Convex Sets

Pontus Giselsson

Today's lecture

Motivation and context

- What is optimization?
- Why optimization?
- Convex vs nonconvex optimization
- Short course outlook

Today's subject: Convex sets

What is optimization?

- Find point $x \in \mathbb{R}^{n}$ that minimizes a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

- Example in \mathbb{R} :

What is optimization?

- Can also require x to belong to a set $S \subset \mathbb{R}^{n}$:

$$
\underset{x \in S}{\operatorname{minimize}} f(x)
$$

- Example in \mathbb{R} :

Why optimization?

- Many engineering problems can be modeled using optimization
- Supervised learning
- Optimal control
- Signal reconstruction
- Portfolio selection
- Image classifiction
- Circuit design
- Estimation
- Results in "optimal":
- Model
- Decision
- Performance
- Design
- Estimate
- ...
w.r.t. optimization problem model
- Different question: How good is the model?

Convex vs nonconvex optimization

- Convex optimization if set and function are convex
- Otherwise nonconvex optimization problem
- Why convexity? Local minima are global minima
- Why go nonconvex? Richer modeling capabilities

- If convex modeling enough, use it, otherwise try nonconvex

Short course outlook - Convex analysis part

- Set up to arrive at convex duality theory
- Fenchel duality (as opposed to (equivalent) Lagrange duality)
- Dual problem:
- is companion problem to stated primal problem
- can be easier to solve and than primal (SVM)
- solution can (sometimes) be used to recover primal solution
- is based on conjugate functions and optimizes over subgradients
- in Fenchel duality assumes primal problem on composite form:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)+g(x)
$$

- Will see one algorithm for composite problem form

Short course outlook - Supervised learning part

- Some supervised learning methods from optimization perspective
- Classical supervised learning is based on convexity
- Least squares, logistic regression, support vector machines (SVM)
- SVM relies heavily on duality, state of the art until 10 years ago
- "All local minima good" (if properly regularized)
- Separates modeling from algorithm design
- Deep learning is based on nonconvex training problems
- Algorithm can end up in local minima
- Contemporary deep networks often overparameterized
- Many global minima, some desired some not
- Used algorithms (SGD variations) often find a "good" minimum
- There is implicit regularization in SGD - will try to understand
- No separation between modeling and algorithm

Different global minima generalize differently well

- Binary classification problem with blue and red class
- Black line is decision boundary of trained network with 0 loss
- Perfect fit to data and probably OK generalization

Different global minima generalize differently well

- Binary classification problem with blue and red class
- Decision boundary of another 0 loss network (same problem)
- Perfect fit to data and probably much worse generalization

- SGD has implicit regularization - often finds "good" minima
- Will try to understand why this is the case

Convex Sets

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity - Examples
- Separating and supporting hyperplanes

Convex sets - Definition

- A set C is convex if for every $x, y \in C$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in C
$$

- "Every line segment that connect any two points in C is in C "

- Will assume that all sets are nonempty and closed

Convex sets - Definition

- A set C is convex if for every $x, y \in C$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in C
$$

- "Every line segment that connect any two points in C is in C "

Nonconvex

- Will assume that all sets are nonempty and closed

Convex sets - Definition

- A set C is convex if for every $x, y \in C$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in C
$$

- "Every line segment that connect any two points in C is in C "

Nonconvex

Convex

- Will assume that all sets are nonempty and closed

Convex sets - Definition

- A set C is convex if for every $x, y \in C$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in C
$$

- "Every line segment that connect any two points in C is in C "

Nonconvex

Nonconvex

Convex

- Will assume that all sets are nonempty and closed

Convex sets - Definition

- A set C is convex if for every $x, y \in C$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in C
$$

- "Every line segment that connect any two points in C is in C "

Nonconvex

Nonconvex

Convex

Nonconvex

- Will assume that all sets are nonempty and closed

Convex combination and convex hull

Convex hull (conv S) of S is smallest convex set that contains S :

Mathematical construction:

- Convex combinations of x_{1}, \ldots, x_{k} are all points x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}
$$

where $\theta_{1}+\ldots+\theta_{k}=1$ and $\theta_{i} \geq 0$

- Convex hull: set of all convex combinations of points in S

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity - Examples
- Separating and supporting hyperplanes

Affine sets

- Take any two points $x, y \in V: V$ is affine if full line in V :

Lines and planes are affine sets

- Definition: A set V is affine if for every $x, y \in V$ and $\alpha \in \mathbb{R}$:

$$
\begin{equation*}
\alpha x+(1-\alpha) y \in V \tag{1}
\end{equation*}
$$

hence convex this holds in particular for $\alpha \in[0,1]$

Affine hyperplanes

- Affine hyperplanes in \mathbb{R}^{n} are affine sets that cut \mathbb{R}^{n} in two halves

- Dimension of affine hyperplane in \mathbb{R}^{n} is $n-1$ (If $s \neq 0$)
- All affine sets in \mathbb{R}^{n} of dimension $n-1$ are hyperplanes
- Mathematical definition:

$$
h_{s, r}:=\left\{x \in \mathbb{R}^{n}: s^{T} x=r\right\}
$$

where $s \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$, i.e., defined by one affine function

- Vector s is called normal to hyperplane

Halfspaces

- A halfspace is one of the halves constructed by a hyperplane

- Mathematical definition:

$$
H_{r, s}=\left\{x \in \mathbb{R}^{n}: s^{T} x \leq r\right\}
$$

- Halfspaces are convex, and vector s is called normal to halfspace

Polytopes

- A polytope is intersection of halfspaces and hyperplanes

- Mathematical representation:

$$
\begin{array}{r}
C=\left\{x \in \mathbb{R}^{n}: s_{i}^{T} x \leq r_{i} \text { for } i \in\{1, \ldots, m\}\right. \text { and } \\
\left.s_{i}^{T} x=r_{i} \text { for } i \in\{m+1, \ldots, p\}\right\}
\end{array}
$$

- Polytopes convex since intersection of convex sets

Cones

- A set K is a cone if for all $x \in K$ and $\alpha \geq 0: \alpha x \in K$
- If x is in cone K, so is entire ray from origin passing through x :

- Examples:

Cone

Cone

Not cone

Convex cones

- Cones can be convex or nonconvex:

Nonconvex cone

Convex cone

- Convex cone examples:
- Linear subspaces $\left\{x \in \mathbb{R}^{n}: A x=0\right\}$ (but not affine subspaces)
- Halfspaces based on linear (not affine) hyperplanes $\left\{x: s^{T} x \leq 0\right\}$
- Positive semi-definite matrices $\left\{X \in \mathbb{R}^{n \times n}: X\right.$ symmetric and $z^{T} X z \geq 0$ for all $\left.z \in \mathbb{R}^{n}\right\}$
- Nonnegative orthant $\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$
- Second order cone $\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{2} \leq r\right\}$

Sublevel sets

- Suppose that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a real-valued function
- The (0th) sublevel set of g is defined as

$$
S:=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0\right\}
$$

- Example: construction giving 1D interval $S=[a, b]$

- S is a convex set if g is a convex function
- S is not necessarily nonconvex although g is

Sublevel sets - Examples

- Levelset of convex quadratic function

$\left\{x \in \mathbb{R}^{n}: \frac{1}{2} x^{T} P x+q^{T} x+r \leq 0\right\}$, with P positive definite
- Norm balls $\left\{x \in \mathbb{R}^{n}:\|x\|-r \leq 0\right\}$
- Second-order cone $\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{2}-r \leq 0\right\}$
- Halfspaces $\left\{x \in \mathbb{R}^{n}: c^{T} x-r \leq 0\right\}$

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity - Examples
- Separating and supporting hyperplanes

Convexity preserving operations

- Intersection (but not union)
- Affine image and inverse affine image of a set

Intersection and union

- Intersection $C=C_{1} \cap C_{2}$ means $x \in C$ if $x \in C_{1}$ and $x \in C_{2}$
- If no x exists such that $x \in C_{1}$ and $x \in C_{2}$ then $C_{1} \cap C_{2}=\emptyset$
- Union $C=C_{1} \cup C_{2}$ means $x \in C$ if $x \in C_{1}$ or $x \in C_{2}$

- Intersection of any number of, e.g., infinite, convex sets is convex
- Union of convex sets need not be convex

Image sets and inverse image sets

- Let $L(x)=A x+b$ be an affine mapping defined by
- matrix $A \in \mathbb{R}^{m \times n}$
- vector $b \in \mathbb{R}^{m}$
- Let C be a convex set in \mathbb{R}^{n} then the image set of C under L

$$
\{A x+b: x \in C\}
$$

is convex

- Let D be a convex set in \mathbb{R}^{m} then the inverse image of D under L

$$
\{x: A x+b \in D\}
$$

is convex

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity - Examples
- Separating and supporting hyperplanes

Ways to conclude convexity

- Use convexity definition
- Show that set is sublevel set of a convex function
- Show that set constructed by convexity preserving operations

Example - Nonnegative orthant

- Nonnegative orthant is set $C=\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$
- Prove convexity from definition:
- Let $x \geq 0$ and $y \geq 0$ be arbitrary points in C
- For all $\theta \in[0,1]$:

$$
\theta x \geq 0 \quad \text { and } \quad(1-\theta) y \geq 0
$$

- All convex combinations therefore also satisfy

$$
\theta x+(1-\theta) y \geq 0
$$

i.e., they belongs to C and the set is convex

Example - Positive semidefinite cone

- The positive semidefinite (PSD) cone is

$$
\left\{X \in \mathbb{R}^{n \times n}: X \text { symmetric }\right\} \bigcap\left\{X \in \mathbb{R}^{n \times n}: z^{T} X z \geq 0 \text { for all } z \in \mathbb{R}^{n}\right\}
$$

- This can be written as the following intersection over all $z \in \mathbb{R}^{n}$

$$
\left\{X \in \mathbb{R}^{n \times n}: X \text { symmetric }\right\} \bigcap \bigcap_{z \in \mathbb{R}^{n}}\left\{X \in \mathbb{R}^{n \times n}: z^{T} X z \geq 0\right\}
$$

which, by noting that $z^{T} X z=\operatorname{tr}\left(z^{T} X z\right)=\operatorname{tr}\left(z z^{T} X\right)$, is equal to
$\left\{X \in \mathbb{R}^{n \times n}: X\right.$ symmetric $\} \bigcap \bigcap_{z \in \mathbb{R}^{n}}\left\{X \in \mathbb{R}^{n \times n}: \operatorname{tr}\left(z z^{T} X\right) \geq 0\right\}$
where $\operatorname{tr}\left(z z^{T} X\right) \geq 0$ is a halfspace in $\mathbb{R}^{n \times n}$ (except when $z=0$)

- The PSD cone is convex since it is intersection of
- symmetry set, which is a finite set of (convex) linear equalities
- an infinite number of (convex) halfspaces in $\mathbb{R}^{n \times n}$
- Notation: If X belongs to the PSD cone, we write $X \succeq 0$

Example - Linear matrix inequality

- Let us consider a linear matrix inequality (LMI) of the form

$$
\left\{x \in \mathbb{R}^{k}: A+\sum_{i=1}^{k} x_{i} B_{i} \succeq 0\right\}
$$

where A and B_{i} are fixed matrices in $\mathbb{R}^{n \times n}$

- Convex since inverse image of PSD cone under affine mapping

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity - Examples
- Separating and supporting hyperplanes

Separating hyperplane theorem

- Suppose that $C, D \subseteq \mathbb{R}^{n}$ are two non-intersecting convex sets
- Then there exists hyperplane with C and D in opposite halves

Example

Counter-example
D nonconvex

- Mathematical formulation: There exists $s \neq 0$ and r such that

$$
\begin{array}{ll}
s^{T} x \leq r & \text { for all } x \in C \\
s^{T} x \geq r & \text { for all } x \in D
\end{array}
$$

- The hyperplane $\left\{x: s^{T} x=r\right\}$ is called separating hyperplane

A strictly separating hyperplane theorem

- Suppose that $C, D \subseteq \mathbb{R}^{n}$ are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- Then there exists hyperplane with strict separation

Example

Counter example C, D not compact

- Mathematical formulation: There exists $s \neq 0$ and r such that

$$
\begin{array}{ll}
s^{T} x<r & \text { for all } x \in C \\
s^{T} x>r & \text { for all } x \in D
\end{array}
$$

Consequence $-C$ is intersection of halfspaces

a closed convex set C is the intersection of all halfspaces that contain it
proof:

- let H be the intersection of all halfspaces containing C
- \Rightarrow : obviously $x \in C \Rightarrow x \in H$
$\bullet \Leftarrow$: assume $x \notin C$, since C closed and convex and $\{x\}$ compact singleton, there exists a strictly separating hyperplane, i.e., $x \notin H$:

Supporting hyperplanes

- Supporting hyperplanes touch set and have full set on one side:

- We call the halfspace that contains the set supporting halfspace
- s is called normal vector to C at x
- Definition: Hyperplane $\left\{y: s^{T} y=r\right\}$ supports C at $x \in \operatorname{bd} C$ if

$$
s^{T} x=r \quad \text { and } \quad s^{T} y \leq r \text { for all } y \in C
$$

Supporting hyperplane theorem

Let C be a nonempty convex set and let $x \in \operatorname{bd}(C)$. Then there exists a supporting hyperplane to C at x.

- Does not exist for all point on boundary for nonconvex sets
- Many supporting hyperplanes exist for points of nonsmoothness

Normal cone operator

- Normal cone to C at $x \in \operatorname{bd}(C)$ is set of normals at x

- Normal cone operator N_{C} to C takes point input and returns set:
- $x \in \operatorname{bd}(C) \cap C$: set of normal vectors to supporting halfspaces
- $x \in \operatorname{int}(C)$: returns zero set $\{0\}$
- $x \notin C$: returns emptyset \emptyset
- Mathematical definition: The normal cone operator to a set C is

$$
N_{C}(x)= \begin{cases}\left\{s: s^{T}(y-x) \leq 0 \text { for all } y \in C\right\} & \text { if } x \in C \\ \emptyset & \text { else }\end{cases}
$$

i.e., vectors that form obtuse angle between s and all $y-x, y \in C$

- For all $x \in C$: the N_{C} outputs a set that contains 0

