Logistic Regression

Pontus Giselsson

Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

Classification

- Let (x,y) represent object and label pairs
 - Object $x \in \mathcal{X} \subseteq \mathbb{R}^n$
 - Label $y \in \mathcal{Y} = \{1, \dots, K\}$ that corresponds to K different classes
- ullet Available: Labeled training data (training set) $\{(x_i,y_i)\}_{i=1}^N$

Objective: Find parameterized model (function) $m(x; \theta)$:

- that takes data (example, object) x as input
- ullet and predicts corresponding label (class) $y \in \{1,\dots,K\}$

How?:

ullet learn parameters heta by solving training problem with training data

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

with some loss function L

Binary classification

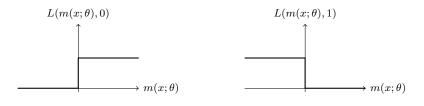
- Labels y = 0 or y = 1 (alternatively y = -1 or y = 1)
- Training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

- Design loss L to train model parameters θ such that:
 - $m(x_i; \theta) < 0$ for pairs (x_i, y_i) where $y_i = 0$
 - $m(x_i; \theta) > 0$ for pairs (x_i, y_i) where $y_i = 1$
- Predict class belonging for new data points x with trained θ^* :
 - $m(x; \theta^*) < 0$ predict class y = 0
 - $m(x; \theta^*) > 0$ predict class y = 1

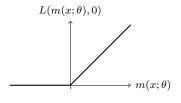
objective is that this prediction is accurate on unseen data

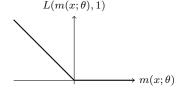
- Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$



nonconvex (Neyman Pearson loss)

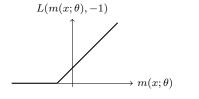
- Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

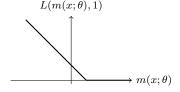




$$L(u, y) = \max(0, u) - yu$$

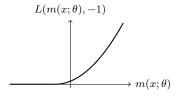
- Different cost functions L can be used:
 - y = -1: Small cost for $m(x; \theta) \ll 0$ large for $m(x; \theta) \gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$

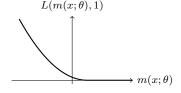




$$L(u,y) = \max(0,1-yu)$$
 (hinge loss used in SVM)

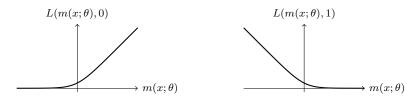
- Different cost functions L can be used:
 - y = -1: Small cost for $m(x; \theta) \ll 0$ large for $m(x; \theta) \gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$





$$L(u,y) = \max(0, 1 - yu)^2$$
 (squared hinge loss)

- Different cost functions L can be used:
 - y=0: Small cost for $m(x;\theta)\ll 0$ large for $m(x;\theta)\gg 0$
 - y=1: Small cost for $m(x;\theta)\gg 0$ large for $m(x;\theta)\ll 0$



$$L(u, y) = \log(1 + e^u) - yu$$
 (logistic loss)

Outline

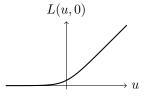
- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

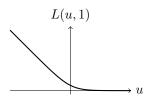
Logistic regression

- Logistic regression uses:
 - affine parameterized model $m(x;\theta) = w^T x + b$ (where $\theta = (w,b)$)
 - loss function $L(u, y) = \log(1 + e^u) yu$ (if labels y = 0, y = 1)
- Training problem, find model parameters by solving:

minimize
$$\sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right)$$

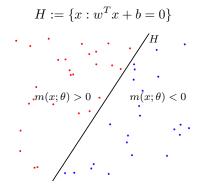
- Training problem convex in $\theta = (w, b)$ since:
 - model $m(x;\theta)$ is affine in θ
 - ullet loss function L(u,y) is convex in u





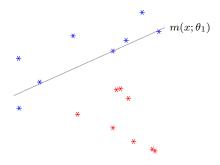
Prediction

- ullet Use trained model m to predict label y for unseen data point x
- Since affine model $m(x;\theta) = w^T x + b$, prediction for x becomes:
 - If $w^T x + b < 0$, predict corresponding label y = 0
 - If $w^T x + b > 0$, predict corresponding label y = 1
 - If $w^T x + b = 0$, predict either y = 0 or y = 1
- A hyperplane (decision boundary) separates class predictions:



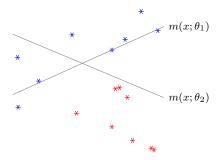
$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :



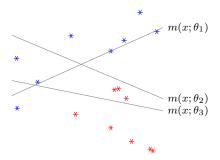
$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :



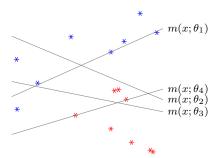
$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :



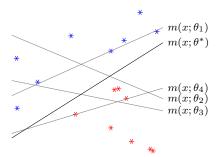
$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :

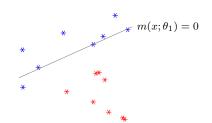


$$H := \{x : w^T x + b = 0\} = \{x : m(x; \theta) = 0\}$$

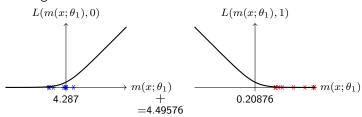
- Training problem searches hyperplane to "best" separates classes
- Example models with different parameters θ :



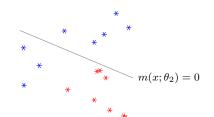
- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_1$:



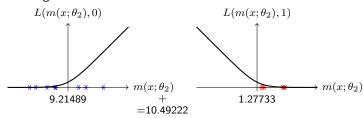
Training loss:



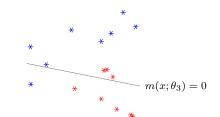
- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_2$:



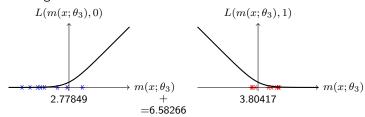
• Training loss:



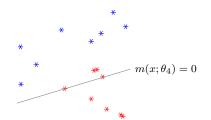
- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_3$:



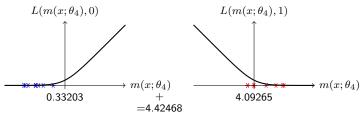
• Training loss:



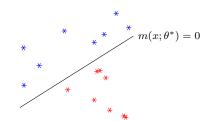
- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta_4$:



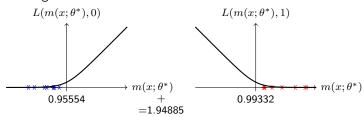
Training loss:



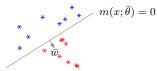
- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot; \theta)$ with parameter $\theta = \theta^*$:



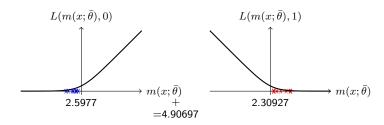
• Training loss:



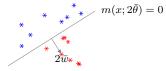
• Let $\bar{\theta}=(\bar{w},\bar{b})$ give model that separates data:



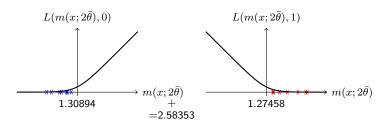
- Let $H_{\bar{\theta}} := \{x : m(x; \bar{\theta}) = \bar{w}^T x + \bar{b} = 0\}$ be hyperplane separates
- Training loss:



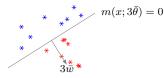
• Also $2\bar{\theta}=(2\bar{w},2\bar{b})$ separates data:



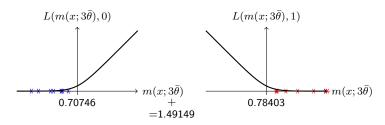
- Hyperplane $H_{2\bar{\theta}}:=\{x:m(x;2\bar{\theta})=2(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same
- Training loss reduced since input $m(x; 2\bar{\theta}) = 2m(x; \bar{\theta})$ further out:



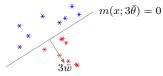
• And $3\bar{\theta}=(3\bar{w},3\bar{b})$ also separates data:



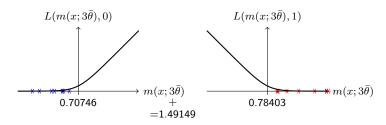
- Hyperplane $H_{3\bar{\theta}}:=\{x:m(x;3\bar{\theta})=3(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same
- Training loss further reduced since input $m(x; 3\bar{\theta}) = 3m(x; \bar{\theta})$:



• And $3\bar{\theta}=(3\bar{w},3\bar{b})$ also separates data:



- Hyperplane $H_{3\bar{\theta}}:=\{x:m(x;3\bar{\theta})=3(\bar{w}^Tx+\bar{b})=0\}=H_{\bar{\theta}}$ same
- Training loss



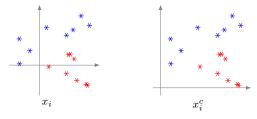
• Let $\theta=t\bar{\theta}$ and $t\to\infty$, then loss $\to 0 \Rightarrow$ no optimal point

The bias term

- The model $m(x;\theta) = w^T x + b$ bias term is b
- ullet Least squares: optimal b has simple formula
- No simple formula to remove bias term here!

Bias term gives shift invariance

- ullet Assume all data points shifted $x_i^c := x_i + c$
- We want same hyperplane to separate data, but shifted



- Assume $\theta = (w, b)$ is optimal for $\{(x_i, y_i)\}_{i=1}^N$
- Then $\theta_c = (w, b_c)$ with $b_c = b w^T c$ optimal for $\{(x_i^c, y_i)\}_{i=1}^N$
- Why? Model outputs the same for all x_i :
 - $m(x_i; \theta) = w^T x_i + b$
 - $m(x_i^c; \theta_c) = w^T x_i^c + b_c = w^T x_i + b + w^T (c c) = w^T x_i + b$

Another derivation of logistic loss

- Assume model is instead $\sigma(w^Tx+b)$, with $\sigma(u)=\frac{1}{1+e^{-u}}$
- Binary cross entropy applied to model with sigmoid output:

$$\begin{aligned} -y\log(\sigma(u)) - (1-y)\log(1-\sigma(u)) \\ &= -y\log(\frac{1}{1+e^{-u}}) - (1-y)\log(1-\frac{1}{1+e^{-u}}) \\ &= -y\log(\frac{e^u}{1+e^u}) - (1-y)\log(\frac{e^{-u}}{1+e^{-u}}) \\ &= -y(u-\log(1+e^u)) + (1-y)\log(1+e^u) \\ &= \log(1+e^u) - yu \ (= \text{logistic loss}) \end{aligned}$$

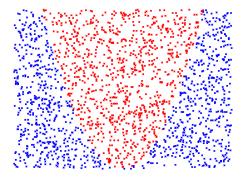
- Two equivalent formulations to arrive at same problem:
 - \bullet Real-valued model $m(x;\theta)$ and logistic loss $\log(1+e^u)-yu$
 - (0,1)-valued model $\sigma(m(x;\theta))$ and binary cross entropy
- Prefer previous formulation
 - easier to see how deviations penalized
 - easier to conclude convexity of training problem

Outline

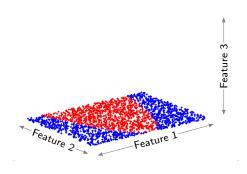
- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

Logistic regression – Nonlinear example

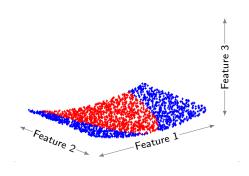
- Logistic regression tries to affinely separate data
- Can nonlinear boundary be approximated by logistic regression?
- Introduce features (perform lifting)



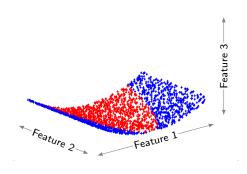
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



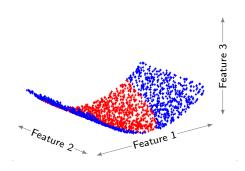
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



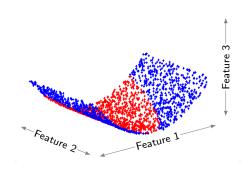
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



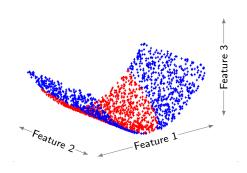
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



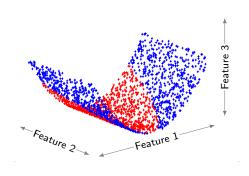
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



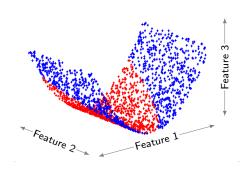
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



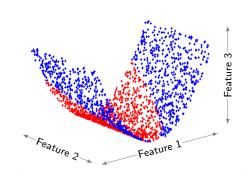
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



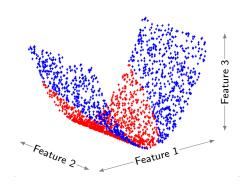
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



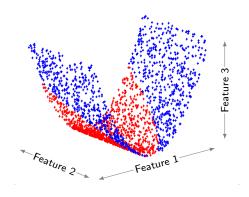
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



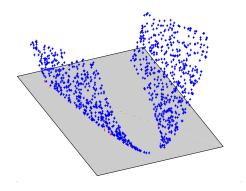
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



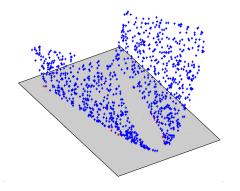
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



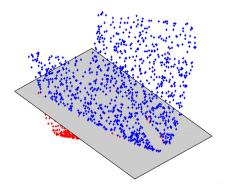
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



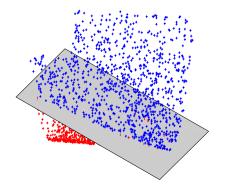
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



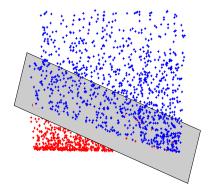
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



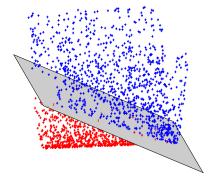
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



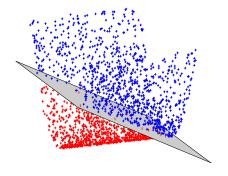
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



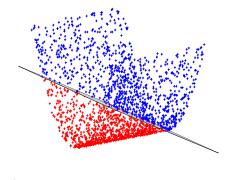
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



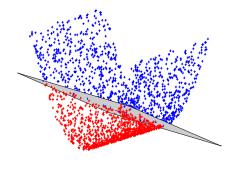
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



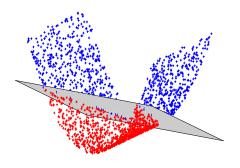
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



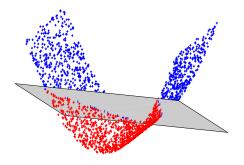
- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



Nonlinear models – Features

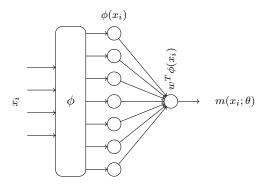
- Create feature map $\phi: \mathbb{R}^n \to \mathbb{R}^p$ of training data
- Data points $x_i \in \mathbb{R}^n$ replaced by featured data points $\phi(x_i) \in \mathbb{R}^p$
- New model: $m(x;\theta) = w^T \phi(x) + b$, still linear in parameters
- ullet Feature can include original data x
- ullet We can add feature 1 and remove bias term b
- Logistic regression training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log(1 + e^{\phi(x_i)^T w + b}) - y_i(\phi(x_i)^T w + b) \right)$$

same as before, but with features as inputs

Graphical model representation

• A graphical view of model $m(x;\theta) = w^T \phi(x)$:



- ullet The input x_i is transformed by *fixed* nonlinear features ϕ
- \bullet Feature-transformed input is multiplied by model parameters θ
- Model output is then fed into cost $L(m(x_i;\theta),y)$
- ullet Problem convex since L convex and model affine in heta

Polynomial features

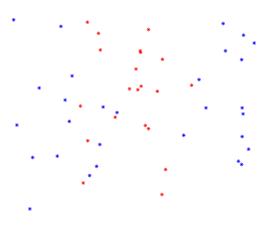
ullet Polynomial feature map for \mathbb{R}^n with n=2 and degree d=3

$$\phi(x) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$$

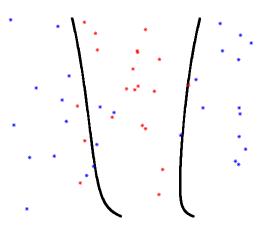
(note that original data is also there)

- New model: $m(x;\theta) = w^T \phi(x) + b$, still linear in parameters
- Number of features $p+1=\binom{n+d}{d}=\frac{(n+d)!}{d!n!}$ grows fast!
- ullet Training problem has p+1 instead of n+1 decision variables

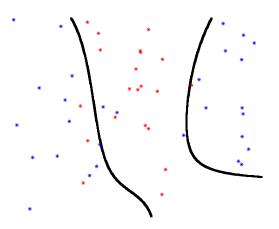
- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree:



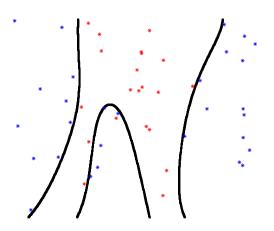
- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 2



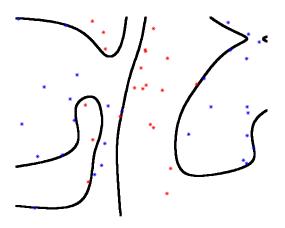
- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 3



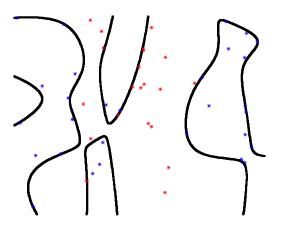
- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 4



- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 5



- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 6

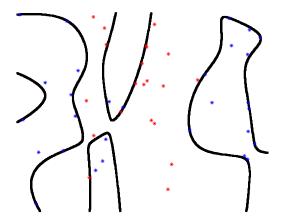


Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

Overfitting

- Models with higher order polynomials overfit
- Logistic regression (no regularization) polynomial features of degree 6



• Tikhonov regularization can reduce overfitting

Tikhonov regularization

Regularized problem:

minimize
$$\sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right) + \lambda ||w||_2^2$$

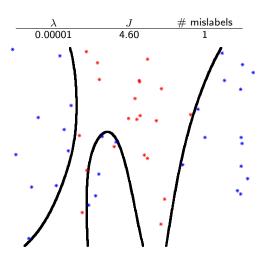
Regularization:

- ullet Regularize only w and not the bias term b
- Why? Model looses shift invariance if also b regularized

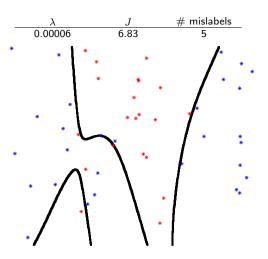
Problem properties:

- Problem is strongly convex in $w \Rightarrow$ optimal w exists and is unique
- Optimal b is bounded if examples from both classes exist

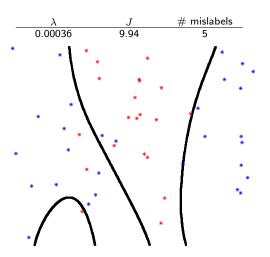
- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



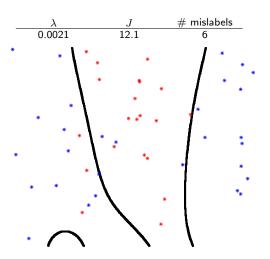
- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



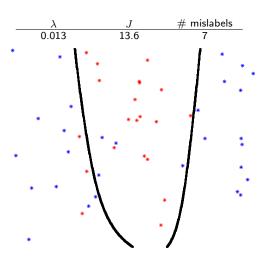
- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



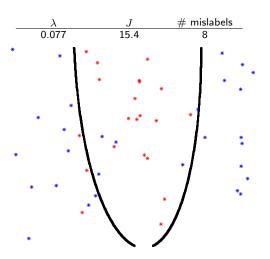
- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\,\#$ mislabels in training



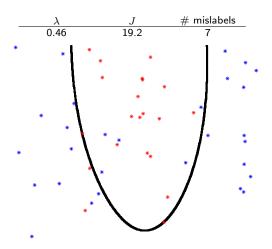
- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



- Regularized logistic regression and polynomial features of degree 6
- \bullet Regularization parameter $\lambda,$ training cost $J,\,\#$ mislabels in training

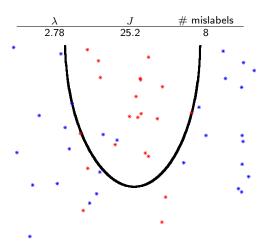


- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



Example – Different regularization

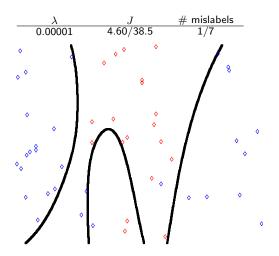
- Regularized logistic regression and polynomial features of degree 6
- ullet Regularization parameter λ , training cost J, # mislabels in training



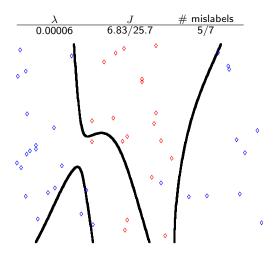
Generalization

- Interested in models that generalize well to unseen data
- ullet Assess generalization using holdout or k-fold cross validation

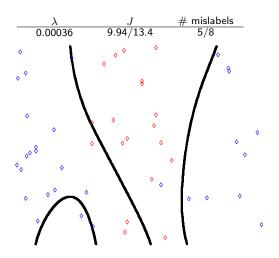
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



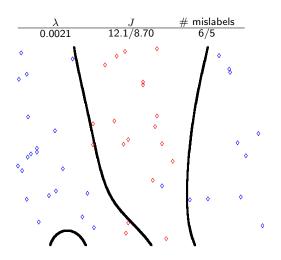
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



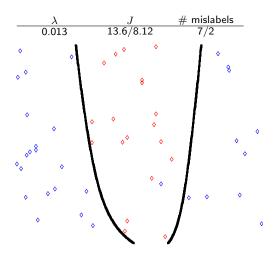
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



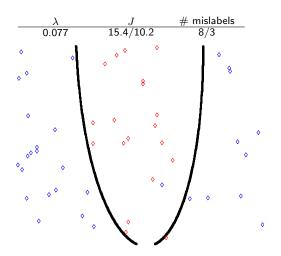
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



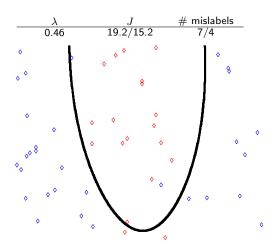
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



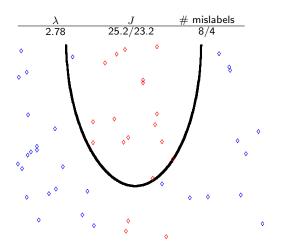
- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values

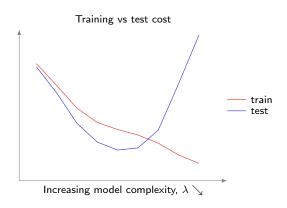


- Regularized logistic regression and polynomial features of degree 6
- ullet J and # mislabels specify training/test values



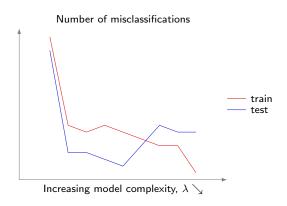
Test vs training error – Cost

- Decreasing λ gives higher complexity model
- Overfitting to the right, underfitting to the left
- Select lowest complexity model that gives good generalization



Test vs training error – Classification accuracy

- Decreasing λ gives higher complexity model
- Overfitting to the right, underfitting to the left
- Cost often better measure of over/underfitting



Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

What is multiclass classification?

- We have previously seen binary classification
 - Two classes (cats and dogs)
 - Each sample belongs to one class (has one label)
- Multiclass classification
 - K classes with $K \geq 3$ (cats, dogs, rabbits, horses)
 - Each sample belongs to one class (has one label)
 - (Not to confuse with multilabel classification with ≥ 2 labels)

Multiclass classification from binary classification

- 1-vs-1: Train binary classifiers between all classes
 - Example:
 - cat-vs-dog,
 - cat-vs-rabbit
 - cat-vs-horse
 - dog-vs-rabbit
 - dog-vs-horse
 - rabbit-vs-horse
 - Prediction: Pick, e.g., the one that wins the most classifications
 - Number of classifiers: $\frac{K(K-1)}{2}$
- 1-vs-all: Train each class against the rest
 - Example
 - cat-vs-(dog,rabbit,horse)
 - dog-vs-(cat,rabbit,horse)
 - rabbit-vs-(cat,dog,horse)
 - horse-vs-(cat,dog,rabbit)
 - Prediction: Pick, e.g., the one that wins with highest margin
 - ullet Number of classifiers: K
 - Always skewed number of samples in the two classes

Multiclass logistic regression

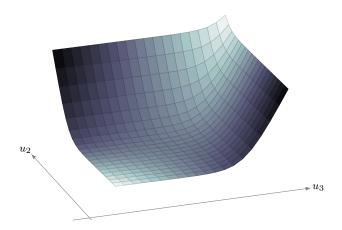
- K classes in $\{1,\ldots,K\}$ and data/labels $(x,y)\in\mathcal{X}\times\mathcal{Y}$
- Labels: $y \in \mathcal{Y} = \{e_1, \dots, e_K\}$ where $\{e_j\}$ coordinate basis
 - Example, K = 5 class 2: $y = e_2 = [0, 1, 0, 0, 0]^T$
- Use one model per class $m_j(x;\theta_j)$ for $j \in \{1,\ldots,K\}$
- Objective: Find $\theta = (\theta_1, \dots, \theta_K)$ such that for all models j:
 - $m_j(x;\theta_j)\gg 0$, if label $y=e_j$ and $m_j(x;\theta_j)\ll 0$ if $y\neq e_j$
- Training problem loss function:

$$L(u,y) = \log \left(\sum_{j=1}^{K} e^{u_j} \right) - u^T y$$

where label y is a "one-hot" basis vector, is convex in u

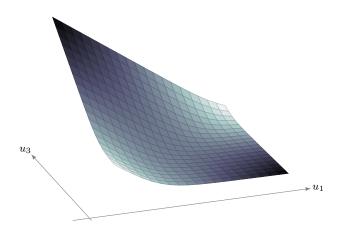
Multiclass logistic loss function – Example

- Multiclass logistic loss for K=3, $u_1=1$, $y=e_1$ $L((1,u_2,u_3),1)=\log(e^1+e^{u_2}+e^{u_3})-1$
- Model outputs $u_2 \ll 0$, $u_3 \ll 0$ give smaller cost for label $y=e_1$



Multiclass logistic loss function – Example

- Multiclass logistic loss for K=3, $u_2=-1$, $y=e_1$ $L((u_1,-1,u_3),1)=\log(e^{u_1}+e^{-1}+e^{u_3})-u_1$
- Model outputs $u_1\gg 0$ and $u_3\ll 0$ give smaller cost for $y=e_1$



Multiclass logistic regression – Training problem

• Affine data model $m(x;\theta) = w^T x + b$ with

$$w = [w_1, \dots, w_K] \in \mathbb{R}^{n \times K}, \qquad b = [b_1, \dots, b_K]^T \in \mathbb{R}^K$$

• One data model per class

$$m(x;\theta) = \begin{bmatrix} m_1(x;\theta_1) \\ \vdots \\ m_K(x;\theta_K) \end{bmatrix} = \begin{bmatrix} w_1^T x + b_1 \\ \vdots \\ w_K^T x + b_K \end{bmatrix}$$

Training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_{j}^{T} x_{i} + b_{j}} \right) - y_{i}^{T} (w^{T} x_{i} + b)$$

where y_i is "one-hot" encoding of label

- Problem is convex since affine model is used
- (Alt.: model $\sigma(w^Tx+b)$ with σ softmax and cross entropy loss)

Multiclass logistic regression - Prediction

- ullet Assume model is trained and want to predict label for new data x
- Predict class with parameter θ for x according to:

$$\underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} m_j(x; \theta)$$

i.e., class with largest model value (since trained to achieve this)

Special case – Binary logistic regression

- Consider two-class version and let
 - $\Delta u = u_1 u_2$, $\Delta w = w_1 w_2$, and $\Delta b = b_1 b_2$
 - $\Delta u = m_{\text{bin}}(x;\theta) = m_1(x;\theta_1) m_2(x;\theta_2) = \Delta w^T x + \Delta b$
 - $y_{\text{bin}} = 1 \text{ if } y = (1,0) \text{ and } y_{\text{bin}} = 0 \text{ if } y = (0,1)$
- Loss L is equivalent to binary, but with different variables:

$$L(u,y) = \log(e^{u_1} + e^{u_2}) - y_1 u_1 - y_2 u_2$$

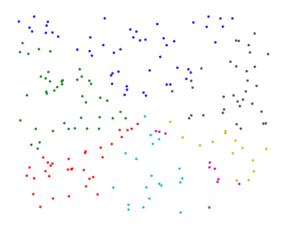
$$= \log\left(1 + e^{u_1 - u_2}\right) + \log(e^{u_2}) - y_1 u_1 - y_2 u_2$$

$$= \log\left(1 + e^{\Delta u}\right) - y_1 u_1 - (y_2 - 1) u_2$$

$$= \log\left(1 + e^{\Delta u}\right) - y_{\text{bin}} \Delta u$$

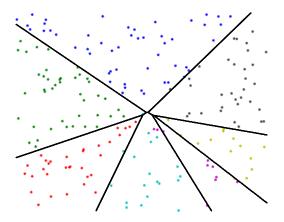
Example - Linearly separable data

• Problem with 7 classes



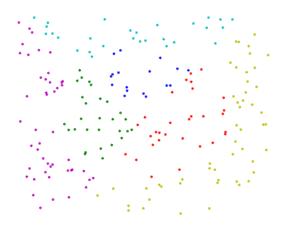
Example - Linearly separable data

• Problem with 7 classes and affine multiclass model



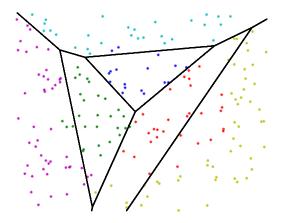
Example - Quadratically separable data

• Same data, new labels in 6 classes



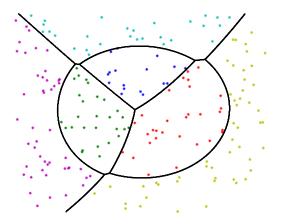
Example - Quadratically separable data

• Same data, new labels in 6 classes, affine model



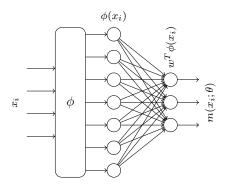
Example - Quadratically separable data

• Same data, new labels in 6 classes, quadratic model



Features

- Used quadratic features in last example
- Same procedure as before:
 - ullet replace data vector x_i with feature vector $\phi(x_i)$
 - run classification method with feature vectors as inputs



Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties

Composite optimization - Binary logistic regression

Regularized (with g) logistic regression training problem (no features)

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log \left(1 + e^{w^T x_i + b} \right) - y_i (w^T x_i + b) \right) + g(\theta)$$

can be written on the form

$$\underset{\theta}{\text{minimize}} f(L\theta) + g(\theta),$$

where

- $f(u) = \sum_{i=1}^{N} (\log(1 + e^{u_i}) y_i u_i)$ is data misfit term
- L = [X, 1] where training data matrix X and 1 satisfy

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} \qquad \qquad \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

g is regularization term

Gradient and function properties

• Gradient of $h_i(u_i) = \log(1 + e^{u_i}) - y_i u_i$ is:

$$\nabla h_i(u_i) = \frac{e^{u_i}}{1 + e^{u_i}} - y_i = \frac{1}{1 + e^{-u_i}} - y_i =: \sigma(u_i) - y_i$$

where $\sigma(u_i) = (1 + e^{-u_i})^{-1}$ is called a *sigmoid* function

• Gradient of $(f \circ L)(\theta)$ satisfies:

$$\nabla (f \circ L)(\theta) = \nabla \sum_{i=1}^{N} h_i(L_i \theta) = \sum_{i=1}^{N} L_i^T \nabla h_i(L_i \theta)$$
$$= \sum_{i=1}^{N} \begin{bmatrix} x_i \\ 1 \end{bmatrix} (\sigma(x_i^T w + b) - y_i)$$
$$= \begin{bmatrix} X^T \\ \mathbf{1}^T \end{bmatrix} (\sigma(Xw + b\mathbf{1}) - Y)$$

where last $\sigma: \mathbb{R}^N \to \mathbb{R}^N$ applies $\frac{1}{1+e^{-u_i}}$ to all $[Xw+b\mathbf{1}]_i$

- Function and sigmoid properties:
 - sigmoid σ is 0.25-Lipschitz continuous:
 - f is convex and 0.25-smooth and $f \circ L$ is $0.25 \|L\|_2^2$ -smooth