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Today’s lecture

Motivation and context

• What is optimization?

• Why optimization?

• Convex vs nonconvex optimization

• Short course outlook

Today’s subject: Convex sets
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What is optimization?

• Find point x ∈ Rn that minimizes a function f : Rn → R:

minimize
x∈Rn

f(x)

• Example in R:

f(x)
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What is optimization?

• Can also require x to belong to a set S ⊂ Rn:

minimize
x∈S

f(x)

• Example in R:

f(x)

S
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Why optimization?

• Many engineering problems can be modeled using optimization
• Supervised learning
• Optimal control
• Signal reconstruction
• Portfolio selection
• Image classifiction
• Circuit design
• Estimation
• ...

• Results in “optimal”:
• Model
• Decision
• Performance
• Design
• Estimate
• ...

w.r.t. optimization problem model
• Different question: How good is the model?
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Convex vs nonconvex optimization

• Convex optimization if set and function are convex

• Otherwise nonconvex optimization problem

• Why convexity? Local minima are global minima

• Why go nonconvex? Richer modeling capabilities

nonconvex function convex function

• If convex modeling enough, use it, otherwise try nonconvex
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Short course outlook – Convex analysis part

• Set up to arrive at convex duality theory

• Fenchel duality (as opposed to (equivalent) Lagrange duality)

• Dual problem:
• is companion problem to stated primal problem
• can be easier to solve and than primal (SVM)
• solution can (sometimes) be used to recover primal solution
• is based on conjugate functions and optimizes over subgradients
• in Fenchel duality assumes primal problem on composite form:

minimize
x∈Rn

f(x) + g(x)

• Will see one algorithm for composite problem form
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Short course outlook – Supervised learning part

• Some supervised learning methods from optimization perspective

• Classical supervised learning is based on convexity
• Least squares, logistic regression, support vector machines (SVM)
• SVM relies heavily on duality, state of the art until 10 years ago
• “All local minima good” (if properly regularized)
• Separates modeling from algorithm design

• Deep learning is based on nonconvex training problems
• Algorithm can end up in local minima
• Contemporary deep networks often overparameterized

• Many global minima, some desired some not
• Used algorithms (SGD variations) often find a “good” minimum
• There is implicit regularization in SGD – will try to understand

• No separation between modeling and algorithm
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Different global minima generalize differently well

• Binary classification problem with blue and red class

• Black line is decision boundary of trained network with 0 loss

• Perfect fit to data and probably OK generalization
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• SGD has implicit regularization – often finds “good” minima

• Will try to understand why this is the case
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Different global minima generalize differently well

• Binary classification problem with blue and red class

• Decision boundary of another 0 loss network (same problem)

• Perfect fit to data and probably much worse generalization
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• SGD has implicit regularization – often finds “good” minima

• Will try to understand why this is the case
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Convex Sets
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Outline

Definition and convex hull

Examples of convex sets

Convexity preserving operations

Concluding convexity – Examples

Separating and supporting hyperplanes
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Convex sets – Definition

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

Nonconvex

• Will assume that all sets are nonempty and closed
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Convex sets – Definition
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Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

• Convex combinations of x1, . . . , xk are all points x of the form

x = θ1x1 + θ2x2 + . . .+ θkxk

where θ1 + . . .+ θk = 1 and θi ≥ 0
• Convex hull: set of all convex combinations of points in S

13



Outline

Definition and convex hull

Examples of convex sets

Convexity preserving operations

Concluding convexity – Examples

Separating and supporting hyperplanes

14



Affine sets

• Take any two points x, y ∈ V : V is affine if full line in V :

x

y

Lines and planes are affine sets

• Definition: A set V is affine if for every x, y ∈ V and α ∈ R:

αx+ (1− α)y ∈ V (1)

hence convex this holds in particular for α ∈ [0, 1]
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Affine hyperplanes

• Affine hyperplanes in Rn are affine sets that cut Rn in two halves

s

s

• Dimension of affine hyperplane in Rn is n− 1 (If s ̸= 0)

• All affine sets in Rn of dimension n− 1 are hyperplanes

• Mathematical definition:

hs,r := {x ∈ Rn : sTx = r}

where s ∈ Rn and r ∈ R, i.e., defined by one affine function

• Vector s is called normal to hyperplane
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Halfspaces

• A halfspace is one of the halves constructed by a hyperplane

s

• Mathematical definition:

Hr,s = {x ∈ Rn : sTx ≤ r}

• Halfspaces are convex, and vector s is called normal to halfspace
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Polytopes

• A polytope is intersection of halfspaces and hyperplanes

• Mathematical representation:

C = {x ∈ Rn : sTi x ≤ ri for i ∈ {1, . . . ,m} and

sTi x = ri for i ∈ {m+ 1, ..., p}}

• Polytopes convex since intersection of convex sets
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Cones

• A set K is a cone if for all x ∈ K and α ≥ 0: αx ∈ K

• If x is in cone K, so is entire ray from origin passing through x:

x

• Examples:

Cone Cone Not cone
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Convex cones

• Cones can be convex or nonconvex:

Nonconvex cone Convex cone

• Convex cone examples:
• Linear subspaces {x ∈ Rn : Ax = 0} (but not affine subspaces)
• Halfspaces based on linear (not affine) hyperplanes {x : sTx ≤ 0}
• Positive semi-definite matrices

{X ∈ Rn×n : X symmetric and zTXz ≥ 0 for all z ∈ Rn}
• Nonnegative orthant {x ∈ Rn : x ≥ 0}
• Second order cone {(x, r) ∈ Rn × R : ∥x∥2 ≤ r}
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Sublevel sets

• Suppose that g : Rn → R is a real-valued function

• The (0th) sublevel set of g is defined as

S := {x ∈ Rn : g(x) ≤ 0}

• Example: construction giving 1D interval S = [a, b]

x

g(x)

a b

• S is a convex set if g is a convex function

• S is not necessarily nonconvex although g is
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Sublevel sets – Examples

• Levelset of convex quadratic function

−3
−2

−1
0

1
2

3
4

{x ∈ Rn : 1
2x

TPx+ qTx+ r ≤ 0}, with P positive definite

• Norm balls {x ∈ Rn : ∥x∥ − r ≤ 0}
• Second-order cone {(x, r) ∈ Rn × R : ∥x∥2 − r ≤ 0}
• Halfspaces {x ∈ Rn : cTx− r ≤ 0}
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Convexity preserving operations

• Intersection (but not union)

• Affine image and inverse affine image of a set
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Intersection and union

• Intersection C = C1 ∩ C2 means x ∈ C if x ∈ C1 and x ∈ C2

• If no x exists such that x ∈ C1 and x ∈ C2 then C1 ∩ C2 = ∅
• Union C = C1 ∪ C2 means x ∈ C if x ∈ C1 or x ∈ C2

C1 C2

Intersection

C1 C2

Union

• Intersection of any number of, e.g., infinite, convex sets is convex

• Union of convex sets need not be convex
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Image sets and inverse image sets

• Let L(x) = Ax+ b be an affine mapping defined by
• matrix A ∈ Rm×n

• vector b ∈ Rm

• Let C be a convex set in Rn then the image set of C under L

{Ax+ b : x ∈ C}

is convex

• Let D be a convex set in Rm then the inverse image of D under L

{x : Ax+ b ∈ D}

is convex
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Ways to conclude convexity

• Use convexity definition

• Show that set is sublevel set of a convex function

• Show that set constructed by convexity preserving operations

28



Example – Nonnegative orthant

• Nonnegative orthant is set C = {x ∈ Rn : x ≥ 0}
• Prove convexity from definition:

• Let x ≥ 0 and y ≥ 0 be arbitrary points in C
• For all θ ∈ [0, 1]:

θx ≥ 0 and (1− θ)y ≥ 0

• All convex combinations therefore also satisfy

θx+ (1− θ)y ≥ 0

i.e., they belongs to C and the set is convex
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Example – Positive semidefinite cone

• The positive semidefinite (PSD) cone is

{X ∈ Rn×n : X symmetric}
⋂

{X ∈ Rn×n : zTXz ≥ 0 for all z ∈ Rn}

• This can be written as the following intersection over all z ∈ Rn

{X ∈ Rn×n : X symmetric}
⋂ ⋂

z∈Rn

{X ∈ Rn×n : zTXz ≥ 0}

which, by noting that zTXz = tr(zTXz) = tr(zzTX), is equal to

{X ∈ Rn×n : X symmetric}
⋂ ⋂

z∈Rn

{X ∈ Rn×n : tr(zzTX) ≥ 0}

where tr(zzTX) ≥ 0 is a halfspace in Rn×n (except when z = 0)
• The PSD cone is convex since it is intersection of

• symmetry set, which is a finite set of (convex) linear equalities
• an infinite number of (convex) halfspaces in Rn×n

• Notation: If X belongs to the PSD cone, we write X ⪰ 0
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Example – Linear matrix inequality

• Let us consider a linear matrix inequality (LMI) of the form

{x ∈ Rk : A+

k∑
i=1

xiBi ⪰ 0}

where A and Bi are fixed matrices in Rn×n

• Convex since inverse image of PSD cone under affine mapping
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Separating hyperplane theorem

• Suppose that C,D ⊆ Rn are two non-intersecting convex sets
• Then there exists hyperplane with C and D in opposite halves

D

C

Example

D

C

Counter-example
D nonconvex

• Mathematical formulation: There exists s ̸= 0 and r such that

sTx ≤ r for all x ∈ C

sTx ≥ r for all x ∈ D

• The hyperplane {x : sTx = r} is called separating hyperplane
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A strictly separating hyperplane theorem

• Suppose that C,D ⊆ Rn are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

• Then there exists hyperplane with strict separation

D

C

Example

D = {(x, y) : y ≥ x−1, x > 0}

C = {(x, y) : y ≤ 0}

Counter example
C,D not compact

• Mathematical formulation: There exists s ̸= 0 and r such that

sTx < r for all x ∈ C

sTx > r for all x ∈ D
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Consequence – C is intersection of halfspaces

a closed convex set C is the intersection of all halfspaces that contain it

proof:

• let H be the intersection of all halfspaces containing C
• ⇒: obviously x ∈ C ⇒ x ∈ H
• ⇐: assume x ̸∈ C, since C closed and convex and {x} compact
singleton, there exists a strictly separating hyperplane, i.e., x ̸∈ H:

C

⇒

C x

⇐
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Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

s
s
s

s

• We call the halfspace that contains the set supporting halfspace

• s is called normal vector to C at x

• Definition: Hyperplane {y : sT y = r} supports C at x ∈ bd C if

sTx = r and sT y ≤ r for all y ∈ C
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Supporting hyperplane theorem

Let C be a nonempty convex set and let x ∈ bd(C). Then there exists
a supporting hyperplane to C at x.

• Does not exist for all point on boundary for nonconvex sets

• Many supporting hyperplanes exist for points of nonsmoothness

s
s
s

s
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Normal cone operator

• Normal cone to C at x ∈ bd(C) is set of normals at x

C

• Normal cone operator NC to C takes point input and returns set:
• x ∈ bd(C) ∩ C: set of normal vectors to supporting halfspaces
• x ∈ int(C): returns zero set {0}
• x ̸∈ C: returns emptyset ∅

• Mathematical definition: The normal cone operator to a set C is

NC(x) =

{
{s : sT (y − x) ≤ 0 for all y ∈ C} if x ∈ C

∅ else

i.e., vectors that form obtuse angle between s and all y−x, y ∈ C
• For all x ∈ C: the NC outputs a set that contains 0
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