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Classification

® Let (z,y) represent object and label pairs
® Objectz € X CR"
® Label y € Y ={1,..., K} that corresponds to K different classes

® Available: Labeled training data (training set) { (s, v:)}¥,
Objective: Find parameterized model (function) m(z;6):

® that takes data (example, object) z as input

® and predicts corresponding label (class) y € {1,..., K}
How?:
® learn parameters 6 by solving training problem with training data

N

minimize Z:l L(m(x;;0),y;)

with some loss function L



Binary classification

Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
Training problem

N
mlmemlze Eil (m(ﬁﬁu )’yz)

Design loss L to train model parameters 6 such that:
® m(xz;;0) < 0 for pairs (x;,y;) where y; =0
® m(xz;;60) > 0 for pairs (x;,y;) where y; =1
Predict class belonging for new data points = with trained 6*:
® m(x;0") < 0 predict class y =0
® m(xz;0") > 0 predict class y = 1
objective is that this prediction is accurate on unseen data



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(x;0) m(z;0)

nonconvex (Neyman Pearson loss)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0
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Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu) (hinge loss used in SVM)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu)? (squared hinge loss)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(z;0)

L(u,y) = log(1 + e*) — yu (logistic loss)

m(z;0)
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Logistic regression

® | ogistic regression uses:
® affine parameterized model m(z;6) = w¥z 4 b (where 8 = (w, b))
® |oss function L(u,y) = log(1l + e") — yu (if labels y =0, y = 1)
® Training problem, find model parameters by solving:

N N
e . N z?w—&-b (T
minimize ;,1 L(m(z;;0),y;) = E (log(l +e ) — yi(z; w+ b))

i=1

® Training problem convex in § = (w,b) since:
® model m(z;0) is affine in ¢
® |oss function L(u,y) is convex in u

NS




Prediction

® Use trained model m to predict label y for unseen data point =
® Since affine model m(z;6) = w™x + b, prediction for = becomes:
e If wTz + b < 0, predict corresponding label y = 0
e If wTz 4+ b >0, predict corresponding label y = 1
o If wlz+b=0, predict either y =0 ory =1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}




Training problem interpretation

® Every parameter choice § = (w, b) gives hyperplane in data space:
H:={z:wTz+b=0} = {z:m(x;0) = 0}

® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 6:
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® Example — models with different parameters 6:

m(z;01)
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Training problem interpretation

® Every parameter choice § = (w,b) gives hyperplane in data space:
H:={z:wTz+b=0} = {z:m(x;0) = 0}

® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 6:




What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 6;:

m(z;01) =0
*
*
*
® Training loss:
L(m(x791)70) L(m(xxel)vl)
=2 m(xz;01) i m(z;01)
4.287 + 0.20876

=4.49576

10



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 65:

*
® Training loss:
L(m(x792)70) L(m(IVGQ)vl)
-] m(x;602) \ e m(z; 02)
9.21489 + 1.27733

=10.49222

10



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 65:

— ¥
* . T m(x;03) =0

*

*
*
® Training loss:
L(m(z;03),0) L(m(z;63),1)
‘ m(x;03) ] m(z;03)
2.77849 + 3.80417

=6.58266

10



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 6,:

* % *
*
*
* w _—m(x;04) =0
* ////*/
////% *
*
¢
® Training loss:
L(m(:c,94),0) L(m(x794)71)
‘ m(x;04) ! m(x;04)
0.33203 + 4.09265
=4.42468

10



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;0) with parameter 6 = 6*:

® Training loss:
L(m(z;0%),0) L(m(w;0%),1)

| m(a;0%) >
0.95554 + 0.99332
=1.94885 10

m(z; 6*)



Fully separable data — Solution

® Let 0 = (w,b) give model that separates data:
m(x;0) =0

® Let Hy := {z: m(x;0) = wl'z+b = 0} be hyperplane separates
® Training loss:

L(m(z;0),0) L(m(x;0),1)
m(x; 0) m(z; 0)
2.5977 + 2.30027
=4.90697

11



Fully separable data — Solution

® Also 20 = (2w, 2b) separates data:

® Hyperplane Hyj := {x : m(x;20) = 2(w" 2 +b) = 0} = H; same
® Training loss reduced since input m(x; 20) = 2m(x; 0) further out:

L(m(x;20),0) L(m(x;20),1)
| m(z; 20) P m(x;20)
1.30894 + 1.27458
=2.58353

11



Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

*
3w *

® Hyperplane Hyj := {x : m(x;30) = 3(w”z + b) = 0} = Hy same
® Training loss further reduced since input m(z;36) = 3m(x;0):

L(m(z;30),0) L(m(x;30),1)
e m(x; 30) i m(x;30)
0.70746 + 0.78403
=1.49149

11



Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

*
3w *

® Hyperplane Hsp := {z : m(x;30) = 3(wTz + b) = 0} = Hy same
® Training loss

L(m(z;30),0) L(m(x;30),1)
e m(x; 30) i m(x;30)
0.70746 + 0.78403
=1.49149

e Let @ =t and t — oo, then loss — 0 = no optimal point
11



The bias term

® The model m(z;6) = w”xz + b bias term is b
® | east squares: optimal b has simple formula

® No simple formula to remove bias term here!

12



Bias term gives shift invariance

® Assume all data points shifted z{ := x; + ¢

® \We want same hyperplane to separate data, but shifted

® Assume 0 = (w,b) is optimal for {(x;,y;)}Y,
® Then 0, = (w,b.) with b. = b — w”c optimal for {(z¢,v;)}}¥,
® Why? Model outputs the same for all z;:

* m(zi;0) =wlz; +b

* m(xf;0.) = wlal +be = wla; +b+ wT(c —c) = wlz; +b

13



Another derivation of logistic loss

® Assume model is instead o(w”x + b), with o(u) = H—%

® Binary cross entropy applied to model with sigmoid output:

—ylog(o(u)) — (1 —y)log(l — o(u))

1
— —ylog(———)— (1 — 1) log(l — ———
Yy og(He,u) (1 —y)log( 1+e,u)

e e v
=yl — (1 —1y)log(———
Yy og(Heu) (1-y) og(He_u)

= —y(u —log(1 +e€")) + (1 —y)log(l +e€")
= log(1 + €*) — yu (= logistic loss)

® Two equivalent formulations to arrive at same problem:
® Real-valued model m(z;6) and logistic loss log(1 + €*) — yu
® (0,1)-valued model o(m(x;8)) and binary cross entropy
® Prefer previous formulation
® casier to see how deviations penalized
® easier to conclude convexity of training problem

14
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Logistic regression — Nonlinear example

® | ogistic regression tries to affinely separate data
® Can nonlinear boundary be approximated by logistic regression?

® Introduce features (perform lifting)

BT T e L A
Yt B B N L T A
LR x x A ‘ P L %
T s T e L
e B R g el Ry )T T
A T o L LRI L
N ‘l1’.-‘: “:'h- ope i e ‘::\“ . - i 1] i x
E e e R B e e e
e e R T T T

* m.? -,ﬁ :‘: ‘f‘l_‘ Ehal i) ]
e S LR i T x * " e T
Bk e e e d e s e
g B e s e T
L el e T
s ;l‘3'|.-¢;“‘ P i ,‘1;\?‘1‘ o R el
E I e I ek
o e d e n MRS TR NN v et
s L e il et
S g AT T A Y i ‘:'q, b Rk o ®
J fex T wx® X SR
P g R P R L AR P T T Freph
R e e A B e B T R
g _:'i;';vga:_":;";“:‘j“‘f“ LT AR
LR LR et ;‘:"‘."‘& - e EREF M

16



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<«——Feature 3—

17
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space
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ic regression — Example

Logist

® Seems linear in feature 2 and quadratic in feature 1

® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space
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Logistic regression — Example
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
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Nonlinear models — Features

Create feature map ¢ : R™ — RP of training data

Data points x; € R™ replaced by featured data points ¢(z;) € RP
New model: m(z;0) = w’ ¢(z) + b, still linear in parameters
Feature can include original data =

We can add feature 1 and remove bias term b

Logistic regression training problem

N
e d(xi)Twtby A\T
minimize Z-E,l (log(l +e ) — yi(o(zi)" w+ b))

same as before, but with features as inputs

18



Graphical model representation

® A graphical view of model m(x;0) = w? ¢(z):

(i)

T;
ASS

m(z;;60)

—

The input z; is transformed by fixed nonlinear features ¢
Feature-transformed input is multiplied by model parameters 6
Model output is then fed into cost L(m(z;;6),y)

Problem convex since L convex and model affine in 6

19



Polynomial features

Polynomial feature map for R™ with n = 2 and degree d = 3
2 2,3 2 2 3
d)(:ﬁ) = (zlamanhxleaxQVIhx1x27l‘1x27'x2)

(note that original data is also there)
New model: m(x;0) = wT ¢(x) + b, still linear in parameters

+d +d)!
Number of features p + 1 = (") = (ZW)

Training problem has p + 1 instead of n + 1 decision variables

grows fast!

20



Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree:

* . * "
*
* *
*
* * *
* *
*
* *
*
* % 5 *
*
* * * *
*
5 *
* * *,
*
* *
*
*
*
* *

21



Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 2

21



Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 3

21



Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 4
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 5
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 6

21
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Overfitting

e Models with higher order polynomials overfit

e Logistic regression (no regularization) polynomial features of degree 6

e Tikhonov regularization can reduce overfitting -



Tikhonov regularization

Regularized problem:

N
miniHmizeZ (log(l + eziT“’H’) — yi(xTw + b)) + Mwl|3
i=1

Regularization:

® Regularize only w and not the bias term b

® Why? Model looses shift invariance if also b regularized
Problem properties:

® Problem is strongly convex in w = optimal w exists and is unique

® Optimal b is bounded if examples from both classes exist

24



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
0.00001 4.60 1

* ¥

* * *
*

* * *

* *
*
* ¥ 4
* *
* *
* *,
*
*
*

* **

25



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
0.00006 6.83 5

25



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
0.00036 9.94 5

25



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
6

* *

*
*

*

*
*
* *
*
*

*| *
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

# mislabels

*
*
*
*
*
* *
*
*
* *
*
*
* *

25



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
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Example — Different regularization
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels

25



Generalization

® Interested in models that generalize well to unseen data

® Assess generalization using holdout or k-fold cross validation

26



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00001 4.60/38.5 1/7
<
)
3
<
o
3 o
<
3
<
<
o 0 ©
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00006 6.83/25.7 5/7
)
o
o
<
o 0 ©

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00036 9.94/13.4 5/8
¢ o
o 3
0
13
¢ 6
13
Oog 13
% o
o 0° o 0 ¢

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.0021 12.1/8.70 6/5
o
)
o
o
<
o o

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.013 13.6/8.12 7/2
< ¢ o
o 3
9
) o
0 ¢ o
8 ’ ’
15 o
o, o ©
<
. o
o ¢ o 0 ¢

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.077 15.4/10.2 8/3

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

J # mislabels
0.46 19.2/15.2 7/4

27



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

J # mislabels
2.78 25.2/23.2 8/4

27



Test vs training error — Cost

® Decreasing A gives higher complexity model

® Qverfitting to the right, underfitting to the left
® Select lowest complexity model that gives good generalization

Training vs test cost

Increasing model complexity, A \

—— train
— test

28



Test vs training error — Classification accuracy

® Decreasing A gives higher complexity model
® Qverfitting to the right, underfitting to the left

® Cost often better measure of over/underfitting

Number of misclassifications

— train
— test

Increasing model complexity, A \

29
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What is multiclass classification?

® We have previously seen binary classification

® Two classes (cats and dogs)

® Each sample belongs to one class (has one label)
® Multiclass classification

® K classes with K > 3 (cats, dogs, rabbits, horses)

® Each sample belongs to one class (has one label)
® (Not to confuse with multilabel classification with > 2 labels)

31



Multiclass classification from binary classification

® 1-vs-1: Train binary classifiers between all classes
® Example:

cat-vs-dog,
cat-vs-rabbit
cat-vs-horse
dog-vs-rabbit
dog-vs-horse
rabbit-vs-horse

® Prediction: Pick, e.g., the one that wins the most classifications

® Number of classifiers:

K(K-1)
2

® 1-vs-all: Train each class against the rest
® Example

cat-vs-(dog,rabbit,horse)
dog-vs-(cat,rabbit,horse)
rabbit-vs-(cat,dog,horse)
horse-vs-(cat,dog,rabbit)

® Prediction: Pick, e.g., the one that wins with highest margin
® Number of classifiers: K
® Always skewed number of samples in the two classes

32



Multiclass logistic regression

K classes in {1,..., K} and data/labels (z,y) € X x Y

Labels: y € ¥ = {e1,...,ex} where {e;} coordinate basis
® Example, K = 5 class 2: y = ez = [0,1,0,0,0]

Use one model per class m;(z;6;) for j € {1,..., K}

Objective: Find 8 = (61, ...,60k) such that for all models j:

® m;(x;0;) > 0, if label y = e; and m;(x;0;) K 0 if y # e,
Training problem loss function:

K
L(u,y) = log Ze“j —uTy
j=1

where label y is a “one-hot” basis vector, is convex in

33



Multiclass logistic loss function — Example
® Multiclass logistic loss for K =3, uy =1, y = e
L((17u27u3)7 1) = log(el +e" + eUB) -1
® Model outputs us < 0, ug < 0 give smaller cost for label y = e;

34



Multiclass logistic loss function — Example
® Multiclass logistic loss for K =3, ug = —1, y = €3
L((u1,—1,u3),1) = log(e" + e +¢") —uy
® Model outputs u; > 0 and uz < 0 give smaller cost for y = e

35



Multiclass logistic regression — Training problem

Affine data model m(x;6) = w”z + b with
w=lwr,... ,wg] eRVE b=][by,....bg]" e RF
One data model per class

my (xz;61) wlz + by
mo)=| 1 |=|
mK(x;QK) w}’;x—i-bK

Training problem:
N K
T : .
mini@mize Z log Z evi it | T (wTx; +b)
i=1 j=1

where y; is “one-hot” encoding of label
Problem is convex since affine model is used
(Alt.: model o(wTx + b) with o softmax and cross entropy loss)

36



Multiclass logistic regression — Prediction

® Assume model is trained and want to predict label for new data x

® Predict class with parameter 6 for x according to:

argmax m;(z;0)
je{l,...K}

i.e., class with largest model value (since trained to achieve this)
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Special case — Binary logistic regression

® Consider two-class version and let

& Au=u; —u2, Aw = w; — ws, and Ab=10b; — bs
® Au = mpin(z;0) = mi(x;01) — ma(x;02) = AwTz + Ab
® ypin =1 ify=(1,0) and ypin =0 if y = (0,1)

® |oss L is equivalent to binary, but with different variables:
L(u,y) = log(e"" + ") — y1u1 — yous

= log (1 + e“l_“?) + log(e“?) — yru1 — yaus
= log (1 + eA”> —yrug — (y2 — Dug

= log (1 + eA“> — Ybin AU
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Example — Linearly separable data

® Problem with 7 classes
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Example — Linearly separable data

® Problem with 7 classes and affine multiclass model
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Example — Quadratically separable

e Same data, new labels in 6 classes
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Example — Quadratically separable data

e Same data, new labels in 6 classes, affine model
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Example — Quadratically separable data

e Same data, new labels in 6 classes, quadratic model
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Features

® Used quadratic features in last example
® Same procedure as before:

® replace data vector z; with feature vector ¢(z;)
® run classification method with feature vectors as inputs
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Outline

e Classification

e Logistic regression

® Nonlinear features

e Overfitting and regularization
e Multiclass logistic regression

e Training problem properties
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Composite optimization — Binary logistic regression

Regularized (with g) logistic regression training problem (no features)

N
minimizez (log (1 + ew%ﬁb) —yi(whz; + b)) +9(0)
o i=1
can be written on the form
miniemize F(LO) + g(6),

where

° f(u) = Zfil (log(1 + €“1) — y;u;) is data misfit term
e [ = [X,1] where training data matrix X and 1 satisfy

T 1
X=: 1=|:
:17% 1

® ¢ is regularization term
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Gradient and function properties

® Gradient of h;(u;) = log(1l + e%) — y;u; is:
et o 1
1+ ewi YiT + e wi

where o (u;) = (1 + e~ %)~ is called a sigmoid function
® Gradient of (f o L)(0) satisfies:

Vhl(uz) = — Y = U(Ul) —Yi

V(fo th L;6) ZLiTVhi(LiH)

=1

_Z{ } (zFw 4 b) — y)
:[XT

1T] (c(Xw+b1)-Y)

where last o : RY — R applies

® Function and sigmoid properties:
® sigmoid o is 0.25-Lipschitz continuous:

® fis convex and 0.25-smooth and f o L is 0.25||L||3-smooth

1+ — to all [Xw + b1}
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