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Classification

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn

• Label y ∈ Y = {1, . . . ,K} that corresponds to K different classes

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

Objective: Find parameterized model (function) m(x; θ):

• that takes data (example, object) x as input

• and predicts corresponding label (class) y ∈ {1, . . . ,K}

How?:

• learn parameters θ by solving training problem with training data

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

with some loss function L
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Binary classification

• Labels y = 0 or y = 1 (alternatively y = −1 or y = 1)

• Training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• Design loss L to train model parameters θ such that:
• m(xi; θ) < 0 for pairs (xi, yi) where yi = 0
• m(xi; θ) > 0 for pairs (xi, yi) where yi = 1

• Predict class belonging for new data points x with trained θ∗:
• m(x; θ∗) < 0 predict class y = 0
• m(x; θ∗) > 0 predict class y = 1

objective is that this prediction is accurate on unseen data
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

nonconvex (Neyman Pearson loss)

m(x; θ)

L(m(x; θ), 1)
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1− yu) (hinge loss used in SVM)

m(x; θ)

L(m(x; θ), 1)
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• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = log(1 + eu)− yu (logistic loss)

m(x; θ)

L(m(x; θ), 1)
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Logistic regression

• Logistic regression uses:
• affine parameterized model m(x; θ) = wTx+ b (where θ = (w, b))
• loss function L(u, y) = log(1 + eu)− yu (if labels y = 0, y = 1)

• Training problem, find model parameters by solving:

minimize
θ

N∑
i=1

L(m(xi; θ), yi) =

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
• Training problem convex in θ = (w, b) since:

• model m(x; θ) is affine in θ
• loss function L(u, y) is convex in u

u

L(u, 0)

u

L(u, 1)
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Prediction

• Use trained model m to predict label y for unseen data point x
• Since affine model m(x; θ) = wTx+ b, prediction for x becomes:

• If wTx+ b < 0, predict corresponding label y = 0
• If wTx+ b > 0, predict corresponding label y = 1
• If wTx+ b = 0, predict either y = 0 or y = 1

• A hyperplane (decision boundary) separates class predictions:

H := {x : wTx+ b = 0}
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H
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Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)
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Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
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H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}
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• Example – models with different parameters θ:
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Training problem interpretation

• Every parameter choice θ = (w, b) gives hyperplane in data space:

H := {x : wTx+ b = 0} = {x : m(x; θ) = 0}

• Training problem searches hyperplane to “best” separates classes

• Example – models with different parameters θ:

m(x; θ1)

m(x; θ2)
m(x; θ3)

m(x; θ4)

m(x; θ∗)
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ1:

m(x; θ1) = 0

• Training loss:

m(x; θ1)

L(m(x; θ1), 0)

m(x; θ1)

L(m(x; θ1), 1)

+
=4.49576

0.208764.287
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ2:

m(x; θ2) = 0

• Training loss:

m(x; θ2)

L(m(x; θ2), 0)

m(x; θ2)

L(m(x; θ2), 1)

+
=10.49222

1.277339.21489
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ3:

m(x; θ3) = 0

• Training loss:

m(x; θ3)

L(m(x; θ3), 0)

m(x; θ3)

L(m(x; θ3), 1)

+
=6.58266

3.804172.77849
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ4:

m(x; θ4) = 0

• Training loss:

m(x; θ4)

L(m(x; θ4), 0)

m(x; θ4)

L(m(x; θ4), 1)

+
=4.42468

4.092650.33203
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What is “best” separation?

• The “best” separation is the one that minimizes the loss function
• Hyperplane for model m(·; θ) with parameter θ = θ∗:

m(x; θ∗) = 0

• Training loss:

m(x; θ∗)

L(m(x; θ∗), 0)

m(x; θ∗)

L(m(x; θ∗), 1)

+
=1.94885

0.993320.95554
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Fully separable data – Solution

• Let θ̄ = (w̄, b̄) give model that separates data:

w̄

m(x; θ̄) = 0

• Let Hθ̄ := {x : m(x; θ̄) = w̄Tx+ b̄ = 0} be hyperplane separates
• Training loss:

m(x; θ̄)

L(m(x; θ̄), 0)

m(x; θ̄)

L(m(x; θ̄), 1)

+
=4.90697

2.309272.5977
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Fully separable data – Solution

• Also 2θ̄ = (2w̄, 2b̄) separates data:

2w̄

m(x; 2θ̄) = 0

• Hyperplane H2θ̄ := {x : m(x; 2θ̄) = 2(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss reduced since input m(x; 2θ̄) = 2m(x; θ̄) further out:

m(x; 2θ̄)

L(m(x; 2θ̄), 0)

m(x; 2θ̄)

L(m(x; 2θ̄), 1)

+
=2.58353

1.274581.30894
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Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss further reduced since input m(x; 3θ̄) = 3m(x; θ̄):

m(x; 3θ̄)

L(m(x; 3θ̄), 0)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=1.49149

0.784030.70746
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Fully separable data – Solution

• And 3θ̄ = (3w̄, 3b̄) also separates data:

3w̄

m(x; 3θ̄) = 0

• Hyperplane H3θ̄ := {x : m(x; 3θ̄) = 3(w̄Tx+ b̄) = 0} = Hθ̄ same
• Training loss

m(x; 3θ̄)

L(m(x; 3θ̄), 0)

m(x; 3θ̄)

L(m(x; 3θ̄), 1)

+
=1.49149

0.784030.70746

Let θ = tθ̄ and t→∞, then loss → 0 ⇒ no optimal point
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The bias term

• The model m(x; θ) = wTx+ b bias term is b

• Least squares: optimal b has simple formula

• No simple formula to remove bias term here!
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Bias term gives shift invariance

• Assume all data points shifted xci := xi + c

• We want same hyperplane to separate data, but shifted

xi xci

• Assume θ = (w, b) is optimal for {(xi, yi)}Ni=1

• Then θc = (w, bc) with bc = b− wT c optimal for {(xci , yi)}Ni=1

• Why? Model outputs the same for all xi:
• m(xi; θ) = wTxi + b
• m(xci ; θc) = wTxci + bc = wTxi + b+ wT (c− c) = wTxi + b
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Another derivation of logistic loss

• Assume model is instead σ(wTx+ b), with σ(u) = 1
1+e−u

• Binary cross entropy applied to model with sigmoid output:

−y log(σ(u))− (1− y) log(1− σ(u))

= −y log(
1

1 + e−u
)− (1− y) log(1− 1

1 + e−u
)

= −y log(
eu

1 + eu
)− (1− y) log(

e−u

1 + e−u
)

= −y(u− log(1 + eu)) + (1− y) log(1 + eu)

= log(1 + eu)− yu (= logistic loss)

• Two equivalent formulations to arrive at same problem:
• Real-valued model m(x; θ) and logistic loss log(1 + eu)− yu
• (0, 1)-valued model σ(m(x; θ)) and binary cross entropy

• Prefer previous formulation
• easier to see how deviations penalized
• easier to conclude convexity of training problem
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Logistic regression – Nonlinear example

• Logistic regression tries to affinely separate data

• Can nonlinear boundary be approximated by logistic regression?

• Introduce features (perform lifting)
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Logistic regression – Example
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1
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Nonlinear models – Features

• Create feature map φ : Rn → Rp of training data

• Data points xi ∈ Rn replaced by featured data points φ(xi) ∈ Rp

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Feature can include original data x

• We can add feature 1 and remove bias term b

• Logistic regression training problem

minimize
θ

N∑
i=1

(
log(1 + eφ(xi)

Tw+b)− yi(φ(xi)
Tw + b)

)
same as before, but with features as inputs
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Graphical model representation

• A graphical view of model m(x; θ) = wTφ(x):

m(xi; θ)

φ(xi)

w
T
φ

(x
i
)

φx
i

• The input xi is transformed by fixed nonlinear features φ
• Feature-transformed input is multiplied by model parameters θ
• Model output is then fed into cost L(m(xi; θ), y)
• Problem convex since L convex and model affine in θ
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Polynomial features

• Polynomial feature map for Rn with n = 2 and degree d = 3

φ(x) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

(note that original data is also there)

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Number of features p+ 1 =
(
n+d
d

)
= (n+d)!

d!n! grows fast!

• Training problem has p+ 1 instead of n+ 1 decision variables
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree:
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 2
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 3
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 4
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 5
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 6
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Overfitting

Models with higher order polynomials overfit

Logistic regression (no regularization) polynomial features of degree 6
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Tikhonov regularization can reduce overfitting
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Tikhonov regularization

Regularized problem:

minimize
θ

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
+ λ‖w‖22

Regularization:

• Regularize only w and not the bias term b

• Why? Model looses shift invariance if also b regularized

Problem properties:

• Problem is strongly convex in w ⇒ optimal w exists and is unique

• Optimal b is bounded if examples from both classes exist
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Generalization

• Interested in models that generalize well to unseen data

• Assess generalization using holdout or k-fold cross validation

26



Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Test vs training error – Cost

• Decreasing λ gives higher complexity model

• Overfitting to the right, underfitting to the left

• Select lowest complexity model that gives good generalization

Increasing model complexity, λ↘

Training vs test cost

train
test
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Test vs training error – Classification accuracy

• Decreasing λ gives higher complexity model

• Overfitting to the right, underfitting to the left

• Cost often better measure of over/underfitting

Increasing model complexity, λ↘

Number of misclassifications

train
test
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Outline

Classification

Logistic regression

Nonlinear features

Overfitting and regularization

Multiclass logistic regression

Training problem properties
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What is multiclass classification?

• We have previously seen binary classification
• Two classes (cats and dogs)
• Each sample belongs to one class (has one label)

• Multiclass classification
• K classes with K ≥ 3 (cats, dogs, rabbits, horses)
• Each sample belongs to one class (has one label)
• (Not to confuse with multilabel classification with ≥ 2 labels)
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Multiclass classification from binary classification

• 1-vs-1: Train binary classifiers between all classes
• Example:

• cat-vs-dog,
• cat-vs-rabbit
• cat-vs-horse
• dog-vs-rabbit
• dog-vs-horse
• rabbit-vs-horse

• Prediction: Pick, e.g., the one that wins the most classifications
• Number of classifiers: K(K−1)

2

• 1-vs-all: Train each class against the rest
• Example

• cat-vs-(dog,rabbit,horse)
• dog-vs-(cat,rabbit,horse)
• rabbit-vs-(cat,dog,horse)
• horse-vs-(cat,dog,rabbit)

• Prediction: Pick, e.g., the one that wins with highest margin
• Number of classifiers: K
• Always skewed number of samples in the two classes
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Multiclass logistic regression

• K classes in {1, . . . ,K} and data/labels (x, y) ∈ X × Y
• Labels: y ∈ Y = {e1, . . . , eK} where {ej} coordinate basis

• Example, K = 5 class 2: y = e2 = [0, 1, 0, 0, 0]T

• Use one model per class mj(x; θj) for j ∈ {1, . . . ,K}
• Objective: Find θ = (θ1, . . . , θK) such that for all models j:

• mj(x; θj)� 0, if label y = ej and mj(x; θj)� 0 if y 6= ej

• Training problem loss function:

L(u, y) = log

 K∑
j=1

euj

− uT y
where label y is a “one-hot” basis vector, is convex in u
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Multiclass logistic loss function – Example

• Multiclass logistic loss for K = 3, u1 = 1, y = e1

L((1, u2, u3), 1) = log(e1 + eu2 + eu3)− 1

• Model outputs u2 � 0, u3 � 0 give smaller cost for label y = e1

u2

u3
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Multiclass logistic loss function – Example

• Multiclass logistic loss for K = 3, u2 = −1, y = e1

L((u1,−1, u3), 1) = log(eu1 + e−1 + eu3)− u1

• Model outputs u1 � 0 and u3 � 0 give smaller cost for y = e1

u3

u1
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Multiclass logistic regression – Training problem

• Affine data model m(x; θ) = wTx+ b with

w = [w1, . . . , wK ] ∈ Rn×K , b = [b1, . . . , bK ]T ∈ RK

• One data model per class

m(x; θ) =

 m1(x; θ1)
...

mK(x; θK)

 =

 w
T
1 x+ b1

...
wTKx+ bK


• Training problem:

minimize
θ

N∑
i=1

log

 K∑
j=1

ew
T
j xi+bj

− yTi (wTxi + b)

where yi is “one-hot” encoding of label
• Problem is convex since affine model is used
• (Alt.: model σ(wTx+ b) with σ softmax and cross entropy loss)
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Multiclass logistic regression – Prediction

• Assume model is trained and want to predict label for new data x

• Predict class with parameter θ for x according to:

argmax
j∈{1,...,K}

mj(x; θ)

i.e., class with largest model value (since trained to achieve this)

37



Special case – Binary logistic regression

• Consider two-class version and let
• ∆u = u1 − u2, ∆w = w1 − w2, and ∆b = b1 − b2
• ∆u = mbin(x; θ) = m1(x; θ1)−m2(x; θ2) = ∆wTx+ ∆b
• ybin = 1 if y = (1, 0) and ybin = 0 if y = (0, 1)

• Loss L is equivalent to binary, but with different variables:

L(u, y) = log(eu1 + eu2)− y1u1 − y2u2

= log

(
1 + eu1−u2

)
+ log(eu2)− y1u1 − y2u2

= log

(
1 + e∆u

)
− y1u1 − (y2 − 1)u2

= log

(
1 + e∆u

)
− ybin∆u
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Example – Linearly separable data

Problem with 7 classes
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Example – Linearly separable data

Problem with 7 classes and affine multiclass model
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Example – Quadratically separable data

Same data, new labels in 6 classes
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Example – Quadratically separable data

Same data, new labels in 6 classes, affine model
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Example – Quadratically separable data

Same data, new labels in 6 classes, quadratic model
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Features

• Used quadratic features in last example

• Same procedure as before:
• replace data vector xi with feature vector φ(xi)
• run classification method with feature vectors as inputs

m
(x

i
;θ

)

φ(xi)

w
T
φ

(x
i
)

φx
i
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Training problem properties
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Composite optimization – Binary logistic regression

Regularized (with g) logistic regression training problem (no features)

minimize
θ

N∑
i=1

(
log
(

1 + ew
T xi+b

)
− yi(wTxi + b)

)
+ g(θ)

can be written on the form

minimize
θ

f(Lθ) + g(θ),

where

• f(u) =
∑N
i=1 (log(1 + eui)− yiui) is data misfit term

• L = [X,1] where training data matrix X and 1 satisfy

X =

x
T
1
...
xTN

 1 =

1
...
1


• g is regularization term
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Gradient and function properties

• Gradient of hi(ui) = log(1 + eui)− yiui is:

∇hi(ui) =
eui

1 + eui
− yi =

1

1 + e−ui
− yi =: σ(ui)− yi

where σ(ui) = (1 + e−ui)−1 is called a sigmoid function
• Gradient of (f ◦ L)(θ) satisfies:

∇(f ◦ L)(θ) = ∇
N∑
i=1

hi(Liθ) =

N∑
i=1

LTi ∇hi(Liθ)

=

N∑
i=1

[
xi
1

]
(σ(xTi w + b)− yi)

=

[
XT

1T

]
(σ(Xw + b1)− Y )

where last σ : RN → RN applies 1
1+e−ui

to all [Xw + b1]i
• Function and sigmoid properties:

• sigmoid σ is 0.25-Lipschitz continuous:
• f is convex and 0.25-smooth and f ◦ L is 0.25‖L‖22-smooth
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