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What is an algorithm?

• We are interested in algorithms that solve composite problems

minimize
x

f(x) + g(x)

• An algorithm:
• generates a sequence (xk)k∈N that hopefully converges to solution
• often creates next point in sequence according to

xk+1 = Akxk

where
• Ak is a mapping that gives the next point from the current
• Ak = proxγkg

◦ (I − γk∇f) for proximal gradient method
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Deterministic and stochastic algorithms

• We have deterministic algorithms

xk+1 = Akxk

that given initial x0 will give the same sequence (xk)k∈N

• We will also see stochastic algorithms that iterate

xk+1 = Ak(ξk)xk

where ξk is a random variable that also decides the mapping
• (xk)k∈N is a stochastic process, i.e., collection of random variables
• when running the algorithm, we evaluate ξk and get a realization
• different realization (xk)k∈N every time even if started at same x0

• Stochastic algorithms useful although problem is deterministic
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Optimization algorithm overview

• Algorithms can roughly be divided into the following classes:
• Second-order methods
• Quasi second-order methods
• First-order methods
• Stochastic and coordinate-wise first-order methods

• The first three are typically deterministic and the last stochastic

• Cost of computing one iteration decreases down the list
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Second-order methods

• Solves problems using second-order (Hessian) information

• Requires smooth (twice continuously differentiable) functions

• Example: Newton’s method to minimize smooth function f :

xk+1 = xk − γk(∇2f(xk))
−1∇f(xk)

• Constraints can be incorporated via barrier functions:
• Use sequence of smooth constraint barrier functions
• Make barriers increasingly well approximate constraint set
• For each barrier, solve smooth problem using Newton’s method
• Resulting scheme called interior point method
• (Can be applied to directly solve primal-dual optimality condition)

• Computational backbone: solving linear systems O(n3)

• Often restricted to small to medium scale problems

• We will cover Newton’s method
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Quasi second-order methods

• Estimates second-order information from first-order

• Solves problems using estimated second-order information

• Requires smooth (twice continuously differentiable) functions

• Quasi-Newton method for smooth f

xk+1 = xk − γkBk∇f(xk)

where Bk is:
• estimate of Hessian inverse (not Hessian to avoid inverse)
• cheaply computed from gradient information

• Computational backbone: forming Bk and matrix multiplication

• Limited memory versions exist with cheaper iterations

• Can solve large-scale smooth problems

• Will briefly look into most common method (BFGS)
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First-order methods

• Solves problems using first-order (sub-gradient) information

• Computational primitives: (sub)gradients and proximal operators

• Use gradient if function differentiable, prox if nondifferentiable

• Examples for solving minimize
x

f(x) + g(x)

• Proximal gradient method (requires smooth f since gradient used)

xk+1 = proxγg(xk − γ∇f(xk))

• Douglas-Rachford splitting (no smoothness requirement)

zk+1 = 1
2
zk + 1

2
(2proxγg − I)(2proxγf − I)zk

and xk = proxγf (zk) converges to solution

• Iteration often cheaper than second-order if function split wisely

• Can solve large-scale problems

• Will look at proximal gradient method and accelerated version
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Stochastic and coordinate-wise first-order methods

• Sometimes first-order methods computationally too expensive

• Stochastic gradient methods:
• Use stochastic approximation of gradient
• For finite sum problems, cheaply computed approximation exists

• Coordinate-wise updates:
• Update only one (or block of) coordinates in every iteration:

• via direct minimization
• via proximal gradient step

• Can update coordinates in cyclic fashion
• Stronger convergence results if random selection of block
• Efficient if cost of updating one coordinate is 1/n of full update

• Can solve huge scale problems

• Will cover randomized coordinate and stochastic methods
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Types of convergence

• Let x⋆ be solution to composite problem and p⋆ = f(x⋆) + g(x⋆)

• We will see convergence of different quantities in different settings

• For deterministic algorithms that generate (xk)k∈N, we will see
• Sequence convergence: xk → x⋆

• Function value convergence: f(xk) + g(xk) → p⋆

• If g = 0, gradient norm convergence: ∥∇f(xk)∥2 → 0

• Convergence is stronger as we go up the list

• First two common in convex setting, last in nonconvex
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Convergence for stochastic algorithms

• Stochastic algorithms described by stochastic process (xk)k∈N

• When algorithm is run, we get realization of stochastic process

• We analyze stochastic process and will see summability, e.g., of:
• Expected distance to solution:

∑∞
k=0 E[∥xk − x⋆∥2] <∞

• Expected function value:
∑∞

k=0 E[f(xk) + g(xk)− p⋆] <∞
• If g = 0, expected gradient norm:

∑∞
k=0 E[∥∇f(xk)∥

2
2] <∞

• Sometimes arrive at weaker conclusion, when g = 0, that, e.g.,:
• Expected smallest function value: E[ min

l∈{0,...,k}
f(xl)− p⋆] → 0

• Expected smallest gradient norm: E[ min
l∈{0,...,k}

∥∇f(xl)∥2] → 0

• Says what happens with expected value of different quantities
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Algorithm realizations – Summable case

• Will conclude that sequence of expected values containing, e.g.,:

E[∥xk − x⋆∥2] or E[f(xk) + g(xk)− p⋆] or E[∥∇f(xk)∥2]

is summable, where all quantities are nonnegative

• What happens with the actual algorithm realizations?

• We can make conclusions by the following result: If
• (Zk)k∈N is a stochastic process with Zk ≥ 0
• the sequence (E[Zk])k∈N is summable:

∑∞
k=0 E[Zk] <∞

then almost sure convergence to 0:

P ( lim
k→∞

Zk = 0) = 1

i.e., convergence to 0 with probability 1
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Algorithm realizations – Convergent case

• Will conclude that sequence of expected values containing, e.g.,:

E[ min
l∈{0,...,k}

f(xl)− p⋆] or E[ min
l∈{0,...,k}

∥∇f(xl)∥2]

converges to 0, where all quantities are nonnegative

• What happens with the actual algorithm realizations?

• We can make conclusions by the following result: If
• (Zk)k∈N is a stochastic process with Zk ≥ 0
• the expected value E[Zk] → 0 as k → ∞

then convergence to 0 in probability; for all ϵ > 0

lim
k→∞

P (Zk > ϵ) = 0

which is weaker than almost sure convergence to 0
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Convergence rates

• We have only talked about convergence, not convergence rate

• Rates indicate how fast (in iterations) algorithm reaches solution

• Typically divided into:
• Sublinear rates
• Linear rates (also called geometric rates)
• Quadratic rates (or more generally superlinear rates)

• Sublinear rates slowest, quadratic rates fastest

• Linear rates further divided into Q-linear and R-linear

• Quadratic rates further divided into Q-quadratic and R-quadratic
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Linear rates

• A Q-linear rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p⋆ ≤ ρ(f(xk) + g(xk)− p⋆)

E[∥xk+1 − x⋆∥2] ≤ ρE[∥xk − x⋆∥2]

• An R-linear rate with factor ρ ∈ [0, 1) and some C > 0 can be:

∥xk − x⋆∥2 ≤ ρkC

this is implied by Q-linear rate and has exponential decrease

• Linear rate is superlinear if ρ = ρk and ρk → 0 as k → ∞
• Examples:

• (Accelerated) proximal gradient with strongly convex cost
• Randomized coordinate descent with strongly convex cost
• BFGS has local superlinear with strongly convex cost
• but SGD with strongly convex cost gives sublinear rate
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Linear rates – Comparison

• Different rates in log-lin plot
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• Called linear rate since linear in log-lin plot
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Quadratic rates

• Q-quadratic rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p⋆ ≤ ρ(f(xk) + g(xk)− p⋆)2

∥xk+1 − x⋆∥2 ≤ ρ∥x− x⋆∥22

• R-quadratic rate with factor ρ ∈ [0, 1) and some C > 0 can be:

∥xk − x⋆∥2 ≤ ρ2
k

C

• Quadratic (ρ2
k

) vs linear (ρk) rate with factor ρ = 0.9:

Quadratic
1.000000000000
0.810000000000
0.656099945000
0.430467133000
0.185302002000
0.034336821000
0.001179017030
0.000001390081
0.000000000002

Linear
1.000000000000
0.900000000000
0.810000000000
0.729000000000
0.656099945000
0.590490005000
0.531440964000
0.478296936000
0.430467270000

• Example: Locally for Newton’s method with strongly convex cost
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Quadratic rates – Comparison

• Different rates in log-lin scale

1 2 3 4 5 6 7 8 9 10 11
10 -10

10 -8

10 -6

10 -4

10 -2

10 0 ρ = 0.99

ρ = 0.96

ρ = 0.93

ρ = 0.90

• Quadratic convergence is superlinear
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Sublinear rates

• A rate is sublinear if it is slower than linear

• A sublinear rate can, for instance, be of the form

f(xk) + g(xk)− p⋆ ≤ C
ψ(k)

∥xk+1 − xk∥22 ≤ C
ψ(k)

min
l=0,...,k

E[∥∇f(xl)∥22] ≤ C
ψ(k)

where C > 0 and ψ decides how fast it decreases, e.g.,
• ψ(k) = log k: Stochastic gradient descent γk = c/k
• ψ(k) =

√
k: Stochastic gradient descent: optimal γk

• ψ(k) = k: Proximal gradient, coordinate proximal gradient
• ψ(k) = k2: Accelerated proximal gradient method

with improved rate further down the list

• We say that the rate is O( 1
ψ(k) ) for the different ψ

• To be sublinear ψ has slower than exponential growth
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Sublinear rates – Comparison

• Different rates on log-lin scale
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• Many iterations may be needed for high accuracy
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Rate vs iteration cost

• Consider these classes of algorithms
• Second-order methods
• Quasi second-order methods
• First-order methods
• Stochastic and coordinate-wise first-order methods

• Rate deteriorates and iterations increase as we go down the list ⇓
• Iteration cost increases as we go up the list ⇑
• Performance is roughly (# iterations)×(iteration cost)

• This gives a tradeoff when selecting algorithm

• Rough advise for problem size: small (⇑) medium (⇑⇓) large (⇓)
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Proving convergence rates

• To prove a convergence rate typically requires
• Using inequalities that describe problem class
• Using algorithm definition equalities (or inclusions)
• Combine these to a form so that convergence can be concluded

• Linear and quadratic rates proofs conceptually straightforward

• Sublinear rates implicit via a Lyapunov inequality
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Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for Vk ≥ 0:

Vk+1 ≤ ρV pk

where ρ ∈ [0, 1) and p = 1 or p = 2 and Vk can, e.g., be

Vk = ∥xk − x⋆∥2 or Vk = f(xk) + g(xk)− p⋆ or Vk = ∥∇f(xk)∥2

• Can prove by starting with Vk+1 (or V 2
k+1) and continue using

• function class inequalities
• algorithm equalities
• propeties of norms
• . . .
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Sublinear convergence – Lyapunov inequality

• Assume we want to show sublinear convergence of some Rk ≥ 0

• This typically requires finding a Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk

where
• (Vk)k∈N, (Wk)k∈N, and (Rk)k∈N are nonnegative real numbers
• (Wk)k∈N is summable, i.e., W :=

∑∞
k=0Wk <∞

• Such a Lyapunov inequality can be found by using
• function class inequalities
• algorithm equalities
• propeties of norms
• . . .
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Lyapunov inequality consequences

• From the Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk

we can conclude that
• Vk is nonincreasing if all Wk = 0
• Vk converges as k → ∞ (will not prove)

• Recursively applying the inequality for l ∈ {k, . . . , 0} gives

Vk+1 ≤ V0 +

k∑
l=0

Wl −
k∑
l=0

Rl ≤ V0 +W −
k∑
l=0

Rl

where W is infinite sum of Wk, this implies

k∑
l=0

Rl ≤ V0 − Vk+1 +

k∑
l=0

Wl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

from which we can
• conclude that Rk → 0 as k → ∞ since Rk ≥ 0
• derive sublinear rates of convergence for Rk towards 0
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Concluding sublinear convergence

• Lyapunov inequality consequence restated

k∑
l=0

Rl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: (k + 1)minl∈{0,...,k}Rl ≤

∑k
l=0Rl

• Last Rk (if Rk decreasing): (k + 1)Rk ≤
∑k

l=0Rl

• Average Rk: R̄k = 1
k+1

∑k
l=0Rl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0Rl
k + 1

≤ V0 +W

k + 1

which shows a O(1/k) sublinear convergence
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Deriving other than O(1/k) convergence (1/3)

• Other rates can be derived from a modified Lyapunov inequality:

Vk+1 ≤ Vk +Wk − λkRk

with λk > 0 when we are interested in convergence of Rk, then

k∑
l=0

λlRl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

• We have Rk → 0 as k → ∞ if, e.g., inf
k∈N

λk > 0
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Deriving other than O(1/k) convergence (2/3)

• Restating the consequence:
∑k
l=0 λlRl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: minl∈{0,...,k}Rl

∑k
l=0 λl ≤

∑k
l=0 λlRl

• Last Rk (if Rk decreasing): Rk

∑k
l=0 λl ≤

∑k
l=0 λlRl

• Weighted average Rk: R̄k = 1∑k
l=0

λl

∑k
l=0 λlRl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0 λlRl∑k
l=0 λl

≤ V0 +W∑k
l=0 λl
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Deriving other than O(1/k) convergence (3/3)

• How to get a rate out of:

R̂k ≤ V0 +W∑k
l=0 λl

• Assume ψ(k) ≤
∑k
l=0 λl, then ψ(k) decides rate:

R̂k ≤
∑k
l=0 λlRl∑k
l=0 λl

≤ V0 +W

ψ(k)

which gives a O( 1
ψ(k) ) rate

• If λk = c is constant: ψ(k) = c(k + 1) and we have O(1/k) rate
• If λk is decreasing: slower rate than O(1/k)
• If λk is increasing: faster rate than O(1/k)
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Estimating ψ via integrals

• Assume that λk = ϕ(k), then ψ(k) ≤
∑k
l=0 ϕ(l) and

R̂k ≤
∑k
l=0 λlRl∑k
l=0 ϕ(l)

≤ V0 +W

ψ(k)

• To estimate ψ, we use the integral inequalities
• for decreasing nonnegative ϕ:∫ k

t=0

ϕ(t)dt+ ϕ(k) ≤
k∑

l=0

ϕ(l) ≤
∫ k

t=0

ϕ(t)dt+ ϕ(0)

• for increasing nonnegative ϕ:∫ k

t=0

ϕ(t)dt+ ϕ(0) ≤
k∑

l=0

ϕ(l) ≤
∫ k

t=0

ϕ(t)dt+ ϕ(k)

• Remove ϕ(k), ϕ(0) ≥ 0 from the lower bounds and use estimate:

ψ(k) =

∫ k

t=0

ϕ(t)dt ≤
k∑
l=0

ϕ(l)
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Sublinear rate examples

• For Lyapunov inequality Vk+1 ≤ Vk +Wk − λkRk, we get:

R̂k ≤ V0 +W

ψ(k)
where λk = ϕ(k) and ψ(k) =

∫ k

t=0

ϕ(t)dt

• Let us quantify the rate ψ in a few examples:
• Two examples that are slower than O(1/k):

• λk = ϕ(k) = c/(k + 1) gives slow O( 1
log k

) rate:

ψ(k) =

∫ k

t=0

c

t+ 1
dt = c[log(t+ 1)]kt=0 = c log(k + 1)

• λk = ϕ(k) = c/(k+1)α for α ∈ (0, 1), gives faster O( 1
k1−α ) rate:

ψ(k) =

∫ k

t=0

c

(t+ 1)α
dt = c[

(t+1)1−α

(1−α)
]kt=0 = c

1−α
((k + 1)1−α − 1)

• An example that is faster than O(1/k)
• λk = ϕ(k) = c(k + 1) gives O( 1

k2 ) rate:

ψ(k) =

∫ k

t=0
c(t+ 1)dt = c[ 1

2
(t+ 1)2]kt=0 = c

2
((k + 1)2 − 1)

33



Stochastic setting and law of total expectation

• In the stochastic setting, we analyze the stochastic process

xk+1 = Ak(ξk)xk

• We will look for inequalities of the form

E[Vk+1|xk] ≤ E[Vk|xk] + E[Wk|xk]− λkE[Rk|xk]

to see what happens in one step given xk (but not given ξk)

• We use law of total expectation E[E[X|Y ]] = E[X] to get

E[Vk+1] ≤ E[Vk] + E[Wk]− λkE[Rk]

which is a Lyapunov inequality

• We can draw rate conclusions, as we did before, now for E[Rk]
• For realizations we can say:

• If E[Rk] is summable, then Rk → 0 almost surely
• If E[Rk] → 0, then Rk → 0 in probability
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Rates in stochastic setting

• Lyapunov inequality E[Vk+1] ≤ E[Vk] + E[Wk]− λkE[Rk] implies:

k∑
l=0

λlE[Rl] ≤ V0 +

k∑
l=0

E[Wl] ≤ V0 + W̄

• Same procedure as before gives sublinear rates for
• Best E[Rk]: minl∈{0,...,k} E[Rl]

∑k
l=0 λl ≤

∑k
l=0 λlE[Rl]

• Last E[Rk] (if E[Rk] decreasing): E[Rk]
∑k

l=0 λl ≤
∑k

l=0 λlE[Rl]
• Weighted average: E[R̄k] =

1∑k
l=0

λl

∑k
l=0 λlE[Rl]

• Jensen’s inequality for concave minl in best residual reads

E[ min
l∈{0,...,k}

Rl] ≤ min
l∈{0,...,k}

E[Rl]

• Let R̂k be any of the above quantities, and we have

E[R̂k] ≤
V0 + W̄∑k
l=0 λl
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