Convex Functions

Pontus Giselsson

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Extended-valued functions and domain

- We consider extended-valued functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}=: \overline{\mathbb{R}}$
- Example: Indicator function of interval $[a, b]$

$$
\iota_{[a, b]}(x)= \begin{cases}0 & \text { if } a \leq x \leq b \\ \infty & \text { else }\end{cases}
$$

- The (effective) domain of $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is the set

$$
\operatorname{dom} f=\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\}
$$

- (Will always assume $\operatorname{dom} f \neq \emptyset$, this is called proper)

Convex functions

- Graph below line connecting any two pairs $(x, f(x))$ and $(y, f(y))$

nonconvex function
- Function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if for all $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

(in extended valued arithmetics)

- A function f is concave if $-f$ is convex

Epigraphs

- The epigraph of a function f is the set of points above graph

- Mathematical definition:

$$
\operatorname{epi} f=\{(x, r) \mid f(x) \leq r\}
$$

- The epigraph is a set in $\mathbb{R}^{n} \times \mathbb{R}$

Epigraphs and convexity

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$
- Then f is convex if and only epi f is a convex set in $\mathbb{R}^{n} \times \mathbb{R}$

- f is called closed (lower semi-continuous) if epif is closed set

Convex envelope

- Convex envelope of f is largest convex minorizer

- Definition: The convex envelope env f satisfies: env f convex,

$$
\operatorname{env} f \leq f \quad \text { and } \quad \text { env } f \geq g \text { for all convex } g \leq f
$$

Convex envelope and convex hull

- Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is closed
- Epigraph of convex envelope of f is closed convex hull of epif

- epif in light gray, epi env f includes dark gray

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Affine functions

- Affine functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are of the form

$$
f(y)=s^{T} y+r
$$

- Affine functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cut $\mathbb{R}^{n} \times \mathbb{R}$ in two halves

- s defines slope of function
- Upper halfspace is epigraph with normal vector $(s,-1)$:

$$
\operatorname{epi} f=\left\{(y, t): t \geq s^{T} y+r\right\}=\left\{(y, t):(s,-1)^{T}(y, t) \leq-r\right\}
$$

Affine functions - Reformulation

- Pick any fixed $x \in \mathbb{R}^{n}$; affine $f(y)=s^{T} y+r$ can be written as

$$
f(y)=f(x)+s^{T}(y-x)
$$

(since $r=f(x)-s^{T} x$)

- Affine function of this form is important in convex analysis

First-order condition for convexity

- A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \mathbb{R}^{n}$

- Function f has for all $x \in \mathbb{R}^{n}$ an affine minorizer that:
- coincides with function f at x
- has slope s defined by ∇f, which coincides the function slope
- is supporting hyperplane to epigraph of f
- defines normal $(\nabla f(x),-1)$ to epigraph of f

Second-order condition for convexity

- A twice differentiable function is convex if and only if

$$
\nabla^{2} f(x) \succeq 0
$$

for all $x \in \mathbb{R}^{n}$ (i.e., the Hessian is positive semi-definite)

- "The function has non-negative curvature"
- Nonconvex example: $f(x)=x^{T}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] x$ with $\nabla^{2} f(x) \nsucceq 0$

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

First-order condition without full domain

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is differentiable on $\operatorname{dom} f$
- Then f is convex if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \operatorname{dom} f$ and $\operatorname{dom} f$ is convex

- Example $f(x)=\left\{\begin{array}{ll}1 / x & x>0 \\ \infty & \text { else }\end{array}\right.$:

Second-order condition without full domain

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is twice differentiable on $\operatorname{dom} f$
- Then f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0
$$

for all $x \in \operatorname{dom} f$ and $\operatorname{dom} f$ is convex

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Operations that preserve convexity

- Positive sum
- Marginal function
- Supremum of family of convex functions
- Composition rules
- Prespective of convex function

Positive sum

- Assume that f_{j} are convex for all $j \in\{1, \ldots, m\}$
- Assume that there exists x such that $f_{j}(x)<\infty$ for all j
- Then the positive sum

$$
f=\sum_{j=1}^{m} t_{j} f_{j}
$$

with $t_{j}>0$ is convex

Marginal function

- Let $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ be convex
- Define the marginal function

$$
g(x):=\inf _{y} f(x, y)
$$

- The marginal function $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is convex if f is 1

[^0]
Supremum of convex functions

- Point-wise supremum of convex functions from family $\left\{f_{j}\right\}_{j \in J}$:

$$
f(x):=\sup \left\{f_{j}(x): j \in J\right\}
$$

- Supremum is over functions in family for fixed x
- Example:

- Convex since epigraph is intersection of convex epigraphs

Scalar composition rule

- Consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ defined as

$$
f(x)=h(g(x))
$$

where $h: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Suppose that one of the following holds:
- h is nondecreasing and g is convex
- h is nonincreasing and g is concave
- g is affine

Then f is convex

Vector composition rule

- Consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ defined as

$$
f(x)=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

where $h: \mathbb{R}^{k} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex and $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Suppose that for each $i \in\{1, \ldots, k\}$ one of the following holds:
- h is nondecreasing in the i th argument and g_{i} is convex
- h is nonincreasing in the i th argument and g_{i} is concave
- g_{i} is affine

Then f is convex

Perspective of function

Let

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex
- t be positive, i.e, $t \in \mathbb{R}_{+}$
then the perspective function $g: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \overline{\mathbb{R}}$, defined by

$$
g(x, t):= \begin{cases}t f(x / t) & \text { if } t>0 \\ \infty & \text { else }\end{cases}
$$

is convex

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Ways to conclude convexity

- Use convexity definition
- Show that epigraph is convex set
- Use first or second order condition for convexity
- Show that function constructed by convexity preserving operations

Conclude convexity - Some examples

- From definition:
- indicator function of convex set C

$$
\iota_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { else }\end{cases}
$$

- norms: $\|x\|$
- From first- or second-order conditions:
- affine functions: $f(x)=s^{T} x+r$
- quadratics: $f(x)=\frac{1}{2} x^{T} Q x$ with Q positive semi-definite matrix
- From convex epigraph:
- matrix fractional function: $f(x, Y)= \begin{cases}x^{T} Y^{-1} x & \text { if } Y \succ 0 \\ \infty & \text { else }\end{cases}$
- From marginal function:
- (shortest) distance to convex set $C: \operatorname{dist}_{C}(x)=\inf _{y \in C}(\|y-x\|)$

Example - Convexity of norms

Show that $f(x):=\|x\|$ is convex from convexity definition

- Norms satisfy the triangle inequality

$$
\|u+v\| \leq\|u\|+\|v\|
$$

- For arbitrary x, y and $\theta \in[0,1]$:

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =\|\theta x+(1-\theta) y\| \\
& \leq\|\theta x\|+\|(1-\theta) y\| \\
& =\theta\|x\|+(1-\theta)\|y\| \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

which is definition of convexity

- Proof uses triangle inequality and $\theta \in[0,1]$

Example - Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

- The matrix fractional function

$$
f(x, Y)= \begin{cases}x^{T} Y^{-1} x & \text { if } Y \succ 0 \\ \infty & \text { else }\end{cases}
$$

- The epigraph satisfies

$$
\begin{aligned}
\mathrm{epi} f & =\{(x, Y, t): f(x, Y) \leq t\} \\
& =\left\{(x, Y, t): x^{T} Y^{-1} x \leq t \text { and } Y \succ 0\right\}
\end{aligned}
$$

- Schur complement condition says for $Y \succ 0$ that

$$
x^{T} Y^{-1} x \leq t \quad \Leftrightarrow \quad\left[\begin{array}{cc}
Y & x \\
x^{T} & t
\end{array}\right] \succeq 0
$$

which is a (convex) linear matrix inequality (LMI) in (x, Y, t)

- Epigraph is intersection between LMI and positive definite cone

Example - Composition with matrix

- Let
- $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ be convex
- $L \in \mathbb{R}^{m \times n}$ be a matrix
then composition with a matrix

$$
(f \circ L)(x):=f(L x)
$$

is convex

- Vector composition with convex function and affine mappings

Example - Image of function under linear mapping

- Let
- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex
- $L \in \mathbb{R}^{m \times n}$ be a matrix
then image function (sometimes called infimal postcomposition)

$$
(L f)(x):=\inf _{y}\{f(y): L y=x\}
$$

is convex

- Proof: Define

$$
h(x, y)=f(y)+\iota_{\{0\}}(L y-x)
$$

which is convex in (x, y), then

$$
(L f)(x)=\inf _{y} h(x, y)
$$

which is convex since marginal of convex function

Example - Nested composition

Show that: $f(x):=e^{\|L x-b\|_{2}^{3}}$ is convex where L is matrix b vector:

- Let

$$
g_{1}(u)=\|u\|_{2}, \quad g_{2}(u)=\left\{\begin{array}{ll}
0 & \text { if } u<0 \\
u^{3} & \text { if } u \geq 0
\end{array}, \quad g_{3}(u)=e^{u}\right.
$$

then $f(x)=g_{3}\left(g_{2}\left(g_{1}(L x-b)\right)\right)$

- $g_{1}(L x-b)$ convex: convex g_{1} and $L x-b$ affine
- $g_{2}\left(g_{1}(L x-b)\right)$ convex: cvx nondecreasing g_{2} and $\mathrm{cvx} g_{1}(L x-b)$
- $f(x)$ convex: convex nondecreasing g_{3} and convex $g_{2}\left(g_{1}(L x-b)\right)$

Example - Conjugate function

Show that the conjugate $f^{*}(s):=\sup _{x \in \mathbb{R}^{n}}\left(s^{T} x-f(x)\right)$ is convex:

- Define index set J and x_{j} such that $\cup_{j \in J}\left\{x_{j}\right\}=\mathbb{R}^{n}$
- Define $r_{j}:=f\left(x_{j}\right)$ and affine (in $\left.s\right): a_{j}(s):=s^{T} x_{j}-r_{j}$
- Therefore $f^{*}(s)=\sup \left\{a_{j}(s): j \in J\right\}$
- Convex since supremum over family of convex (affine) functions
- Note convexity of f^{*} not dependent on convexity of f

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Strict convexity

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is strictly convex if

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for each $x, y \in \operatorname{dom} f, x \neq y$, and $\theta \in(0,1)$ and $\operatorname{dom} f$ is convex

- "Convexity definition with strict inequality"
- No flat (affine) regions
- Example: $f(x)=1 / x$ for $x>0$

Strong convexity

- Let $\sigma>0$
- A function f is σ-strongly convex if $f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$ is convex
- Alternative equivalent definition of σ-strong convexity:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)-\frac{\sigma}{2} \theta(1-\theta)\|x-y\|^{2}
$$ holds for every $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$

- Strongly convex functions are strictly convex and convex
- Example: f 2-strongly convex since $f-\|\cdot\|_{2}^{2}$ convex:

Uniqueness of minimizers

- Strictly (strongly) convex functions have unique minimizers
- Strictly convex functions may not have a minimizing point
- Strongly convex functions always have a unique minimizing point

First-order condition for strict convexity

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is differentiable on $\operatorname{dom} f$
- Then f is strictly convex if and only if

$$
f(y)>f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \operatorname{dom} f$ where $x \neq y$ and $\operatorname{dom} f$ is convex

- Function f has for all $x \in \mathbb{R}^{n}$ an affine minorizer that:
- has slope s defined by ∇f
- coincides with function f only at x
- is supporting hyperplane to epigraph of f
- defines normal $(\nabla f(x),-1)$ to epigraph of f

First-order condition for strong convexity

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is differentiable on $\operatorname{dom} f$
- Then f is σ-strongly convex with $\sigma>0$ if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{\sigma}{2}\|x-y\|_{2}^{2}
$$

for all $x, y \in \operatorname{dom} f$ and $\operatorname{dom} f$ is convex

- Function f has for all $x \in \mathbb{R}^{n}$ a quadratic minorizer that:
- has curvature defined by σ
- coincides with function f at x
- defines normal $(\nabla f(x),-1)$ to epigraph of f

Second-order condition for strict/strong convexity

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be twice differentiable on $\operatorname{dom} f$, $\operatorname{dom} f$ convex

- f is strictly convex if

$$
\nabla^{2} f(x) \succ 0
$$

for all $x \in \operatorname{dom} f$ (i.e., the Hessian is positive definite)

- f is σ-strongly convex if

$$
\nabla^{2} f(x) \succeq \sigma I
$$

for all $x \in \operatorname{dom} f$

Examples of strictly/strongly convex functions

Strictly convex

- $f(x)=-\log (x)+\iota_{>0}(x)$
- $f(x)=1 / x+\iota_{>0}(x)$
- $f(x)=e^{-x}$

Strongly convex

- $f(x)=\frac{\lambda}{2}\|x\|_{2}^{2}$
- $f(x)=\frac{1}{2} x^{T} Q x$ where Q positive definite
- $f(x)=f_{1}(x)+f_{2}(x)$ where f_{1} strongly convex and f_{2} convex
- $f(x)=f_{1}(x)+f_{2}(x)$ where f_{1}, f_{2} strongly convex
- $f(x)=\frac{1}{2} x^{T} Q x+\iota_{C}(x)$ where Q positive definite and C convex

Proofs for two examples

Strict convexity of $f(x)=e^{-x}$:

- $\nabla f(x)=-e^{-x}, \nabla^{2} f(x)=e^{-x}>0$ for all $x \in \mathbb{R}$

Strong convexity of $f(x)=\frac{1}{2} x^{T} Q x$ with Q positive definite

- $\nabla f(x)=Q x, \nabla^{2} f(x)=Q \succeq \lambda_{\min }(Q) I$ where $\lambda_{\min }(Q)>0$

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity - Examples
- Strict and strong convexity
- Smoothness

Smoothness

- A function is called β-smooth if its gradient is β-Lipschitz:

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq \beta\|x-y\|_{2}
$$

for all $x, y \in \mathbb{R}^{n}$ (it is not necessarily convex)

- Alternative equivalent definition of β-smoothness

$$
\begin{aligned}
& f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)-\frac{\beta}{2} \theta(1-\theta)\|x-y\|^{2} \\
& f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)+\frac{\beta}{2} \theta(1-\theta)\|x-y\|^{2}
\end{aligned}
$$

hold for every $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$

- Smoothness does not imply convexity
- Example:

First-order condition for smoothness

- f is β-smooth with $\beta \geq 0$ if and only if

$$
\begin{aligned}
& f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|x-y\|_{2}^{2} \\
& f(y) \geq f(x)+\nabla f(x)^{T}(y-x)-\frac{\beta}{2}\|x-y\|_{2}^{2}
\end{aligned}
$$

for all $x, y \in \mathbb{R}^{n}$

- Quadratic upper/lower bounds with curvatures defined by β
- Quadratic bounds coincide with function f at x

First-order condition for smooth convex

- f is β-smooth with $\beta \geq 0$ and convex if and only if

$$
\begin{aligned}
& f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|x-y\|_{2}^{2} \\
& f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
\end{aligned}
$$

for all $x, y \in \mathbb{R}^{n}$

- Quadratic upper bounds and affine lower bound
- Bounds coincide with function f at x
- Quadratic upper bound is called descent lemma

Second-order condition for smoothness

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable

- f is β-smooth if and only if

$$
-\beta I \preceq \nabla^{2} f(x) \preceq \beta I
$$

for all $x \in \mathbb{R}^{n}$

- f is β-smooth and convex if and only if

$$
0 \preceq \nabla^{2} f(x) \preceq \beta I
$$

for all $x \in \mathbb{R}^{n}$

Convex Optimization Problems

Composite optimization form

- We will consider optimization problem on composite form

$$
\underset{x}{\operatorname{minimize}} f(L x)+g(x)
$$

where f and g are convex functions and L is a matrix

- Convex problem due to convexity preserving operations
- Can model constrained problems via indicator function
- This model format is suitable for many algorithms

[^0]: ${ }^{1}$ It may be that $g(x)=-\infty$ for all $x \in \operatorname{dom} g$, we call such functions convex here.

