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Notation

• Optimization (decision) variable notation:
• Optimization literature: x, y, z
• Statistics literature: β
• Machine learning literature: θ, w, b

• Data and labels in statistics and machine learning are x, y

• Training problems in supervised learning

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

optimizes over decision variable θ for fixed data {(xi, yi)}Ni=1

• Optimization problem in standard optimization notation

minimize
x

f(x)

optimizes over decision variable x

• Will use optimization notation when algorithms not applied in ML

3



Gradient method

• Gradient method is applied problems of the form

minimize
x

f(x)

where f is differentiable and gradient method is

xk+1 = xk − γk∇f(xk)

where γk > 0 is a step-size

• f not differentiable in DL with ReLU but still say gradient method

• For large problems, gradient can be expensive to compute
⇒ replace by unbiased stochastic approximation of gradient
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Unbiased stochastic gradient approximation

• Stochastic gradient estimator:
• notation: ∇̂f(x)
• outputs random vector in Rn for each x ∈ Rn

• Stochastic gradient realization:
• notation: ∇̃f(x) : Rn → Rn
• outputs, ∀x ∈ Rn, vector in Rn drawn from distribution of ∇̂f(x)

• An unbiased stochastic gradient estimator ∇̂f satisfies ∀x ∈ Rn:

E∇̂f(x) = ∇f(x)

• If x is random vector in Rn, unbiased estimator satisfies

E[∇̂f(x)|x] = ∇f(x)

(both are random vectors in Rn)
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Stochastic gradient descent (SGD)

• The following iteration generates (xk)k∈N of random variables:

xk+1 = xk − γk∇̂f(xk)

since ∇̂f outputs random vectors in Rn

• Stochastic gradient descent finds a realization of this sequence:

xk+1 = xk − γk∇̃f(xk)

where (xk)k∈N here is a realization with values in Rn

• Sloppy in notation for when xk is random variable vs realization

• Can be efficient if evaluating ∇̃f much cheaper than ∇f
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Stochastic gradients – Finite sum problems

• Consider finite sum problems of the form

minimize
x

1
N

(
N∑
i=1

fi(x)

)
︸ ︷︷ ︸

f(x)

where 1
N is for convenience and gives average loss

• Training problems of this form, where sum over training data

• Stochastic gradient: select fi at random and take gradient step
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Single function stochastic gradient

• Let I be a {1, . . . , N}-valued random variable

• Let, as before, ∇̂f denote the stochastic gradient estimator

• Realization: let i be drawn from probability distribution of I

∇̃f(x) = ∇fi(x)

where we will use uniform probability distribution

pi = p(I = i) = 1
N

• Stochastic gradient is unbiased:

E[∇̂f(x)] =
N∑
i=1

pi∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Mini-batch stochastic gradient

• Let B be set of K-sample mini-batches to choose from:
• Example: 2-sample mini-batches and N = 4:

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

• Number of mini batches
(
N
K

)
, each item in

(
N−1
K−1

)
batches

• Let B be B-valued random variable
• Let, as before, ∇̂f denote stochastic gradient estimator
• Realization: let B be drawn from probability distribution of B

∇̃f(x) = 1
K

∑
i∈B

∇fi(x)

where we will use uniform probability distribution

pB = p(B = B) = 1

(NK)

• Stochastic gradient is unbiased:

E∇̂f(x) = 1

(NK)

∑
B∈B

1
K

∑
i∈B

∇fi(x) =
(N−1
K−1)
(NK)K

N∑
i=1

∇fi(x) =
1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Stochastic gradient descent for finite sum problems

• The algorithm, choose x0 ∈ Rn and iterate:

1. Sample a mini-batch Bk ∈ B of K indices uniformly
2. Update

xk+1 = xk − γk
K

∑
j∈Bk

∇fj(xk)

• Can have B = {{1}, . . . , {N}} and sample only one function

• Gives realization of underlying stochastic process
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Qualitative convergence behavior

• Consider single-function batch setting

• Assume that the individual gradients satisfy

(∇fi(x))T (∇fj(x)) ≥ µ

for all i, j and for some µ ∈ R (i.e., can be positive or negative)

∇f1(x)
∇f2(x)

∇f3(x)

µ = 0.5
∇f1(x)

∇f2(x)
∇f3(x)

µ = −0.77

Will larger or smaller µ likely give better SGD convergence? Why?
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Qualitative convergence behavior

• Consider single-function batch setting

• Assume that the individual gradients satisfy

(∇fi(x))T (∇fj(x)) ≥ µ

for all i, j and for some µ ∈ R (i.e., can be positive or negative)

∇f(x)

µ = 0.5

∇f(x)

µ = −0.77

Will larger or smaller µ likely give better SGD convergence? Why?

Larger µ gives more similar to full gradient and faster convergence
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Minibatch setting

• Larger minibatch gives larger µ and faster convergence

• Comes at the cost of higher per iteration count

• Limiting minibatch case is the gradient method

• Tradeoff in how large minibatches to use to optimize convergence

• Other reasons exist that favor small batches (later)
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex(
1
2 (∥x− c1∥22 + ∥x− c2∥22 + ∥x− c3∥22)) = 3

2∥x∥
2
2 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum
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1
2 (∥x− c1∥22 + ∥x− c2∥22 + ∥x− c3∥22)) = 3

2∥x∥
2
2 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum

Fast convergence outside “triangle” where gradients similar, slow inside

Constant step SGD converges to noise ball
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex(
1
2 (∥x− c1∥22 + ∥x− c2∥22 + ∥x− c3∥22)) = 3

2∥x∥
2
2 + c

How will trajectory look for SGD with γk = 1/3?

Levelsets of summands Levelset of sum

Constant step GD converges (in this case straight to) solution (right)

Difference is noise in stochastic gradient that can be measured by µ
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SGD – Example zoomed out

Same example but zoomed out

Solve minimizex(
1
2 (∥x− c1∥22 + ∥x− c2∥22 + ∥x− c3∥22)) = 3

2∥x∥
2
2 + c

How will trajectory look with γk = 1/3 from more global view?

Levelsets of summands Levelset of sum
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SGD – Example zoomed out

Same example but zoomed out

Solve minimizex(
1
2 (∥x− c1∥22 + ∥x− c2∥22 + ∥x− c3∥22)) = 3

2∥x∥
2
2 + c

How will trajectory look with γk = 1/3 from more global view?

Levelsets of summands Levelset of sum

Far form solution ∇fi more similar to ∇f , larger µ ⇒ faster convergence
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Qualitative convergence behavior

• Often fast convergence far from solution, slow close to solution

• Fixed-step size converges to noise ball in general

• Need diminishing step-size to converge to solution in general
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Drawback of diminishing step-size

• Diminishing step-size typically gives slow convergence

• Often better convergence with constant step (if it works)

• Is there a setting in which constant step-size works?
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Fixed step-size SGD does not converge to solution

• We can at most hope for finding point x̄ such that

∇f(x̄) = 0

• Let xk = x̄, and assume ∇fi(xk) ̸= 0, then

xk+1 = xk − γk∇fi(xk) ̸= xk

i.e., moves away from solution x̄

• Only hope with fixed step-size if all ∇fi(x̄) = 0, since for xk = x̄

xk+1 = xk − γk∇fi(xk) = xk

independent on γk and algorithm stays at solution

• How does norm of individual gradients affect local convergence?
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Example – Large gradients at solution

• Individal gradients at solution 0: ∇f1(0) = 0.83, ∇f2(0) = −0.83

• SGD with γ = 0.07 and cyclic update order:

f1(x)f2(x)

(0.83,−1)(−0.83,−1)

f(x0)− f⋆ = 2.45

x0x1

f(x1)− f⋆ = 0

x2

f(x2)− f⋆ = 1.82

x3

f(x3)− f⋆ = 0.11

x4

f(x4)− f⋆ = 1.47

x5

f(x5)− f⋆ = 0.18

x6

f(x6)− f⋆ = 1.31

x7

f(x7)− f⋆ = 0.28

x8

f(x8)− f⋆ = 1.16

x9

f(x9)− f⋆ = 0.35

x10

f(x10)− f⋆ = 1.07

(f1 + f2)(x)

(0,−1)
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Example – Large gradients at solution

• Individal gradients at solution 0: ∇f1(0) = 0.83, ∇f2(0) = −0.83

• SGD with γ = 0.07 and cyclic update order:
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x10
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(f1 + f2)(x)

Will not converge to solution with constant step-size
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Example – Small gradients at solution

• Shift f1 and f2 “outwards” to get new problem

• Individal gradients at solution 0: ∇f1(0) = 0.02, ∇f2(0) = −0.02

• SGD with γ = 0.07 and cyclic update order:

f1(x)f2(x)

(0.02,−1) (−0.02,−1)

f(x0)− f⋆ = 2.45

x0x1

f(x1)− f⋆ = 0.13

x2

f(x2)− f⋆ = 0.13

x3

f(x3)− f⋆ = 0.06

x4

f(x4)− f⋆ = 0.06

x5

f(x5)− f⋆ = 0.03

x6

f(x6)− f⋆ = 0.03

x7

f(x7)− f⋆ = 0.02

x8

f(x8)− f⋆ = 0.02

x9

f(x9)− f⋆ = 0.01

x10

f(x10)− f⋆ = 0.01

(f1 + f2)(x)

(0,−1)

21
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Example – Small gradients at solution

• Shift f1 and f2 “outwards” to get new problem
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(f1 + f2)(x)

Much faster to reach small loss
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Convergence and individual gradient norm

Local convergence of stochastic gradient descent is:

• slow if individual functions do not agree on minima
• individual norms “large” at and around minima

• faster if individual functions do agree on minima
• individual norms “small” at and around minima
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Over- vs under-parameterized models

• Model overparameterized if:
• in regression, zero loss is possible
• in classification, correct classification with margin possible

• logistic loss gives close to 0 loss
• hinge loss gives 0 loss

• Model underparameterized if the above does not hold

24



Overparameterization – LS example

• Data A ∈ RN×n, b ∈ RN , and x ∈ Rn

• Consider least squares problem

minimize
x

1
2∥Ax− b∥22︸ ︷︷ ︸

f(x)

=

N∑
i=1

1
2 (aix− bi)

2︸ ︷︷ ︸
fi(x)

where ai ∈ R1×n are rows in A and problem is
• overparameterized if n > N (infinitely many 0-loss solutions)
• underparameterized if n ≤ N (unique solution if A full rank)

25



Convergence – LS example

• Random problem data: A ∈ R200×100, b ∈ R200 from Gaussian

• Underparameterized setting and unique solution

• Local convergence of SGD quite slow:
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Convergence – LS example

• Random problem data: A ∈ R200×100, b ∈ R200 from Gaussian

• Underparameterized setting and unique solution

• Norms of ∇fi(x⋆) = (aix
⋆ − bi) quite large:
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Convergence – LS example

• Random problem data: A ∈ R200×1000, b ∈ R200 from Gaussian

• Overparameterized, many 0-loss solutions, larger problem

• Convergence of SGD much faster:
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Convergence – LS example

• Random problem data: A ∈ R200×1000, b ∈ R200 from Gaussian

• Overparameterized, many 0-loss solutions, larger problem

• Individual norms ∇fi(x⋆) = (aix
⋆ − bi) = 0:
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 widths (5 layers)

• Underparameterized:
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 15x25,2,1 widths (17 layers)

• Overparameterized:
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1

• Convergence of “best gradient” (final loss: 0.17 vs 0.00018):
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Convergence – DL example

• Classification problem: logistic loss

• Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1

• Final norm of individual gradients (final loss: 0.17 vs 0.00018):
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Overparameterized networks and convergence

• Overparameterized models seems to give faster SGD convergence

• Reason: individual gradients agree better!
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Step-length

• The step-length in constant step SGD is given by

∥xk+1 − xk∥2 = γ∥∇fi(xk)∥2

i.e., proportional to individual gradient norm

• The step-length in constant step GD is given by

∥xk+1 − xk∥2 = γ∥∇f(xk)∥2

i.e., proportional to full (average) gradient norm
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Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

Average training loss

θ

31



Flatness of minima

• Is SGD or GD more likely to escape the sharp minima?

Average training loss

θ

Impossible to say only from average training loss
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?

xk

GD will stay in both minima (∇f(xk) = 0 ⇒ xk+1 = xk)

SGD will stay in right minima (∇fi(xk) = 0 ⇒ xk+1 = xk)

SGD may escape left minima (∥∇fi(xk)∥2 ̸= 0 ⇒ xk+1 ̸= xk)

xk = 0.8 and γ = 0.5
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Example

• Flat (local) minima can be different
• Is SGD or GD more likely to escape right/left minima?

xk xk+1

GD will stay in both minima (∇f(xk) = 0 ⇒ xk+1 = xk)

SGD will stay in right minima (∇fi(xk) = 0 ⇒ xk+1 = xk)

SGD may escape left minima (∥∇fi(xk)∥2 ̸= 0 ⇒ xk+1 ̸= xk)

xk = 0.8 and γ = 0.5, i = 4 and ∇fi(xk) = −2.77, xk+1 = 2.18
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Mini-batch vs single-batch

• Is escape property effected by mini-batch size?

• How large mini-batch size is best for escaping?

33



Mini-batch setting

• Use mini-batches of size 2:

Functions in batch loss 1

34



Mini-batch setting

• Use mini-batches of size 2:

Functions in batch loss 2
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Mini-batch setting

• Use mini-batches of size 2:

Batch losses

Larger mini-batch ⇒ smaller gradients ⇒ worse at escaping

Single-batch better at escaping
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Connection to generalization

• Argued that individually flat minima generalize better, i.e.,

all ∥∇fi(x)∥2 small in region around minima

• SGD more likely to escape if individual gradients not small

• Smaller batch size increases chances of escaping “bad” minima

Have also argued for:

• Good convergence properties towards individually flat minima

In summary:

• Single-batch SGD well suited for overparameterized training
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Step-sizes

• Diminising step-sizes are needed for convergence in general
• Common static step-size rules

• reduce step-size every K epochs (passes through N data points):

γk =
γ0

1 + ⌈k/(KN)⌉ γk =
γ0

1 +
√

⌈k/(NK)⌉

where ⌈k/(NK)⌉ increases by 1 every K epochs
• Convergence analysis under smoothness or convexity requires

∞∑
k=0

γk = ∞ and
∞∑
k=0

γ2
k < ∞

which is satisfied by first but not second above
• Refined analysis gives requirements

∞∑
k=0

γk = ∞ and

∑∞
k=0 γk∑∞
k=0 γ

2
k

= ∞

which is satisfied by all the above
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Large gradients

• Fixed step-size rules do not take gradient size into account
• Gradients can be very large:

• Step-size rule

γk =
γ0

α∥∇̃f(xk)∥2 + 1

with γ0, α > 0 gives
• small steps if ∥∇̃f(xk)∥2 large
• approximately γ0 steps if ∥∇̃f(xk)∥2 small
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Combined step-size rule

• Combination the two previous rules

γk =
γ0

(1 + ψ(⌈k/K⌉))(α∥∇̃f(xk)∥2 + 1)

where, e.g., ψ(x) = x or ψ(x) =
√
x (as before)

• Properties
• ∥∇̃f(xk)∥2 large: small step-sizes
• ∥∇̃f(xk)∥2 small: diminshing step-sizes according to γ0

1+ψ(⌈k/K⌉)
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Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ(x) = 0.5
√
x, K = 50, α = γ0 = 0.1

• Iteration data:

# epoch step-size batch norm full norm

0 4.8 · 10−8 2.1 · 107 6.8 · 105

10 1.4 · 10−5 7.2 · 104 1.4 · 104

50 0.097 0.31 1.4

100 0.016 0.28 3.2

200 0.012 6.8 · 10−5 0.72

300 0.01 0.33 11.8

500 0.008 0 0.529

700 0.007 1.2 · 10−6 0.0008

1000 0.006 3.1 · 10−6 0.0003

• Large initial gradients dampened

• Diminishing step-size gives local convergence
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Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ(x) = 0.5
√
x, K = 50, α = 0, γ0 = 0.1

• Iteration data:

# epoch step-size batch norm full norm

1 0.1 1.2 · 106 6.8 · 105

2 - NaN NaN

50 - NaN NaN

100 - NaN NaN

200 - NaN NaN

300 - NaN NaN

500 - NaN NaN

700 - NaN NaN

1000 - NaN NaN

• No adaptation to large gradients

• Long step to point with larger gradient that “explodes”
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Step-size rules and convergence

• Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)

• Step-size parameters: ψ ≡ 0, α = γ0 = 0.1
• Iteration data:

# epoch step-size batch norm full norm

0 1.4 · 10−7 7.0 · 106 4.7 · 105

10 0.004 257 39.4

50 0.10 6.2 · 10−10 4.1

100 0.087 1.5 1.3

200 0.089 1.2 0.26

300 0.1 2.0 · 10−12 1.3

500 0.1 5.1 · 10−12 0.198

700 0.1 2.4 · 10−13 0.16

1000 0.087 1.5 0.013

• Large initial gradients dampened

• Larger final full norm than first choice since not diminishing γk
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Convergence analysis

• Need some inequality that function satisfies to analyze SGD

• Convexity inequality not applicable in deep learning

• Smoothness inequality not applicable in deep learning in general
• ReLU networks are not differentiable and therefore not smooth
• Tanh networks with smooth loss are cont. diff. ⇒ locally smooth

• We have seen that training problem is piece-wise polynomial if
• L2 loss and piece-wise linear activation functions
• hinge loss and piece-wise linear activation functions

but does not provide an inequality for proving convergence
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Error bound

• In absence of convexity, an error bound is useful in analysis:

δ(f(x)− f(x⋆)) ≤ ∥∇f(x)∥22

that holds locally around solution x⋆ with δ > 0

• Gradient in error bound can be replaced by
• sub-gradient for convex nondifferentiable f
• limiting sub-gradient for nonconvex nondifferentiable f
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Kurdyka-Lojasiewicz

• Error bound is instance of the Kurdyka-Lojasiewicz (KL) property

• KL property has exponent α ∈ [0, 1), α = 1
2 gives error bound

• Examples of KL functions:
• Continuous (on closed domain) semialgebraic functions are KL:

graphf = ∪ri=1

(
∩qj=1{x : hij(x) = 0} ∩pl=1 {x : gil(x) < 0}

)
graph is union of intersection, where hij and gil polynomials

• Continuous piece-wise polynomials (some DL training problems)
• Strongly convex functions

• Often difficult to decide KL-exponent

• Result: descent methods on KL functions converge
• sublinearly if α ∈ ( 1

2
, 1)

• linearly if α ∈ (0, 1
2
] (the error bound regime)
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Strongly convex functions satisfy error bound

• s+ σx ∈ ∂f(x) with s ∈ ∂g(x) for convex g = f − σ
2 ∥ · ∥

2
2

• Therefore

∥s+ σx∥22 = ∥s∥22 + 2σsTx+ σ2∥x∥22
≥ ∥s∥22 + 2σsTx⋆ + 2σ(g(x)− g(x⋆)) + σ2∥x∥22
= ∥s∥22 + 2σsTx⋆ + σ∥x⋆∥22 + 2σ(f(x)− f(x⋆))

= ∥s+ σx⋆∥22 + 2σ(f(x)− f(x⋆))

≥ 2σ(f(x)− f(x⋆))

where we used
• subgradient definition g(x⋆) ≥ g(x)+ sT (x⋆−x) in first inequality
• nonnegativity of norms in the second inequality
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Implications of error bound

• Restating error bound for differentiable case

δ(f(x)− f(x⋆)) ≤ ∥∇f(x)∥22

• Assume it holds for all x in some ball X around solution x⋆

• Can non-global minima or saddle-points exist in X?

• No! Proof by contradiction:
• Assume local minima or saddle-point x̄
• Then ∇f(x̄) = 0 ⇒ f(x̄) = f(x⋆) and x̄ is global minima
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Convergence analysis – Smoothness and error bound

• Convergence analysis of gradient method

• β-smoothness and error bound assumptions (f⋆ = f(x⋆)):

f(xk+1)− f⋆ ≤ f(xk)− f⋆ +∇f(xk)T (xk+1 − xk) +
β
2 ∥xk − xk+1∥22

= f(xk)− f⋆ − γk∥∇f(xk)∥22 +
βγ2

k

2 ∥∇f(xk)∥22
= f(xk)− f⋆ − γk(1− βγk

2 )∥∇f(xk)∥22
≤ (1− γkδ(1− βγk

2 ))(f(xk)− f⋆)

where
• β-smoothness of f is used in first inequality
• gradient update xk+1 = xk − γk∇f(xk) in first equality
• error bound is used in the final inequality

• Linear convergence in function values if γk ∈ [ϵ, 2
β − ϵ], ϵ > 0
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Semi-smoothness

• Typical DL training problems are not smooth
• E.g.: overparameterized ReLU networks with smooth loss

• But semi-smooth1 in neighborhood around random initialization2:

f(x) ≤ f(y) +∇f(y)T (x− y) + c∥x− y∥2
√
f(y) + β

2 ∥x− y∥22

for some constants c and β
• Holds locally for large enough c, β if cont. piece-wise polynomial
• Constants and neighborhood quantified in [1]2

• c = 0 gives smoothness

• c small gives close to smoothness but allows nondifferentiable

1 Semismoothness definition not a standard semismoothness definition
2 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.
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Convergence – Error bound and semi-smoothness

• Convergence analysis of gradient descent method

• Assumptions: (c,β)-semi-smooth, δ-error bound, f⋆ = 0 (w.l.o.g.)

• Parameters c ≤
√
δγβ
2 and γ ∈ (0, 1

β ):

f(xk+1)

≤ f(xk) +∇f(xk)
T (xk+1 − xk) + c∥xk+1 − xk∥2

√
f(xk) +

β
2
∥xk+1 − xk∥22

= f(xk)− γ∥∇f(xk)∥22 + cγ∥∇f(xk)∥2
√

f(xk) +
βγ2

2
∥∇f(xk)∥22

≤ f(xk)− γ∥∇f(xk)∥22 + cγ√
δ
∥∇f(xk)∥22 + βγ2

2
∥∇f(xk)∥22

≤ f(xk)− γ∥∇f(xk)∥22 + βγ2∥∇f(xk)∥22
≤ f(xk)− γ(1− βγ)∥∇f(xk)∥22
≤ (1− cγ(1− βγ))f(xk)

which shows linear convergence to 0 loss

• Need the nonsmooth part of upper bound c to be small enough

• Can analyze SGD in similar manner

49



Convergence in deep learning

• Setting: ReLU network, fully connected, smooth loss

• c is small enough when model overparameterized enough [1]1

• Linear convergence (with high prob.) for random initialization [1]

• In practice:
• β will be big – relies on small enough (≤ 1

β
) constant step-size

• need to find “correct” step-size by diminishing rule
• need to control steps to not depart from linear convergence region
• hopefully achieved by previous step-size rule

1 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al.
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