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Scaled gradient method

® \We consider problems
minimize f(x)
xr

where f : R™ — R is continuously differentiable

® \We consider scaled gradient methods
X _ -1
T = x — eHy VYV f(2K)

where Hj, is a symmetric positive definite scaling matrix

® Have seen that scaling can improve convergence



Selecting H;

The scaled gradient method is

1 = argmin(f(zx) + V(@) (v — 2) + o ly — 2llF,)
Yy

= argmin(f(xy) + ﬁ\ly — (zr — wH "V f(x) 1)
Y

= ay, — W Hy 'V ()

Hj, should capture (some) second-order (Hessian) information
Examples:

® Hy = I is identity matrix (gives proximal gradient method)

® Hy = diag(h) is fixed diagonal matrix with diagonal h

® H, = H is fixed full or structured matrix

® [, = V?f(zy) is true Hessian (Newton method)

® Hy is from (limited memory) quasi-Newton

More on this later, we first show convergence



Assumptions

® Similar assumptions as for proximal gradient method:

(i) f:R™ — R is continuously differentiable (not necessarily convex)
(i) Vak, Tri1, it exists B € [, '], pl < Hy X p~'1, n,p € (0,1):

F@rg) < flaw) + V) (@ —ax) + 55 lox — 2 ||,

which means f is “locally 8 smooth w.r.t. || - |,
(413) A minimizer exists (and p* = min,(f(z) + g(z)) is optimal value)
(iv) Algorithm parameters v, € [e, % — ¢], where € > 0

® Assumption on f satisfied with Sy H, = BI if f S-smooth



Convergence

Using
(a) Upper bound assumption on f, i.e., Assumption (i)
(b) Algorithm update: xyy1 — xx = Vi H,, 'V f(25)

gives

(a)
Flarer) < flaw) + V) (@p — o) + 25| apg — |3,

(b) 2

< Fle) = V) H V() + B0E | HO f )|,
= flaw) — (L~ 252V @)l

< f(xx) - 5||Vf(l’k)||§{;1

where we used: v € [e, % — €] implies (1 — %J) >0>0



Lyapunov inequality

® Subtract p* from both sides to get Lyapunov inequality

Flae1) = p* < flaw) =" = 0|V F ()5
Vit Vi T
e Consequences:
® Function values converge (not necessarily to p*)
® Ry is summable and, since § > 0, we have va(mk)HH;I —0
® Rj; summable also implies

f(zo) —p*

. ; 27 <
e V@Ol < S50

® Comment: The above analysis can also include proxfk’fg term
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Selecting algorithm parameters

® How to select Sk, v and Hy?
® Start with B and ~yg, given Hy,



Choose [, and v,

® Convergence based on assumption that 5 known that satisfies
Fensa) < flaw) + VI en) (@ — o1) + B lax — ol

call this descent condition (DC)
® This descent condition generalizes the previous where Hy, = I
e If H, = H and f Bg-smooth w.r.t. || - || m; Bx = B works since

Fly) < f@) + V@) (y —2) + e —ylF

for all z,y
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Choose [, and v, — Backtracking

® Same backtracking as before, but with generalized DC
® Backtracking, choose k > 1, B0 € [,n7}], let I, = 0, and loop:

1. choose i € [e, % — ¢
2. compute zi1 =z — Y Hy 'V (1)
3. if descent condition (DC) satisfied
set k< k+1 // increment algorithm counter
set I, « I // store final backtrack counter
break backtrack loop
else
set B, +1 < KBk, // increase backtrack parameter
set I < I +1 // increment backtrack counter
end

® Note that larger B, gives smaller step-length upper bound

® |Initialization of 3 o depends on choice of Hj,

Hy,

® Works also with scaled proximal steps with prox7 %
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Backtracking — Convergence

® For convergence, need to verify that (DC):
F@rr1) < Flxe) + Vi) (@1 — 2n) + Zlloe — 2o,

will hold within finite number of backtracking steps
® Assume and recall that
® f:R" = R is B-smooth
® Br€mn '], pl < Hy < p~'1, n,p € (0,1):

which gives
F@rr1) < flae) + V@) (@ — 20) + Sllae — 2e4ll3
< flan) + V) (@r — o) + 45 llon — il
i.e, (DC) satisfied whenever 85, > % (maybe before)
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Newton’s method

® Newton's method given by iteration (Hy, = V2f(z1))

Tip1 = Tk — V2 fzr) TV f (k)

where f: R™ — R is twice continuously differentiable

® Propeties:
® Sometimes quadratic local convergence if 7, = 1
® Unit step-size v, = 1 may diverge far from solution
® Need backtracking to converge globally

® Note: V2f(x)) must be positive definite, i.e., V2 f(z) = 0:
® always true if problem strictly convex
® if not, add eI with € > 0 such that Hy, = V>f(2x) + el = 0

(no local quadratic convergence, but still very fast)
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Assumptions

® Assumptions
(¢) f:R™ — R is twice continuously differentiable
(i) f is o-strongly convex and S-smooth
(#i3) V2f is L-Lipschitz continuous
(v) A minimizer exists (and p* = min, (f(z) + g(x)) is optimal value)
(v) Algorithm parameters ~yi, will be chosen from backtracking

® Assumption (ii¢) implies that
F) < f@) + V@) (Y= 2) + 51z = yl% ) + Ello -yl

for all 2,y (note similarity to S-smoothness, V f is 3-Lipschitz)
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Newton method analysis

Will show:

® An example with divergence if v, =1
® Quadratic convergence with v, = 1 close to solution

® Backtracking condition will eventually accept v, = 1
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Newton method divergence — Example

Consider the smooth function f(z) = V1 + 22

It is strictly convex, 1-smooth, and V2 f is 1-Lipschitz
Gradient method with 7, = 1 works

The gradient and second derivative satisfy

x 9 1
Vs VIO e

The Newton update with 7, = 1 becomes
Tpp1 = xp — V2f(xr) 'V (2p) = 2 — 21 (1 + 23) = —23 = —2p(23)?

which diverges if |xo| > 1 and converges if |z < 1

B f(@) (@)
T2
1 o le on
\ v \ v
zo = 1.05 zg = 0.9
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Quadratic convergence (1/2)
* We will show that ||zj1 — 2*[2 < £ ||z — 2*|13
® Using
(a) that Vf(z*) =0
(b) that
1
(V1) = Vi) = [ (T + o = o))" o)
0
(c) and that [ adt = a to conclude
1
xp —at =V f(xy) " / V2 f(zr) (2, — *)dt
0
gives
Tpy1 — 2" = xp — V2 f () ' V(zk) — 2

=ar — 2"+ Vf(zr) (V") = V()

= ok — 2 V2 ()" /0 (V2 F(mn + ta" — o)) (@ — z2))dt

= V2 ()" / (V2 f(ak + bz — z) — V2f(an))(@" — ax))dt
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Quadratic convergence (2/2)
We continue by taking the norm of both sides of the equality
lpsr —2* 2

V2 f ()~ / (V2 f(ak + (2" — 2) — V2f(an))(@* — ax))dt

2

< IV F ) e / (V2 f(an + t(e" — z) — V2f(an))(@" — ax))dt

2

1
<3 I+ e = 00) = V@) elle” - aulad
0

1
< f/ tla* — a)3dt
0
2
= =" — 2l
where we have used

® Cauchy-Schwarz inequality twice
e that V2f is L-Lipschitz continuous
o that [ tdt =1/2
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Local convergence

We have shown that ||zy41 — 2*[|2 < & ||z — 2*[[3

Why is this only local convergence? Assume, e.g.,
|z — 2|2 =2 and L -9

then ||zgx4+1 — *||2 < 8, and we cannot conclude convergence

If ||z — 2*|2 < QL"(é)Qk we have R-quadratic convergence:

2
o — e < 2 (22 (1Y) 22 (2
kol =9\ T \2 L \2

with rate 1, and we need ||zg —2*[|» < 22 (1)2 to start induction

2k+1

If we cannot start close enough, we need backtracking
(Much more sophisticated analysis of Newton's method exists)

20



Backtracking

® We let

® the initial backtracking parameter for every k satisfy 8,0 € (1,2)
® ) be the final backtrack iteration with accepted S, ;.
® and set Vi = Br,0/Bk1, = where k is backtrack increment

with consequence that v, = 1 if accepted in first step, =0

1
rlg !

® The descent condition is in backtracking iteration [, if accepted:

F(ersn) < Flan) + V)T (@nr — 2i) + 255 lanr — 2o pon)
= flan) — (L — 22 )1V () [ )0
= flax) — (1 — Z) IV F@r)]%2 0y
= f(@r) — el VI (@) 152 a1

where we have defined o € (0,0.5) =1 — /5;5,0
® We use this and instead backtrack directly on 7, = e
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Unit step-size

® We will show that v, = 1 is eventually accepted, so we get
T4l = Tk — sz(ack)_1Vf(xk)

® By L-Lipschitz continuity of V2f we conclude for v = 1:

< flaw) + Ve (@esr — 2) + Slon — 2rs1ll2 oy + Zllan — rea |l
< flak) — (@ = V@) o2 -1 + Zllax — zrial
< flaw) = SV @) 921 + SV F@R) TV f ()13
< fl@n) = 31V F @S2 p -1 + 5572 IV F (@) 192 () -1

where we used V2 f(z;) < 11 due to o-strong convexity of f
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Unit step-size

® Now, assume that the gradient condition (GC)

3/2
IVF(ar)llv2 -1 < %= (5 — @)
holds, then we can continue the inequality as

F@rrn) < flan) = SV @0)T2 -1 + 5273 IV F@0) 12 0y -1
F@r) = 3IVF@)lz pap) -1 + (5 — OIVF@R) 325y
< flax) = ol VF@R)llo2 oy ) -1

this guarantees that backtracking condition holds if (GC) holds

® Backtracking analysis implies

IVf(ze)llv2f@n-1 — 0

as k — 00, so (GC) will eventually be satisfied

23



Outline

e Scaled gradient method

e Backtracking

® Newton's method

¢ Quasi-Newton methods
e A numerical example

24



Quasi-Newton methods

Mimic Newton's method but with less computational effort

® Approximate Hessian by Hj, ~ V2 f(x},) to get
T = o — Yl 'V f ()

where f : R™ — R is twice continuously differentiable

Select 7y, using backtracking (as in Newton's method)

Many schemes for finding H, will cover BFGS!

1 BFGs: Broyden-Fletcher-Goldfarb-Shanno
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Secant condition
® Consider quadratic approximation of the function f
For(@) = Flax) + VF@r)" (@ — 2x) + Slaw — 23,

* Gradients coincide at zj: Vfa, (zx) = Vf(2x)
® Secant condition: Let H}, be such that

Vfr (@h1) = Vf(2r_1),

which is satisfied when secant condition holds:
Hy(xp —xp—1) = Vf(xr) = Vf(xr_1)

Proof: differentiate f,, (w.r.t z) and evaluate at z;_1

(Vf(zgp—1),—1) (Vf(zg), —1)

x

Tp—1 T
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Quasi-Newton update

® Define s, = xp — xx—1 and yr = V f(zr) — Vf(xk—1), then
Hysp = yx

is secant condition
® Quasi-Newton: select Hy, such that secant condition satisfied

® [], contains
® 12 variables in general case
® n(n+ 1)/2 variables if Hy is also enforced to be symmetric

® secant condition contains only n constraints = underdetermined

® Select Hy “close” to Hy_1 subject to,
® secant condition holds
® possible symmetry enforcing constraint Hy = Hg

min[i{mize D(Hy, Hi—1)

k

subject to  Hpsk = yk // secant condition
H, = HF // symmetry constraint

where D measures distance between Hy and Hy_1
® Often initialized as Hy = I
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Different choices of D

® A method called Broyden method is obtained by
® D(Hy,Hy-1) = || He — Hy—1 7
® without symmetry constraint
where
® Hj not necessarily symmetric and positive definite
® A method called BFGS is obtained by
® D(Hy, Hy—1) = tr(H, ' H) — logdet(H, ', Hy) — n
® with symmetry constraint
where
® Cost called relative entropy
® Hj is symmetric and positive definite (under some assumptions)

® BFGS is preferred over Broyden for smooth minimization
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The BFGS Hessian inverse update formula

® Solving BFGS problem gives Hessian inverse Hk_1 = By, update:

T T T
SkY YkS SkS
By = (I — 2By (I — 25k 4 2k
Yi Sk Yi Sk Yi. Sk

® Using inverse By, is preferrable, since the algorithm becomes

Try1 = Tk — VRBeV f(2r)

and the matrix inversion is avoided

® Cheaper than Newton's method, but requires storing B € R™*"™
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Evaluating direction

Let (By = Bk, B = Bi_1, s = Sk, Yy = y), then B, g satisfies

T T T
Y s°g s°g
Big=(I—-s=+—)B(g—y——)+s—
+9 ( SyTS) (g nyS) SyTS
~—~ ~—~
(03 [e3
q
N———
p
B
=p—sf+sa=p+s(a—p)
T T
st g yp
=72 cR =q— R™ — Bg € R" =>—cR
o yTse q=g—yac p q g yTs
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Implicit form BFGS

® Instead of storing By, we store all s; and y; for I = {1,... k}

® Recursively use previous update k times to get:

1. Let ¢ = Vf(zx)
2. Forl=k,...,1do
(a) Compute o = ysq{ql
1 S
(b) Update ¢ = ¢ — oqy;
3. Let p = Bog
4. Forl=1,...,k do
(a) Let B; = jITT”L
1 S
(b) Update p =p+ (aq — B1)s;
where final p = B,V f ()
® Memory requirement: 2nk, grows with iteration &

® |nefficient implementation for BFGS, but used for LBFGS
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LBFGS — Limited memory BFGS

® LBFGS is implicit BFGS but look only m step back in history
® Algorithm cuts loops in two-loop procedure to be of length m
1. Let ¢ =V f(ax)
2. Forl=k,....k—m+1do

T
(a) Compute oy = ;%ZL
(b) Update ¢ =g — oqy

3. Let p= Blq
4. Fori=k—m+1,...,k do
T
(a) Let = 74>
Yy, s
(b) Update p=p + (au — Bi)si
where final p is direction: zj 1 = x — VD
e Common initialization: BY = I for some A\ > 0
® Often very small m € {3,...,10} performs very well

® Memory requirement: 2nm (compared to n? for BFGS)
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Example — Logistic regression

® |ogistic regression with 8 = (w, b):
N
miniemizez log(1 + ewT¢(mi)+b) —yi(wh p(z;) +b) + 5|w|3
i=1
on the following data set (from logistic regression lecture)
® Polynomial features of degree 6, Tikhonov regularization A = 0.01
® Number of decision variables: 28
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Algorithms

Compare the following algorithms, all with backtracking:

Al

Gradient method

Gradient method with fixed diagonal scaling
Gradient method with fixed full scaling
Newton's method

BFGS

Limited-memory BFGS with buffer size m = 3
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Fixed scaling methods

Logistic regression gradient and Hessian satisfy
Vi) =XT(0(X0)—Y)+ w V2f(0) = XTo'(X0)X + A\,

where o is the (vector-version of) sigmoid, and I,,(w,b) = w
The gradient of the sigmoid is 0.25-Lipschitz continuous
Gradient method with fixed full scaling (3.) uses

H,=H=025X"X + AL,
Gradient method with fixed diagonal scaling (2.) uses

Hj, = H = diag(0.25XTX + )\,
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Standard gradient method with backtracking (GM)

10! 10!
10° 10°
107 10 oM
102 107
o0 103
107 10+
%5 2000 4000 6000 8000 10000 12000 0%y 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Gradient method with diagonal scaling (GM DS)

10! 10
10° 10'

0 1 oM

. . —— GMDs
0 1

0 w0

o (0 1000 2000 3000 4000 5000 6000 1o 0 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Gradient method with full matrix scaling (GM FS)

Q00
<4
33

109 10
o 500 1000 1500 2000 0 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Newtons method with backtracking (NM)

ZO000
<2
33

109 10
o 1 2 3 4 5 6 1 8 9 ) 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e BFGS with backtracking (BFGS)

2000
nz22<
l
(%]

o 10 20 B a0 50 60 0 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e LBFGS with backtracking and buffer length m = 3 (LBFGS)

4000

6000

8000

10000 12000

ZO000
<L
33

BFGS
LBFGS
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Comments

We have only compared number of iterations

[teration cost in Newton and BFGS much higher than for GM
Iteration cost for LBFGS similar to for GM

LBFGS performs very well for smooth problems
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