer of f.

1. Find the Lyapunov inequality

(o) = £a) = (fn) = fla) = (1= ) V7@l ©2)

2. Show that
HVf(xk)Hg%O as k— o

ﬁ0<7<%
3. Find the convergence rate of

. N
nin, IV f(zi)ll5

if0<’y<%

Exercise 9.2

Let 8 > 0 and suppose that f : R” — R is convex and S-smooth. Consider the gradient
method with constant step-size:

* Pick some initial guess 2o € R™ and step-size v > 0.
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* Fork=0,1,2,..., let

Th+1 = Tk — ’}/Vf(mk). (9.3)

Restrict the step-size to 0 < v < % Suppose that z* € R" is a global minimizer of f.
1. Show that the iterates satisfy

lopsr — 213 < g — 2¥13 = 29(f (@ran) — F@@*) + 4287 = D IV f (@) [3. 9.4)
Do this by
* expanding the square ||z — x*||§,
¢ using the first-order condition for convexity, and

* using the Lyapunov inequality (9.2) from Exercise 9.1

2. Show that
f(zr) — f(z*) as k— oo,

and find the rate of convergence. Note that >0°, ||V f(z1)||3 was shown to be
bounded in Exercise 9.1.

Exercise 9.3

Let 0 < o0 < (8 and suppose that f/ : R® — R is o-strongly convex and /3-smooth.
Consider the gradient method with constant step-size:

¢ Pick some initial guess xg € R™ and step-size v > 0.

® Fork=0,1,2,...,1let
T =z — YV f(2p).

Suppose that z* € R" is the global minimizer of f.

1. Suppose that v € (0,1/5]. Show that the iterates satisfy the inequality
lksr — 2?3 < (1= 0y) o — 2*[15 .

Use the same technique as in Exercise 9.2.1, but replace the first-order condition
for convexity with the first-order condition for strong convexity.

Which step-size v gives the fastest convergence rate?

2. In the lectures a different approach is used to analyze the convergence. There it
is shown that

[zt — 2"l < max(l — o7, By — 1) |z — 27|,

holds if v € (0,2/5). What is the best step-size v according to this inequality?

3. Which approach gives the faster convergence rate?
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Exercise 9.4

Consider the minimization problem

¢
minimize 2! Qz + ¢’ =
PISIING 2

where ) € S, and ¢ € R". We use the gradient method with constant step-size:
* Pick some initial guess 2y € R™ and step-size v > 0.

* Fork=0,1,2,...,let
T = 2 — YV f(xp).

Suppose that * € R" is a global minimizer of f. Moreover, let v € (0,2/53), where
B=1Qll;-
1. Show that
[#rg1 — 2"y < T =Ql5 llze — 27,

and that

1 —~Qll, <1

2. Let v = 1/4 and find an expression of

”I—VQHz

in terms of the eigenvalues of Q)

Let the linear convergence rate p € [0, 1) be defined as the smallest p so that
|l = 2*[| < p* [|lzo — 2*|
holds for each integer k£ > 0.
3. Let v =1/4 and let

@=[p Y

where 0 < € < 1. What is the worst case linear convergence rate p we can expect
given the result above?

Let ¢ = 0. Can you find an initial point x( that achives this worst case conver-
gence rate?

4. Let

where 0 < € < 1 and assume that ¢ is much smallar than 1. The eigenvalues of
this matrix are approximately 1 and e. Gradient method will therefore be slow
on this problem also.
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To improve the convergence rate, we want to find a variable change y = Ax for
some invertible matrix A € R™"*" so that the equivalent problem

1
minimize —y? ATQAy + ¢7 Ay
yeR™? 2

has better properties. This is often called preconditioning. Find a diagonal ma-
trix V so that the diagonal elements in V7' QV are 1.

5. What are the eigenvalues of the new matrix V7' QV? What can we expect in
terms of convergence rate of ||y, — y*||?

6. When we have a problem where the proximal gradient method is needed instead
of just the gradient method, why do we usually have to limit ourselves to diagonal
scalings V?

Exercise 9.5

Let f : R™ — R be closed and convex. Consider the poximal point method:
* Pick some initial guess 2y € R™ and v > 0.
* Fork=0,1,2,..., let
Tp+1 = Prox, (k).

1. Show that (f(zx))32, is a nonincreasing sequence by showing that

1
f(zpg1) < flxg) — > [Era—

2. Assume that f is lower bounded by B € R, i.e.,
f(x) = B
for each x € R". Show that

|pe1 — 2]l >0 as  k — oo

3. Show that
|2pr —zkls =0 as  k— oo
implies that
distgf(z,)(0) =0 as k— o0
where

disty f(z) (y) = Seg}f(z) Is =yl

for each x,y € R™. l.e., show that if the reisdual convergence to zero, then the
distance between the subdifferential and zero convergence to zero.
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4. In addition, assume that f is o-strongly convex for some o > 0. Let

x* = argmin f(z).
z€R™

Show that

T, —x° as k— oo.

Remark: A note about the last point. There exist conditions weaker than strong con-
vexity so that the sequence to converges to an optimal point, but strong convexity is
arguably the simplest.

Exercise 9.6

Let f : R" — R be convex and 3-smooth for some § > 0. Let g : R” — R U {co} be
proper, closed and convex. Consider the proximal gradient method:

* Pick some initial guess 2y € R® and v > 0.
e Fork=0,1,2,..., let

Tgy1 = prox,g(zg — YV f(zg)).

Here we restict the step-size such that v € (0,1/3]. Suppose that

z* € Argmin (f(z) + g(z)).
zeR”™

A procedure for proving convergence in function value of the method is given below.
However, some of the steps are missing. Fill in the gaps marked by ... to complete
the procedure.

1. The goal is to find a Lyapunov inequality on the form

Vierr < Vi — Qi

for each integer k > 0, where (Q;);2, is some nonnegative convergence measure
and

Vi = ||z — 2|3

for each integer &k > 0. We further define the fixed-point residual mapping R :
R™ — R™ such that

Rz =z — prox,,(z — vV f(z))
for each z € R™. The proximal gradient update can then be written as
Tpt1 = Tk — Rag. (9.5)
We can use this to relate Vi to Vi, by

Vk—i—l = Vk +... (9.6)
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2. Next, we wish to upper bound the quantity —2(z, — 2*)7 (Ray) + | Rai|3. We
start by using (9.5) to rewrite it as

—2(xp — )T (Rag) + [R5 = —2(zper — )T (Ray) + ... 9.7)

3. We now turn to bounding —2(zj,1 — 2*)”(Rx). Using Fermat’s rule on the
proximal gradient update gives that

0 € dg(xps1) + ,1Y (g1 — (@2 — YV [(21))),

which is equivalent to that

IRz — Vf(zk) € 0g(xps1).

The definition of a subgradient then gives that

9(x%) = glzrs1) + (v "Ra — Vf(zn)" (@ — zp41),
which implies that

—2(zpp1 — 2) T (Ray) < ... (9.8)

4. We continue to bound —27V f(x3)” (211 —*). Using the definition of 3-smoothness
of f and the first-order condition of convexity on f give the two following inequal-
ities:

Flaie) < Flaw) + Fn) (i —8) + 5 i — 2l

= ) + V) (i — ) + 5[ Rag
Fat) 2 flan) + V) (@ - ).

Adding these two together and rearranging gives that
Flekan) < @)+ V() (i —a%) + 5 Rl

which implies that
— 29V () (g1 — %) < ... (9.9

5. Inserting (9.9) into (9.8), (9.8) into (9.7), and (9.7) into (9.6) gives that

Vi1 S Ve +...

6. Using the assumption v < 37! gives that

Vier1 = Vi — Qk

where
Qr=...,

which is nonnegative since v > 0 and ... > ... by assumption on z*.

53



7. Since Vi, > 0 and @}, > 0 we we know that

Qr—0 as k— oo,

Exercise 9.7 (x)

Consider the problem

which implies that
... as k—oo.
mini[rélize f(z)+ g(x) (9.10)
:L‘e n

where f : R" — R is of-strongly convex and -smooth, and g : R” — RU {oo} is proper,
closed and o,-strongly convex, for some 0 < oy < 3 and o, > 0. The problem can then
be solved using the proximal gradient method:

* Pick some initial guess 2o € R" and v > 0.

e Fork=0,1,2,...,let

Let

Tr41 = Proxyg(zr — YV f(2r)).

xz* € Argmin (f(z) + g(z)).
Tz€R™

1. Show that the proximal gradient method satisfy

max(l — oy, By — 1)2

2
1+ 0,7 zg — Hz

k1 — 2*3 <

by inserting the definition of 2, in |3, — 2*||3 and then use the following:

The minimum z* is a fixed-point to the proximal gradient step.

The proximal operator of a o-strongly convex function is ﬁ-LipschitZ con-
tinuous.

The gradient of f satisfies

Boy
B+oy

(Vi) = Vi) (@ —y) > IV f(z) — V()3 + |z — vl

B+oy
for each x,y € R", since it is o ¢-strongly convex and /-smooth.
Then, in two different cases, use that

- V/f is B-Lipschitz continuous, and that

— the inequality

IV f(x) - Vf(y)”Q >0y |z — yH2

holds for each z,y € R", since f is differentiable and o ;-strongly convex
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2. For which step-sizes v and combinations of oy > 0 and o, > 0 does our analysis
give that the proximal gradient method converge linearly?

3. Note that it is possible to “move” the strong convexity between f and ¢ in some
sense. In particular, consider the following problem

. g 2
h _
min h(z) + ¢(z) + 5 llzll
where h : R — R is L-smooth and convex, ¢ : R” — R U {0} is proper, closed
and convex, and o, L > 0. This can be written as a problem of the form (9.10) by
choosing any § € [0, 1] and forming

(o (o
f=h+oZ I3 and g=6+(1 -0

The objective function f + g will always be the same and will remain o-strongly
convex, regardless of the choice of 5. However, the individual strong convexity of
f and g, and the smoothness of f, will depend on §. Therefore, the same holds for
the linear convergence rate of the proximal gradient method that we can prove.

Compare the convergence rates for the best choice of step-size v when all strong
convexity is put in the gradient step, i.e., 6 = 1, and when all is put in the
proximal operator, i.e., § = 0.

Hints
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Chapter 10

Learning

Exercise 10.1
Consider the logistic regression problem

log (1+ ¢ (fwrt)) 10.1
Tk“é%l#i%z og(l+e (a0

with data points x; € R™ and class labels y; € {—1,1}, foreachi =1,..., N. Show that
(10.1) is equivalent to

N
e 3 1w (1-+¢%) i (e +0)
’ 1=1

if the classes are labeled with y; € {0,1} instead of y; € {—1,1}.

Exercise 10.2

Consider the logistic regression problem

N
coe . x; w+b (T
pipimive 3 (0g (14 ¢+747) = (o 1)) 102

with data points z; € R" and class labels y; € {0,1}, for each i = 1,..., N. Assume
that there exists (w,b) € R™ x R such that

zlw+b<0 ify; =0
slw+b>0 ify; =1

for each : = 1,...,n. Show that the optimal value of (10.2) is 0, and that no (w,b) €
R"™ x R exists that attains the optimal value 0.

Exercise 10.3
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Consider the univariate Lasso problem
o1 2
minimize — ||az — b||5 + A |z] (10.3)
zeR 2

where a € R™, b € R™ and A > 0 are given.

Note that if a”’b = 0, the optimal point of (10.3) is simply « = 0. Therefore, assume
that a”b # 0. Prove that the optimal point of (10.3) is

0 if A > ’aTb ,
v Tlg — %sgn (r1g) ifA< ‘aTb‘
lall3
where
a’'b
T = m

corresponds to the solution of the problem for A = 0, i.e., the corresponding univariate
least squares problem.

Exercise 10.4

Consider the Lasso problem
| 2
minimize o |Az — b5 + A |z, (10.4)

where A € R™*™ b e R" and A\ > HATbHOO. Show z = 0 is a solution.

Exercise 10.5 (H)(x%)
Consider the following bivariate Lasso problem

1
minimize = || Az — |5 + A |||, (10.5)
zeR? 2

where A € R"*2 b € R", n > 2 an integer and A\ > 0. Suppose that
A= [al ag]

has normalized columns, i.e., ||ai||, = |laz||, = 1, and that A has full (column) rank.
This implies that |a{ az| < 1. Consider each of the four possible sparsity patterns of
z € R?in (10.5), i.e.,

Xo,0 = {(0,0) € R*},

Xi1= {(a:l,:cg) eR?:z #£0,29 # O},
X10={(z,0) e R* : 2 # 0},

Xo1 ={(0,z) eR*: x #0}.
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Find the set
A;j = {A>0: 3z € R? optimal point for (10.5) using A and z € X; ;}

for each i, j € {0,1}. Verify that for a given problem the four ranges A; ; are disjoint
and the number of zeros in the solution is nondecreasing with \.

Exercise 10.6
Consider the SVM problem with an affine model

n

A
0,1—vy; (zFw+b Zlaw||? 10.6
i 2 01w ) g el 109

with data points z; € R™ and class labels y; = {—1,1} for each i = 1,...,n, and a
regularization parameter \ > 0.

1. Consider the unregularized problem, i.e., A = 0, and assume that examples
from both classes exists. Assume the data is fully separable, i.e., there exists
a nonzero pair of parameters (w,b) € R™ x R such that

zfw+b<0 ify, =-1
zfw+b>0 ify, =1

for each i = 1,...,n. Show the optimal value of (10.6) is 0 and that the that the
optimal set, i.e., the set of all optimal points, is unbounded.

2. Consider again the unregularized problem, i.e., A = 0, but assume that the data
only contains one class, e.g., there exists noi = 1,...,n such that y; = —1. Show
that an arbitrary w € R™ is part of an optimal point of (10.6) and show that the
optimal set is unbounded.

3. Consider the regularized problem, i.e., A > 0. Assume the data only consists

of one class, e.g., there exists no 7 = 1,...,n such that y; = —1. Show that
w = 0 € R™ is part of an optimal point of (10.6) and show that the optimal set is
unbounded.

Exercise 10.7

Find X € R™*" and ¢ € R"™ such that the SVM problem (10.6) in Exercise 10.6 can be
reformulated as

(wllllisleiglwilzxe]R 17 max (0,1 — (XTw + bg)) + % wll3 (10.7)

where the max function is applied element-wise and 1 € R"” is a vector of all ones.

Exercise 10.8(x)
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Consider the reformulated SVM problem (10.7) in Exercise 10.7, i.e.,

A
minimize 17 max (0,1 — (X7w + b¢)) + = [wll3
(w,b)ER™ xR 2

=17 max (O, 1-L [?ﬂ) =g(w)

=f(L(w,b))

where f : R” — R is given by
f(u) = 1" max (0,1 — u)
for each v € R"™,
L=[XT ¢]

and g : R™ x R — R is given by

A
g(w,b) = 3 Jlwl
for each (w,b) € R™ x R. Assume that A\ > 0 and that examples from both classes
exists.

1. Find the Fenchel dual problem

minimize f* () + g*(— L7 )
pER?

2. Show how to recover a primal solution from a dual solution and motivate when
and why this is possible

3. A support vector for this kind of soft-margin SVM is defined as any data point
x € R™ of class y € {1,—1} that lies on the wrong side of the margin, i.e., 1 >
y(zTw +b), for a given model with parameters (w,b) € R™ x R. It is easy to see
that only the support vectors contribute to the cost of the objective function (see
objective function (10.6) in Exercise 10.6), if we ignore the regularization term.

Suppose that p* € R” is an optimal point for the dual problem. Show that the
nonzero elements of ©* € R™ corresponds to support vectors of the corresponding
model with optimal parameters (w*,b*) € R™ x R. Show that the optimal model
parameters can be recovered from the dual solution by only considering support
vectors

Exercise 10.9
Consider the typical supervised learning problem

n
minimize Z L(my(x:), vi)
w
i=1

where n is the number of training examples, z; € R?is a data point with corresponding
response variable y; € R/, foreachi =1,...,n, m, : R? = R” is a model parameterized
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by w we wish to train, and L : R¥ x R! — R is the loss function comparing the model
output m,,(z;) with the known correct output ;.

Assume that L(-,y) is convex for each y € R'. Prove or disprove the following state-
ments:

1. The objective function
w > Lmay(2:), yi)
i=1

is convex if a linear model with some feature map is used. i.e., if

for each = € R? where ¢ : R — R/ and w € Rf**

2. The objective function

w Z L(muy(zi),yi)

i=1
is convex if a DNN model is used. i.e., if

my(z) = o1 (wl oo (wl ...op(whz)...))

for each z € R? where o; is an activation functions that act elements-wise, for
eachi=1,...,D,and

w = (wla"'va)
such that
wy € Rlek
w; € RFxfiifor i =2,..., D —1
wp € R4*fp-1
Hints

Hint to exercise 10.5

For 2* € X, g, first find the optimal z7. Use this together with the optimality condition
for 25 = 0 to find the bounds on \. For z* € X, i, first find the ordinary least squares
solution and show the coordinates of the Lasso solution have the same signs. Use
this, the optimality condition and z* # 0 to find the bound on \. Useful identities are

sgn(z) = sgn(z)~", |z| = sgn(z)x and sgn(z) sgn(y) = sgn(zy)
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Solutions to chapter 0

Solution 0.1
Recall that

n 1/p
]l = (Z !:vi!p>
i=1

for p € [1,0), and

12l =, max |z

However,
n 1/p
P 1/p
Jmax |z < (lez! ) <n'? max |z,
i=1
or
|2l < llll, < n'7 2], -
Note that
1
lim n'/? = lim exp <nn>
pP—00 pP—00 P
continuity of exp < . lnn)
= exp | lim —
p—oco P

= exp (0)

=1.
The squeeze theorem now gives that

A [zl = 2l
as desired.
Solution 0.2
Note that

|z —yll = =1 [lz —yll = [[-Lz = y)I| = ||y — ]

61



and

[zl =1l =) +yll < llz =yl + lwll = [zl = [yl < llz =yl
Iyl = Ity =) + 2l < lly =2 + =l =Nzl = llyll = = lly — =[]

Combining these observations implies that

= llz =yl < llzll = lyll < llz =yl

which is equivalent to

[zl =1yl < llz =yl

as desired.

Solution 0.3

1. mingex f(x) = —100

—100

2. argmin,cy f(z)=| =«
e

—100
3. Argmin,y f(x) = T
4. maxgzex f(x) =1

1 1
5. Argmax,cy f(z) = {2 |
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Solutions to chapter 1

Solution 1.1

1. Figures b. and d. represent convex sets since the straight line segment connect-
ing any two points are contained within the sets.

Figures a. and c. represent nonconvex sets since the line segments drawn below
between two points in the respective sets are partially outside the sets.

C. d.

2. The sets in figures b. and d. are convex, so there exist supporting hyperplanes
at every point of their boundaries. Note that interior points can not have sup-
porting hyperplanes.
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C. d.

3. The sets in figures b. and d. are convex, so their convex hull is the sets them-
selves.

Solution 1.2

1. Convex. Let z,y € S and § € [0, 1]. Then Az = b and Ay = b. Note that
A0z + (1 — 0)y) = 0Az + (1 — 0) Ay = b+ (1 — 0)b = b.
By definition of S, we conclude that
Oz + (1 —0)y € S.

Since, z,y € S and 6 € [0, 1] are arbitrary, the set S is convex. (This is an affine
subspace/intersection of hyperplanes.)

2. Convex. Let z,y € S and 6 € [0,1]. Then Az < b and Ay < b. Since # and (1 — 0)
are nonnegative, we have that

Az + (1 — 0)y) = 0Az + (1 — 0)Ay < b+ (1 — )b = b.
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By definition of S, we conclude that
Or+ (1—0)yeS.

Hence, the set S is convex. (This is a polytope /intersection of halfspaces.)

. Convex. Let x,y € Sand 6 € [0,1]. Then x > 0 and y > 0. Since 6 and (1 — ) are
nonnegative, we have that

0 + (1 —0)y > 0.
By definition of S, we conclude that
Or+ (1—0)y e S.

Hence, the set S is convex. (This is the non-negative orthant.)

. Convex. Let z,y € Sand § € [0,1]. Then! < 2z <wand! <y < u. Since § and
(1 — 6) are nonnegative, we have that

0r+(1—-0)y<bu+(1—0)u=u
and
Ox+ (1—0)y >0l + (1 —0)l =1.
In particular,
[<0x+(1-0)y <.
By definition of S, we conclude that
Or+(1—0)y e S.

Hence, the set S is convex. (The constraints that defines the set are called box-
constraints.)
. Convex. Let z,y € S and # € [0,1]. Then ||z||, < 1 and |ly||, < 1. Since # and
(1 — 6) are nonnegative, we have that

10z + (1 = O)yll, < [0z, + (1 = O)yll,

=0lzlly+ (1= 0)
<0+ (1-0)
=1.

By definition of S, we conclude that
r+(1—-0)yeS.

Hence, the set S is convex. (This is the unit 2-norm ball, i.e., all points with
distance to the origin less than or equal to one.)

. Not convex. The set S is not convex. We prove this by finding a counterexam-
ple to the definition of convexity. Let + = e¢; and y = —e;. Then — |jz|, < —1
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and — ||y|, < —1. In particular, z,y € S. However, for the convex combination
(1/2)z + (1/2)y we have that

Therefore,

This show that (1/2)z + (1/2)y is a counterexample to the definition of convexity,
and therefore, we conclude that the set S is not convex, as desired.

. Convex. The condition — ||z||, < 1 holds for each € R". Hence S = R", which
is convex.

. Convex. Let (z,t;),(y,t,) € Sand 6 € [0,1]. Then ||z|, < ¢, and ||y||, < t,. Since
6 and (1 — 0) are nonnegative, we have that

[0z + (1 = 0)ylly < Ollzfl2 + (1 —0)|lyll2
< Oty + (1—0)t,,.

By definition of S, we conclude that
Oz + (1 —-0)y,0t, + (1 -0)t,) €8S.
However,
O(x,ty) + (1 —0)(y,ty) = Oz + (1 —0)y,0t, + (1 —6)t,),
and we conclude that
O(z,ty) + (1 —0)(y,ty) € S.

Hence, the set S is convex. (This set is called a second-order cone or Lorentz cone
and is shaped like an ice cream cone.)

. Convex. Let X,Y € S and 6 € [0,1]. Note that X + (1 — )Y is symmetric since
X and Y are. Also, 7 X2 > 0 and 27 Yz > 0, for each 2 € R™. Since 6 and (1 — 6)
are nonnegative, we have that

TOX+1-0)Y)z=02" Xz + (1 —0)zTYz >0
for each x ¢ R", and therefore
0X + (1 —60)Y = 0.
By definition of S, we conclude that
OX +(1—0)Y € 8.

Hence, the set S is convex.
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10. Convex. Note that S = {a}, i.e., a singleton. Let z,y € S and 6 € [0,1]. Then
2 = a and y = a. Note that

r+(1—-0)y =a.
By definition of S, we conclude that
Or+ (1—0)y e S.

Hence, the set S is convex. (In particular, all singletons are convex.)

11. Not convex. Note that S = {a,b}. The set S is not convex. We prove this by
finding a counterexample to the definition of convexity. Let + = a and y = b.
Since a # b, there exists an index i = 1,...,n such that a; # b;. Suppose without
loss of generality that a; < b;. Create the convex combination

T
2=t gy
Then a; < z; < b;. Thus, z # a and z # b. In particular,
z ¢ S.

This show that z is a counterexample to the definition of convexity, and therefore,
we conclude that the set S is not convex, as desired.

Solution 1.3

1. Affine. Note that V = {a}, i.e., a singleton. Let z,y € V and o € R. Then
z =1y =aand

ar+(l—a)y=acV

Therefore, the set V is affine. (In particular, all singletons are affine.)

2. Not affine. The set V' is not affine. We prove this by finding a counterexample to
the definition of affine set. Note that a,b € V. Since by assumption a # b, there
exists an index i = 1,...,n such that a; # b;. Suppose without loss of generality
that a; < b;. But then

xz; < b;
for each x € V. Create the affine combination
z=(-1a+(1—(-1))b=—a+ 2b.
But it holds that b; < —a; + 2b; = z;. In particular, we must have that
z¢V.

This show that z is a counterexample to the definition of affine set, and therefore,
we conclude that the set V is not an affine set, as desired.
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3.

Affine. Let z,y € V. But then there exists a1, as € R such that
r=aja+ (1 —ag)b,
y = asa + (1 — ag)b.
Note that
arx+ (1 —a)y = (a1 + (1 —a)az)a+ (a(l —a1) + (1 — a)(1 — a2))b
= (aoy + (1 —a)ag)a+ (1 — (aa; + (1 — a)ag))b
= faa+ (1= Ba)b €V,

where 3, = aa; + (1 — a)ag, for each a € R. Thus, V is an affine set.

Solution 1.4

The sets in figures (a), (b), and (d) are cones. The sets in figures (a), (b) and (c) are
convex.

Solution 1.5

All the sets in this exercises are in Exercise 1.2 and were shown to be convex. It
remains to decide which of them are cones.

1.

Cone. Let z € S and o > 0. Then Az = 0. Note that A(az) = aAz = 0. Hence,
axr € S and S is a cone.

Not cone. Let z € S and a > 0. Then Az = b # 0. Note that A(az) = aAz = ab #
b for a # 1 (since b # 0), and therefore ax ¢ S for a # 1. Hence, S is not a cone.

Cone. Let z € S and @ > 0. Then Ax < 0. Note that A(az) = aAz < 0. Hence,
ax € S and S is a cone.

Not cone. The inequality Az < b consists of m scalar inequalities a] x < b; that
all must hold. Here, a; is the ith row of the matrix A and b; is the ith element of
the vector b.

Let j be the index such that b; < 0. Let x be a point in the set S. Then a] = < b;.

Note that a;‘r(ax) =0 > b; for o = 0. In particular, ax ¢ S for « = 0. Hence, S is
not a cone.

Not cone. Let j be the index such that b; > 0, and let € S be the point such

that aij > 0. Then a;‘-Fx < b;. However, a;‘r(aaz) = aafx > b; for a > bj/a?x. In
particular, ax ¢ S for a > b; /a]T:v. Hence, S is not a cone.

Cone. Let z € S and o > 0. Then = > 0. Note that ax > 0. Hence, ax € S and S
is a cone.

Cone. Let (z,t) € S and a > 0. Then ||z|, < t. Note that ||az|, = a|z|, < ot.
Hence,

a(z,t) = (ax,at) € S,

and S is a cone.
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8. Cone. Let X € S and a > 0. The matrix X is symmetric and 27 Xz > 0 holds for
each » € R™. Scaling X by a does not destroy symmetry. Moreover, z” (aX)z =
azx? Xz > 0 for each x € R". Hence, aX € S and S is a cone.

Solution 1.6

1. Intersection. Let z,y € C and 0 € [0, 1]. Then z,y € Cy and z,y € Cs. Therefore,
by convexity of C; and Cs, we have that 6z + (1 —0)y € C; and 0z + (1 — 0)y € Cy,
respectively. Hence, 6z + (1 — 0)y € C, which shows that C is convex.

2. Union. Take C, = {0} and Cy = {e1}. Then C = {0, e;}. This is not convex since,
eg.,05-0+ (1 — 0.5)61 = 0.5¢1 g C.

Solution 1.7

Let z,y € ﬂjEJ Cjand 0 € [0,1]. Then z,y € C; for each j € J. However, convexity of
C; gives that

bz + (1 —-0)y € Cj,
for each j € J. Therefore,

Oz +(1-0)ye ()G
jeJ

We conclude that the set (), ; C; is convex.

Solution 1.8

1. Let 2,y € hs, and 6 € [0,1]. Then s’z = r and s’y = r. Note that

sT(lz+(1—0)y) =0sTx+(1—-0)sTy
=0r+(1-0)r
=r.

Therefore, 0z + (1 — )y € hs,. We conclude that A, is convex.
2. Let x,y € Hs, and 6 € [0,1]. Then s’z < r and s’y < r. Note that

s 0z +(1—0)y) =0sTz+ (1 —0)sTy
<Or+(1-06)r
= ’)"7

since § > 0 and 1 — 6 > 0. Therefore, 6z + (1 — §)y € H,,. We conclude that H; ,
is convex.
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3. Note that the set C can be written as an intersection of affine hyperplanes and

halfspaces:
C ) ( m hsurl) m ( ﬂ HS“”) |
ie{l,....,m} ie{m+1,...,p}

In particular, we see that the set C is given by an intersection of convex sets, and
is therefore itself convex.

Solution 1.9
All of the sets are polytopes and therefore convex.

Solution 1.10
1. Let y1,y2 € f(C) = {Axz+b: 2 € C} and let 6 € [0,1]. There exists 1,22 € C
such that
1 =Ax1+b and yy = Axg +b.
We have 6z, + (1 — 0)z2 € C since C is convex. Note that
Oy1 + (1 — )y = A(6z1 + (1 — 0)z2) + b € f(C).

We conclude that f(C) is convex.
2. Letxy,29 € f71(D)={x € R": Az +b € D} and let § € [0,1]. We know that

Az +be D and Azy+beD.
By convexity of D, we get that
9(A:C1 + b) + (1 - 9)(A£CQ + b) = A(G:El + (1 - 9)$2) +beD.

In particular, we note that 6z, + (1 —6)xy € f~1(D). We conclude that f~1(D) is
convex.
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Solutions to chapter 2

Solution 2.1

1. The function is convex.

* Suppose that a = 0. Then f(z) =1 and
f(x) =020,

for each € R. We conclude that f is convex by the second-order condition
for convexity.

* Suppose that a # 0. Then
f//(l') — aQGCLCE > 0

for each x € R. We conclude that f is convex by the second-order condition
for convexity.

This covers all cases.

2. The function is convex. Note that

[0z + (1 = 0)y) = [|6x + (1 = O)y||
< [|0] + (1 = )y
=0zl + (1 = 0) lyl
=0f(x) +(1=0)f(y)

for each z,y € R™ and for each 6 € [0, 1]. Therefore, f is a convex function.

3. The function is not convex. We will find =,y € R™ and 6 € [0, 1] such that
fOr+ (1 —0)y) <0f(x)+(1-0)f(y) (10.8)
fails. Indeed, pick x = —y # 0 and § = 1/2. Then
f0z+(1=0)y)=—]0] =0
and
1 1
0f(2) + (1 =0)f(y) = =5 llzll = 5 =zl = = [l=] <.

This example violates (10.8). Therefore, f is not a convex function.
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4. The function is not convex. The function f is twice differentiable with Hessian
9 {01

for each (z,y) € R%. Note that the Hessian is not positive semidefinite (it is sym-
metric but has eigenvalues 1 and —1). Therefore, by the second-order condition
for convexity, we conclude that f is not a convex function.

5. The function convex. Note that
fz+ (1 —0)y)=a’ Bz + (1 —-0)y) +b
=0(alz+b) +(1—0)(aly+0)
=0f(z)+(1-0)f(y)

for each z,y € R™ and for each 0 € [0, 1]. Therefore, the convexity definition holds
with equality, and we conclude that f is a convex function.

6. The function is convex. Indeed, the function f is twice differentiable with Hes-
sian V2f(z) = Q = 0 for each z € R™. Therefore, by the second-order condition
for convexity, we conclude that f is a convex function.

7. The function is convex. Note that the function
(z,y) = tc(y)

from R™ x R™ to R U {oco} is convex by Exercise 2.5 (and by Exercise 2.10), and
that the function

(@, 9) = [z =y

from R™ x R™ to R is convex by Exercise 2.1.2 and the composition rule with a
linear mapping. Therefore, the function

(z,y) = ||z =yl + o (y)

from R™ xR™ to RU{oo} is a convex function since it is the sum of convex functions.
Note that

f(z) = inf (IIfC*yllﬂc(y))Zyiggllﬂf*yll

yeRn

is convex by the convexity under partial minimization rule, establishing the de-
sired result.

Solution 2.2
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fz) = |o| + 22 f(z) = max(|z|, 2?)

f(z) = min(|z|, 2%)

Solution 2.3

=: Suppose that [ is convex. First, we show that dom f is convex. Let z,y € dom f
and 0 € [0,1]. Then, by convexity of f, we have that

0z + (1 =0)y) <0f(x)+(1—-0)f(y) < oo,
since f(z), f(y) < oo. The definition of dom f implies that
Ox + (1 —0)y € dom f.

We conclude that dom f is convex. Second, we show that (2.2) holds. Note that (2.1)
holds since we assume that f is convex. However, then (2.2) must hold since dom f is
a subset of R™.

<: Suppose that dom f is convex and that (2.2) holds, i.e.,

F(0x+ (1— 0)y) < 0f(x) + (1 - 0) (1) (10.9)
for each z,y € dom f and each 0 € [0, 1]. We need to prove that

F(0x+ (1— 0)y) < 0f(x) + (1 - 0) (1) (10.10)

for each x,y € R" and for each 6 € [0, 1]. Moreover, recall that we are using arithmetics

73



in the extended real numbers. In particular, we use the convention that

0-0c0=0

a-oo=o00 foreach a>0
at+oco=oc0o+a=o00 foreach acR
00 + 00 = 00

a<oo foreach aecRU({oo}

* Suppose that =,y € dom f and 6 € [0, 1]. But (10.10) holds in this case, since we
assume that (10.9) holds.

* Suppose that x ¢ dom f and y € dom f.

- If 6 € (0, 1], then @ is positive, and the righthand side of (10.10) is oo (since
f(x) = o0), which is always greater or equal to the lefthand side of (10.10).
Thus, (10.10) holds in this case.

- If =0, then 6z + (1 — 0)y = y, and the lefthand side of (10.10) is f(y), and
the righthand side of (10.10)is 0- 0o + 1 - f(y) = f(y). Thus, (10.10) holds
in this case.

* Suppose that x € dom f and y ¢ dom f.

- If 6 € [0,1), then 1 — 6 is positive, and the righthand side of (10.10) is oo
(since f(y) = oo), which is always greater or equal to the lefthand side of
(10.10). Thus, (10.10) holds in this case.

- If0 =1, then 6z + (1 — 0)y = x, and the lefthand side of (10.10) is f(x), and
the righthand side of (10.10)is 1- f(z) + 0- co = f(x). Thus, (10.10) holds
in this case.

* Suppose that z,y ¢ dom f and 6 € [0,1]. Then f(z) = f(y) = co. Since at least
one of # and 1 — 4 is positive, the righthand side of (10.10) is co, which is always
greater or equal to the lefthand side of (10.10). Thus, (10.10) holds in this case.

This covers all cases. Therefore, (10.10) always holds, and we conclude that f is a
convex function.

Solution 2.4

Alterative 1: Suppose that f is convex. Let (z1,7r1), (x2,72) € epi f and 6 € [0, 1]. Then
f(z1) < rp;and f(z2) < re. By convexity of f, we get that

f(Oz1 + (1 —0)z2) < Of(21) + (1 —0) f(22)
< 97‘1 + (1 — 9)7“2,

since 6 and 1 — # are nonnegative. This implies that
0(z1,m1) + (1 = 0)(22,72) = (0z1 + (1 — 0)x2,0r1 + (1 — O)r2) E epi f.

Thus, epi f is convex.

74



Conversely, suppose that epi f is convex. We need to prove that f is convex. However,
according to Exercise 2.3 this is equivalent to showing that dom f is convex and that

f(9$1 + (1 — 9).%'2) < ef(l'l) + (1 — H)f(l'Q) (10.11)

for each x1,x2 € dom f and each 6 € [0,1]. Suppose that x1,x2 € dom f and 6 € [0, 1].
Then f(z1), f(z2) < co. Note that (x1, f(z1)), (z2, f(z2)) € epi f. By convexity of epi f,
we get that

(01 + (1 = 0)xa,0f(x1) + (1 — 0) f(22)) = O(z1, f(21)) + (1 — 0) (22, f(x2)) € epi f.
This implies that
F(Ba1 + (1= 0)z) < 0f (1) + (1 — 0) f(2) < oo,
by the definition of epi f. This shows that
Ox1 + (1 — 0)xe € dom f,
i.e., dom f is convex, and that condition (10.11) holds. We conclude that f is convex.

Alterative 2: Suppose that f is convex. Let (z1,71), (z2,r2) € epi f and 6 € [0,1]. Then
f(z1) <71 and f(z2) < r9. By convexity of f, we get that

JOx1 4+ (1= 0)z2) < Of(x1) + (1 —0)f(x2)
< Ory + (1 —0)re,

since § and 1 — # are nonnegative. This implies that
O(z1,7m1) + (1 —6)(x2,72) = (0x1 + (1 — 0)x2,0r1 + (1 — 0)r2) € epi f.
Thus, epi f is convex.
Conversely, suppose that epi f is convex. We need to prove that
F(Oz1 + (1= 0)z) < 0f(z1) + (1 — 0) f(x2) (10.12)

for each 1,29 € R" and for each 6 € [0,1]. Moreover, recall that we are using arith-
metics in the extended real numbers. In particular, we use the convention that

0-c0=0

a-oco=o0c foreach a>0
at+oco=00+a=00 foreach acR
00 + 00 = 00

a<oo foreach a€RU/{oo}

* Suppose that z1,29 € dom f and 6 € [0,1]. Then f(x1), f(z2) < oco. Note that
(1, f(z1)), (z2, f(z2)) € epi f. By convexity of epi f, we get that

(01 + (1 = 0)a2,0f(x1) + (1 = 0) f(22)) = 0(x1, f(21)) + (1 = 0) (w2, f(x2)) € epi f.
The definition of epi f implies that

fOz1+ (1 —0)z2) < Of(z1) + (1 —0)f(22),
i.e., condition (10.12) holds.
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* Suppose that z; ¢ dom f and z € dom f.

- If 6 € (0, 1] then 0 is positive, and the righthand side of (10.12) is oo (since
f(x1) = 00), which is always greater or equal to the lefthand side of (10.12).
Thus, (10.12) holds in this case.

- If 0 = 0 then 0z; + (1 — 0)z2 = 2, and the lefthand side of (10.12) is f(x2),
and the righthand side of (10.12)is 0- 0o + 1 - f(x2) = f(x2). Thus, (10.12)
holds in this case.

* Suppose that z; € dom f and z ¢ dom f.

- If # € [0,1) then 1 — 0 is positive, and the righthand side of (10.12) is co
(since f(z1) = o0), which is always greater or equal to the lefthand side of
(10.12). Thus, (10.12) holds in this case.

- If 0 = 1 then 0z1 + (1 — 0)xo = x1, and the lefthand side of (10.12) is f(x1),
and the righthand side of (10.12)is 1 - f(z1) + 0 - 0o = f(x1). Thus, (10.12)
holds in this case.

* Suppose that z1,z2 ¢ dom f and 6 € [0,1]. Then f(z) = f(y) = co. Since at least
one of # and 1 — 4 is positive, the righthand side of (10.12) is co, which is always
greater or equal to the lefthand side of (10.12). Thus, (10.12) holds in this case.

This covers all cases and we conclude that f is convex.

Solution 2.5

Alterative 1: Suppose that .o is convex. Exercise 2.4 gives that

epitc ={(z,r) e R" xR:1o(z) <r}
={(z,r) eR"xR:ze€C,0<r},

is convex. Consider the affine mapping f : R™ x R — R"” such that

f@r) = In O] H .

for each (z,r) € R" x R, where I, is the identity matrix of size n x n and 0,,x; is the
matrix of zeros of size n x 1. Exercise 1.10 gives that

flepitc) = {f(x,r): (z,7) € epitc}
={zr:2€C,0<r}
=C
is convex.
Conversely, suppose that C is convex. Exercise 1.10 gives that

fYC)={(z,7) eR" xR : f(z,r) € C}
{(z,r) eR"xR:z € C}
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is convex. However, note that

epitc ={(z,r) eR"xR:ze€C,0<r}
={(z,r) eER"xR:z e C}[{(z,r) ER"xR:0 <7}

=f~1(C) convex convex since halfspace.
See Exercise 1.8

is convex since it is the intersection of convex sets (see Exercise 1.7). Exercise 2.4 gives
that (¢ is convex.

Alterative 2: Suppose that .o is convex. We need to prove that
x4+ (1—-0)yeC (10.13)

for each =,y € C and for each 6 € [0,1]. Let z,y € C and 6 € [0, 1]. Note that

Lo convex
w@r+(1-0y) < 0 w@ +1-0) wy)
—— ~——

=0 since zcC =0 since yeC

=60-04+(1-6)-0=0.
Therefore, .c(6z + (1 — 6)y) = 0 since ¢ only can take the values 0 and co. However,
this implies (10.13) by by definition of .o. Thus, C is convex.

Conversely, suppose that C is convex. We need to prove that .o is convex. However,
according to Exercise 2.3 this is equivalent to showing that dom ¢ is convex and that

to(@x 4+ (1 —0)y) < bio(x) + (1 —0)e(y) (10.14)

for each =,y € dom (- and for each 6 € [0, 1]. First, note that dom (- = C' is convex by
assumption. Second, note that if z,y € dom:c = C and 6 € [0, 1], then Oz + (1 — )y €
C = dom (¢ since we assume that C' is convex. But then inequality (10.14) is true since
the lefthand side is 0 and the righthand side is 6 - 0 + (1 — ) - 0 = 0. This shows that
Lc 1s convex.

Alterative 3: Suppose that .o is convex. We need to prove that
br+(1—-0)yeC (10.15)

for each z,y € C and for each 6 € [0,1]. Let z,y € C and 6 € [0, 1]. Note that

Lc convex
we@zx+1-0)y) < 0 o) +1-0) iy
~—— ~———

=0 since z€C =0 since yeC

=0-0+(1—0)-0=0.

Therefore, .c(0x + (1 — 0)y) = 0 since ¢ only can take the values 0 and co. However,
this implies (10.15) by by definition of .c. Thus, C' is convex.

Conversely, suppose that C is convex. We need to prove that

@z + (1—0)y) <bio(x)+ (1 —0)c(y) (10.16)
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for each x,y € R and for each # € [0, 1]. Moreover, recall that we are using arithmetics
in the extended real numbers. In particular, we use the convention that

0-c0=0

a-oco=00 foreach a>0
a+o=00+a=0oc foreach a€R
00 + 00 = 00

a<oo foreach acRU{o0}

* Suppose that x,y € C and 0 € [0, 1]. Then the lefthand side of (10.16) is 0 since
0z + (1 — 0)y € C by convexity of C, and the righthand side of (10.16) is 0 since
0-0+(1—0)-0=0. Thus, (10.16) holds in this case.

* Suppose that x ¢ C and y € C.

- If6 € (0, 1] then 0 is positive, and the righthand side of (10.16) is co, which is
always greater or equal to the lefthand side of (10.16). Thus, (10.16) holds
in this case.

- If = 0 then 6z + (1 — 0)y = y, and the lefthand side of (10.16) is 0, and the
righthand side of (10.16)is 0-co +1-0 = 0. Thus, (10.16) holds in this case.

* Suppose that x € C and y ¢ C.

- If 6 € [0,1) then 1 — @ is positive, and the righthand side of (10.16) is oo,
which is always greater or equal to the lefthand side of (10.16). Thus, (10.16)
holds in this case.

- If = 1 then 6z + (1 — 6)y = z, and the lefthand side of (10.16) is 0, and the
righthand side of (10.16)is 1-0+0- 0o = 0. Thus, (10.16) holds in this case.

* Suppose that 2,y ¢ C and 6 € [0,1]. Then (¢(z) = tc(y) = co. Since at least
one of # and 1 — @ is positive, the righthand side of (10.16) is co, which is always
greater or equal to the lefthand side of (10.16). Thus, (10.16) holds in this case.

This covers all cases. Therefore, (10.16) always holds, and we conclude that (¢ is a
convex function.

Solution 2.6

The epigraph of [ is

,r) ER" xR f(z) <r}
) ER" X R:ala+b<r}

{(m,r) cR"xR: {_alr m < —b}

which is a halfspace in R"+1.

epi f =

{(z
{(z

Solution 2.7
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. Let z,y € R™ and 0 € [0, 1]. Note that

flOz+(1—-0)y) = Z@ifi(eﬂf +(1-0)y)

=1

< Zai [0fi(z) + (1 —0)fi(y)]
i—1

=0 aifile) + (1 -0 aifily)
i=1 =1
=0f(z)+(1—0)f(y).

We conclude that f is convex.

. Alterative 1: Recall that a function is convex if and only if the epigraph is convex
(see Exercise 2.4). Thus, epi f; is convex for each ¢ = 1,...,m, by assumption.
Note that

epif ={(z,r) e R" xR: f(x) <r}

= (x,r) eR"xR: max fi(x)<r
{ }

i=1,....,m

={(z,r) e R" xR: fi(z) <rand fo(x) <r... and fp(z) <r}
= ﬂ {(z,7) e R" xR : fi(z) <r}

i=1,....m
= [ epifi
i=1,....m

Therefore, epi f is convex since it is the intersection of convex sets (see Exercise
1.7). We conclude that f is convex.

Alterative 2: Let x,y € R™ and 0 € [0, 1]. Then
flx+(1—=0)y) = max fi(fz+(1-0)y)

< max (0fi(x) + (1 -0)fi(y))

1=1,....m
< max Ofi(x) + max (1-6)fi(y)

=0 max fi(z) +(1-0) nax fi(y)
=0f(x) + (1 -0)f(y).

We conclude that f is convex.

Alterative 3: We need to show that f is convex. However, according to Exercise
2.3 this is equivalent to showing that dom f is convex and that

F(Or + (1 - 0)y) < 0f(x) + (1— 0)£(y) (10.17)
for each z,y € dom f and for each 6 € [0, 1].

Note that Exercise 2.3 gives that dom f; is convex for each i = 1,..., m. We claim
that

dom f = ﬁ dom f;,

=1
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and therefore, dom f is convex since it is an intersection of convex sets (see Exer-
cise 1.7).

e dom f C %, dom f;: Let z € dom f. Then

file) < max  f;(x)

Jj=1,...m

= f(z)

< 00
for each i = 1,...,m. This implies that z € dom f; for eachi =1,...,m and
therefore « € N/, dom f;.

* dom f D%, dom f;: Let z € (N, dom f;. Then fj(z) < oo for each i =
1,...,m. In particular,

f(z) = max fj(x)

Jj=1,....m
< oQ.
This implies that = € dom f.
This proves the claim.

Next, we show that (10.17) holds. Let z,y € dom f = (), dom f; and 6 € [0, 1].
Then 0z + (1 — )y € dom f =%, dom f;, since dom f is convex. Then

flox+ (1 —0)y) = max fi(fz+(1-0)y)

1,....m
<, max (0fi(z) + (1 —-0)fi(y))

i=1,....m

< max 0f;(z) +i_I{laX (1-0)fi(y)

goooy

=0 max filz) +

i=1,...,

i
=0f(x) + (1 =0)f(y),

i.e., (10.17) holds. We conclude that f is convex.

—0) max fi(y)

i=1,...,

Solution 2.8

1. We know that ||z|| is convex - see Exercise 2.1. Define i : R — R such that

P ify >0,
h<y>:{y Y
0 ify<o.

Since h is a nondecreasing and convex (see Exercise 2.23), the composition h(]|z||) =
||z||” is convex.

2. The function

2
2 |lz]l3
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is convex by the previous subproblem and
x> ||Az —b||3

is convex since it is a composition of a convex function with an affine mapping.
The function

z = ||z,
is convex since norms are convex. Therefore, the function
2
x> [|Az = bl + [lz]l; = f(x)
is convex since it is a sum of convex functions.

3. All functions in the max expression are convex. The max operation preserves
convexity.

4. The function
x — max(0,1 + ;) (10.18)

is convex since it is the maximum of two convex functions, and this holds for each
i =1...,n. The function

x> Z max (0, 1 4 z;) (10.19)
i=1

is convex since it is the sum of convex functions. We have already established
that

2
T [|zfl3
is a convex function. Therefore, the function
n
z ey max(0,1+ ;) + [z]3 = f(x)
i=1
is convex since it is a sum of convex functions.

5. Suppose that y € R" is fixed. The function

x> aly —g(y)

is an affine function and therefore also convex. Recall that the supremum of
convex functions is convex. However, f is nothing but a supremum of convex
functions, i.e.

f(x) = sup (z"y — g(y))
yeR”

where R" is the index set. We conclude that f is a convex function.

Solution 2.9
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1. Let x1,20 € C, and 0 € [0,1]. Then f(z1), f(z2) < a. By convexity of f, we get
that

f(Oz1 + (1= 0)x2) < 0f(21) + (1 —0) f(x2)
<fOa+ (1-0)x
=«
since # and 1 — 6 are nonnegative. Therefore,
Ox1 + (1 —0)xe € C,.
We conclude that C, is convex.

2. Let f be as follows:

3. Let f be as follows:

Solution 2.10
Let (xz1,91), (z2,y2) € R" x R™ and any 6 € [0, 1]. Note that

g(0z1 + (1 = 0)x2,0y1 + (1 — 0)y2) = f(Oz1 + (1 — 0)x2)
<O0f(z1) + (1 —0)f(z2)
=0g(x1,y1) + (1 = 0)g(x2,y2)

due to convexity of f. We conclude that ¢ is convex.

Solution 2.11

1. The set is a sublevel set of a norm and norms are convex. We conclude that the
set is convex.

2. The norm ||z||2 is convex in (z,y) and —t is convex in (z,t). Therefore, their sum
||x||2 — t is convex in (x,t). But the set is nothing but a sublevel set of the convex
function ||z||2 — ¢, and therefore a convex set.
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Alternatively, the set is equal to the epigraph of the convex function =z — ||z||2
and is therefore a convex set.

Solution 2.12

We proceed by a proof by contradiction. Assume on the contrary that 2* is not a global
minimum (but still a local minimum with parameter ¢). This means that there exists
z € R™\ {z*} such that

f(@) < f(z").
By convexity of f, we have
f(L=0)a" +02) < (1-0)f(2") +0f(2) < (1= 0)f(2") + 0f(z") = f(")
or simply
(1 =0)z" +67) < f(z7) (10.20)

for each 0 € (0, 1] (note that we must exclude the case # = 0 for the inequality above to
hold). Now, let

x=(1-0)2"+0z

for some 6 € (0, 1] small enough (for instance, # = min (1, ﬁ) will suffice here).
Note that

e — 2| = |1 — 6)a* + 0z — 2| = 0 ]2 — 2] < &
or simply
|z — || <.
However, note that (10.20) mush hold for this z, i.e.,
fx) < fz").

But this is a contradiction to the fact that 2* is a local minimum of f (with parameter
0). Therefore, * must be a global minimum.

Solution 2.13

1. Since f is proper, we know that there exists a y € R" such that

By (2.3), we get that



This implies that 2* € dom f. Next, we prove that x* is the unique minimizer of
f via a proof by contradiction. Assume on the contrary that there exists another
minimizers x € R" of f,i.e., x # 2* and f(z) = f(«*). This implies that = € dom f.
Then, by strict convexity of f, we have that

(504 50°) < 3U@+ 1) = 1)

which is a contradiction. Hence, at most one minimizer can exist.

2. Consider the strictly convex function f : R — R U {co} such that

1 ifz >0
- x :
flx)y=1=
oo otherwise.
Clearly,
I =0

However, there exists no x € R such that f(x) = 0. See the figure below.

Solution 2.14

See figure below.
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/( Y,

Not smooth: The function does not have full effective domain. Hence, it can
not be smooth.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function does not have full effective domain. Hence, it can
not be smooth.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.

85



Strictly convex: It is strictly convex since it has no flat regions.

Strongly convex: It is strongly convex since there is quadratic lower bounds
everywhere.

Not smooth: The function is not differentiable 0. Hence, it can not be
smooth.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Smooth: The function is smooth since it has quadratic upper bounds every-
where.

Not strictly convex: It is not strictly convex since it has flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function is not smooth since it has no quadratic upper
bounds.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Not smooth: The function is not smooth since it has no quadratic upper
bounds.

Strictly convex: It is strictly convex since it has no flat regions.

Not strongly convex: It is not strongly convex since there is no quadratic
lower bound.

Solution 2.15

1. See the figure below. The graph a valid function must lie within the dark shaded
areas. The dashed lines are examples of valid functions f. Note that smoothness
always requires differentiability. The example in the convex case can therefore
not be used in the smooth case even though it lies within the shaded region.

Convex

Convex and Smooth
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Solution 2.16

1. See the following figure. The graph a valid function must lie within the shaded
areas. The dashed lines is are possible functions f.

' 1 ) 1 1
Strictly Convex Strictly Convex and Smooth Strongly Convex and Smooth

Solution 2.17

1. Ifa=0o0rb=0,(2.4)is obvious. Assume that a,b > 0. Let f : R — R such that
f(x) = exp(x)
for each x € R. Note that
f"(x) = exp(x) > 0

for each x € R. By the second-order condition for convexity we conclude that f
is convex. Note that

1 1
ab = exp <plna + —qlIn b>
p q

convexity of exp 1 1
< —exp(plna) + — exp(qlnb)
p q
aP  b?
p o q
as desired.
2. Let x = (z1,...,2,) € R"and y = (y1,...,yn) € R™. Note that (2.5) can also be
written as

1 1
n n ) n q
>zl < (Z \xiv’) (Z mw) : (10.21)
i=1 i=1 i=1
If z =0o0ry=0,(10.21) obviously holds. Assume that x # 0 and y # 0. Young’s
inequality (2.4) gives that

il yil _ wl” lwl?
Izl lwlly — pl=ll, — qllyllg
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foreach:=1,...,n. Summing over : = 1,...,n gives that

Z:‘L:I |ziyi] < Z:‘L:I |$i|p n Z?:1 \yi\q

lll, llylly = pllly qllyllg
I e
- p q
pllzly, — qllllg
1.1
P oq
= 1.

Multiplying both sides with |[z||,, [[y||, gives

n
> lwiyil < llzll, Iyl
i=1

i.e., the desired result.

3. Ifa=0o0rb=0, (2.6) is obvious — recall that 0° = 1. Assume that a,b > 0. We
know from above that the function x — exp(z) from R to R is covnex. Note that

a®p'=? = exp (Alna + (1 — 6) Inb)

convexity of exp

< Oexp (Ina) + (1 — 6)exp (Inbd)
=6a+ (1 —0)b,

as desired.

Solution 2.18

1. Suppose that f is convex. Let x,y € R™. By convexity of f, we have that

fla+0(y—=) <(1-0)f(z)+0f(y)

for each 6 € (0,1]. This can be written as

0f(y) = 0f(z) + flx+0(y —z)) — f(x)

for each 0 € (0, 1]. If we divide both sides by 6 and take the limit as 6 \, 0, we
obtain

fly) > f(x) +(£1€% f(x+0(y_0m)) — f(x)

= f(2) + V(@) (y - o),
where the equality follows from the hint. In particular, (2.8) holds.

Conversely, suppose that (2.8) holds. Let z,y € R™, 0 € [0,1], and let z = 0z +

(1 —-0)y. Then
f@) > f(2) + V() (@ = 2) = f(z) + (1= OVF(2)" (2 — ),
F) = f(2) + V() (y = 2) = f(z) =0V f(2)" (z — p)



Multiplying the first inequality by 6, the second by 1 — 6, and adding them gives

0f(x)+ (1 =0)f(y) = f(z) = f(0x+ (1 - 0)y)
since 6 € [0, 1]. We conclude that f is convex.

2. Consider the following function f and point z:

X

/N

Solution 2.19
By Exercise 2.18 we know that

fy) = f@) + V(@) (y - 2) = f(z)

for each y € R™. We see that z is a global minimizer of f.

Solution 2.20
Suppose that f is strictly convex. We know from Exercise 2.18 that we must have that

) > f@)+ V@) (y— =)

for each x,y € R". Suppose towards a contradiction that (2.9) does not hold, i.e.,there
exists z,y € R", x # y such that

fy) = f@)+ V@) (y—a). (10.22)
Define the function ¢ : R — R such that
6(t) = f(z+tly — o)) — f(x) — 1V f(@) " (y — )
for each t € R. Note that (10.22) can be written as
»(0) = o(1). (10.23)
It not hard to show that ¢ is strictly convex and differentiable. Note that
¢/(0) = 0.

By Exercise 2.19 we see that 0 is a minimizer of ¢. But (10.23) gives that 1 is a mini-
mizer of ¢ too. However, since ¢ is strictly convex, this gives a contradiction by Exercise
2.13 — strictly convex functions can only have an unique minimizer.
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Conversely, suppose that (2.9) holds. Let =,y € R™ such that x # y, 0 € (0,1), and let
z=0z+ (1—0)y. Then

f@) > f(2) + V() (@ —2) = f(2) + L= O)Vf(2) (z —y),
F) > f(2) + V) (y—2) = f(2) =0V ()" (z —y)

Multiplying the first inequality by 6, the second by 1 — #, and adding them gives
0f(x) +(1-06)f(y) > f(z) = f(6z + (1 - 0)y)

since 6 € (0,1). We conclude that f is strictly convex.

Solution 2.21
Suppose that f is o-strongly i.e.,f — § ||-||§ is convex. The derivative of f — H-||§ is

Vf(z)—ox

for each = € R. Exercise 2.18 gives that [ — § I-||5 is convex if and only if

) =5 Wl 2 f(@) = 3 llzll3 + (Vi (@) — o) (y - )
for each x,y € R™. This is equivalent to that
F) > F@) + VI (= 2)+ 5 Iol3 = 5 el — oa™ (y — 2)
= F@)+ V@) = 2)+ 5 [yl3 + 3 a3 - oa"y
= @)+ V@) (g —2) + 2 o — yl}
for each x,y € R™. But this is (2.10). This completes the proof.

Solution 2.22

1. Note that

oo ifzeR"\C,

0 ifzeR"and Az = b,
oo ifx € R™ and Az # b.

LC(I):{O ifzx e C,

* Consider the case x € C. Then Az — b = 0 and we get that

sup pl (Az —b) =0 = 1o(x).
HGRm T
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* Next, consider the case z € R"\ C. Then Az — b # 0. Consider u = t(Az —b)
where ¢t € R. Then

pF(Az —b) =t]|Az —b]* > 00 as t— oco.
0
>

In particular,

sup pl (Az —b) = 0o = 1o(x).
/‘LER"L

This covers all cases and we conclude that

wo(w) = sup p!(Ax —b)

pER™
for each x € R", as desired.
2. Note that
0 ifzed,
() = .
oo ifzeR"\C,

0 ifzeR"andg(z) <0,
oo if x € R” and not g(x) < 0.

* Consider the case x € C. Then g(z) < 0 and we have that
for each i« € R". Moreover,

for y = 0. Therefore,

sup plg(x) =0 = 1o(x).
HERT

* Next, consider the case x € R"\ C. Then there exists anindexi € {1,...,m}
such that (g(x)); > 0. Consider y = te; € R"} where ¢t > 0. Then

plg(z) =t(g(z)); - 00 as t— oo.
0
>

In particular,

sup ulg(z) = 0o = 1o(x).
HERT

This covers all cases and we conclude that

we(z) = sup plg(x)
pER™

for each x € R", as desired.
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Solution 2.23

1. Alterative 1: We want to show that
h(0x + (1 —0)y) < 6h(x) + (1 —0)h(y) (10.24)

for each =,y € R and for each 6 € [0,1]. If x = y or # = 0 or 6 = 1, inequality
(10.24) holds trivially. Thus, assume that z # y and 0 € (0, 1). We may without
loss of generality assume that = < y. Then we have that

r<Or+(1-0)y<y.
By the mean value theorem, there exists &1, & € R such that

h(x + (1 —0)y) — h(x)  h(0x+ (1 —0)y) — h(x)

A1-0y—z  (z+(1—-0y —= = H(&),
hy) —h(fz+ (1 —0)) _ h(y) —h(bz+(1-0)) o
0y — =) y— (0 +(1—0)y) ’

and
r<&§ <O+ (1—-0)y<&<y.

Multiplying the first equality by —0(1 — 6)(y — z), the second equality by (1 —
0)(y — x) and noting that h'(&;) < /(&) gives that

—0(h(0z + (1 = 0)y) — h(z)) = —0(1 — O)(y — )W (&1) = —0(1 - O)(y — 2)I'(&2),
(1= 0)(h(y) — h(0z + (1 - 0))) = 0(1 — 0)(y — x)1'(&2)
Summing these and rearranging gives (10.24). We conclude that & is convex.

Alterative 2: We suppose that h is differentiable with nondecreasing derivative.
In particular, this means that

z<y=h(z)<h(y)
for each z,y € R. This is equivalent to that
(W' (y) = M'(z))(y —x) = 0
for each x,y € R. However, this is equivalent to that
h(y) = h(x) + 1 (y)(y — )

for each =,y € R, according to Exercise 3.9. I.e., the first-order condition for
convexity holds and we conclude that & is convex.

2. Suppose that p = 1. Then

ifz >0
h(z) = r ifx>
0 otherwise.
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Note that h is not differentiable. However, it is trivial to check that h is nonde-
creasing and convex using the definitions. Next, suppose that p > 1. Then h is
differentiable and

h'(z) =

paP~t ifz >0
0 otherwise.

Since »’ > 0, we conclude that h is nondecreasing. If we can show that 7’ is
nondecreasing, we know that h is convex by the previous subproblem. Thus, let
x<y. Ifz<y<O0orz <0< yitis trivial to show that #'(z) < h'(y). Therefore,
assume that 0 < =z < y. But then
Inz <lny
&
(p—1)lnzx<(p—1)Iny
&
exp((p—1)Inz) <exp((p—1)Iny)
&
W () = paP~' = pexp((p— 1) Inz) < pexp((p — 1) Iny) = py? " = '(y).

This shows that /' is nondecreasing and thus, / is convex. This concludes the
proof.

Solution 2.24

We proceed by induction on n. In the base case n = 1, inequality (2.11) holds trivially.
For the inductive step, assume that inequality (2.11) holds for n = k, where k € N. We
need to prove that inequality (2.11) holds for n = £+ 1. In the case 61 = 1, inequality
(2.11) holds trivially. Therefore, assume that 6;,; < 1. Note that

i=1

k
=f <(1 — O41) (Z eixi) + 9k+1$k+1>

Rt k
f <Z Hm‘) =/ <Z Oixi + 9k+1£€k+1>
=1

= 1=k
K

(1= Ops1)f <Z 91'%) + Ok1f (Tht1)

convexity of f

1=k
inductive assumption 0.
< (1= Oky1) Z ﬁf@z) + Ok+1f(Tr+1)

i=1
k+1

= Z 0 f (z:).
=1

Thus, inequality (2.11) holds true for n = k + 1, establishing the inductive step. By
mathematical induction, inequality (2.11) holds true for each n € N.

Solution 2.25
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First, we recall some definitions. The function f is called affine if the function
x+— f(z)— f(0) (10.25)

is linear. Moreover, the function f is called concave if — f is convex. Thus, f is concave
if and only if

f0x+ (1 - 0)y) > 0f(x) + (1 —0)f(y)
for each z,y € R™ and for each 0 € [0, 1].

First, suppose that f is affine. We then know that the function (10.25) is linear. Let
z,y € R" and 6 € [0, 1]. Then

f(0x + (1 =0)y) - f(0) =

(f(z) = f(0)) + (1 = 0)(f(y) - f(0))

0
0f(x)+ (1 -0)f(y) — £(0)

which implies that

[0z + (1= 0)y) =0f(x) + (1—0)f(y).
In particular,

f(Oz+(1—0)y) <Of(x)+(1—-0)f(y)
and

f(0z+ (1 —0)y) > 0f(x) + (1 - 0)f(y)

holds, and we conclude that f is both convex and concave.

Conversely, suppose that f is concave and convex. Define the function ¢ : R™ — R such
that

for each z € R". We need to show that g is linear. Note that g is concave and convex.
This implies that

g0z + (1= 0)y) = Og(x) + (1 - 0)g(y)

for each x,y € R™ and for each 0 € [0,1]. Moreover, note that g(0) = 0. Let z € R™.
Then

0= g(0)

=g (;x + ;(—@)

1 1

= 59(@) + 59(-)

which shows that ¢ is an odd function, i.e.,
9(—z) = —g(z).

We have the following two facts:
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¢ Claim: The function ¢ is homogeneous of degree 1, i.e.,
g(ax) = ag(z)
for each x € R" and for each o € R.
Proof: Let x € R". The cases a = 0 or & = 1 hold trivially. Suppose that o € (0, 1).
Then
g(az) = g(ax + (1 — a)0)

— ag(a) + (1 - a)g(0)
— ag(a) + (1 — )0

= ag(z).

+
+

Suppose that o > 1. Then

which implies that

Suppose that o < 0. Then

This covers all cases.

¢ Claim: The function g is addative with respect to addition, i.e.

9(z +y) =g(z) +9(y)
for each x,y € R™.
Proof: Let z,y € R™. Then

2 2
1 1

= 59(22) + 59(2y)

= £ (20(x)) + 5 20()

= g(z) + g(y).

glz+y) =g (1(295) + 1(2y)>

This proves the claim.
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These two facts give that

glar + By) = ag(x) + Bg(y)

for each z,y € R" and each «, 8 € R, i.e., g is linear. Thus, we conclude that f is affine.

Solution 2.26

Assume that f is o-strongly convex, i.e.,f(z) — %HxH% is convex. By definition, this

means that

F(2) = §l2ll3 < 0(F (@) = §ll2ll3) + (1 = 0)(F(v) — 5llyl)

(10.26)

where z = 0z + (1 — 0)y, for each z,y € R" and for each § € [0,1]. But (10.26) is

equivalent to
f(z) <Of(@)+ (1= 0)f(y)+ 523 = ollz]5 — (1 - 0)]lyll3)

for each =,y € R" and for each 6 € [0, 1]. Note that

12113 = 8ll=(13 — (1 = 0)[lyl13

=10+ (1 = 0)yll3 — Ol|=[I3 — (1 - 0)]lyll3

= (02 = 0)|zl3+ (1 —6)* = (1 = 0)[lyll3 + 20(1 — B)z"y

= (0(1 = ) (=[5 = llyll3 + 22Ty)

= —(0(1 = 0)(||lz — yl3)-
Inserting (10.28) into (10.27) gives (2.12). This proves the equivalence.

Solution 2.27
Recall that the spectral norm || Al|, of A is defined such that

[Ally = max {[[Az[|y : z € R™, [lz], < 1}.
This definition implies that
[ Azl < [[All; [lz]l
for each x € R™. We have that
Vg(z) = ATV f(Az 4 b)
for each x € R™. Let x,y € R™. Note that
IVg(x) = Vg(a)|l, = ||ATV f(Az +b) — ATV f(Ay + D),

= |AT(Vf(Az +b) — Vf(Ay + b)),
< AT, IV f(Az +b) = V f(Ay + b))l
< B AT, (Az +b) — (Ay + )l
= B[ AT, Az = 9,
< B AT, 1Al Iz =yl
= BllAlI3 lz — yll, -
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This shows that Vg is 3| A|/3-Lipschitz continuous. We conclude that g is 3 A|3-
smooth, as desired.

Solution 2.28

We first prove the equivalence in the simple case when § = 0. Property I) is equivalent
to f being affine. Moreover, property II)-IV) simply give that f is convex and concave.
But this holds if and only if f is affine. Therefore, I)-IV) are equivalent.

Next, we consider the case when 5 > 0.

I) = II): Assume that I) holds. Note that for z,y € R" and ¢t € R,

aatf(x ity —2) = Vi@ +ty—2) (y - ).

This gives that

1
() — fla) = /0 Vi 4ty — 2)T(y — 2)dt (10.29)

for each z,y € R™. Subtracting Vf(x)?(y — 2) from the expression above and taking
absolute value yields

|fy) — f(x) = V() (y — 2)|
1
/0 (Vf(@ 4ty — ) — V(@) (y — z)dt

1
< /O (Vx4 ty — ) — V@) (y — )| dt
Cauchy-Schwartz 1

< /0 IV (& + by — 2)) — V@)l lly — zll2dt
¢ 18y — ol
= 2y =13

IL.e., II) holds.

IT) = I): Assume that II) holds. Consider any z,y, z € R™. In II), insert z for y in the
first inequality, and insert y for = and z for y in the second inequality. I.e.

{f(z) < f(@) + V)T (2 —x) + 5z - 23,
F2) > f) + VW (2 —y) — Sy — 2|3,

or

F@)(z —2) + 5z — 2|I3,
(2) = VW) (2 — y) + By — 2II3.
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Adding this pair of inequalities yields

Fy) < f(2)+ V@) (2 —2) - Vi) (2 —y) + g

= (@) =~ V@) 2+ V5 g+ el + I3+ Bl + 2 (VS () ~ V() ~ B~ By)

p
I — 213+ 2y — 213

= (@) = V)2 + V1) + D el3+ 23

+ 8z + 21B(Vf(w) ~Vf(y) - Ba — By)ll5 — B\Qlﬂ(vf(x) ~Vf(y) - B — By)ll5.

We are free to choose z = —%(Vf(x) — Vf(y) — Bx — By). This gives

76) < @) = V()T + V)T + Sl + Sl - 15194@) = V1) - 6o - Ayl

— 1(@) = 35I95(2) = V1)1
i
2
— 7o) = V@) = VI + S~y + 5(VF(e) + VI (- o).

Dl + D3~ Tl 4yl - V5@ e+ V@)Y + (V) - Vi) @+ )

We may insert x for y and y for = in the in inequality above. This yields the pair of
inequalities

{f(y) < f(2) = HIVI@) = VEWIB + e —yl3 + 5(V (@) + V) (v - o),
f(@) < fy) = V@) = V@3 + Slly — 2l + 3(Vf(y) + V@) (@ —y).

Adding the pair of inequalities gives

1
0< — 51V F) = V@I + 5~ ol

i.e.,I) holds.

IT) & III): Note that the gradient of 2|z|3 — f(z) and f(z) + 2|jz||3 are fa — V()
and Vf(x) + Sz, respectively. By the first-order condition for convexity, we get that
Bllz)13 - f(x) and f(z) + 5 |||} are convex if and only if

{@w%—f@ﬁzﬂu@—fuw+wx—VﬂwF@—wx
F@) + Blyl3 > fx) + Bl2l3 + (Vf(2) + Bx) " (y — x),

or

{ﬂwgf@ﬁ+vﬂ@T@—x%+@M—m&
> f(z) + V(@) (y— ) — 5z —yll3,
holds for each z,y € R™. But this is II).

ITI) & 1V): Applying Exercise 2.26 (the statement in Exercise 2.26 generalizes to all

o € R and the proof remains exactly the same) to ngH% — f(z) and f(z) + gHchH% gives
the result immediately.
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Solution 2.29

By Exercise 2.28 we get that I) is equivalent to that g”:::”% — f(x) and f(x)+ §H$||% are
convex function. However, by the second-order condition for convexity, this is equiva-
lent to

BI —V2f(z) = 0and V>f(z) + BI = 0, for each z € R",

respectively. This is simply II). This establishes the desired equivalence.

Solution 2.30

We have that

" e’ 1 1
= = 1—
(=) (1+e%)? 1—}—69”( 1—|—ex>

for each = € R. However, using the AM—GM inequality (2.7) with « = —.- and b =

1+e®
1-— H% and then taking the square, gives that

0< f(z) <

for each x € R. The second-order condition for smoothness and second-order condition
for convexity give that f is 0.25-smooth and convex, respectively.
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Solutions to chapter 3

Solution 3.1
We have that

0€df(x) = {s eR":Vy e R", f(y) > f(x) +5T(y—:n)}
<~

Vy €R", f(y) > f(z) + 0" (y — x)
=

Yy e R", f(y) = f(x)
&

x € Argmin f(y),
yeR”

as desired.

Solution 3.2

1. The function f is convex and finite-valued. Therefore, 0f(z) # () for each = € R".
Moreover, f is differentiable with

Vi) ==
for each x € R". This implies that
Of(x) ={Vf(x)} = {a}

for each z € R"™.

2. The function f is convex and finite-valued. Therefore, 0f(x) # 0 for each x € R™.
Moreover, f is differentiable with

Vf(x)=Hz+h
for each x € R™. This implies that

Of (x) ={V[f(2)} = {Hz + h}

for each x € R"™.
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3. The function f is convex and finite-valued. Therefore, 0f(x) # ) for each = € R".
Moreover, f is differentiable except at z = 0.

* For x < 0, the function is f(z) = —x and differentiable with gradient
Vf(z) = —1. Therefore, 0f(z) = {Vf(x)} = {—1} in this case.

* For z > 0, the function is f(z) = x and differentiable with gradient V f(z) =
1. Therefore, 0f(z) = {Vf(z)} = {1} in this case.

e At x = 0, all elements in [—1, 1] are subgradients. See the figure below.
Therefore, 0f(xz) = [—1, 1] in this case.

Thus,
{-1} ifx <0,
of(z) =4 [-1,1] ifz=0,
{1} ifz > 0.

of

T
(Lml)

(0, -1)

4. The function f is convex, but not finite-valued.

* For x < —1 or z > 1, we have that « ¢ dom f = [—1, 1]. Therefore, 0f(z) = ()
in this case.

® For z € (—1,1) = relint dom f, we know that 0f(x) # (). Moreover, for z €
(—1,1), the function is f(x) = 0 and differentiable with gradient V f(z) = 0.
Therefore, 0f(x) = {Vf(z)} = {0} in this case.

* For x = 1, each s > 0 is a subgradient. See the figure below. Therefore,
df(x) = [0,00) in this case.

* For x = —1, each s < 0 is a subgradient. See the figure below. Therefore,
df(z) = (—o0,0] in this case.
Thus,
(—00,0] ifx=-1,
0 if v € (—1,1),
oy = {1 Ee e LY
[0,00) ifz=1,
0 otherwise.

Remark: Note that this subdifferential is the inverse of the subdifferential of |z|.
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of

5. The function is convex and finite-valued. Therefore, 0 f(z) # 0 for each = € R™.

* For v < -1, the function is f(x) = 0 and differentiable with gradient
V f(x) = 0. Therefore, 0f(z) = {Vf(x)} = {0} in this case.

* For x > —1, the function is f(z) = 1 4+ = and differentiable with gradient
Vf(z) = 1. Therefore, 0f(z) = {Vf(x)} = {1} in this case.

* For x = —1, each s € [0, 1] is a subgradient. See the figure below. Therefore,
df(x) =[0,1] in this case.
Thus,
{0} ifr<—1,

af(z)={[0,1 ifx=—1,
{1} ifz>-1.

of

/!

(1,-1)
(0, —1) (0-5,—1)

6. The function f is convex and finite-valued. Therefore, 0f(x) # 0 for each x € R™.

* For z < 1, the function is f(z) = 1 — x and differentiable with gradient
Vf(xz) = —1. Therefore, 0f(x) = {Vf(x)} = {—1} in this case.

* For z > 1, the function is f(x) = 0 and differentiable with gradient V f(z) =
0. Therefore, 0f(z) = {V f(z)} = {0} in this case.

* For x =1, each s € [-1,0] is a subgradient. See the figure below. Therefore,
Jdf(z) = [—1,0] in this case.

Thus,
{-1} ifz<1,
of(x) =< [-1,0] ifx=1,
{0} ifez > 1.
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(=1,=1)
(—0.5,—1) (0,—1)

Solution 3.3

1. See figure below.

x1: There is one affine minorizor to f at x; with slope —3. Hence, df(z1) =
{—3}. The function f is also differentiable at x; with gradient —3. Hence,
Vf(l'l) = -3.

x9: There is no affine minorizor to f at z,. Hence, 0f(x) = (). However, f is
differentiable at x5 with gradient V f(z2) = 0.

x3: There are several affine minorizors to f and z3. Their slopes range from 0
to 3. Hence, 0f(z3) = [0, 3]. However, [ is not differentiable at z3.

f(=)
T2 /
(=3,—1) «— o /x\ T
v
1

-1
2. Fermat’s rule 0 € 0f(x) holds for x5 but not for x; and x2. Therefore, z3 is a
global minimum to the nonconvex function f.

Solution 3.4

1. Since df(x) and dg(y) are subsets of R?, a reasonable domain for both f and g
is R%. Le., we have that f : R> - R and g : R> — R. Also, we must have that
z,y € R

2. Yes, since 0 € 0f(x).
3. No, since 0 & dg(y).

4. No, since the subdifferential not a singleton (unique) at x.
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5. No, since the subdifferential not a singleton (unique) at y.

>

6. See examples below.

Solution 3.5

1. The following function (which is the absolute value |z|) is a lower bound to the
function f:

(-1,-1) (1,-1)

(0,0)]

2. Since the function above is a lower bound to f, its minimum 0 is a lower bound
to the minimum of f.

3. An example of function f is given below. The function is f(z) = 1 (2% + 1).

Solution 3.6

* From the definition of monotonicity, we know that the minimum slope is 0 and
maximum is co. Therefore a. and b. are monotone while c¢. and d. are not.

* Note that the domain of the operators is R. We rule out ¢. and d. since they are
not monotone. The operator in a. is maximally monotone while the operator in
b. is not. Hence, operator in a. is a subdifferential of a proper, closed and convex
function, and the operator in b. is not a subdifferential of a proper, closed and
convex function.

Solution 3.7
First, note that dom A = {x € R" : Az # 0}, dom (A —ol) = {x e R": (A — o)z # 0}
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and
(A—ol)x = Az — ox
for each 2 € R™. This implies that dom A = dom (A — o).
¢ Now, suppose that A — oI is monotone, i.e,
(u =) (z—y) >0
foreach z,y € dom (A — o), foreachu € (A — oI)(z) and foreachv € (A — oI)(y).
* This is equivalent to that
(=) (z—y) >0
for each z,y € dom (A), for each u + ox € Az and for each v + oy € Ay.

* This is equivalent to that

(0 — o) — (s —oy) (& — ) 2 0

for each z,y € dom (A), for each s, € Az and for each s, € Ay (since, e.g., we can
write s, = (s, — o) +ox € Az, and therefore, u = s, — o).
——

=Uu

¢ This is equivalent to that

(50 = sy) (@ —y) > oflz —yli3

for each x,y € dom A, for each s, € Az and for each s, € Ay, i.e., A is o-strongly
monotone.

This proves the equivalence.

Solution 3.8
Let n = 2 and let A : R> — R? be a linear single-valued operator such that

A(ml, 1'2) = (.’L’Q, —1'1)

for each (21, 72) € R%2. With some notation overloading, A can be represented by the

matrix
0 1
A= [_1 0]

Then A = — AT (i.e., A is skew symmetric) and

(Az — Ay) (z —y) = (z —y)" A" (z — y)
= —(z —y)" (Az — Ay)
= —(Az — Ay)"(z —y).

Hence (Az — Ay)T(z — y) = 0 and monotonicity holds with equality.

105



However, A is not the gradient of a function since the matrix A would be the Hessian,
but it is not symmetric.

Solution 3.9

1. Assume that I) holds. Let z,y € R™. Write I) and I) with = and y swapped,

Adding these gives

(Vf(y) = V@) (y—=z) >0
i.e., II).
2. Assume that II) holds. Let x,y € R™. Using the hint we get that
fy) = f(2) = Vi) (y - x)
= /01 (V@ +ty —2) = V@) ((z+ iy —z)) — ) dt
0

>0 by II)
>

But this is I).

Solution 3.10

1. a. Since df is maximally monotone, f is closed and convex.
b. Since Jf is not maximally monotone, f is not closed and convex.

2. An optimal point x* satisfies 0 € 0f(xz*) by Fermat’s rule. Hence, the minimizing
z* are the x where the graph crosses the z-axis for both a. and b.

3. No, since a constant offset of f is not visible in 9f.

4. Below are example plots of f.

-/ NI
o M

a. b.

It is linear to the left of the minimum and quadratic to the right.
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Solution 3.11

Since f is o-strongly convex, proper and closed, the function g : R” — R U {0} such
that

9(@) = f(a) = 5 llel3

for each x € R" is convex, proper and closed. By the subdifferential sum rule, we have
that

0f@) =0 (f = S I3+ 5 IM3) (@)

for each = € R™, which is equivalent to that

dg(z) = 0f(x) — ox (10.30)
for each x € R". This implies that

dom df = dom 0g.

Let v € domdf and sy € df(x). Then (10.30) implies that there exists an s, € dg(x)
such that

Sg == Sf — OoXx.
Let y € R™. Note that

7w) = 5 Iyl = 9(v)

sg€0g(x)

> o)+ sy (y—a)
=f<>~||xu2+s< )
= f(@) = 5 llall3 + (s = 00) " (y — )
~ fla >+sf< —a) = 5 lel3 + 02" (y — ).

Now, since ||y[|5 — ||z||5 — 227 (y — ) = ||z — y||3, this is implies that

1) = f@)+sf(y—a)+ 5 eyl
i.e., the desired result.

Solution 3.12

(a) - The function f is not differentiable as 0f is multivalued at 0.
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— Since f is not differentiable, f does not have a Lipschitz continuous gradi-
ent.

— The subdifferential df not strongly monotone since it has minimum slope 0.
Hence, f is not strongly convex.

(b) - The function f is differentiable as 0f is a singleton everywhere.
— The subdifferential 0 f has maximum slope 1. Hence, V f is 1-Lipschitz.

— The subdifferential 0f is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(c) - The function f is differentiable as 0f is a singleton everywhere.
— The subdifferential 9/ has maximum slope 1. Hence, V[ is 1-Lipschitz.

— The subdifferential 9 is not strongly monotone since it has minimum slope
0. Hence, f is not strongly convex.

(d) - The function f is differentiable as J0f is a singleton everywhere.
— The subdifferential 0 f has maximum slope 1. Hence, V f is 1-Lipschitz.

— The subdifferential 0f is 1/2-strongly monotone since it has minimum slope
1/2. Hence, f is 1/2-strongly convex.

Solution 3.13
Assume that s € 0f(x). Then

=D _(filwi) + sily = 22). (10.31)

foreachy = (y1,...,yn) € R". Letj € {1,...,n} and let y = (y1,...,y,) € R" such that
y; = x; foreach i = 1,...,n and ¢ # j. Using this y in (10.31) gives that
Filys) = fi(xj) + 55(y; — ),
for each y; € R. This implies that
s; € 0fj(z;). (10.32)

However, since j € {1,...,n} is arbitrary, we get that (10.32) holds for each ; =
1,...,n.

Conversely, assume that s; € 0f;(x;) for each i = 1,...,n. But then

filyi) = fix) + si(yi — ;) (10.33)
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holds for each y; € R and for each i = 1,...,n. Summing (10.33) over: = 1, ..., n gives
that

F) =" fily) 2> (filw) + silyi — 23)) = f(x) + s (y — )
i=1 i=1

for each y = (y1,...,yn) € R™. In particular, s € 9f(z) holds.

This proves the equivalence.

Solution 3.14
For x ¢ dom f, subgradients s € Jf(x) must satisfy

f(y) > f(x) + st (y —x) for each y € R™.

Since there exists y € R” such that f(y) < oo, and f(z) = oo, we see that 0f(x) must
by empty.

Solution 3.15
Recall that the normal cone to C' at z € R™ is given by

No(z) = {seR":VyeC, sT(y—x) <0} ifzeC
T ife ¢ C.

Let € R". We have that s € dvc(z) if and only if
ve(y) > we(z) + 5T (y — )

for each y € R", by definition.

* First, assume that z € C and s € duc(z). Then vc(y) > s7(y — x) for each y € R”,
which is equivalent to that s”(y — z) < 0 for each y € C.

* Next, assume that x ¢ C and s € dic(x). Consider y € C. Then 0 > co+s7 (y—x),
which is impossible. Hence, di.¢(z) = () in this case.

We conclude that
Ove(x) = Ne(z)

for each z € R™.
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Solutions to chapter 4

Solution 4.1

Recall that Fermat’s rule gives that 2 = prox_((z) if and only if 0 € 0f () + 7' (2 — 2).
We will use this multiple times throughout. Moreover, recall the results from Exercise
3.2 that give the relevant 0f(z).

1. Let z € R", v > 0 and z = prox, ;(z). We have

Of(x) = {x}

for each z € R™. Therefore, we get that 0 = yz + (v — 2) or z = (1 + v)"!z, and
conclude that

prox. ;(z) = (1+7)" 2.

2. Let z € R", v > 0 and x = prox, ;(2). We have
Of(x) ={Hx + h}

for each z € R™. Therefore, we get that 0 = v(Hz+h)+(z—2) or ([+vH)x = z—~h
orz = (I +~H) '(z —vh), and conclude that

prox,;(2) = (I +vH) ™ (z = vh).

3. Let 2 € R, v > 0 and x = prox, ¢(2). We have

{-1} ifz<0,
of(z) =4 [-1,1] ifz=0,
{1} ifx > 0.

* For x < 0, we have 0f(z) = {—1}. Therefore, we get that 0 = —y+ (x — 2) or
x = v + z. Note that z < —v implies the condition = < 0.

* For x > 0, we have 0f(z) = {1}. Therefore, we get that 0 = v+ (z — 2) or
x = z — . Note that z > ~ implies the condition = > 0.

* For x = 0, we have 0f(z) = [-1, 1]. Therefore, we get that 0 € [—v,7] — z or

z € [=7,7]-
Thus,
24+ ifz< —7,
prox, s(z) = 1 0 if z € [—7,7],
z—7 ifz>n.
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4. Alternative 1: Let z € R, v > 0 and x = prox, ;(z). We have

(—o00,0] ifx=-1,

{0} ifexe(-1,1),
[0,00) ifz=1,

0 ifreR\[-1,1].

Of(x) =

* For x = —1, we have 0f(z) = (—o0,0]. Therefore, we get that 0 € (—o0,0] +
7 H(=1-2)or z € (—oo, —1].

* For z € (—1,1), we have df(z) = {0}. Therefore, we get that 0 € {0} +
vz —2)orz =z

e Forz = 1, wehave 0f(z) = [0, c0). Therefore, we get that 0 € [0, 00)+~y~ (1~
z)or z € [1,00).

Thus,
-1 ifz< -1,
prox,s(z) = ¢z ifz e (-1,1),
1 if z > 1.

Alternative 2: Let = € R, v > 0 and = = prox,;(z). Here, f is the indicator
function of the set [—1,1]. Recall that prox. () then reduces to the projection
onto [—1,1].

e If » < —1, the projection is point is —1.
e If z € (—1,1), the projection point is z, since z € (—1,1).

e If 2 > 1, the projection point is 1.

Thus,
1 ifz<—1,
prox,s(z) =gz ifz e (-1,1),
1 if 2z > 1.

5. Let z € R,y > 0 and = = prox, ;(z). We have

{0} ifz < -1,
Of(x) =<¢10,1 ifax=-1,
{1}  ifax>-1.

* For z < —1, we have df(z) = {0}. Therefore, we get that 0 =z — z or x = z.
Note that z < —1 implies the condition = < —1.

* For x > —1, we have df(x) = {1}. Therefore, we get that 0 = v+ (z — z) or
x = z — . Note that z > v — 1 implies the condition = > —1.

* Forz = —1, we have 9f(x) = [0, 1]. Therefore, we get that 0 € [0,7]+ (—1—2)
orze[—1,v—1].
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Thus,

z if 2 < —1,
prox, s(z) = ¢ -1 ifze[-1,v—1],
z—vy ifz>~y-1.

6. Let z € R,y > 0 and = = prox, (z). We have

{-1} ifz<1,
af(x) = { [-1,0] ifz =1,
{0} ifz > 1.

* Forz < 1, we have 0f(z) = {—1}. Therefore, we get that 0 = —y + (z — z) or
x = z +~. Note that z < 1 — v implies the condition = < 1.

¢ For x > 1, we have 0f(x) = {0}. Therefore, we get that 0 = 0+ (z — 2) or
x = z. Note that z > 1 implies the condition = > 1.

* Forz = 1, we have 0f(z) = [—1,0]. Therefore, we get that 0 € [—v,0]+(1—2)
orze[l—~,1].

Thus,
24+ ifz<1l—17,
prox,;(z) = {1 ifze[l—n,1],
z if 2 > 1.
Solution 4.2
We have that

reR™

= argmin (Z fi(zi) + 217 Z(»’Uz - Zi)2>
i=1

(xl,...,xn)ER” i=1

n 1
= argmin filwi) + s (i — Zi)2>
(21,..,2n ) ER™ (E ( 2

. 1
prox, ¢(z) = argmin (f(x) + aHx - zH%)

argming, cp (fi(21) + & (21 — 21)?)

argminxneR (fn(xn) + %(xn - Zn)%)

[ prox. s (21)

| prox, 5, (2n)

112



Solutions to chapter 5

Solution 5.1

Recall that the conjugate function f* : R — R U {oc} of a proper function f : R” —
R U {oo} is defined by

f*(s) = sup (s"z — f(x))

z€R™

for each s € R™. Let x, s € R". Moreover, recall Fenchel-Young’s equality, i.e.,
fH(s)=s"e — f()
if and only if
s € df(x)

and the results from Exercise 3.2 that give the relevant 0f(x).

1. Alterative 1: Let z,s € R™. We have

Of (x) = {x}.
Note that
s € 0f(x)
is equivalent to that
Tr =S

Fenchel-Young’s equality gives that
f(s) = s"s = f(s)
= lIsl3 — 3 lIsl1

2
= 3 lIsll3-

Alterative 2: Let s € R*. We have

f(s) = sup (572~ 4 ll2113)
x n

_ _ T 1 2
- xlenﬂgn( s x+2\|x||2).

=g(=)
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Fermat’s rule gives that x € R™ is an optimal solution to the optimization prob-
lem above if and only if

0 € dg(x). (10.34)

Since ¢ is finite-valued, convex and differentiable, we know that dg(x) = {Vg(z)}.
Thus, (10.34) is equivalent to that

0=—-s+2 or z=s.
Therefore,
fo(s)=s"s — 3 llsll3
=3 lIsll3-
. Alterative 1: Let z, s € R". We have
Of(z) ={Hx + h}.
Note that
s € 0f(x)
is equivalent to that
r=H1(s—h)
since H invertible. Fenchel-Young’s equality gives that

fr(s)=s"(H (s = h)) = f(H (s — 1))
T(H (s = h) = 5(s = h)"H'HH (s — h) = h"H ™' (s — )
(s = h)"H (s — h).

VA

D=

Alterative 2: Let s € R". We have
fr(s) = seulégL (sTa — La"Hx — h'x)

=— inf (—s Te+ xTHa:+hT ).
reR”

=g()

Fermat’s rule gives that x € R™ is an optimal solution to the optimization prob-
lem above if and only if

0 € dg(x). (10.35)

Since g is finite-valued, convex and differentiable, we know that dg(z) = {Vg(x)}.
Thus, (10.35) is equivalent to that

0=-s+Hx+h or x=H '(s—h)
since H invertible. Therefore,

f(s) =

sT(H Y(s—h)) — 2(s— WTHYHH Y(s—h)—hTH (s —h)
S(s—hTH (s —h).
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3. Alterative 1: Let x,s € R. We have

(—00,0] ifx=-1,

o7 (z) = {0} ifz e (—1,1),
[0,00) ifz=1,
0 otherwise.

We consider three different cases.

* Suppose that s € (—o00,0). Then s € 9f(z) implies that + = —1. Fenchel-
Young’s equality gives that

* Suppose that s = 0. Then s € 0f(zr) implies that + € [-1,1]. Fenchel-
Young’s equality gives that

fr(s)=0-2— f(z)
—0-0
—0
= |s].

* Suppose that s € (0,00). Then s € 9f(x) implies that x = 1. Fenchel-Young’s
equality gives that

fi(s)=s-1-f(1)
= |s]|.

This covers all cases and we conclude that

Alterative 2: Let s €¢ R. We have

fr(s) = sup (sz — 11 1)(2))

z€R

sup sz.
z€[—1,1]

If s < 0, an optimal solution to the optimization problem above is + = —1 and we
get that f*(s) = —s = |s|.

If s > 0, an optimal solution to the optimization problem above is x = 1 and we
get that f*(s) = s =|s|.

This covers all cases and we conclude that
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4. Alterative 1: Let x,s € R. We have

{-1} ifz<0,
of(z) =4 [-1,1] ifz=0,
{1} ifx > 0.

Next, we consider five different cases.

* Suppose that x < 0. Then s € 9f(z) implies that s = —1. Fenchel-Young’s
equality gives that

f7(s) = (=1) - — f(2)
= le] - la]
=0.

* Suppose that + = 0. Then s € Jf(x) implies that s € [-1,1]. Fenchel-
Young’s equality gives that

fr(s) =5-0=f(0)
=0.

* Suppose that x > 0. Then s € 0f(x) implies that s = 1. Fenchel-Young’s
equality gives that

fi(s) =12~ f(a)
o

* Suppose that s < —1. Let ¢t < 0. Then

f(s) = sup (sz — |2|)
z€eR

>st+t
=(s+1)t—00 as t— —c0.
——
<0
Thus, f*(s) = oo in this case.

* Suppose that s > 1. Let ¢t > 0. Then

fr(s) = sup (sz — |z|)
zeR

>st—1

=(s—1)t—00 as t— oo.
0
>

Thus, f*(s) = oo in this case.

This covers all cases and we conclude that
= t-1,1)
Alterative 2: Let s € R. We consider three different cases.
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* Suppose that s < —1. Let ¢ < 0. Then

f7(s) = sup (sz — |z|)
zeR

>st+t
=(s+1)t—-00 as t— —oo.

~——
<0

Thus, f*(s) = co in this case.

* Suppose that s > 1. Let ¢t > 0. Then

f*(s) = sup (sz — |z)
zeR
>st—t

=(s—1)t—>00 as t— oo.
——
>0

Thus, f*(s) = oo in this case.

* Suppose that s € [—1, 1]. Note that

f*(s) = sup (sz — [z|)
zeR

> 50 — 0]
=0.

By the Cauchy-schwarz inequality we have that
sz < |af]s] < |z
for each = € R, since |s| < 1. Therefore,
fr(s) = sup (sz — [z|)
z€eR
< sup (|| — |z])
z€eR
=0.
Thus, f*(s) =0 for each s € [-1,1].
This covers all cases and we conclude that
= U-1,1]
Alterative 3: Since (|_ ) is proper, closed and convex, we have that
g = -1l

Recall from above that

Lr—l,l} =1
Therefore,
fr=1-r
= (5[11,1])*
=1y
= L[—l,l}‘
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5. Let x,s € R. We have

{0} ifx<—1,
of(z) =41[0,1] ifx=-1,
{1} ifz> -1

We consider five different cases.

* Suppose that + < —1. Then s € df(z) implies that s = 0. Fenchel-Young’s
equality gives that

ffs)=0-2—  f(z)
—~—
=0 since x<—1

=0.

* Suppose that x > —1. Then s € df(z) implies that s = 1. Fenchel-Young’s
equality gives that

fe=la—  f@)
~~

=1+ since x>—1

=—1.

* Suppose that + = —1. Then s € 0f(x) implies that s € [0,1]. Fenchel-
Young’s equality gives that

* Suppose that s < 0. Let t < —1. Then

f*(s) =sup (sx — max (0,1 + z))
z€R

> st —max (0,1 +1¢)
=st—00 as t— —oo.

Therefore, f*(s) = oo in this case.

* Suppose that s > 1. Let ¢t > —1. Then

f*(s) =sup (sx —max (0,1 + x))
zeR

> st —max (0,1 +1t)
=(s—1)t—1—00 as t— oo.
——"
>0
Therefore, f*(s) = oo in this case.
This covers all cases and we conclude that

£(s) = {—s if s € [0, 1],

oo otherwise.



6. Let z,s € R. We have that

{-1} ifz<1,
of(z) =4 [-1,0] ifz=1,
{0} ifez > 1.
We consider five different cases.

* Suppose that x < 1. Then s € 0f(z) implies that s = —1. Fenchel-Young’s
equality gives that

~
*
=
I
[
=
8
|
~
—~~
8
~

=1—x since <1

* Suppose that 2 > 1. Then s € df(x) implies that s = 0. Fenchel-Young’s
equality gives that

ff(s)=0-2—  f(z)
—~—~
=0 since z>1

=0.

* Suppose that + = 1. Then s € 0f(z) implies that s € [-1,0]. Fenchel-
Young’s equality gives that

() =s-1-f(1)
noy

I
»

* Suppose that s < —1. Let ¢t < 1. Then

f*(s) =sup (sz —max (0,1 — x))
Tz€R

> st — (1—1t)

=(s+1)t—1—0c0 as t— —oo.
0
<

Therefore, f*(s) = co in this case.

* Suppose that s > 0. Let ¢t > 1. Then

f*(s) =sup (sz —max (0,1 — x))
zeR

> st —max (0,1 —1¢)
=st—00 as t— oo.
Therefore, f*(s) = oo in this case.
This covers all cases and we conclude that

F(s) = {s if s € [-1,0],

oo otherwise.
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Solution 5.2

1. Note that
F(s) = sup (s"z— f(2))
zER™
> stz — f(2)

for each s,z € R™. This implies that
flx) > sTa — f*(s)
for each s,z € R™. This implies that

f(x) > sup (sTw - f*(s))

seR™
= [ (x)
for each x € R” or simply
<,
as desired.
2. Assume that f < g, i.e.,
fz) < g(x)

for each 2 € R™. Then
s'e— f(z) > "o — g(2),
for each s,z € R™. In particular,

f5(s) = sup (s"a — f(x)) > sup (s'2 — g(x)) = g*(s),
reR"” reR”

for each s € R". We conclude that f* > g*.
3. Assume that f < g. From the previous subproblem we get that f* > ¢*, i.e.,
fr(s) = g (s),
for each s € R™. Then
zl's — f*(s) < zTs — g*(s),
for each s, 2 € R". In particular,

(@) = sup (s — f7(s)) < sup (aT's — g*(s)) = g™ (@),
se€R™ s€R™

for each 2 € R™. We conclude that f** < g**.
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4. Suppose that f = $||-||3. From Exercise 5.1-1 we know that f* = 1||-||3. Therefore,
f=r
Conversely, suppose that f = f*. Note that
fl@)+ f(s) = f(x) + [*(s) = aTs,
for each s,z € R", by Fenchel-Young’s inequality. If we pick s = z, we get that

fla) > ¢},

for each x € R", i.e.,

1
=201
However, we know from the second subproblem above that this implies that

1 1
F=1 2GR =50

We conclude that f = 1]| - ||2.

This completes the proof.

Solution 5.3
The hint gives that

P p—2
(v”) (@) = {:p|x| Tfméo,
P 0 ifz =0.

(5F) @ =sup (s~ )

: < \ﬂflp>
=—inf | —sz+ — .
zeR p

| ———

=g(x)

Let s € R. By definition,

Fermat’s rule gives that + € R” is an optimal solution to the optimization problem
above if and only if

0 € dg(x). (10.36)

Since g is finite-valued, convex and differentiable, we know that dg(x) = {Vg(z)}.
Thus, (10.36) is equivalent to that

p—2 p—2
0= 54 0l Atz A0, el itz 20, (10.37)
0 ifz=0 0 ifx = 0.

We consider two different cases.
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* Suppose that s # 0. Then (10.37) gives that  # 0 and s = « |1:]p_2. This implies

that
I"’)* Ed
—_— S)=8r — ——
(P ( ) p

‘p—Qx _ %

p

(D

_ =
q
_laff

=z

p—1)q

g
* Suppose that s = 0. Then (10.37) gives that + = 0. This implies that
|-|”>* 0]
— ) (0)=0=—.
() 0=0-%

This covers all cases and we conclude that

-

as desired.
Solution 5.4
Note that
(@f + (1= 2)g)"(5) = sup (s = (af(@) + (1 - a)g(x))
- xseuﬂgl (a(s"z - f(2) + (1 —a) (s"z — g(z)))
< xseuﬂgl (c (ST;U — f(2))) +;€u]1£z (1-a) (sTm —g(x)))
=asup (s'z— f(z)) + (1 — ) sup (s"z —g(x))
TeR™ zER™

=af"(s)+ (1 —a)g"(s)
for every s € R", i.e.,
(af + (1 —a)g)* < af* + (1 —a)g",

as desired.
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Solution 5.5

We have
f*(s) = sup (s"z— f(x))
TER?
= sup (Z(sm - fi(xz‘))>
(@1, ) ER™ \ ;T
= Z sup (sizi — fi(z:))
i=1 z;ER
=3 s,
i=1
for each s = (s1,...,s,) € R™.
Solution 5.6
1. The function f can be written as
f(@) = [z
= |l
i=1
for each = = (x1,...,x,) € R™. Therefore, by Exercise 5.5 and Exercise 5.1-3, we
have that
NOED I (RINC)
i=1
= Z L[f1,1](8i)
i=1
= L[—1,1}(5)
for each s = (s1,...,s,) € R™

2. Alterative 1: The function f can be written as

flz) = t-1,1] (z)
= Z L—1,1] (z:)
i=1

for each z = (z1,...,2,) € R". Therefore, by Exercise 5.5 and Exercise 5.1-4, we
have that

n

fi(s) = Z /’rfl,l}(si)

i=1
n
=2_lsil
i=1
= [slly
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for each s = (s1,...,s,) € R™.

Alterative 2: Note that the function ||-||; is proper, closed and convex. Therefore,
(-1 = |I/l,- Moreover, from the subproblem above we know that (|-||,)* =
t[—1,1)- We conclude that

= (¢-1,17)"
((Rivk
()™
IRIFE

Solution 5.7

1. Since f is only defined in four points, the conjugate is

f*(s) =sup(szx — f(x)) = max(—s —0,—1,s+ 1,2s)
z€R

for each s € R.

f*(s) 2s
f(a:) s+1

(0,1)

(-1,0) (2,0

(1,-1)
X

/ -1

2. The biconjugate f** is the convex envelope of f. See the figure below.

f(x) f(z)
(0,1)

(-1,0) (2,0) (-1,0) (2,0)

X
(1,-1) \\Q/
X

Solution 5.8

1. Let s € R™.
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(a) Note that

f*(s) = sup (s — ||z2)
reR™

> sT0— 0],
=0.

(b) Suppose that ||s||2 < 1. Using Cauchy-Schwarz’s inequality, we get that

f*(s) = sup (s"e — ||z2)
zeR?

sup ([[sl2]|z]l2 — [|z[2)
z€R™

IN

= sup | ([[sll2 = 1) [|l]]2
zeR" | Y——
<0
<0
Combined with the previous sub-exercise, we see that f*(s) = 0 for this
case.

(c) Suppose that ||s||2 > 1. Let ¢ > 0. Then

f*(s) = sup(s"@ — [|2[|2)
z€R

> sT(ts) — ||ts]|2
> t]|s[|5 — t]ls]|2
=t|sll2(llslfla=1) o0 as t— oo
\VJ%/_/
>1 >0

Thus, f*(s) = oo for this case.

(d) To summarize, we have

F(s) = {o if ||s]|2 <1,

oo otherwise.

2. Since f is proper, closed and convex, the subdifferential of f satisfies

Of (x) = Argmax (s’ — f*(s))
seR™

= Argmax s'x

seR™:||s||2<1
for each z € R"™.

* For x = 0, the objective is 0 and all feasible points are optimal, i.e.,

Of(x) ={seR": [|s]2 <1}
= B(0,1).
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* For = # 0, note that
max  sTr<  max [lslly all,
sER™:||s]|2<1 s€R™:||s]|2<1

= ||z[l2

with equality if and only if s = x/||z||2, by the Cauchy-Schwarz inequality.

Therefore,
X
0f(@) = { ol } '

We conclude that

B(0,1) ifz =0,
{”;‘b} if 2 € R"\ {0).

Solution 5.9

1. Let s € R®. We have that

tA(S) = sup (STx —a(z))
TER?
= sup s’ .
xEA

Let j € {1,...,n} be any index such that

§; = Mmax Sj.
i=1,...n

Note that

n

ta(s) = sup Z SiTj

(#1500 )EA 7

n
= sup ST —I—Z Si X
(Z1,yTn)EA i—0 =
= <s: >0
i#j ==

n

< sup ST + Z 8514
(21,0 yxn)EA i—0
i#J
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and

Therefore,

as desired.

. The function ¢ is proper, closed and convex. Therefore,

UN =LA

. Let s € R". We have that

tp(s) = s;lﬂg (sTaz —up(z))
€T n

= sup stz
zeD

Let j € {1,...,n} be any index such that

S§; = max Sj.
i=1,...n

We consider two different cases.

* Suppose that s < 0. Then s; < 0. Moreover,

tp(s) = sup Z Si  Ti

(#1,..52n)ED 4 <VO ZVO
<0
and
1H(s) = sup sl
zeD
> sl 0
eD
=0.
Therefore,
tp(s)=0

in this case.
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* Suppose that s < 0 does not hold. This implies that s; > 0. Note that

n

tp(s) = sup Z $iT;

(21, yxn)ED i—1

n
= sup Sijx5 + E Si X
(21, yxn)ED izo?"_/:’o'/
iy ==
n
< sup S;x5 + g 854
(z1,.;xn)ED i—0
i#]

n
= sup Sj E T

(z1,eeyzn)ED NN~ =1

20— —
<1

and

Therefore,

= max s;
1=1,....n

in this case.

This covers all cases and we conclude that
(p(s) = max <0, max 5i> ,
=

as desired.

4. The function . is proper, closed and convex. Therefore,

Lp =Lp.

Solution 5.10

1. See the figure below. Since we are dealing with set valued mappings it is no prob-
lem if the inverses are set valued, i.e., we do not need to care about surjectivity
and injectivity. The axis of the graphs are simply flipped.
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2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are set-valued.

/
\

—

\

Solution 5.11
Since 0f* = (0f)~!, we can flip the figures as follows:
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Of (x)

Of (x)
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af*(s)

af*(s)

af*(s)

af*(s)
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Solution 5.12
Let z € R". Recall that

pro(2) = arsaain (12) + 3 o — 213
By Fermat’s rule, z = prox, ;(2) if and only if
0€df(x) +y Hz—2)
-~
z € (I +10f)(x)
-~
(I +~0f) " (2) = =

We have equality in the last step since we know that the proximal operator is single-
valued for proper, closed and convex functions. Therefore,

prox, ;(z) = (I +~9f)"'(2),

as desired.

Solution 5.13

1. Recall that

{-1} ifz<o0,
Of(x) =< [-1,1] ifz=0,
{1} ifx > 0.
af
x

Left plot shows I + 0 and the right shows (I +y9f)~ = prox, ;. Therefore,

x+y ifx < —v,

prox, s(z) = 4 0 ifz € [—v,7],
x—r ifx>n.
(I +~0f)
/ (I+~0f)7"
. e
-
w x

i
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2. Recall that

(—o00,0] ifzx=-1,
{0} ifz € (—1,1),
[0,00) ifz=1,

0 otherwise.

‘ ‘ x

Left plot shows I +~vdf and the right shows (I +~9f)~! = prox, ;. The prox does
not depend on v (since it is actually a projection). Therefore,

-1 ifz< -1
prox,¢(r) = qz ifxe[-1,1]
1 ifz>1
(I +~0f)
(I+~0f)""
]‘Ak —_—
-1
x | | x
1
11 -
3. Recall that
{0} ifz< -1,

af(x)=<[0,1 ifz=—1,
{1} ifz>-1.

of

Left plot shows I +vdf and the right shows (I +y0f)~! = prox. ¢. Therefore,

T ifr < -1,
prox, () = ¢ —1 ifee[-1,v—1],
x—vy ifx>~y-—1.
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(I +~0f)

4. Recall that

{1
[_170]

of(x)

{0}
of

ifx <1,
ifz =1,
if x> 1.

Left plot shows I +~9f and the right shows (I + y9f)~! = prox, ;. Therefore,

T+
prox, s(z) = 41
x

(I +~0f)

I_WZ !
/

Solution 5.14
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1. Note that

T = proxs(2)
x = argmin <f(:1‘c) + % |z — zH%) [Definition of prox]
TER™
0€df(x)+x—2 [Fermat’s rule]
z—x € df(x)
x€df(z—x) [(af)_1 = Jf* since f proper, closed, and convex|
z—u€0f(u) [Letu=z—x]
0€edf(u)+u—=z

t ¢t O

1
u = argmin (f*(u) + - |la— zH%) [Fermat’s rule]
a€R" 2

&  u=proxs(z). [Definition of prox]|
Therefore,
z=x+u

prox(z) + prox;«(2),

as desired.
2. We have that

(vf)*(s) = sup (STJ: —~f(z)) [Definition of conjugate function]

reR”

=7 sup (v 's)'z - f(2))
reR™

=~vf*(y"'s), [Definition of conjugate function]
as desired.

3. We have that

Prox(, )«(z) = argmin <('yf)*(s) + %Hs - zH%) [Definition of prox]
sERn?

. . 1
—arguin (1 °(27%5) + s <13
s€R™

. « 1 _
—yargmin (7/"(0) + 5o —<l3)  [Letw =171

veER?

2

. * Y -

—yargmin (7/"(0) + G0 = 713)
veER™

1
= ~yargmin <’y_1f*(v) +3 lv — (fy‘lz)H%) [Multiply the objective function with 2]
veER™

= YProX. 1« (y7'2), [Definition of prox]
as desired.
4. Combing the first and third subproblems give that
z = Prox, ¢(z) + proxy s (2)
= proch(z) + YProx, -1 s (fy*lz),

as desired.
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5. Alterative 1: The subproblem above can be written as

y = proxsy(y) + Sproxs-1 4 (6'y),
where y € R"” and § > 0. Define v = 6~!. Then
y = prox,-17(y) + 7 'prox, s (1)
& Yy = yprox,-14(y) + prox, s« (vy). [Multiply with +]

Define z = vy. Then

z = yprox,—1;(y"'2) 4 prox, s (2),
as desired.

Alterative 2: Note that f** = f, since f is proper, closed and convex. Moreover,
f* is proper, closed and convex. Thus, the subproblem above applied to /* gives

that
Z = ProX. s+ (2:) + YPTOX—1 fax (")/_12)
= prox, +(2) + ’yproxflf(’flz)a
as desired.
6. Note that

. 1 iy
ProX.(fo_1ay(2) = aige;%ain ((f o —Id)(x) — > |z — zH%) [Definition of prox]

= argmin (f(—w) - 217 |l — Z”%)

z€eR™

— — argmin (f(a‘r) 5 l-a- zué) Let 7 = —a

zER™
. - L 2
= —argmin (f(x) ~o, - (—z)llz>
= —prox., s(—2), [Definition of prox|

as desired.

Solution 5.15
Recall that the Moreau decomposition (Exercise 5.14) gives that

Prox(, - (2) = 2 — prox, ¢(2)
for each z € R™.

1. Let z € R™. Exercise 4.1-2 gives that
prox. ;(z) = (I +vH) " (z = vh),
which by the Moreau decomposition implies that

prox(, s« (2) =z — (I + yH) Y (z — ~h).
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2. Let z € R". Exercise 4.1-5 gives that

z if z < —1,
prox, s(z) = { —1 if e [-1,v— 1],
z—x ifz>~y—-1,

which by the Moreau decomposition implies that

0 if 2z < —1,
proxi,p-(2) =4 z+1 ifze[-1,v-1],
~ ifz>~y—1

3. Let z € R". Exercise 4.1-6 gives that

2+ ifz<1l—7,
prox, ;= ¢ 1 if ze[1—~,1],
z if 2 > 1,

which by the Moreau decomposition implies that

-y ifz<1—9,
prox,p-(2) =<z -1 ifz e[l —~,1],
0 if 2 > 1.

Solution 5.16

1. Note that
—f*(0) = = sup (0"z — f(x))

z€eR™

= — sup (—f(x))

zeR?
::xggz'f<w).
2. Note that /** = f, since [ is proper, closed, and convex. By the subdifferential
formula for f*, we have that
af*(0) = Ar%?nax(oTx — [ (2))

— Argmax(—f(x))
zeR”

= Argmin f(z).
TcR?

Solution 5.17
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1. By definition, we have

f*(s) = sup (572 — f(2))
z€R"
2 ST‘T - f(ﬂf),
as desired. In addition, note that f*(s) > —oo since we assume that f is proper.
2. Suppose that s € 9f(z). This implies that f(z) < co. We have that
s € 0f(x)
=
f(y) > f(x)+sT(y —x) foreachy e R"
=
sTe — f(x) > sTy — f(y) for each y € R"
=

sTa — f(z) > sup (s'y — f(y))
yeR”

54

ste — f(z) > f*(s)

&
F5(s) < 8Tz — f(=),
as desired.

3. Suppose that f*(s) = s’x — f(x). This implies that f(z) < oo and f*(s) <
s'x — f(x). However, the above sequence of equivalences gives that s € 9f(z), as
as desired.

Solution 5.18

1. Suppose that s € 9f(z). Fenchel-Young’s equality (see Exercise 5.17) gives that
Fr(s) = sTa — f(a).
We know that f** < f (see Exercise 5.2). We get that
0= f*(s) + f(2) — 7w > f*(s) + (@) — 5Tz > 0,

where the last inequality follows from Fenchel Young’s inequality (see Exercise
5.17). Thus,

@) = sTa = f*(s),
which is equivalent to x € 9f*(s) by Fenchel-Young’s equality.
2. Apply the previous result to f*.

3. Combine the above the results and that f** = f for proper, closed and convex f.
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Solutions to chapter 6

Solution 6.1

1. The functions f and g are proper, closed and convex, and the constraint qualifi-
cation relint dom f N relint dom g # () holds. Therefore, by Fermat’s rule, z € R"
is an optimal solution to the primal problem (6.1) if and only if

0€d(f +g)(x) = df () + dg(x)
=
{u € df(x)
—p € 9g(x)
=

{x € of*(u)
r € dg*(—p).

where p € R™.

2. Eliminating x in the subproblem above gives that

{x € df*(u)
z € 09" (—p)
=
0 € df* (1) — dg*(—p) C A(f* + g o —I)(n).

However, Fermat’s rule implies that i solves the Fenchel dual problem (6.3).

Remark 1: Note the inclusion (C) above. If the constraint qualification relint dom f*N
relint dom g* o —I # () for the Fenchel dual problem holds, the inclusion can be
replaced by an equality (=).

Remark 2: Note that it is possible to obtain an other Fenchel dual problem than
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(6.3). In particular, note that

0€0(f+g)(x) = 0f(x) + Ig(x)
=

{—M € df(x)
p € dg(x)
=
{m € 0f*(—n)
z € 0g* (1)
=

0€ —0f*(—p) +09g" (1) CO(f* o —1+g")(n)
=
p € Argmin f*(—fi) + g* (&)
LeER”

Both are valid dual problems.

* No, in general. Inspired by the condition

e df(u)

you could use the subgradient selector s+ to generate a candidate solution

z¢and = 5. (u*), ie.,

xcand c 6](-*(#*)
However, the full optimality condition
{fc € af*(u*)
x € 0g*(—p")
does not necessarily hold for each x € 0f*(u*). Le.,
2204 ¢ ety 2 20 ¢ 9o ().

e If f*in addition is differentiable (it is always convex), we have that 0 f*(u) =
{Vf*(u)} for each pn € R™. This implies that

sy=(1) = V()
for each 1 € R". Let z* = sy« (u*). Thus, that u* solves
0€af*(p")—09"(—n")
——
={z*}
is equivalent to the full optimality condition
v € Of*(u)
a* € 0g*(—p*).

I.e., we can recover a primal optimal solution z* using the subgradient se-
lector function s+ in this case.
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Solution 6.2

Fermat’s rule gives that + € R" is an optimal solution to the primal problem (6.4) if
and only if

0€d(folL+g)(x). (10.38)

Since f o L and g are proper and convex, and relint dom(f o L) Nrelint dom g # 0, the
subdifferential sum rule gives that (10.38) is equivalent to

0€d(folL)(x)+ dg(x). (10.39)

Moreover, since f is proper and convex, and relint dom(f o L) # (), the subdifferential
composition rule gives that (10.39) is equivalent to

0¢c LYof(Lx) + dg(x).

This is equivalent to that there exits a point ;1 € R such that

€ 0f(Lx)
{—LT,u € dg(z). (10.40)

Since f and g are proper, closed and convex, we know that
(0f) ' =0f" and (9g)"! = dg".

where f* and ¢* are the conjugate functions of f and g, respectively. Thus, (10.40) is
equivalent to that

Lz € 0f*(p)
x € 9g*(— LT ).

This in turn is equivalent to that
0 € df(n) — Log (=L ). (10.41)
Note that it always holds that
—Ldg*(—=L"p) € 8(g" o —L") ()
and
F (1) +0(g" o =LT) (1) S O(f* +g" 0 —LT)(n).
This combined with (10.41), this implies that
0€d(f*+g*o—L")(p).

However, Fermat’s rule gives that it is equivalent to that p is an optimal solution to
the optimization problem

minimize f*(u) + g*(— L ).

pneER™

This is the Fenchel dual problem (6.5) we wanted to derive.
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Solution 6.3
For the primal problem

minimize f(Lz) + g(z)

rER™

a Fenchel dual problem is

1.

minimize f*(u) + g*(—L ). (10.42)
pneER™

* Note that f and ¢ are proper, closed and convex, and that the constraint

qualification
relint dom(f o L) Nrelint dom g # ()

holds for this particular case. Using Exercise 5.1-1 and 5.14-2, we have that

* _ i 2
7 (0) = 55 Il
for each ;1 € R™. Exercise 5.1-6 gives that
(max(0,1 =) (i) = @i + (1,0 (i)

foreachz; € Rand: =1,...,n. However, since max(0, 1 —-) is proper, closed
and convex, we know that

(Id + ¢[—1,0)" (i) = (max(0,1 — )™ ()
= (max(0,1 —))(»)

= max(0,1 — 1)

for each v; e Rand i = 1,...,n. Combining this with Exercise 5.5, we have
that

g (v) = ZmaX(O, 1—v)
i=1

foreach v = (v1,...,v,) € R™.
Therefore, (10.42) becomes
1 n
leleiﬁgr}gze T\ ”HH% + ; max (0,1 + (LT,u)Z.) (10.43)
in this case.

Note that f* and ¢* are proper, closed and convex, and that the constraint
qualification

relint dom f* N relint dom (g* o —LT) £ 0

holds for the Fenchel dual problem (10.43). Therefore, if 1 € R™ is an
optimal solution to (10.43), we can recover an optimal solution z € R" to
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the primal problem by considering any one of the primal dual necessary
and sufficient optimality conditions. In particular, it must holds that

{Lx € 9f*(n)

10.44
x € dg* (—LTM) . ( )

Note that f* is differentiable with gradient

.1
Vft={1d

Therefore, the first condition in (10.44) uniquely determines z, i.e.

1
e
T \ 7

since df*(u) = {Vf*(1r)} and this z must then automatically fulfill the sec-
ond condition in (10.44).

Note that f and ¢ are proper, closed and convex, and the constraint qualifi-
cation

relint dom(f o L) Nrelint dom g # ()

holds for this particular case. Using Exercise 5.6, we have that

fr () = lwlly
for each ;1 € R™. Using Exercise 5.1-2, we have that

i} 1
g(v) = o H’f+b”g
for each v € R™.
Therefore, (10.42) becomes

e 1 2
mlunelér%%ze el + o H—LTV + bH2 (10.45)

in this case.

Note that f* and ¢* are proper, closed and convex, and that the constraint
qualification

relint dom f* N relint dom (g* o —LT) £ 0

holds for the Fenchel dual problem (10.45). Therefore, if 4 € R™ is an
optimal solution to (10.45), we can recover an optimal solution z € R" to
the primal problem by considering any one of the primal dual necessary
and sufficient optimality conditions. In particular, it must holds that

L *
TEOf W) (10.46)
z €89 (—LTp).
Note that ¢* is differentiable with gradient

V() = (v +)



for each v € R™. Therefore, the second condition in (10.46) uniquely deter-
mines z, i.e.

o= (LT +b)

since dg*(— L™ 1) = {Vg*(~L* 1)} and this x must then automatically fulfill
the first condition in (10.46).

Solution 6.4
Define h : R™ — R U {co} such that

h(y) = fly+c)
for each y € R™. Then g = ho L. Let s € R". We have that

g*(s) = sup (STSL' — h(L:L‘))

zeR?
=— ian (h(Lx) + ls(x)), (10.47)
TER™
where I : R™ — R is given by
lo(z) = —sTx

for each x € R™. Note that

h(p) = sup (u"y— f(y+c))

yER™

= sup (1" (v —¢) — f(v))
vER™

= sup (u"v - f(v)) - "
vER™

= ["(p) —n'c

for each i, € R™, and

(v) = sup (va +s"2)
T€R"

= sup ((v+s)"2)
Tz€eR™

= L{O}(V + S).
for each 1 € R™.

Consider the minimize problem in (10.47). We have that h and [, are proper closed
convex and that constraint qualification is satisfied since

relint dom (h o L) Nrelint dom {5 = relint dom g N relint R™
= relintdom g N R"

= relint dom g

£0.
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Moreover, by assumption, we know that there is an =, € R" that achieves the infimum
in (10.47). Therefore, strong duality must hold, and we get

g°(s) = — inf (h(Le) +1s(x)

= — sup (=h*(u) — 1 (L7 n))
#GR’"L

= inf (W(w)+ 15 (=L )

— 3 * T
= inf (f*(u) = ).
st. s=LTp

Solution 6.5

Since f is proper, closed and convex, we have that f(z) = f**(2) = sup,cgn (271 — f* (1))
for each x € R™. Therefore,

sup (f(z) —g(x)),

zeR?

is equal to

sup sup (a7 — f*(u) — ().
z€R™ peR™

However, we may switch the supremums to get the equal problem

sup sup (¢ p—g(x) — f*(n)).
HER™ zeR™

But this is equal to

sup (" (1) — f* (1)
HERM

since g* (1) = sup,epn (271 — g(x)) for each p € R™. This completes the proof.
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Solutions to chapter 7

Solution 7.1
That z* is a fixed-point means that

x* =a* =4V f(x¥).
This is equivalent to that
0=Vf(zX).

Fermat’s rule (or Exercise 2.19) gives that z* is a global minimizer of f.

Solution 7.2
Note that

z = prox. ()

. 1
= argmin () + o~ 213
yeR™ i

Fermat’s rule and subdifferential calculus rules give that » satisfies
0€df(2) +v 1z —x).
The fixed-point assumption z = z gives that
0€af(x).

Fermat’s rule gives that x is a global minimizer of f.

Solution 7.3
Note that

= pI'OX,yg (I’ - ")/Vf(.f[]))

= argmin <g(y) + 2i ly — (z — Wf(:v))||§> -
yeR™ Y

Fermat’s rule and subdifferential calculus rules give that z satisfies

0 € dg(z) + i (= (@ — 4V f(2))).
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The fixed-point assumption z = z gives that
0 € 9g(x) + Vf(z). (10.48)
The subdifferential sum rule gives that
9g(x) + Vf(z) = dg(x) + 0 (x)
=0(g+ f)(x)

since 0f(x) = {V f(z)}. This combined with (10.48) gives that

0€d(g+ f)(x).

Fermat’s rule gives that z is a global minimizer of [ + g.

Solution 7.4

1. The function is smooth so the gradient method works. No need to use the proxi-
mal gradient method.

2. The first two parts are smooth. The third part is not smooth but is separable
and therefore prox friendly. Thus, the proximal gradient method works but the
gradient method does not.

3. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

4. First part is smooth. The second part is prox friendly but not smooth. Thus, the
proximal gradient method works but not the gradient method.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first part is differentible, but not smooth (it grows too quick for large x), and
the second is prox friendly but not differentiable. Thus, none of the methods
work.

7. First part is smooth. The second part is not smooth but is separable and there-
fore prox friendly. Thus, the proximal gradient method works but not the gradi-
ent method.

8. The second part is neither smooth nor prox friendly. Thus, none of the methods
work.

9. Both parts are smooth and the second part is separable and therefore prox friendly.
Thus, the gradient method and the proximal gradient method both work.

Solution 7.5
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. The part ||[Az — b|]3 is strongly convex if and only if A7 A is invertible. Since
A € R™*" with m < n, AT A has at most rank m and is therefore not invertible.
Therefore, the primal objective is not strongly convex. The dual objective will
therefore not be smooth. Thus, neither of the methods work.

. The part $27Qxz + bTz is strongly convex since @ € S, and therefore has a
smooth conjugate. The conjugate of ||z||, is prox friendly but not smooth. Thus,
the proximal gradient method works but not the gradient method.

. The first part is not strongly convex and will therefore have a nonsmooth con-
jugate. The conjugate of the first part is not prox friendly. However, if we let
f(y) = 1|y — b||3 and g(z) = ||z||3, the problem can be written as

min f(Az) + g(2)

and a dual can be written

min f*(u) + g*(—A"p).

pER™
The function f* is convex, smooth, separable and therefore prox friendly. The
function x +— g*(—AT 1) is smooth. Thus, the gradient method and the proximal
gradient method both work.

. The first part is not strongly convex and will therefore have a nonsmooth conju-
gate. The conjugate of the first part is not prox friendly. Doing the same trick
as for the previous problem does not work since ||z||2 is not strongly convex and
therefore it has a nonsmooth conjugate. Thus, neither of the methods work.

. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.

. Neither part is strongly convex (¢l?l" ~ 1 + ||2*|| for small z), therefore neither
of the conjugates are smooth. Thus, neither of the methods work.

. The first part is strongly convex and will therefore have a smooth conjugate. The
second part is proximable, and therefore the same is true for the dual. However,
the second part is not strongly convex and will therefore have a nonsmooth con-
jugate. Thus, the proximal gradient method works but not the gradient method.

. With f =4_4 4 and g(z) = %xTQa:, the primal problem can written as
min f(Lz) + g(z)
and has a dual

min f*(u) +g* (L")
pnER™

where ¢* (1) = 327 Q'x. Note that 1 — ¢g*(—Lpu) is smooth. The function f* is
prox friendly but not smooth. Thus, the proximal gradient method works but not
the gradient method.

. Neither part is strongly convex, therefore neither of the conjugates are smooth.
Thus, neither of the methods work.
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Solution 7.6

1. Exercise 5.6-1 gives that

2. Exercise 5.1-2 gives that
g (1) =317 Q 7 h
for each 1 € R™.
3. One possible Fenchel dual problem is given by

minimize f*(u) + g*(—p)
pER™

(e.g.,let L = I in Exercise 6.2). Similarly, another Fenchel dual problem is given
by

minimize f*(—p) + ¢* ().
pER™

In the remainder of the exercise, we will only consider the first Fenchel dual
problem.

4. Under the assumptions on f and g, we know that f* is proper, closed, convex and
proximable, and ¢* is convex and smooth. Therefore, for the dual problem

minimize f*(u) + ¢*(—p)
pER?

we get, for some appropriate v; > 0, that
fh+1 = Proxy, ¢« (g — V(9" 0 —I)(uk))

is a computationally reasonable step for the proximal gradient method.

5. Consider our particular choice of f* and ¢*. Differentiation yields
V(g o =D)(u) = Vg (=) = Q" .
Note that

f*(ﬂ) = {[-1,1) ()

= Z 1/[71,1}(/%‘)
i=1

for each = (u1,. .., un). Exercise 4.2 and Exercise 4.1-4 gives that

prOX’yL[_lyl] (Zl)
prox,, s«(z) =

prOX’yL[_l,l] (Zn)
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for each z = (z1,..., 2,) € R", where

-1 ifz; < -1,
prox%[_l’ll(zi) =42z ifz e (-1,1),
1 iz > 1,

for each ¢ = 1,...,n. Thus, the proximal gradient method step for the dual
problem becomes

vk = i — Q™ ik,

—1 if (Uk)z < —1,
(er1)i = < (vp)i if (vp)i € (=1,1), Vie{l,...,n}.
1 if (vg); > 1,

Solution 7.7
We start with

fir1 = prox,, pe (e — V(9" 0 —L7) (1)) -
Note that V(g*o— L") (u) = —LVg*(—L" u3,). Therefore, the proximal gradient method
step can be rewritten as
T = Vg*(_LT:uk)a
vk = s + YLk,
Pkt1 = Prox,, s« (Vk) -

Using Moreau decomposition, we have
Prox,, . (2) = 2 = MProx -1 1. (1,1 2) = 2 = yprox, 14 (7; ' 2)-

for each z € R™. The last equality holds since f = f**, by closed convexity of the
proper function f. Using this, we can write the proximal gradient method step as

xy = Vg* (=L ),
v = pg + Lk,
Hi+1 = Uk — Vkprox7;1f(7,;1vk).
Recall the subdifferential formula for ¢* (g is proper, closed and convex), i.e.,
99" (1) = Argmax (4" — g™ (x)
TER™?

= Argmax (,uT:U —g(z))
r€eR™

for each i € R", since g = ¢**. However, we know that ¢* is smooth and convex, and
therefore, 0g* (1) = {Vg*(n)} for each o € R™. Using this, we get that

Vg’ (u) = argmax (1'x—g(z))
TeR™

= argmin (g(z) — p’ 2)
TER”
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for each 1, € R™. This lets us write the proximal gradient method step as

z), = argmingcpn (9(2) + pf L) |
Vg = pii + Ve Ly,
P+t = Uk = YEPTOX. 1 £ (7 Uk),

as desired.

Solution 7.8
Recall that Exercise 7.6 gives the dual proximal gradient method step

vk = pk — Q™ ks

-1 if ()i < -1,
(10.49)
(rs1)i = % (vp)i if (vp)s € (=1,1), Vi€ {1,...,n}.
1 if (v); > 1,

We must verify that

), = argmin, (g(z) + piz) ,
Vg = Mg + VeTk, (10.50)

L1 = U — fykproxvglf(fyk—lvk),

gives the same step when f, g : R™ — R are given as
= 1
f@) = ||zl = Z; lz;| and g(z) = inQfE
for each z = (x1,...,z,) € R™. To verify correctness, note that

1
argmin (g(a:) + uZw) = argmin (:UTQQS + xT,uk>
z€Rn zeRn  \ 2

= —Q -

Thus, we can write (10.50) as

_ . -1
{vk e — Q™ (10.51)

Pht1 = Vg — %Proka—lf(ﬁlvk)-

Since f is separable, so is prox, , see Exercise 4.2. From Exercise 4.1-3 we get that

zi+v if z; < —,
(proch(z))l. =40 if —y<zi<y, Vie{l,...,n},
zi—r ifz >,
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for each z = (z1,..., 2z,) € R". We can then calculate y;,1 in (10.51) as

(1) = (Vk)i — Yk (prOX»lelf ('Yk_lvk)>

i
(v o)+t E (o on); < =
= ()i =40 if —yt < (v toe), <
(v ton); =t A (ot on), >
(Uk)i +1 if (Uk)z < —1,
= (vg)i—10 if —1< (vg); <1,
(vg)i — 1 if (vg); > 1,

1 (o) € 1,
= (Uk)i if —1< (Uk)z <1, Vi € {1, - ,n}.
1 if (Uk:)z Z 1,

This establishes the desired equality.

Solution 7.9
Using the hint with z = 2, we get that
T B 2
f@) < flag) + V(ze) (y — ) + 5 ly — x5

< Flon) + Vi (an) Ty — o) + 2,1% ly — axl2

for each y € R™. The function g : R — R U {oco} given by

9(y) = F(o) + V@) Ty — ) + 2,1% ly — 2

for each y € R™ is then a majorizer to f, i.e., f < g. What remain to be shown is that

Tpy1 = argmin g(y).
yeRn

By Fermat’s rule and convex differentiability of g, we know this holds if and only if

Vg(zp11) = 0.

Straight forward calculations show that this is equivalent to

Tpy1 = Tk — V[ (2g),

as desired.
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Solutions to chapter 8

Solution 8.1
To estimate the overall computational cost of an algorithm, we can roughly use

(iterations count) x (per-iteration cost).

This quantity for the first algorithm is 5 x 10® and for the second one is 10%. Hence,
the second algorithm had a better performance.

Solution 8.2

O(p}) < A2 (linear)

O(p5) + A4 (linear)
O(1/log(k)) +» A3 (sublinear)
O(1/k) <+ Al (sublinear)
O(1/k?) > A5 (sublinear)

A A

Solution 8.3

1. From the Q-linear rate definition, we have that
Vi < pVie1 < pViea < ... < M
or
Vi, < 0"V

holds inductively for each integer £ > 0. This implies an R-linear rate with
pr = pand Cp, = Vj.
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2. From the Q-quadratic rate definition, we have that
Vi < pVii

2

< pp*Viy
2 3

< pp*p* Viis
2 3 4

< pp’p* PP Vi,

Qkfl

2 3 k
<ppPpt ot -tV

holds inductively for each integer k£ > 0. We get that (8.2) holds with pg = pVy > 0
and Cg = p~! > 0 since Vp > 0 and p > 0 by assumption.

3. If pVy < 1 or equivalently Vy < p~1, we get pg = pVp € [0, 1).

Solution 8.4

1. Let n = 1 and consider the function f : R — R such that

flz) =z

for each € R and z;, = —F for each integer k& > 0. Clearly, (z)2°, is a descent
sequence and

f(zp) > —c0 as k — oo.

i.e., the sequence of function values (f(x1));2, does not converge in R.

2. Alternative 1: Note that the sequence (f(x1));2,, is monotone, by construction.
Moreover, (f(x));2, is bounded — from above by f(zo) and from below by B.
Then, by the monotone convergence theorem, the sequence (f(z))7°, converges
in R.

Alternative 2: First, note that the nonempty set { f(zx) : k¥ € Ny} in R is bounded
from below by B or equivalently, {—f(zx) : k¥ € Ny} is bounded from above by —B.
By the least-upper-bound property of R, there exists a real number, say b € R,
such that

sup{—f(z): ke No} =b
or equivalently

inf {f(l’k) (ke NO} =b
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where b = —b. The least-upper-bound property of R can be taken as a complete-
ness axoim of R, or, proven as a theorem from some other completeness axoim,
e.g., the convergence of every Cauchy sequence.

Second, recall that the definition of the infimum of a set is the greates lower
bound of that set. In particular, for any ¢ € R that is a lower bound of {f(x) :
k € No}, i.e., ¢ < f(xy) for each integer k£ > 0, it holds that ¢ < b.

Third, we claim that (f(x;))72, converges to b, or written differently,
flxzg) —b as k— oo.
This, by definition, means that for each ¢ > 0, there exists an N € Nj such that
|fzk) —b] <€
for each integer k¥ > N, or equivalently,
b—e< flap) <b+e

for each integer £k > N. Indeed, let ¢ > 0 be arbitrary. Since b is the greates
lower bound of { f(zx) : k € Ny}, we get that

b—e<b< f(zy)
for each integer k£ > 0. Moreover, there exists an N € Ny such that
flzn) <b+e

Why does such an N exist? If there did not exists any such N, b + ¢ would be a
lower bound of the set { f(x) : k € Np}. But this would contradict the fact that b
is the greates lower bound of { f(xy) : k € Ny}, since b < b + e. Finally, note that

flap) < flan) <b+e

for each integer £ > N, by construction of the sequence (z)7° ,. Thus, we have
established that

b—e< flxp) <b+e
for each integer £ > N, as claimed.

. The most basic example would be to consider any function f that is bounded from
below and let x; = z for each k € Ny, where x € R" is not an optimal point. A
slightly more interesting example would be f : R> — R such that

flz,y) =2+ ¢

for each (z,y) € R? and the sequence

= (1 D)k (14 1) st

for each integer k£ > 0. We see that

1\2
f(xr,uk) = <1 + k)
is decreasing but does not converge to the optimum f(0,0) = 0. There are plenty

more examples. Function value decrease is a very weak (read: useless) condition
for a minimization algorithm.
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Solution 8.5

Below you see an expanded table with the asked for ratios. We see that the linear
ratio is steadily decreasing while the quadratic ratio is more stable (up until machine
precision is achieved). Clearly, the sequence appear to converge Q-quadratically. The

parameter is given by the worst case ratio, i.e., p =~ 0.24.

b

L

|z — ¥ = dy

dit1/dr

diy1/d;

I Tt WN -=O

©

5.000000000000000
3.960109873126804
2.888130487596392
1.799138129515975
0.849076217909656
0.379763183818023
0.315791881094192
0.314923211324986
0.314923057845411
0.314923057845406

4.685076942154594
3.645186815281398
2.573207429750986
1.484215071670569
0.534153160064250
0.064840125972617
0.000868823248786
0.000000153479580
0.000000000000005
0.000000000000000

0.77804204
0.70591922
0.57679574
0.35988932
0.12138864
0.01339947
0.00017665
0.00000003
0.00000000
NA

0.16606815
0.19365790
0.22415439
0.24247788
0.22725437
0.20665396
0.20332357
0.21226031
0.00000000
NA

For the interested: The gradient and Hessian are

Vi(x)=¢e"—2+ 2z,
V2f(z) =e® +2
for each x € R, which shows that f is strongly convex and thus has a unique minimizer.
The Newton iteration is then explicitly written as

etk — 2+ 2$k
€T = r, — ———
L T ek + 2

for each integer k£ > 0.

Solution 8.6

1. Note that

D
Ong§L+7—>O as k — oo.

vi(k)  a(k)
Therefore, Q. — 0 as k — oo, by the squeeze theorem.

2. Since we have two terms (both converging to zero as k£ — oo) on the r.h.s. of the
inequality, the slower term is the bottleneck and decides the rate of convergence,
that is, the smaller between /1 and ), determines the rate of convergence. When
comparing we can ignore the constant terms. With that in mind, the rates are
as follows:

(a) O(log(k)/v'k) sublinear rate of convergence.

(b) We should compare O(1/k'~) and O(W) = O(1/k%). Since o €
(0,0.5), O(1/k%) is the rate of convergence.
(c) We should compare O(1/k'~%) and O(;r—sbr—s) = O(1/k%). Since a €

kl—a/kl—Qa
(0.5,1), O(1/k'~%) is the rate of convergence.
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3. The cases in (b) and (c) are similar. We just need to compare them with case (a).
Let a € (0,0.5) and note that

log(k)/VE  log(k)

ke —k0.57aﬁ0 as k— 0.

We conclude that case (a) gives the faster rate.

Solution 8.7

1. Note that

IN

0< flzr) — fz")

IN

— =0 as k— .

The squeeze theorem gives that
flzg) — f(z*) -0 as k— o0
or equivalently
fzr) = f(z*) as k— oo,
as desired.

2. In both cases, the function ¢ : R, — R, such that
o(i) =i
for each ¢ > 0 is decreasing. Therefore, we obtain the following bound:
k k k
0< [ o<y o= >
0 i=0 i=0
for each integer k£ > 1. Similarly, we also get the bound

k k

S => k)
=0

=0 7
< /k ¢2(t)dt + ¢*(0)
0
< [" ¢+ ¢0)
0
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for each integer k£ > 0. Combining these bounds with the inequality given by the
convergence analysis, we get the new inequality

k
V+D Z v2
flar) = f(@") < =0
bZ%
i=0
V+D ( P2 (t)dt + ¢2(0)>
< T
b o(t)dt
0
for each integer k > 1.
(a) Let
(&
o) =3

for each ¢ > 0. Note that

/qs )dt + ¢*(0) = ¢

(Lo
([

and
k kg
t)dt = —dt
/0 b(t)dt = c /O —
= c[log(t + 1)]i,
=clog(k +1).
We conclude that
V +2Dc?

fla) — f(a") < belog(k 1+ 1)

for each integer £ > 1, which shows a O(1/log k) sublinear rate of conver-
gence.

(b) Let
C
(t+ 1)«

for each t > 0, where o € (0.5,1). Note that

/OOO ¢*(t)dt + ¢*(0) = </Ooo (1+1t)2adt + 1)

- ([(1 - 2a)(:; +t)2“‘1]:0 : 1>

2ac?
20— 1

o(t) =
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and

k k 1
/0 ¢(t)dt:c/0 T

1

—¢ {(1_@@“)&_1 =0
=% ((k+1)—1).

l—«

k

We conclude that
2
V4D ;Of .
Flar) — flat) < —5 .
— (k+1)'7*-1)

for each integer k£ > 1, which shows a O(1/k'~%) sublinear rate of conver-
gence.

3. Note that « € (0.5, 1) implies that 1 — « € (0,0.5). Therefore, we get that

1/k*=*  logk
1/logk  kl-@

—0 as k— oo.

Thus, step-size (b) gives the fastest convergence rate.

Solution 8.8
The Lyapunov inequality (8.3) gives that

k
lze — 2*13 < llzo — 2*13 — 2v D _(f(wi) — f(a*))

=1

holds inductively for each integer k > 1. Therefore,

k

(5t — 5o < W0 =M e =l

pa 2y (10.52)
_ o —=*I3
<

for each integer k > 1, since ||x), — 2*||3 > 0. Furthermore,

k
E(f(ee) = f(2) < (@) — fa¥)) (10.53)
i=1

for each integer k > 1, since (x;);2, is a descent sequence for f. Combining (10.52)
and (10.53) gives

_ llwo — 3

0< flzk) — fa*) < ok —0 as k— oo (10.54)
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The squeeze theorem gives that
flzg) — f(2*) -0 as k— oo
or equivalently
f(zr) = f(z*) as k— oo.

Moreover, we identify a O(1/k) sublinear rate of convergence from (10.54).

Solution 8.9

1. We start from the inequality
E[llexir — 2[5 | @] < llww — 213 = 29 (f(zx) — F(2¥)) +77G?
for each integer & > 0. By monotonicity and linearity of expectation, we get that
E [E [[lzgs1 — 2*[I3 | 2x]] <E [llog — 2*(3 — 20(f (z1) — F(27)) +27G7]
= E [[lzx — 2*[3] — E [2%(f(zx) — f(=*))] + E [1{G?]
=E [|lzx — 2*[3] = 2w E[f(z1) — f(2")] + 217G,

for each integer k > 0, since G and ~;, for each integer k£ > 0, are deterministic.
The law of total expectation gives that

E [[lzg+1 — 2*[3] < E[llog — 23] — 2w E[f(zx) — f(2*)] + 72 G®
for each integer k£ > 0. This is the Lyapunov inequality we pick.

2. The Lyapunov inequality above gives that

k k
E [lap — 2*[3] S E[llwo — 23] =2 wE[f(:) = f@)] + G ) A7
1=0

i=0
k k

= oo —a*[3 =2 wE[f(x:) = F@)] +G* Y A7
i=0 i=0

holds inductively for each integer k > 0, since ||z¢ — 2*||3 is deterministic. Again,
by monotonicity of expectation, we know that

0 <E [[legr — 2*[|3]
for each integer k& > 0 since
0 < Jlzpyr — 273

for each integer k£ > 0. We conclude that
k

k
0< oo —a*3 = 2) WE[f(z:) = fl@)] + G
1=0

i=0
for each integer k£ > 0, or by rearranging

k k
2> WELf (@) - f@)] < lloo - 2* 3 + G247
=0

=0

for each integer k£ > 0, as desired.
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Solution 8.10

1. First, we prove the claim provided in the hint, i.e.,
k
A > 1+ 5 (10.55)

for each integer k£ > 0. Clearly, (10.55) holds for £ = 0. Note that

1+ /14+40_,
Ak =

2

holds for each integer k& > 1. This gives that

1
)\kZ/fi—i-)\o

k
:1 —
+2

holds inductively for each integer k& > 1. This establishes (10.55).

Next, rearranging (8.4) and recursive application gives

2)2 2)\2
5 (@) = f@) < Vi = Vi + ZE(f (@) = £@)
2
<V = Vi + (@) - @)
2
< Wi+ (s ) - fa)
for each integer k > 1, since Vj, > 0 for each integer & > 1. Using (10.55), we get
that
2
Vit (7 ) - £a)
f(@ps1) = f(27) < 222,
B
2
Vit (7 a) - fa)
<

for each integer k > 1, or equivalently

28V 4+ 403 (f (1) — f(2*))
(k+2)2

flag) — f(z¥) < (10.56)

for each integer k£ > 2. Note that

28V1 + 4X(f (21) — f(2*))
(k+2)?

—0 as k— oo.

0< f(ar) — f(2*) <
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The squeeze theorem gives that
flzr) — f(z") =0 as k— oo
or equivalently
f(zg) = f(z*) as k— oo.

Moreover, we identify a O(1/k?) sublinear rate of convergence.

. From (10.56), if k£ > 2, we know that

28V1 + 4N (f(21) — f(z¥))
(k+2)?

flag) = f(a") <
Therefore, if the integer k£ > 2 is so large such that

28V1 + 4N (f(21) — f(2¥))
(k +2)?

<e

we obtain an e-accurate objective value. This is equivalently to

. { \/w AN (@) — fl@) 4

and k£ >2
€

or simply

€

- ({ \/wv] AN (f(an) —J(@) 2} 72> |
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Solutions to chapter 9

Solution 9.1

1. We know that the inequality
Flawen) < Flaw) + 9 Fx) (o —6) + 5 i — mal’
holds since [ is S-smooth. Using the update rule (9.1) we get that

F@per) < fan) + V()" (@r =2V f (@) —zp) + ’ [z =7V f (1)) — zall3

2
— Fan) - (1—5”)|er< e

Subtracting f(z*) from both sides gives that

(F(orsn) — Fa*) < (Flan) — () — A (1 . 57) 19 £ ) 2.

as desired.

2. The Lyapunov inequality (9.2) can be written as

7<1_m> IV /I3 < (Fa) — F@) = (Flain) — f*))

for each integer i > 0. Summing over ¢ =0, ...,k gives that

(1 - ) Z IV < D (i) = £a) = (Fais) = F@))

(
for each integer k > 0, since f(zr11) — f(z*) > 0 by assumption. Suppose that
0<y< 2 . Then

and we get that

3 195 < L) (10,57



for each integer k& > 0. In particular, we see that

fjuw@i)”g < f@o) = f@7)
i=0 y (1 - 57>
2

and conclude that
IVf(@p)lls +0 as k- oo,

as desired.
. Using inequality (10.57), we get that
k

(k+1) min [V <D IV @)l

1=0,..., X
1=0

= 5

¥

121
(1-7)

for each integer k£ > 0. Dividing by k + 1 gives that
f(xo) — f(z%)

f(zo) — f(z*)

0< min V()3 <

O _7<1—ﬁ7>(k+1)

2

for each integer & > 0. We identified a O(1/k) sublinear rate of convergence.

Solution 9.2

1. Plugging in the update rule (9.3) into ||z;11 — .TU*HS and expanding gives that

|zt — 2|2 = |log — YV f (2x) — 272

= [lzx — 2*)|5 — 29V f (@) T (mp — 2%) + 72 |V f(2n)3.-

The first-order condition for convexity gives that

Fla*) = flag) + V fan) (@ = a),

which is equivalently to that

Therefore,

=V f i)z — ) < — (f(2r) — f(2¥)).

i1 = 25 < law — 2*[5 — 29 (f(@x) = F(@*) + 2 |V fa)ll3 -

From Exercise 9.1, we have the Lyapunov inequality (9.2), i.e.,

(o) = £a) < () = £ =2 (1= ) I9A@0IB.
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Adding f(z*) to both sides, multiplying by 2y and rearranging gives that
—2yf (k) < =27/ (zh11) = V(2= BV IV f (@) l3 - (10.59)
Inserting this into (10.58) gives that

lzhe1 — 2|5 < llow — 2¥)5 = 29(f(@rr1) — F(@) + 2By = D) [V F(z)]l3
as desired.

. The inequality (9.4) can be written as

2y(f(@is1) — f(2%)) < [lwi — 2*|3 — lwier — 2*)l5 + 72 (B — 1) [V £ ()3

for each integer i > 0. Summing over ¢ =0, ..., k gives that

k k
29 (i) = F@) <3 (llmi = 213 = lwisa — 213 +92(87 = 1) V£ (@)I13)
=0 =0

k
= [lzo — 2*[I3 — llzasr — 25 + 7By = 1) D IV F()l3
i=0
k
< oo — 25 + 7By — 1) ) IV F£(i)ll3
i=0
for each integer k£ > 0. Note that
<2
TS5
implies that
By —1<1.
Therefore,
k k
27 (f(mit1) — F(@) < llwo — 2|3+ D IV F()3
i=0 i=0
< lwo —2* )13+ D IV F()ll3 (10.60)
i=0

for each integer k& > 0. Note that inequality (9.2) implies that (z;)5° is a decent
sequence for f,i.e., (f(z;));2, is nonincreasing. This implies that

29(k+ D(f(ze1) — f(27)) < 2v Z(f(im) — f(z))

which combined with (10.60) gives that

2o — %13 + 72 320 IV £ ()3
27(/{: +1)

since Y°°, ||V f(;)||3 is bounded. We conclude that

0 < f(xgyr) — fa¥) < —0 as k— o

flzr) = f(z*) as k— oo

and identify an O(1/k) sublinear rate of convergence.
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Solution 9.3

1. Note that

|z = 2% 5 = I (@r =7V f(ar) — 2"
= [z — 2"l = 29V f (20)" (21 — %) + 7 |V ()13 -

The first-order condition for strong convexity gives that
J@*) = ) + Vi) (@ =) + 3 lle* = anl],
which is equivalently to that
~Vf () (e —a%) < = (faw) = f@) = 5 " =l
Therefore,

|z = 2% (5 < (1= o) [z — 2% (15 = 29 (f(zx) = (@) + 72 IV f )5
(10.61)

Recall inequality (10.59) from Exercise 9.2, i.e.,
—2yf(ar) < =27f (@r1) =72 = BY) [V F(@n)]5
Using inequality (10.59) in (10.61) gives that

1 = 23 = (1= o)l — 2* 13 = 29 (f (wa11) = (@) +9°(By = D |V f () I3

>0 <0 since v<1/8

2
< (1 =o07) e — 2™[f3,

as desired. The fastest convergence rate is obtained when 1 — o is minimized
which in turn happens when v is maximized. Since ~ is upper bounded by 1/4,
the fastest convergence rate is obtained when

1
7=
p
which gives the convergence rate
j_2_b-e
B B

2. Let g : R — R such that

g(v) = max(1l — oy, By — 1)

for each v € R. The step-size that gives the fastest convergence rate is the one
that minimizes g. The function g is closed and convex, since is the maximum of
two affine functions. Fermat’s rule gives that the best step-size + satisfies

{-=0o} ifl—0y>py—1,
0€dg(v) =< {8} ifl—oy<py-—1,
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Clearly, this holds only when 1 — oy = v — 1, i.e., when

7:B+07

which gives the convergence rate
2 B0
INB+o) B+o

3. From the analysis earlier in the previous subproblem, we get that the fastest
convergence rate is given by

8—o
B

From the analysis in the lectures we get that the fastest convergence rate is given

by
2
2 B—o 2
v ol < (G0 ) o 2"l

|zks1 — 2*])3 < |z — 2|3 -

Since 0 < o < 3, we have that

(B—O)QSB—USB—U.
B+o B+o I6;

Thus, the convergence analysis in the lectures yields a faster convergence rate.

Solution 9.4

1. Let f : R™ — R such that

flx) = %xTQ:c +q¢'z

for each z € R™. We have that
Vi(z) =Qz+q
and
V2 f(2) = Q = Auin(Q)1

for each x € R", where \,,;,(Q) > 0 since @ € S} ,. The second-order condition
for strong convexity gives that f is A\pin(Q)-strong convex. Therefore, x* is the
unique global minimizer of f. Fermat’s rule gives that z* is the global minimizer
of f if and only if

since f is convex and differentiable.
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¢ Note that

Tpp1 = o — YV f(28)
= (I =7Q)zr — g

and
x* =" —Vf(z¥)
= —7Q)x" —q.
Therefore,
[2k1 — 2|y = [[(1 = v@Q) (k. — )5
<N =@y ok — 2| -
¢ Note that

ANl —7Q) =1 =y \—i+1(Q) (10.62)
and therefore
1< N{I—-7Q) <1
foreach i =1,...,n, since v € (0,2/3) where

B=lell
= Omax(Q) [use Q € S ]
- )\max(Q)-

We see that

HI - '7@”2 = Umax(I - WQ)
= \//\max ((I - ’YQ)Q)

77777

and conclude that

0<|[I=2Qlly <1

2. Suppose that v = 1/4. This implies that
Oﬁ)\i(f—’)/@) <1
by (10.62). Therefore, I —yQ € S’} and

1T = 7Qlly = omax(I — Q)
= Amax({ — Q)
=1- ’V)\min(Q)

Amin (@)

= (@)
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3. Note that
)\min(Q) =¢ and Amax(cy) =1

and therefore

p=II—-~Ql,

=1—e.

If ¢ = 0, then z* = 0 is the unique global minimizer of f. If we pick

v

n= 057

and the linear convergence rate is achieved, i.e., the inequality

then

lax — & < o flao — 27

becomes an equality. In particular, if € is very small compared to 1, we get a slow

convergence.
4. Let
1
V=|Ve 0
0 1
Then

T 1 1
V QV - 1 10 .
ic L

5. VTQV has the eigenvalues 0.9 and 1.1. The convergence will therefore be very
fast. Indeed, with

7711
we get the linear rate of convergence

0.9
—1-27 ~o1s.
p 1.1 8

6. Suppose that V' is not diagonal. The proximal operator is often computed on
some function ¢ that is separable. With the change of variables to x = Vy, we
need compute the proximal operator of the function g o V' which in general is
no longer separable. Computing the proximal operator on this term generally
becomes computationally expensive.

Solution 9.5
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1. Recall that

: 1 2
prox. ¢(x) = argmin | f(z) + — ||z — 2 >
slo) = angin (1) + oo - <13

for each =z € R™. Thus, if

Trs1 = prox, ; ()

then
Forn) + — | 12 < £(2) + — |12 — a2
— — X z — || — X
Lr+1 2 Lk+1 kllo > 2 kll2
for each z € R". Setting z = x;, gives that

1
f(@ps1) + > ki1 — 23 < flan)
or equivalently

1
flppr) < flag) - 2 k1 — 2l (10.63)

as desired.
2. Inequality (10.63) can be written as

1

% lzks1 — zills < flar) — fl@rg)-

Summing over k =0, ...,/ gives that

l l
L Z |Trs1 — mk”% < Z (f(zk) — f(xper))
2y k=0 k=0

Therefore,

l

> ks — @ll; < 2v (f(wo) — B)

k=0
for each integer [ > 0. In particular, we see that

[e o]

D lakin —kll3 <2 (f(wo) — B) < o0,
k=0

and conclude that
|Trs1 — kaﬂg —0 as k— oo,

as desired.
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3. Suppose that
g —zkl3 =0 as k- oo.
Fermat’s rule gives that
Ti+1 = pTOX«,f(ﬂUk)

is equivalent to
1
0€f(zpy1)+ 5 (Thg1 — k)

or equivalently

i (Tp—1 — xx) € Of (z1).

This implies that

0 < distys(g,y(0) = inf |[s—0
< distoy() () = _inf s =0,
‘1
<

—(zg—1— ) — 0
Y

2
1
= —||ap—1 — x|y, =0 as k— oo.
Y
The squeeze theorem gives that
diStE)f(xk)(O) —0 as k—

as desired.

4. Note that f is lower bounded by f(x*). Therefore,
|zr — zp—1]ls =0 as k— o0
by a previous subproblem. The o-strong convexity of f implies that
F) = f@)+"(y =)+ 5 ly = 2l
for each =,y € R™ and each s € 9f(x). In particular, we have that

1 1 T
(

@iy m) €0 (w) = Fa) 2 flan) + ~ (momr =) (& =)+ G "

0 0f(x") = flr) = fa*) + 2 oy — =3,

Adding these two inequalities together and using the Cauchy-Schwarz inequality
gives that

1
|z, — 2*]5 < P (s — 1)’ (2% — )

1
< — Tn_ g .
=S |2k — p—1lly |27 — 2xlly
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Therefore,
N 1
0 <||lzg — 2|, < —||lzg — zp—1l], =0 as Kk — oo.
o

The squeeze theorem gives that
|z —z*]|s =0 as k— oo,
or equivalently
T, — 2 as  k — oo,

as desired.

Solution 9.6
The complete procedure is given below:

1. The goal is to find a Lyapunov inequality on the form

Vier1 < Vi — Qi

for each integer k > 0, where (Q1);2, is some nonnegative convergence measure
and

Vi = g — 2%

for each integer £k > 0. We further define the fixed-point residual mapping R :
R™ — R™ such that

Rz =z — prox,,(z — vV f(z))
for each 2 € R™. The proximal gradient update can then be written as
Tpy1 = Tk — Rag. (10.64)
We can use this to relate Vi to Vi, by

Vit1r = |2rg1 — 90*”3
= ||(zx — Rag) — 2|5
= |z, — 2|5 — 2(zx — 2*)T (Rak) + | Rax|3

= Vi — 2(zy, — 2*)T(Ray) + || Ry |3 -

(10.65)

2. Next, we wish to upper bound the quantity —2(z), — 2*)T (Rxy) + |Rakl3. We
start by using (10.64) to rewrite it as

—2(zp, — )T (Rag) + | Ragl5 = —2(xy, — )T (Ray) + (Ray) T (Ray,)

= —2(ap — )T (Ray) + 2(Ray) T (Ray,) — (Ray)T (Ray,)
= —2(xp — Ray — o) (Ray) — (Rap) T (Ray)
= —2(

2wpr1 — )T (Rag) — |[Raylf3 -

2$k

(10.66)
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3. We now turn to bounding —2(z;,; — 2*)7 (Rxz;). Using Fermat’s rule on the
proximal gradient update gives that

1
0 € 9g(wg+1) + 5 (@rt1 — (26 — YV f(28)))
which is equivalent to that
Yy YRz, — Vf(x1) € Og(xhpr)-
The definition of a subgradient then gives that
9(2*) = g(xr41) + (v Ry, = Vf(2x) T (2% = 2p40),
which implies that
—2(zpp1 — ") (Rag) < =29(g(wps1) — 9(2%) — 29V f (2r)" (241 — 2*). (10.67)
4. We continue to bound —27V f ()7 (x4 1 —2*). Using the definition of 3-smoothness

of f and the first-order condition of convexity on f give the two following inequal-
ities:

Flonsn) < Far) + VI @) @t — o) + 5 lzwss — ol

= o) + V() (s — ) + 2[R
F@*) = fmr) + V()" (2" —zp).
Adding these two together and rearranging gives that

Flie) < F@) + V() (e — a) + 2 [Regl
which implies that
~2V () (21 — @) < ~29(f(wrer) — (@) 498 [Rax]3. (10.68)
5. Inserting (10.68) into (10.67), (10.67) into (10.66), and (10.66) into (10.65) gives
that
Vgt = Vi = 2(ap — 2*) " (Ray) + HkaHg
= Vi — [R5 — 2(xpy1 — 2°) T (Ra)
< Vi — [R5 — 29(g(rs1) — g(a¥)
< Vi — [Rall5 — 2v(g(wrs1) — 9(2™)
< Vi — (1= 4B) [|Raxll5 — 2v(g(xkta

) = 29V f () (241 — 2¥)
) = 29(f(xh41) — f(2)) + 78 | Ray |12
)+ (@) — 9(z*) — f(a)).

6. Using the assumption v < 37! gives that

Vg1 Vi — (1 —1P) HkaHg —2v(9(xg1) + f(xpg1) — g(2") = f(2))
< Vi = 29(9(@pg1) + f(@ig1) — 9(z*) — f(2))
= Vi — Qk
where
Qr = 2v(9(zry1) + f(wpr1) — g(@™) — f(27)),

which is nonnegative since v > 0 and g(z41) + f($k+1) g(xz*) + f(z*) by as-
sumption on z*
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7. Since Vi, > 0 and @}, > 0 we we know that

Qr—0 as k— oo,

which implies that

flzg) +g(zr) — f(@*) +g(z*) as &k — oo.

Solution 9.7

1. Following the steps gives that

lwsr = oI5 = [|prox, 4 (e, — YV (@) — 2|

= |[prox., (z), — YV f(xx)) — prox, (a* — YV f(z))||2

S Trogy o= V() =2t 4V i)
= ol =21 = 2090 = V4@ =) +92 19 w) = V7))

1 2807y 2 9 .
< o (1= 22 =271 = (52 =) 190 = 1615

If~v > ﬁ, then the last term is nonnegative, and we can use §-Lipschitz con-
tinuity of Vf to get that

1 280 2

* (|2 hils * (|2 2 * 112
Tht1 — T | < — | |1 = Tp— 275 — Y — 7| B ||k — =

H k+1 Hz— 1 g <( 3 f) H k ”2 (5 ; ) H k H2>

1 280 ¢y 232
- 1 P g 82 ) o - o
1+ o4y B+or B+oy

1 280y + 232
B <1— /7 T4 8292 ) g, — 272

1+o4y B+oy
1
— 1-9 2.2 2
1+Gg’y( By + 6°9°) ok — 2*|)3
(5’7—1)2 2
= -2
o4

Ifo<y< ﬁ, then the last term is nonpositive, and we can use

IVf(xr) = VI(@)lly = of ok — 27,

173



to get that

1 280 2
*12 Y * 112 2 )
x —x < 1-— T — T — — ot ||l — @
s =1 < o (1= 222 hon = o1 - (5 =) A s - 1R
1 280y 20y
= 1= 22 T 263 ) ||y, — a3
1 28057y + 205y
- 1= 15202 ) oy — 7
1404y B+oy
1
— 1—9 2 2 )2
1+0g7( Uf’Y‘F’YUf)HJ?k [
1 2
S Gl by 3
1+ o4y

To write these on one common form we use the fact that

1—opmy ifye (0, 2],
max(l — oy, By —1) = utl ) v el 2’8+0f] (10.69)
B’y_l 1f’}/€ [/B+vaoo)a
which gives the desired inequality, i.e.,
o _ max(l —oypy, By — 1)2 2
[zp+1 — 2¥[|5 < T oy [z — 25
. From the previous subproblem we see that
r, — ¥ as k— oo
with linear convergence if
1— —1)2
max(1 = o7, 8y =17 (10.70)
1+ o4y
* Assume that oy > 0.
—If0<:7<iBﬁ%P(1069)ghwsthat
max(l — oy, By —1)* (1 —0p7)?
1404y 1+ opat
< (1—o0y7)°
- 2
< max | 1, (1 -2 / )
5+ of
=1.
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- Ify > (10.69) gives that

Ty

max(1 —opy, By —1)* _ (By —1)?
1+ o4y 1+ o4y
N
(By—1)* <1404y
o
1+ B8%y% =28y <1+ 0,y
&

By — B2+ %

) <0

=

o
By<2+ -2
8

-

L2,
g B

The case oy > 0 can be summarize by that the proximal gradient method
converges linearly if 0 < v < % + 52 , since 5=— +g < % +

* Assume that oy = 0. Then (10.70) becomes

maX(Lﬁ’y — 1)2
1+o4y

<1,

which is impossible if o, = 0.
* Assume that o, > 0.

-Ifo<y < ﬁ, then (10.69) gives that

max(l — oy, By —1)* (1 -047)°

1+ o4y 1+ogy

We have that

<2
B+op — B
=

0<y<

2
0§0f7§%<2

=
—-1<l—-0opy<1

=
(1—opy)? <1

Thus, (10.70) holds since 1 + o4y > 1.
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3.

- Ify > /B%O'f’ (10.69) gives that

max(1 — oy, By — 1)  (By —1)?

1+o04y - 1+o04y <1
-
BB

where the equivalence is shown exactly as in the oy > 0 case above.

The case 0, > 0 can be summarize by that the proximal gradient method

converges linearly if 0 < v < % + %, since 5 faf < % + %

To summarize all cases, the proximal gradient method converges linearly if 0 <
v < % + % and at least one of oy > 0 and o, > 0 holds.

* Let 6 =1. Then f = L + 0,07 = 0 and 0, = 0. The linear convergence rate
is then given by

max(1 — o, (L + o)y — 1)2.
In Exercise 9.3 we have already shown that this is minimized by

B 2
- L+2

v

which is a valid step-size by the analysis above, and results in the linear

convergence rate
] 20 2 _ L 2
L+20) \L+2) °

®* Let 6 = 0. Then 3 = L, oy = 0 and 04, = 0. The linear convergence rate is
then given by

max(1, Ly — 1)?
140y '

Next, we split this up into two subcases with respect to valid step-sizes:
— Suppose that 0 < v < % The rate is then

1
1+oy

Hence, v should be chosen as large as possible, i.e., v = %, giving the
linear convergence rate

L
L+20

— Suppose that % << % + 7z. The rate is then

(Ly —1)°
140y °
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Taking the derivative of the rate gives

d (Ly - 1)2 _ 2L(Ly—1) o(Ly— 1)2

dy 140y 140y (14 0v)2
Lv—1
= — 5 (2L(1 —o(Ly—1
AL+ o)~ a{ly ~ 1)
Ly —1
)

— 2L+ L
1+(772( + Loy + o)

- (

> 0.
Hence, the rate nondecreasing in + and the step-size should be chosen
as small as possible, i.e., v = %, again giving the linear convergence
rate

L
L+20

To summarize, the best linear convergence rate we can get for the case § = 0
is
L
L+20

Note that

L L \?
>
L+ 20 L+ 20

since L > 0 and o > 0. It is therefore advantageous two put the strong convexity
in the gradient step.
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Solutions to chapter 10

Solution 10.1
Rearranging the objective function in (10.1) yields

N
- l(x?w b)
Zz;log (1 +e Y + )

s.t. -1 s.t. y;=1
N T
T 14 e%i w+b

= log (1 + €% w+b> + Z log | ——r—

s.t. yi=—1 s.t. yi=

N N N
T T
_ Z log ( o w—l—b) n Z log (1 e w+b> _ Z log (eac w+b>
i=1 i=1 i=1
s.t. yi=—1 s.t. y;i=1 s.t. y;=1
T N T

= Z log (1 + " w+b) — Z log (e’”i wH’)

i=1 i=1

s.t. ylfl
N
T

= Z log (1 + e%i w+b) — Z zlw +b.

i=1 i=

s.t. y¢=1
From here, we can go over to the new labels, y;, =1 — ¢, = land y; = -1 — y; = 0.
We get that

N
Z log (1 + exiTwH’) Z zfw+b

i=1
S. t ylfl

lg( —I—exl“”rb) Zyl x; w~l—b

|
.MZ

.
Il
—

I
,MZ

-
I
_

(log (1 + ez;‘r“”rb) — Ui (:EZTw + b))

as desired.

Solution 10.2
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Note that each term in the sum in (10.2) is positive for each (w,b) € R” x R. Why is
this true? Well, let (w,b) € R* xR, i =1,..., N and u; = v w + b. Then

log (1 + emiT“’er) —y; (a:?w +b) =log (1 + ") — yiu; (10.71)
For y; = 0, (10.71) becomes
log (1+€“) >0

since 1 + e* > 1. For y; = 1, (10.71) becomes

1+ ew
log(l—l—e“i)—ui:log( +? )>O

eli

since M2 > 1.

Therefore, the objective function in (10.2) is positive for each (w,b) € R™ x R, since it
is a sum of positive terms.

Let (w,b) = t(w, b) for some ¢t € R. Suppose that i € {1,..., N} is an index such that
y; = 0. Then

log (1 + eszer) —y; (27w +b) = log (1 + et(m?ﬁ’%))

ot
=log <1+ (e‘”iTw*b) ) —0 as t— oo.

The limit above follows from % ®+0 ¢ (0,1), since zl'w + b < 0 by assumption on i.
Suppose instead that i € {1,..., N} is an index such that y; = 1. Then

log (1 + eIiTerb) — Y (ac;fw +b) =log (1 + et(xiTm'E)) —t (x;‘Fﬁ) +b)
1+ et(xiTerB)
= log (W)
— log (1 4 e—t(mf@%))

Y
= log (1 + <e_(xiTw+b)> ) —0 as t— oco.

The limit above follows from e~ (*/ ®*) ¢ (0,1), since z'w + b > 0 by assumption on i.
In either case, the term goes to zero. Thus,

i <log (1 + e“”iT“’+b) — Vi (ﬂcZTw + b)) =

=1

N
t(x?u’)—&—g) o (T T .
;(10g(1+6 > tyz(xzw+b)>—>0 as t— oo

We conclude that the optimal value of (10.2) is 0, which is not attained, since the
objective function is positive for each (w,b) € R" x R.

Solution 10.3
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First, consider A = 0. Then (10.3) becomes
.. . 1 H b||2
mlIxIIGIﬁngG 9 axr 9 -
By Fermat’s rule, we get that the optimal point in this case is

a’b

0=al(azrs—b) or mz= —
lall2

Now, let A > 0. Using Fermat’s rule and the subdifferential calculus rules (CQ holds
since both functions have full effective domain), the optimality condition for (10.3) is
given by

{sen(z)} ifz #0,

0¢€ |al|2z —a’b+ A
Il {[—1,1] if # = 0.

Thus, z = 0 is an optimal point if and only if a”b € [—X, A], or equivalently A > |a”b|.
This covers the first case. It remains to consider the case A < ‘aTb‘. But then = # 0 by
necessity, and z is an optimal point if and only if

) A
0=|la|3z —aTb+ Asgn(z) or z=_— a T sgn(z),
lal3  llal3
since ||al|, > 0. However, since |a”b| > X\ by assumption, sgn(z) = sgn(a’b) = sgn(ws)
must hold by necessity. Therefore, the solution in this case is given by

T =X — sgn xls)
[lall3 H2

This concludes the proof.

Solution 10.4

* Alternative 1:
Using Fermat’s rule and the subdifferential calculus rules (CQ holds since both
functions have full effective domain), the optimality condition for (10.4) is given
by

g(z1)
0c AT (Ax —b)+ 1|
9(Tm)
where
sgn(x; if x; #0,
o) = {sgn(z;)} .
[—1,1] lfl'i = 0.
Thus, the optimality condition above gives that = 0 is an optimal point to (10.4)
if and only if

0€ —ATb+ \[-1,1]™
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This holds if and only if
A > max ‘(ATb)i‘

i=1,....m

= [[A%0]] -

e Alternative 2:
Let f : R™ — R such that

1
F@) = 5 14z = b3+ Aol
for each x € R™. Using Holder’s inequality, we get the lower bound

1
f@) 2 5 4z = bl + [[AT]., ol

Y

1
5 14z = bll3 + [[p" Az,

Y

1
5 14z — bl|3 + b7 Az

1 2 10
5 I4all3 + 5 I3

v

L2
3 16115

for each z € R™. Furthermore, the lower bound is attained at = = 0, i.e., f(0) =
3 |b]|3. Therefore, = = 0 is an optimal point to (10.4).

Solution 10.5

CQ holds since both functions in (10.5) have full effective domain. Fermat’s rule then
gives that = (71, 22) € R? is an optimal point of (10.5) if and only if

0 AT Az — ATb 4+ 20(]|-||,)(x)
54

aj ajry —ai b+ A(| - |)(x:), Vie{1,2}.

2
=1

0e
J

The equivalence hold since ||z||; = |z1| + |z2|. Inserting the subdifferential of | - | gives

0 S o) + a{asz — a’{b + )\ {Sgn(:vl)} I 1 ;&

~1.1 if £, =
[{ ’<] | ?fxl%g (10.72)
Sgn(xo 1I X9
0€al + 29 —alb+ A
G211 T T2 4 [—1,1] if 29 = 0

where the assumption ||a;||, = ||az2||, = 1 was used. With the optimality conditions in
place, we can now look at the four cases.

* Assume that x € X( . Then (10.72) is equivalent to

alb e \[-1,1]
alb e N\[-1,1].
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This in turn is equivalent to
A > max |ain’
i=1,2
We conclude that

Aoo = {)x>0:/\2im:?§‘azrb‘}.

Assume that x € X 5. Then (10.72) is equivalent to
0=ux1 —alb+ Asgn(z)
0 € alajry —alb+ N\[-1,1].

If aTh = 0 the first condition can’t be satisfied since x; # 0 by assumption. We
conclude that

Aiog=10
ifafb = 0.
From here on, we assume a? b # 0. The first condition can be rewritten as

0 =sgn(xy) |z1| — aipb + Asgn(zq)
=
ald

sgn(z1)

- ‘.’L’l‘ = A

Since A > 0, we get that sgn(z1) = sgn (a] b) and
0< A= ‘aripb‘ — x| < ‘alTb|

since z1 # 0 by assumption. Multiplying both rows in the original condition with
T

sgn(z1) = sgn (af ) = |ZITZ‘ gives

1

21| = |afb| — A

T 771 030
0€asal |z — ‘al b} — + A[=1,1]
apb

T
as b
=0¢c {alTb’ (agal - aij> - A (a2Ta1 +[-1,1]).
The last inclusion can be written as
T T T asz T
/\(a2a1—1) < |a1 b‘ a2a1—Tb S/\(azal—i—l). (10.73)
ay
This implies that Z%’ < 1,since 0 < A < |a{b|, |aTaz| < 1, and a]b # 0. Thus, if
% > 1, we must have Ao = 0.
1
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We can reformulate (10.73) as

T alb
a2 aj] — aTb
T 1
’G;l b‘ aTb < A.
T T 2
ayay +sgn | a;a; — oTb
1

Further simplification and including the A < |a] b| condition give

T
b
‘aTb| Bo_ a¥as
1 aTb 1
L 77 <A< |afb]. (10.74)
1-— a{ag sgn (ng, — alTa2>
ab
To summarize this case, we have
s 0 if [a3b| > |a{b|
W {\>0:(10.74) is satisfied} otherwise.

Note that if a] b = 0 then |ab| > |alb|, therefore, this cases is implicitly included

above.

By symmetry, the set Ag; is the same as A, but with the indices 1 and 2
swapped, i.e., if
alb T

M agn -

- <A< a3b| (10.75)
1-— a{ag sgn <a%rb — ar{a2>
as b
then

Aot — 0 if |alb| > |adb)|
ot {A > 0:(10.75) is satisfied} otherwise.

Assume that € X; ;. Then (10.72) is equivalent to the condition

0=ATAz — ATh + A [Sgn(wl)]
sgn(r2)

where matrix A7 A and its inverse is given by

1 ata _ 1 1 —ala
ATA — |:aTa 11 2:| ’ (ATA) 1 — - . |:_ T 11 2:| ]
102 1— (afa2) aj az

The inverse exists by assumption since |a{ az| < 1. Multiplying the condition

from the left with (A7 A)~! gives

z = (ATA) L ATh — A(AT A)~! Eiggi] .

Define the matrix

_ |sgn(zq) 0
=0 enton)
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Multiply with S from the left gives

0< {“'] = S(ATA)TATH — AS(AT A)! [Sgn(“”)] .

o] sgn(x2)

The last term is

s (o] = g [0 smton] Lot 1] [
_ 1-— ar{ag sgn(x1x2)
1-— (al CEQ)
>0

since |af az| < 1. In order for the condition to have a solution we need
S(ATA)1ATL > 0
In other words, sgn(z;) = sgn (2;) for i = 1,2 where & = (AT A)~1 AT is the least
squares solution. Inserting this back into the condition yields
0< [\:%1]] B )\1 — alagsgn (#1729) 1
‘$2| 1- (al a2)2

To summarize this case, we have

1— (af a2)2

1 —alagsgn (2142)

A= {A>0:>\< min (|21], |22]), j:(ATA)_lATb}.

In order to show the statement that the sets A; ; are disjoint and that the amount of
sparsity is nondecreasing with A\, we need to consider different cases with respect to
the data 4 and b. The case A”b = 0 gives that Ao=Rysand Aig=Ag1 =A11 =0
and statement holds. Thus, we consider A”b # 0 in the following. We can further
divide into the cases

|a{b] > |a3b|, |a3b| > |afb| and |afb| =]a3b|.

* One of A; and Ay is empty since ‘al } ‘az b‘ and ‘az | ‘al b} can not hold
at the same time. By symmetry, it is enough to consider only one of these cases.
Here we consider the case |a{ b| > |a3b|.

Note that Ay is nonempty and |a{ b| > 0. Let Ao € Ago, A1 € Argand A\ €
Ay 1. If we can show that

A1 < Ao < Aoy

we can conclude that the sets A;; are disjoint and the amount of sparsity is
nondecreasing with \. Since A1 o < |a'b| and |aTb| < Ao we have A\ o < Ao . For
A1,1 and A\ o we have

T
ay b T
— —aja
1-— (aF{ag)2 . R . 1
A1 < 7 —— min (|21] , |Z2]), T A1,0
1—ajazsgn (mlazz) 1—ala sgn ) b —aTq
152 a{b 192
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and we will show that the upper bound of \;; and the lower bound of \;  are
equal, proving that A\; 1 < Aq .

We start by showing that min (|21|, |Z2]) = |Z2], i.e., |Z2| < |#1|. Using the defini-
tion of Z, we have that
&= (ATA)~1ATD
1 [a?b - alTagagb]

T (aTas)” a3 b — af azaib

This implies that |Z3| < |Z;] is equivalent to

‘agb alagat b‘ < ‘a —atayal b‘
g
T T
az b ay b alb
QT—alTag < 1_@{(12% =1- a{ag o7
apb ayb Ty

The last equality holds since |a]
inequality can equivalently be written as

T T
a as b
2Tb a{ag <1- alTag%
1 a%b
afay — ﬂ <1l-ata aib
L ald — ! 2ozr{b
~
alb  alb al'b
0§1+a?a2 TCLQib—i:b (1_"@’{@2) ( _a;Tb>
0<1—alas— ar{agaib—i—aib: (1—a1Ta2) 1+a2b>
- alb  alb alb

But this holds since ‘al a2| < 1 and ‘ < 1 by assumption. Thus, we have

showed that min (|Z;|, |Z2|) = |Z2| holds.

Ty

The upper bound on \; ; can now be written as

) a7| |28 _ aTa,
1— (alas) L ! ald !
1 —alagsgn (2142) 11— alTa,g sgn (£129)

This is the same as the lower bound on A; o since

sgn (£121) = sgn ((aF{b al agal b) (aib—af aga{b))

alb al'b
= sgn ((1 — ar{aQaQTb) (a%b — aipa2>)
1 1
T
_ azb

Tb
al'b

since |aaz| < 1 and ’

case when |a{b| > |alb|.
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* Next, we consider the case |a]b| = |aZb|. Then |alb| = |ab| > 0 since ATb # 0.
Moreover, A1 = Ao = 0. Let A\go € Agp and A1 ;1 € Ay ;. We want to show that

2
1-— (a{ag)

A min (|21, |2 = lafv] = [akb] < oy
T e LU R BRI U R G RSPt
known unknown known

We know that
2
1— (alTag) . 1 7.1 lafb T
1_ T —— |1 = T —— |asb| |~ —araz
— aj ag sgn (122) 1 — aj agsgn (&122) ayb
T
ay b
sgn 1T—a1Ta2 T
as b T (arb
=1 T —fasb| { = —ara
— ay agsgn (Z122) ayb
1 T affb T
= T 2b} < T, — @102
sgn S —CLTCLQ —aTa2 a2b
a%"b 1 1

T T
where it was used that sgn (Z142) = sgn (% - a{ag). We now note that % =
2 2

T\ .
sgn (%) since |a] b| = |ab|. Furthermore, we then also have
2

T T
ab — . arb\ g
sgn (agb a1a2> sgn <5gn <agb> a1a2>
alb
ol ()
2
BWED
- alb

since |a{ az| < 1. This yields

1— (aTa 1 T
7 ( L 2)A — |71| = 7 !aQTb’ sgn alT —atay
1 — aj agsgn (&122) ai b T ayb
sgn T )~ a1 a2
as b

= ‘aZTb‘.

—(aTas)?
By symmetry, the analogue holds for 11T(a—1a2)) | o], i.e.,

—aj a2 sgn(&122

1-— (ar{ag)Q

1 —afagsgn (2142)

%] = |a]b| .

This gives us the desired inequality
A1,1 < Aoyo-
This concludes the proof for the |a] b| = |alb|.
We have now covered all cases.

Note that, in all cases, the distances |\; g — A\oo| and |\; ;1 — A1 o| can be made arbitrary
small. This is expected since otherwise there would be A for which no solution exists.
Since problem (10.5) is strongly convex for all A > 0, we know that this is not possible.
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Solution 10.6
Note that (10.6) is always bounded below by zero.

1. Let ¢ > 0. Then ¢(w,b) also separates the data. Inserting this into the cost
function of (10.6) gives that

Zmax 0,1 — ty; (z; w+b Zmax —t‘xiTw—FbD.
i=1

Choosing any
1

= ming=1,.n ‘%T“’ + b’

gives a cost of 0 and therefore ¢(w,b) must be an optimal point. The set of
optimal points is unbounded since |[[t(w,b)|2 = t||(w,b)]2, ||(w,b)]]2 > 0 and
t > (min; [z7w + b|)~! can be made arbitrary large.

2. Choosing an arbitrary w € R™ and inserting into the cost function of (10.6) gives
Zmax (0,1 — Y (xfw%—b)) = Zmax (0,1 — acz-Tw — b) .
i i=1
Choosing

b>1— min 2] w
i=1,...,n
gives a cost of 0 and therefore (w, b) is an optimal point. The set of optimal points
is unbounded since ||(w,b)||3 = HwH% + |b|%, where b > 1 — min;—1__, ! w, can be
made arbitrary large.

77777

3. Letting w = 0 and inserting into the cost function of (10.6) gives
i=1

Zmax (0,1 —y;(z]w + b)) + %Hw”% = Zmax(o, 1-5)>0
i=1

Any b > 1 yields a cost of 0 and (w,b) is therefore an optimal point. The set
of optimal points is unbounded since ||(w, b)||2 = |b|, where b > 1, can be made
arbitrary large.

Solution 10.7
Note that the regularization term is the same. Woking with the sum of hinge-losses
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we get that

Zmax (0,1 — Vi (xiTw—}—b)) =17

=1

We can now identify

max (0,1 — y1 (2] w+b))]

max (0, 1-— yn (fvgw + b))_

1=y (zTw+0b)]
17 )

max | 0,

1—yn (J:Zw + b)_
11 (.CU{U} + b)-
=17 max 0,1— :

o (27w +0) |

[yt w [y1b

max | 0,1 — : +

_ynfzgw _ynb
(127 i

=1"max [ 0,1 - D lw+b

YnX Z Yn

1T

Y1

X=yz1 - yorn] and ¢ =

Solution 10.8

Yn

1. The function f is a sum of hinge-losses and in particular separable, i.e.,

for each u = (uy, ...

for each = (1, ...

flu) = Z max (0,1 — u;)
i=1

,up) € R™. Using Exercises 5.1 and 5.5, we get that

n

FH(u) = (max(0,1 )" (us)

=1
= i+ 1,0 (i)
i=1

=175+ y_19(w)

,in) € R™. Using Exercise 5.1, we get that the conjugate of
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gis

. A
5w = s () ) - 5 )
(w,b)ER™ xR

A
= sup <1/£w -3 Hw||§> + 2uﬂ1§(ubb)
€

weR™
1
= 5l + gy ()

for each (v, 1) € R™ x R. Note that

* * X
g (—L"p) =g (— |:¢T:| u>
1 2
= o =X pllz + ey (=97 1)
1 2
= o5 IXulls + epoy (6" 1)
for each 1 € R™. Thus, the dual problem
minimize f*(u) + g*(—L7 )
peR™
becomes

1
PR . T 2 T
minimize 19+ 5HX/~L||2 + 11,0 (1) + g0y (¢ 1)

or written differently

1

sos s 1T - TXTX
mlllllel%}ze o+ 5 )\,u w
subjectto —1< <0,
¢ =0.

. We claim that CQ holds for the dual problem, i.e.,
relint dom f* N relint dom g* o —LT # 0. (10.76)
Indeed, we have that

relint dom f* = relint[—1, 0]
= (-1,0)

and
dom g* o —LT = {peRr™: T 0}.

Since we have examples from both classes, we know that

Y

b= :

Yn
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has both 1 and —1 as elements. Thus, pick indices i,j = 1,...,n, i # j such that
¢; =1 and ¢; = —1. Define the set S C R" such that

S={peR":p; = pj, pu=0forie{l,....n}\{ij}}
and note that
S Cdomg*o—LT.
Moreover,
dom g* o — LT = aff dom g* o — LT,
since dom g* o —L” is affine. This implies that

domg* o —LT = {z € domg* o —LT :3¢ >0, B(z,e) Naff dom g* o —LT C dom ¢* o —LT}
= relint dom g* o —L7 .
Combining these observations gives that
relint dom f* N relint dom g* o —LT = (—1,0) Ndom ¢g* o —LT
2(-1,0)nS
# 0,

where the last line holds since, e.g., —(1/2)(e; + ¢;) € (—1,0)N.S. This show that
the intersection in (10.76) is nonempty, as claimed.

Suppose that ; € R" is an optimal point for the dual problem. By Fermat’s rule,
closed convexity of f and g, and since CQ holds for the dual problem, we know
that
0 € df*(u) — LAg*(—L" p)
&
L(w,b) € 0f"(n)
(w,b) € dg*(—L" 1)
&=
€ 0f (L(w,b))
—L € dg(w, b)
&
0e LTof(L(w,b)) + dg(w,b)
=
0€d(foL+g)(w,b).
(The last implication and be strengthened to an equivalence since CQ clearly
holds for the primal problem, but the implication suffices to show what follows.)

Hence, such a point (w,b) € R™ x R must be an optimal point to the primal
problem.

We can recover w from the second condition of

{L(w,b) € 0f (n)

10.77
(w,b) € dg* (L7 p). o7
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Indeed, note that

R ifv=0,
aL{O}(V)_{Q) if v € R\ {0}.

Therefore,

0" i) = { 2] 50, € 0 (55 1B ) (), o0 € dugo ()}
F“ ] ta € R} if (v, 1) € R™ x {0},
if (v, ) € R™ x (R\ {0}).
Moreover, note that

T, _ —Xpu

where we must have that —¢” ;x = 0 since y is assumed to be an optimal point
for the dual problem. Thus, we have that

8g*(—LTp) = { [_if“} ‘a€ R}

and using the second condition of (10.77) we can uniquely determine w as
1
=—=Xu.
w \ I
However, this does not allow us to uniquely determine b.
Next, we determine b. Note that
0 if u; < —1
[—o0,1] if u; = —1,
Of*(n) =< (s1,...,8n) ER" 15, € < {1}
1, o0 if u; =0,

if —1<pu; <0, foreachi=1,...,n

0 ifui > 0,

where ;1 = (u1, ..., pn). The first condition of (10.77) gives the requirement

XTw +bp € 0f* (1), (10.78)
Recall that
Y1
X = [ylxl T ynxn] and ¢ =
Yn
Thus, under the condition that there exists an index: =1,...,n such that —1 <

1; < 0, we can uniquely determine b from

yi:ﬂiTw—kbyi:l —= bzy{l—x?w:yi—x?w.
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3. Suppose that ¢* € R™ is an optimal point for the dual problem and that (w*, v*) €
R™ x R in an extracted optimal point for the primal problem. Clearly, it must
hold that —1 < p* <0.

First, we show that if i = 1,...,n is an index such that —1 < pf < 0, then z;
must be a support vector. Thus, let i be such an index. We repeat (10.78):

The ith coordinate of this inclusion is

if pf < -1
yi(zTw* +b%) € { {1 if —1<pf<0,
1, o0] if u7 =0,
0 if uf >0

0

[—o0,1] if pf = —1,
{1}

[

Since —1 < pf < 0, we get that
yi(zTw* +0*) < 1
or equivalently
0<1—y;(zlw* +b%)
and we conclude that z; is a support vector.

Second, we show that we can recover (w*, b*) € R™ xR only using support vectors.
From the previous subproblem, we know that we can determine the optimal
w* € R™ by

i.e., we only utilize support vectors. The optimal parameter b* can then be recov-
ered as in the previous subproblem where a nonzero element of ;* was utilized,
i.e., a support vector.

Solution 10.9

1. True. Consider the model m, (z) = w” ¢(x) as a function of w instead of = and
note that it is linear in w since ¢(z) does not depend on w. Since y; also does not
depend on w,

w s L (1), 1)
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is a convex function composed with a linear function and therefore itself convex.
We see that the objective function is a sum of convex functions, and therefore
itself convex.

. False. Consider a two layer network, i.e., D = 2, with
d=l=k=fi=1
and o1, 09 as identity functions. Then
My () = wiwax

for each x € R. Take the L as the square error loss and consider a single (n = 1)
data point z; = 1 with response variable y; = 0. Then we get the loss (and
objective) function

L(muw(21),31) = |lwiws]3
= (w1w2)2.

We claim that this is not convex as a function of w = (w;, w2) € R x R. The points
(0,1) and (1, 0) both have value 0 but the convex combination
1

5(1,0) = (05,0.5)

1
—(0,1
S(0.1) +

has a positive value. Therefore, the objective function is not convex in general.
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