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Proximal gradient method

® \We consider composite optimization problems of the form
minixmize f(z) + g(x)
® The proximal gradient method is
T4t = argmin (f(xk) + V() (y— @) + oy — a3 + g(y))
= argmin (g(y) + 511y — (@ — VS (@)I13)

Yy
= prOX'ykg(‘rk - ’kaf(xk))



Proximal gradient — Optimality condition

® Proximal gradient iteration is:

Th41 = pI‘OX,Ykg(Ik - "kaf(‘Lk))

= arg;nin(g(y) + o lly = (@n = wVF(@n)I3)

h(y)
where x1 is unique due to strong convexity of h
® Fermat's rule gives, since g convex, optimality condition:
0 € 99(zp41) + Oh(Tp41)
= dg(apr1) + v (@1 — (@x = WV f (1))

since h differentiable

® A consequence is that Og(z41) is nonempty



Proximal gradient method — Convergence rates

® \We will analyze proximal gradient method in different settings:
® Nonconvex
® O(1/k) convergence for squared residual
® Convex
® O(1/k) convergence for function values
® Strongly convex
® Linear convergence in distance to solution

® First two rates based on a fundamental inequality for the method



Assumptions for fundamental inequality

(i) f:R™ — R is continuously differentiable (not necessarily convex)

(ii) For every x), and xy41 there exists B¢ € 7,771, n € (0,1]:
F@rin) < flaw) + VI (@r)" (@i —ax) + Zllok — g3

where 3}, is a sort of local Lipschitz constant
(#4i) g :R™ — RU {oo} is closed convex
(7v) A minimizer z* exists and p* = f(z*) 4+ g(z*) is optimal value

(v) Proximal gradient method parameters vy, > 0

® Assumption (i) satisfied with S > 8 if f is 8-smooth
® Assumptions will be strengthened later



A fundamental inequality

For all z € R™, the proximal gradient method satisfies
g

F@ren) + 9(@nn) < Flan) + V@) (2 — o) — 22 |y gy — a2

+9(2) + g (o — 2113 = lwrsr — 2[13)

where zy1 1 = prox,,  (vx — WV f(21))




A fundamental inequality — Proof (1/2)

Using

(a) Upper bound assumption on f, i.e., Assumption (i)
(b) Prox optimality condition: There exists sxt1 € 9g(zr41)

0=skp1+ 7  (@hp1 — (@ — WV f(21)))
(c) Subgradient definition: Vz, g(z) > g(z41) + st 1 (2 — Tht1)

f(@ry1) + 9(@rg1)
(a)
< flawn) + V(@) (@rer — 1) + Zllorer — 243 + 9(zhe1)

< Flan) + VI @) @ — o0) + B oass — a3 + o(2)
- 5£+1(Z — Ty1)

© flan) + V@) (@ — o) + 2 llanes — 2l + g(2)
+ % @1 — (@ — V(@) (2 — Trs)

= f(or) + V(@) (2 — 21) + Zl|lzesr — zll3 + 9(2)

+ % (@rgr — 21) (2 — Tes1)



A fundamental inequality — Proof (2/2)

® The proof continues by using the equality

(Ths1 — 1) (2 — Thpa)

= 3(llzk — 213 = llzksr = 2013 = lewrs — zall3)
® Applying to previous inequality gives

f(@es1) + 9(Th41)
< flaw) + V()T (2 = 2k) + B leess — zll3 + 9(2)
+ 9 @ — )" (2 — o)
= flar) + V(o) (2 — o) + B lenps — zell3 +9(2)

+opp (low = 203 = lzner — 2013 = llzk — 24 ll3)

which after rearrangement gives the fundamental inequality
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Nonconvex setting

® We will analyze the proximal gradient method
Tt = prox,, o (zx — WV f(2k))
in a nonconvex setting for solving
minimize f(x) + g(x)

® Will show sublinear O(1/k) convergence

® Analysis based on A fundamental inequality
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Nonconvex setting — Assumptions

(i) f:R™ — R is continuously differentiable (not necessarily convex)

(i) For every xj and zp.1 there exists B8i, € [n,m7t], n € (0,1]:
F@re1) < flaw) + V@) (@1 — 20) + 2 llae — 2esll3

where [ is a sort of local Lipschitz constant
(791) g :R™ - R U {oo} is closed convex
(tv) A minimizer z* exists and p* = f(a*) 4 g(«*) is optimal value

(v) Algorithm parameters v; € [e, Bl — ¢, where e >0

k

® Differs from assumptions for fundamental inequality only in (v)
® Assumption (i) satisfied with S > 8 if f is 8-smooth
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Nonconvex setting — Analysis

® Use fundamental inequality

F@rs) + g(xrgn) < flan) + V()T (z = ax) = 252 20 — 2213
+9(2) + 2l — 213 = llzasr — 213)
® Set z = xj, to get

1

F@rg1) + 9(@er) < flaw) + glee) — (' — L) l|lwesr — 3
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Step-size requirements

® Step-sizes i should be restricted for inequality to be useful:
F@rrn) + 9(@en) < flan) +g(mn) — (" = 50 |l — ll3

® Requirements 3 € [7,77!] and v € [e, ﬂ% — €
2

G, —€can be written as

® upper bound v <

2 _ Bre B
e < where O = >
v B +28y 2(61 —5) =

IS

since upper bound B, < ! gives é —e>2n—e>0ande>0

® |nverting upper step-size bound and letting § := ”ie < O:
'Yk_l > Bm;%k > % 46 - 'ch_l _ Bk

® This implies, by subtracting p* from both sides to have V; > 0,
f(@i1) + g(@ren) = p° < flan) +g(xr) = p* = Ollwrer — 23

Vk+1 Vk Rk

where bounds on v, imply that all Ry are nonnegative
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Lyapunov inequality consequences

® Restating Lyapunov inequality

f(@rg1) + g(zrgr) — p° < flaw) + g(zr) — p* — 8l @psr — 2|3
Vi1 Vi Ry

e Consequences:

® Function value is decreasing sequence (may not converge to p*)
® Fixed-point residual converges to 0 as k — oo:

zk+1 — xkl2 = [[prox,,  (zx — WV f(2r)) — k]2 =0

® Best fixed-point residual norm square converges as O(1/k):

. o _2<f(930)+9($0)*p*
e e —alle < =5 R
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Lyapunov inequality consequences — g =0

® For g =0, then 241 =z — vV f(zy) and

lzrsr = @rllz = Wl V@)l and  Re =9V F(a)l

® | yapunov inequality consequences in this setting:

® Gradient converges to 0 (since v > €): ||V f(zk)|l2 — 0
® Smallest gradient norm square converges as:

. :B J— *
_in[Vf)|f < L0 2
i€{0,...,k} 5Zi=0 72
® |f, in addition, f is S-smooth and ; = %:
; 26(f(zo) — p*)
VF(x;)|? < 2220 T )
ze{r(lJl,}.I?,k} H f(m )H2 - k+1
sincethenﬂk:ﬁ'andyglf%:§:5>0

® So, will approach local maximum, minimum, or saddle-point
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Fixed-point residual convergence — Implication

What does |[prox.,, ,(zx — 7%V f(zx)) — 2|2 — 0 imply?
® By prox-grad optimality condition and ||zx+1 — zk|l2 — O:
dg(xr1) + VI(xr) 3 75 (g — wpg1) = 0
as k — oo (since v > ¢, ie., 0 < 7];1 < e 1) or equivalently

09(x41) + VF(@rs1) 2 v @k — Tpg1) + VI (@ps1) — Vi (25) = 0

Uk

where u; — 0 is concluded by continuity of V f
® Critical point definition for nonconvex f satisfied in the limit
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Convex setting

® We will analyze the proximal gradient method
Try1 = prox,,  (zr — 7V f(wr))
in the convex setting for solving
minimize f(x) + g(x)

® Will show sublinear O(1/k) convergence for function values

® Analysis based on A fundamental inequality
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Convex setting — Assumptions

(i) f:R™ — R is continuously differentiable and convex
(ii) For every xy, and xy41 there exists B¢ € 7,771, n € (0,1]:

f@rs1) < flan) + V@) (@r1 — 2x) + 22 lon — 24113

where 3}, is a sort of local Lipschitz constant
(i4i) g :R™ — RU {oo} is closed convex
(7v) A minimizer z* exists and p* = f(z*) 4+ g(z*) is optimal value

(v) Algorithm parameters v;; € [e, ﬂ% — €], where e > 0

® Assumptions as for fundamental inequality plus

® convexity of f
® restricted step-size parameters v (as in nonconvex setting)

® Assumption (i¢) satisfied with 8 > S if f is S-smooth
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Convex setting — Analysis

® Use fundamental inequality with z = z*, where x* is solution

f@es) + g(@rgr) < flaw) + VI (@r)" (2" — )

— By — a3+ g(a?)

+ oy (lzk = 2*[13 = lewss — 2*|3)

® and convexity of f
f@*) = fla) + V)" (@ —a)
® This gives

f@rs1) + g(@ps) < f27) - 7’:12_61" lzpr1 — 2|3 + g(a)

+ oy (lee = 2|3 = ek — 2*[13)
which, by multiplying by 2y, and using p* = f(2*) + g(z*), gives
lzxr1 = 2*[13 < Nz — 2*[13 + Beye — Dllewr — zill3

— 29k (f(@hg1) + 9(@pg1) — DF)
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Lyapunov inequality — Convex setting

® The last inequality on previous slide is Lyapunov inequality

2kt — 213 < [k — 2[5+ (Beve — Dllzrgr — zll3
Vk+1 Vk Wk
=27 (f(zrg1) + 9(@ry1) — PF)
Ry

® Will divide analysis two cases: Short and long step-sizes

® Step-sizes i € [, é] gives By < 1 and Wi, <0
’/Blk —¢]: gives By > 1 and W, >0
since Wy, contribute differently

® Step-sizes i € [ﬁ

22



Short step-sizes
® For step-sizes v € e, ﬁ] the Lyapunov inequality implies:

[@rgr — 2¥(3 < low — 2*)|5 =29 (f (@ks1) + 9(Ts1) — P7)

Vit Vi Ry

where we have used Wj, = 0 (which is OK since W, < 0)
® Nonconvex analysis says function value decreases in every iteration

® Consequences:
® Distance to solution ||zx — z*||2 converges as k — oo
® Function value decreases to optimal function value as:

2o — 2*||3
22?:0 Vi

if fis B-smooth and v = %, then converges as O(1/k):

TP
F(@rt1) + g(xps1) —p* < %

f@rps1) + glagsr) —p" <

23



Long step-sizes

® For step-sizes v € [ﬁik’ [?27 — €], the Lyapunov inequality is:
lzrsr = 2*[I5 < |lz — 2|53+ (Brve — Dllzwss — 23
Vit Vi Wy
= 2% (f(@k41) + 9(@h41) — P¥)

Ry,

® From nonconvex analysis can conclude that Wy, is summable
® We showed for 7y € e, i — ¢, (lTk+1 — xx]|3)ken is summable
® Since Bryr bounded, also (Wy)ken is summable
® Let us define W =322 Wi
e Consequences:
® Distance to solution ||z — 2*||2 converges as k — oo
® Function value decreases to optimal function value as:

2
fl@rsr) + glesr) —p" < w
221':0 Yi

for S-smooth f with v, = % denominator replaced by %

24
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Strongly convex setting

® We will analyze the proximal gradient method
Trt1 = proxy, o (we — %V f(2k))
in a strongly convex setting for solving
minimize f(z) + g(z)

® Will show linear convergence for distance to solution ||z — *||2
® Two ways to show linear convergence, we can:

(i) Base analysis on A fundamental inequality
(ii) Start by ||zx+1 — 2*]|3 and expand (which is what we will do)
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Strongly convex setting — Assumptions

(i
(ii
(iii

(iv

(v

) f:R™ — R is continuously differentiable and o-strongly convex
) f is B-smooth

) g:R™ = RU {00} is closed convex

) A minimizer z* exists and p* = f(a*) + g(«*) is optimal value

) A

Igorithm parameters ~;, € [e,% — €], where e > 0

® Assumptions as for fundamental inequality plus

® g-strong convexity of f
® [-smoothness of f instead of upper bound for xx4+1 and
® restricted step-size parameters 7y, (as in (non)convex setting)

® But will not use fundamental inequality in analysis

27



Strongly convex setting — Analysis
Use that

(a) @* = prox,,(v* =V f(z*)) for all v >0
(b) the proximal operator is nonexpansive
(c) gradients of S-smooth a—strongly convex functions f satisfy

(V@) = Vi) (@ —y) > 75 V(@) = VW5 + 75 e - yl3
to get

[T

Y lprox. (@ — 1V f(wx)) — prox,, (2" — wV ()3

(b)

< @k — 9 Vflzr) — (@ — V)3

= ok — 212 — 29 (Vf () — VF@ )T (@ — 2%)
+ 2|V f () — V()2

(c)

< Jlax —2*13 = 251V (@x) — V@) + oBllz, - 3)
+ 2|V f (@) — VF()]32

= (1 - 222) 2y — 2*I3 — (325 — WV F(@r) — V)3

28



Lyapunov inequality — Strongly convex setting

® Lyapunov inequality from previous slide is

ks — 213 < (1= Z%2) an — 2*3

— (gt — WV (k) = V)3

Wi

® Will divide analysis into two cases: Short and long step-sizes
® Step-sizes i € [, ﬁ+ ] gives Wi > 0
® Step-sizes Vi € [m_”7 5 —€]: gives Wi <0

29



Short step-sizes

® | yapunov inequality
k1 — 2*[13 < (1= Z20) |12y, — 2*3
- ’Yk(g% — )V f(ax) = V)3

Wi

for i € [e, B%] implies W, > 0
® Strong monotonicity with modulus o of V f implies

IVf(xr) = Vi@ )2 = ollr — 272
® So we have linear convergence since

ks —a*[3 < (1= 228 — P25 — )l — 2713

—(1— 2yk0(B+0)
- B+o

( + o) e — 273
= (1= oy)?llaw — 2*[13
[

where (1 — ;)% € [0,1) for full range of vy
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Long step-sizes

® | yapunov inequality

ey — 213 < (1= ZB%2) g — 2*3

— (gt — WV (k) = V)3

Wi

for v, € [/3%’% — €] implies W, <0
® That f is S-smooth implies V f is -Lipschitz continuous:

IVf (k) = V()2 < Bllek — 272

® So we have linear convergence since

s — a3 < (1 — 2528 — B2y (52 — )l — 3
|- 2D | g2y g2

= (
= (1= Byw)?llew — 2”13
where (1 — ;)% € [0, 1) for full range of



Unified rate

® By removing the square and checking sign, we have
® for step-sizes i, € [e, B%]
[zhsr — 2" [l2 < (1= owe)llzn — 27|12

® for step-sizes i, € [ﬁ%, % — ¢
[Zrt1 = 2"z < (Bye — 1)||lze — 272
® The linear convergence result can be summarized as

k41 — 2" [l2 < max(1 = ok, Sy — Dllzx — 7|2

32



Optimal step-size

® For fixed-step-sizes 7y, = 7, the rate result is

[ek41 — 22 < max(1 — oy, By — 1) [lax — 272

p

* Optimal 7 that gives smallest contraction is v = 73

® (1 — o7y) decreasing in -y, optimal at upper bound v =

2

B+o
® (By — 1) increasing in «y, optimal at lower bound v = ﬁ
® Bounds coincide at v = B% to give rate factor p = g%
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Choose [, and v,

In nonconvex and convex analysis, we assume (3 known such that

F@re1) < flaw) + V@) (@1 — 20) + 2 llae — 2esll3

for consecutive iterates zj and xpy1

This is an assumption on the function f

We call it descent condition (DC)

If fis B-smooth, then B, = [ is valid choice since

Fy) < fl@) + V(@) (y - 2) + 5llz —yl3

for all z,y, then we can select y; € [¢, 3 — €]
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Choose [, and v, — Backtracking

® Backtracking: choose k> 1, Bko € [n,77 '], let [ =0, and loop
1. choose i € [e, ﬁ — ¢
1

2. compute xgi1 = prox.,  (wx — vV f(2K))
3. if descent condition (DC) satisfied

set k+— k+1 // increment algorithm counter
set I, < Iy // store final backtrack counter
set Br < B, // store final (8 variable
break backtrack loop
else
set B, +1 < KBk, // increase backtrack parameter
set [ < I +1 // increment backtrack counter
end

® Larger B, gives smaller upper bound for step-size

® Forwardtracking on B, , backtracking for y; upper bound



When to use backtracking

® fis B-smooth but constant 5 unknown:
® initialize Bx,0 = By_1,;,_, to previously used value

® then (Bk)ken nondecreasing
e finally Bx > 3 (if needed), then

® step-size bound v € [e, ﬂ% — €] makes (DC) hold directly
K, Ty,
® so will have constant ;. after finite number of algoritm iterations
® V7 locally Lipschitz and sequence bounded (as in convex case):
® initialize B0 = 3, for some pre-chosen § > 0
® reset to same value (8 in every algorithm iteration
® will find a local Lipschitz constant

37
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When to stop algorithm?

® Consider minimize f(z) + g(x)
x
® Apply proximal gradient method zj41 = prox,, ,(zx — vV (7))

® Algorithm sequence satisfies

0g(zp41) + VF(@ri1) D7 @k — Tpy1) + VI (@p41) — V(@) = 0

Uk

is [Juk||2 small a good measure of being close to fixed-point?

39



When to stop algorithm — Scaled problem

Let @ > 0 and solve equivalent problem minimize af(z) + ag(z):
x

® Denote algorithm parameter v, = &
® Algorithm satisfies:
Tpi1 = Prox, , .q(Tk — vaxVaf(zy)) = prox,  (zr — %V f(zk))
i.e., the same algorithm as before
® However, u,  in this setting satisfies
Uak = Yo p (@ — T11) + Vaf (@) — Vaf(zy)

= a(v, (o — 2pt1) + VI (@re1) — Vf(ar)
= aug

i.e., same algorithm but different optimality measure

® Optimality measure should be scaling invariant

40



Scaling invariant stopping condition

For B-smooth f, use scaled condition %uk

Lup = (v (wn — wr41) + VI (wri1) — Vi (2p))

that we have seen before
Let us scale problem by a to get minimize af(z) + ag(z), then
® smoothness constant 3, = a3 scaled by a = use va,1 = &
® optimality measure éua,k = #auk = %uk remains the same
so it is scaling invariant

Problem considered solved to optimality if, say, %”Uk”g <10°¢

Often lower accuracy 1072 to 10~% is enough

41



Example — SVM

® (Classification problem from SVM lecture, SVM with
® polynomial features of degree 2
® regularization parameter A = 0.00001

42



Example — Optimality measure

® Plots 7 [Juglla = B |y (@ — @es1) + V. (2r41) = V() 2
® Shows 37 !|ug|2 up to 20’000 iterations
® Quite many iterations needed to converge

10°

. . . . . . . . .
0 0.2 0.4 06 08 1 12 14 16 18 2
iteration k %104



Example — SVM higher degree polynomial

® (Classification problem from SVM lecture, SVM with
® polynomial features of degree 6
® regularization parameter A = 0.00001

44



Example — Optimality measure

® Plots S~ ukll2 = B~ v ' (2 — rsr) + Vi (@rr1) = Vi (n)l2
® Shows 37 !|ug||2 up to 200'000 iterations (10x more than before)

® Many iterations needed for high accuracy

. . . . . . . N n
0 0.2 0.4 06 08 1 12 14 16 18 2
iteration k x10°
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Accelerated proximal gradient method

® Consider convex composite problem
minimize f(x) + g(x)
xr

where

® f:R"™ — R is 8-smooth and convex
® g:R" -5 RU{oo} is closed and convex

® Proximal gradient descent

Try1 = prox, (v, — YV f(wr))

achieves O(1/k) convergence rate in function value
® Accelerated proximal gradient method

Yk = Tk + Ok (Th — Tp-1)
Trp1 = prox, (yr — YV (yr))

(with specific 6) achieves faster O(1/k?) convergence rate

47



Accelerated proximal gradient method — Parameters

® Accelerated proximal gradient method

Yk = Tk + ek(xk - xk—l)
Tg1 = prox (v — YV f (yx))

® Step-sizes are restricted v € (0, %]
® The ) parameters can be chosen either as

ek _ k-1

k2
ty_1—1
or 0, = % where
¢ 144 /1+4t3
k= — %5

these choices are very similar
® Algorithm behavior in nonconvex setting not well understood

48



Not a descent method

® Descent method means function value is decreasing every iteration
® We know that proximal gradient method is a descent method

® However, accelerated proximal gradient method is not

49



Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215

50



Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215

—— Accelerated

—— Nominal

L L L L
0 2000 4000 6000 8000 10000
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Scaled proximal gradient method

® Proximal gradient method:

s =g f00) + TH@0T (0~ 0) + gy =l +90))

fap (W)

approximates function f(y) around xj by frk (y)
® The better the approximation, the faster the convergence

® By scaling: we mean to use an approximation of the form
for(y) = flaw) + V(@) (y — 21) + 5 lly — el

where H € R™"*" is a positive definite matrix and ||z|%} = 2T Hz
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Gradient descent — Example

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size ¥ = 5 and norm | - [|5 in model
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Gradient descent — Example

® Gradient descent on -smooth quadratic problem

o 1fm]" [0l —01
mlnlﬁmlze 5 o —01 1

® Step-size ¥ = 5 and norm | - [|5 in model

z
T2

|
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Scaled gradient descent — Example

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

e Scaling H = diag(V?2f), 7 is inverse smoothness w.r.t. || - ||
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Scaled gradient descent — Example

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
T2 9 2] [~01 1 | |2

e Scaling H = diag(V?2f), 7 is inverse smoothness w.r.t. || - ||
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Smoothness w.r.t. || - ||z

What is || - ||#?

® Requirement: H € R™*™ is symmetric positive definite (H > 0)
® The norm ||z||% := 2T Hz, for H = I, we get ||z|% = ||z||3

Smoothness
® Function f: R™ — R is B-smooth if for all z,y € R™:
fly) < f@)+ V@) (y—2) + 5llz —yll3
F) 2 f@) + V@) (y — ) = Sl —yll3
® We say f By-smoothness w.r.t. scaled norm || - || if
F(y) < f@) + V@) (y — o) + 5o — gl
fly) = f@)+ V@) (y—2) = e —ylF

for all z,y € R”
® |If fis smooth (w.r.t. || -||2) it is also smooth w.r.t. || - || g
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Example — A quadratic

* Let f(z) = 32" Ha = §||z||} with H =0
® fis l-smooth w.r.t || - ||z (with equality):
F@) + V@) (y = 2) + 5llz — yll
= g  He + (Hz)" (y — 2) + 3llz — yll%
= 32" Ha + (Ha)" (y — 2) + (|2 — 2(H2) "y + [lyll)
= sllylE = fv)

which holds also if adding linear term ¢z to f
® fis Amax(H)-smooth (w.r.t. || - ||2), continue equality:

Fy) = f@) + V@) (y—2) + e —yl%
< f(2) + V(@) (y — o)+ 2mesD gy 2

much more conservative estimate of function!



Scaled proximal gradient for quadratics

Let f(z) = 327 Ha with H > 0, which is 1-smooth w.r.t. || - || #

Approximation with scaled norm || - || and 7y, = 1 satisfies Vy;:

Fory) = Flan) + V()" (y — 2x) + 3llz — yllE = ()

since f is 1-smooth w.r.t. || - |z with equality
An iteration then reduces to solving problem itself:

Thy1 = arg;nin(fm(y) +9(y)) = arg;nin(f (y) +9())

Model very accurate, but very expensive iterations
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Scaled proximal gradient method reformulation

® Proximal gradient method with scaled norm || - ||z
21 = argmin (f(ax) + VI @)y = o) + 5 lly - anlld + o)
y

= axgmin (9(v) + 55 Iy = (ox = H V@)l
=:! prox kg(xk - kH Vf(l’k))

where H = I gives nominal method
® Computational difference per iteration:

1. Need to invert H™' (or solve Hdy = V f(z1))
2. Need to compute prox with new metric

prox!! | (2) := argmin(g(x) + 3|1z — =[3)
that may be very costly
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Computational cost

Assume that H is dense or general sparse
® H~! dense: cubic complexity (vs maybe quadratic for gradient)
e g1t sparse lower than cubic complexity
o prox . difficult optimization problem

Assume that H is diagonal

e H~!: invert diagonal elements — linear complexity
d proxf;;g: often as cheap as nominal prox (e.g., for separable g)
® this gives individual step-sizes for each coordinate

Assume that H is block-diagonal with small blocks

. H‘l. invert individual blocks — also cheap

. prox7 o+ often quite cheap (e.g., for block-separable g)

If H = I, method is nominal method
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Convergence

® We get similar results as in the nominal H = I case
® We assume Sy smoothness w.r.t. || - | g
® We can replace all || - ||2 with || - ||z and Vf with H~1V f:

® Nonconvex setting with vz = i
201 (f (o) + g(z0) — p7)
71 <
IVi@)l[g-r < o}

min |
1€{0,....k}

1

® Convex setting with 7, = 7

« o Bullzo — 2|5
2k +1)

flzr) +g(xx) —p

® Strongly convex setting with f om-strongly convex w.r.t. || - ||z

2kt — 2™l o < max(Bay — 1,1 —ouy)|zr — z*||u



Example — Logistic regression

® |ogistic regression with 8 = (w, b):
N
miniemizez log(1 + ewT¢(mi)+b) —yi(wh p(z;) +b) + 5|w|3
i=1
on the following data set (from logistic regression lecture)
® Polynomial features of degree 6, Tikhonov regularization A = 0.01
® Number of decision variables: 28
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Algorithms

Compare the following algorithms, all with backtracking:

1. Gradient method
2. Gradient method with fixed diagonal scaling
3. Gradient method with fixed full scaling
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Fixed scalings

Logistic regression gradient and Hessian satisfy with L = [X, 1]
VFO) =L (0(LO) —Y)+ M0 V2f(0) =LY 0" (LO)L + M,

where ¢ is the (vector-version of) sigmoid, and I,,(w, b) = (w,0)
The sigmoid function o is 0.25-Lipschitz continuous

Gradient method with fixed full scaling (3.) uses
H=025L"L+ A,
Gradient method with fixed diagonal scaling (2.) uses

H = diag(0.25LT L + \1,,)
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Standard gradient method with backtracking (GM)

109 107
o 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Gradient method with diagonal scaling (GM DS)

10! 10

10° 10'

. —
o (0 1000 2000 3000 4000 5000 6000 1o 0 2000 4000 6000 8000 10000 12000
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Example — Numerics

e Logistic regression polynomial features of degree 6, A = 0.01
e Gradient method with full matrix scaling (GM FS)

000
<=2
33

109 10
o 500 1000 1500 2000 0 2000 4000 6000 8000 10000 12000
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Comments

® Smaller number of iterations with better scaling
® Performance is roughly (iteration cost)x(number of iterations)

® We have only compared number of iterations

® |teration cost for (GM) and (GM DS) are the same

® |teration cost for (GM FS) higher

® Need to quantify iteration cost to assess which is best

® In general, can be difficult to find H that performs better
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