Strong Convexity and Smoothness Duality

Pontus Giselsson

In this short note, we prove the following duality correspondence.
Theorem 1 The following are equivalent for $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$.
(i) f is proper closed and σ-strongly convex
(ii) $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is maximally monotone and σ-strongly monotone
(iii) $\nabla f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is σ-cocoercive
(iv) ∇f^{*} is $\frac{1}{\sigma}$-Lipschitz continuous and maximally monotone
(v) $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$-smooth)
(vi) f^{*} satisfies for all $u, v \in \mathbb{R}^{n}$:

$$
\begin{equation*}
f^{*}(u)+\nabla f^{*}(u)^{T}(v-u)+\frac{\sigma}{2}\left\|\nabla f^{*}(v)-\nabla f^{*}(u)\right\|_{2}^{2} \leq f^{*}(v) \tag{1}
\end{equation*}
$$

The implication $(i v) \Rightarrow(i i i)$ is called the Baillon-Haddad theorem.
We will make use of the following results.
Proposition 1 (Rockafellar) The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is proper closed and convex if and only if $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is maximally monotone.

Proposition 2 (Minty) The subdifferential $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ is maximally monotone if and only if $\operatorname{ran}(\alpha I+\partial f)=\mathbb{R}^{n}$ for any $\alpha>0$.

Proposition 3 Suppose that f is proper closed and convex. Then $(\partial f)^{-1}=\partial f^{*}$.
Proof. $\quad(i) \Leftrightarrow(i i):(i)$ is equivalent to that $g(x)=f(x)-\frac{\sigma}{2}\|x\|_{2}^{2}$ is proper closed and convex and Proposition 1 implies its equivalence to that $\partial g=\partial\left(f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}\right)=\partial f-\sigma I$ is maximally monotone (where the last equality can trivially be shown to hold). This, in turn, is equivalent to that ∂f is maximally monotone and σ-strongly monontone.
$(i i) \Leftrightarrow(i i i):(i i)$ is equivalent to that $\partial g=\partial f-\sigma I$ is maximally monotone. The monotonicity part is equivalent to

$$
(u-v)^{T}(x-y) \geq \sigma\|x-y\|_{2}^{2}
$$

for all $(x, u) \in \operatorname{gph} \partial f$ and $(y, v) \in \operatorname{gph} \partial f$ or equivalently (Proposition 3) for all $x \in \partial f^{*}(u)$ and $y \in \partial f^{*}(v)$. Since Cauchy-Schwarz implies that ∂f^{*} is singlevalued on its domain ($D=\operatorname{ran} \partial f$), it is equivlent to that

$$
\begin{equation*}
(u-v)^{T}\left(\nabla f^{*}(u)-\nabla f^{*}(v)\right) \geq \sigma\left\|\nabla f^{*}(u)-\nabla f^{*}(v)\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

where $\nabla f^{*}: D \rightarrow \mathbb{R}^{n}$ where $D=\operatorname{ran} \partial f$.
The maximally part is (by Proposition 2) equivalent to that $\operatorname{ran}(\alpha I+\partial g)=\mathbb{R}^{n}$ for any $\alpha>0$. Now set $\alpha=\sigma$ to get $\operatorname{ran}(\sigma I+\partial f-\sigma I)=\operatorname{ran}(\partial f)=D=\mathbb{R}^{n}$.

Hence maximal monotonicity of $g=f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$ is equivalent to that $\nabla f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies (2), i.e., is σ-cocoercive.
(iii) $\Rightarrow(i v)$: Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (2) implies monotonicity and $\frac{1}{\sigma}$-Lipschitz continuity of ∇f^{*}. Further, since f^{*} is proper closed convex (by contruction of conjugate functions) ∇f^{*} is maximally monotone (Proposition 1).
$(i v) \Rightarrow(v)$: Let $h(\tau)=f^{*}(u+\tau(v-u))$, then by chain rule

$$
\nabla h(\tau)=\nabla f^{*}(u+\tau(v-u))^{T}(v-u)
$$

and

$$
f^{*}(v)-f^{*}(u)=h(1)-h(0)=\int_{\tau=0}^{1} \nabla h(\tau) d \tau=\int_{\tau=0}^{1} \nabla f^{*}(u+\tau(v-u))^{T}(v-u) d \tau
$$

Further

$$
\nabla f^{*}(u)^{T}(v-u)=\int_{\tau=0}^{1} \nabla f^{*}(u)^{T}(v-u) d \tau
$$

Adding equalities on previous slide and taking absolute value:

$$
\begin{aligned}
\mid f^{*}(v)-f^{*}(u) & -\nabla f^{*}(u)^{T}(v-u) \mid \\
& =\left|\int_{\tau=0}^{1}\left(\nabla f^{*}(u+\tau(v-u))-\nabla f^{*}(u)\right)^{T}(v-u) d \tau\right| \\
& \leq \int_{\tau=0}^{1}\left|\left(\nabla f^{*}(u+\tau(v-u))-\nabla f^{*}(u)\right)^{T}(v-u)\right| d \tau \\
& \leq \int_{\tau=0}^{1}\left\|\nabla f^{*}(u+\tau(v-u))-\nabla f^{*}(u)\right\|_{2}\|v-u\|_{2} d \tau \\
& \leq \int_{\tau=0}^{1} \beta\|\tau(v-u)\|_{2}\|v-u\|_{2} d \tau=\beta\|v-u\|_{2}^{2} \int_{\tau=0}^{1} \tau d \tau \\
& =\frac{\beta}{2}\|v-u\|_{2}^{2}
\end{aligned}
$$

Rearranging gives

$$
\begin{aligned}
& f^{*}(v)-f^{*}(u)-\nabla f^{*}(u)^{T}(v-u) \leq \frac{\beta}{2}\|v-u\|_{2}^{2} \\
& f^{*}(v)-f^{*}(u)-\nabla f^{*}(u)^{T}(v-u) \geq-\frac{\beta}{2}\|v-u\|_{2}^{2}
\end{aligned}
$$

Now, since f^{*} is closed convex, the second condition is redundant and f^{*} satisfies

$$
\begin{aligned}
& f^{*}(v)-f^{*}(u)-\nabla f^{*}(u)^{T}(v-u) \leq \frac{\beta}{2}\|v-u\|_{2}^{2} \\
& f^{*}(v) \geq f^{*}(u)+\nabla f^{*}(u)^{T}(v-u)
\end{aligned}
$$

i.e., f^{*} is closed convex and satisfies the descent lemma.
$(v) \Rightarrow(v i)$: Define $\phi(v)=f^{*}(v)-\nabla f^{*}(u)^{T} v$, which is also $\frac{1}{\sigma}$-smooth (w.r.t. v) and convex with gradient: $\nabla \phi(v)=\nabla f^{*}(v)-\nabla f^{*}(u)$. A minimizing point is u since ϕ convex and $\nabla \phi(u)=0$. Therefore, and since ϕ is smooth and the descent lemma holds, and we can conclude:

$$
\begin{aligned}
\phi(u) & \leq \phi(v-\sigma \nabla \phi(v)) \leq \phi(v)+\nabla \phi(v)^{T}(v-\sigma \nabla \phi(v)-v)+\frac{1}{2 \sigma}\|v-\sigma \nabla \phi(v)-v\|_{2}^{2} \\
& =\phi(v)-\frac{\sigma}{2}\|\nabla \phi(v)\|_{2}^{2}
\end{aligned}
$$

Inserting the defintion of ϕ gives:

$$
f^{*}(u)-\nabla f^{*}(u)^{T} u \leq f^{*}(v)-\nabla f^{*}(u)^{T} v-\frac{\sigma}{2}\left\|\nabla f^{*}(v)-\nabla f^{*}(u)\right\|_{2}^{2}
$$

and after rearrangement

$$
f^{*}(u)+\nabla f^{*}(u)^{T}(v-u)+\frac{\sigma}{2}\left\|\nabla f^{*}(v)-\nabla f^{*}(u)\right\|_{2}^{2} \leq f^{*}(v)
$$

which was to be proven.
$(v i) \Rightarrow(i i i)$: Inequality (1) holds for arbitrary $u, v \in \mathbb{R}^{n}$. Adding two copies with u, v swapped gives

$$
\left(\nabla f^{*}(u)-\nabla f^{*}(v)\right)^{T}(u-v) \geq \sigma\left\|\nabla f^{*}(v)-\nabla f^{*}(u)\right\|_{2}^{2}
$$

which is the definition of cocoercivity in (iii).

