
Stochastic Gradient Descent

Implicit Regularization

Pontus Giselsson

1

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

2

Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)
= argmin

x

(
1

2γk
‖x− (xk − γk∇f(xk))‖22

)
= xk − γk∇f(xk)

• Graphical illustration of one step

f(x)

f(xk) +∇f(xk)T (x− xk) + 1
2γk
‖x− xk‖22

xk

3

Gradient method interpretation

• Gradient method minimizes quadratic approximation of function

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)
= argmin

x

(
1

2γk
‖x− (xk − γk∇f(xk))‖22

)
= xk − γk∇f(xk)

• Graphical illustration of one step

f(x)

f(xk) +∇f(xk)T (x− xk) + 1
2γk
‖x− xk‖22

xk+1

3

Scaled gradient method

• Quadratic approximation same in all directions due to ‖ · ‖22

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖22

)
• Scaled gradient method minimizes scaled quadratic approximation

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + 1

2γk
‖x− xk‖2H

)
= argmin

x

(
1

2γk
‖x− (xk − γkH−1∇f(xk))‖2H

)
= xk − γkH−1∇f(xk)

where H is a positive definite matrix and ‖x‖2H = xTHx

• Nominal gradient method obtained by H = I

• Better quadratic approximation (good H) ⇒ faster convergence

4

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Gradient descent – Example

• (Unscaled) Gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Graphical illustration:

5

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

Scaled gradient descent – Example

• Scaled gradient descent on convex quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Scaling H = diag(∇2f) := P :

6

How to select metric H?

• A priori: Use a fixed H thoughout iterations
• can be difficult to find a good performing H
• does not adapt to local geometry

• Adaptively: Iteration-dependent Hk that adapts to local geometry

7

Adaptive metric methods

• Algorithms with full Hk:
• (Regularized) Newton methods
• Quasi-Newton methods

• Algorithms with diagonal Hk (in stochastic setting):
• Adagrad
• RMSProp
• Adam
• Adamax/Adadelta
• . . .

8

SGD variations with adaptive diagonal scaling

• Diagonal scaling gives one step-size (learning rate) per variable

• SGD type methods with diagonal Hk = diag(h1,k, . . . , hN,k):

xk+1 = xk − γkH−1k ∇̂f(xk)

where
• the inverse is H−1

k = diag(1
h1,k

, . . . , 1
hN,k

)

• ∇̂f(xk) is a stochastic gradient approximation

• Methods called variable metric methods since Hk defines a metric

• Introduced to improve convergence compared to SGD

• Can have worse generalization properties?

9

Metrics – RMSprop and Adam

• Estimate coordinate-wise variance:

v̂k = bv v̂k−1 + (1− bv)(∇̃f(xk−1))2

where v̂0 = 0, bv ∈ (0, 1)

• Metric Hk is chosen (approximately) as standard deviation:
• RMSprop: biased estimate Hk = diag(

√
v̂k + ε)

• Adam: unbiased estimate Hk = diag(
√

v̂k
1−bkv

+ ε)

• Intuition:
• Reduce step size for high variance coordinates
• Increase step size for low variance coordinates

• Alternative intuition:
• Reduce step size for “steep” coordinate directions
• Increase step size for “flat” coordinate directions

10

Filtered stochastic gradients

• Adam also filters stochastic gradients for smoother updates
• Let m̂0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)∇̃f(xk−1)

• Adam uses unbiased estimate: m̂k

1−bkm
• Fixed step-size without filtered gradient

Levelsets of summands

11

Filtered stochastic gradients

• Adam also filters stochastic gradients for smoother updates
• Let m̂0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)∇̃f(xk−1)

• Adam uses unbiased estimate: m̂k

1−bkm
• Fixed step-size with filtered gradient

Levelsets of summands

11

Adam – Summary

• Initialize m̂0 = v̂0 = 0, bm, bv ∈ (0, 1), and select γ > 0

1. gk = ∇̃f(xk−1) (stochastic gradient)
2. m̂k = bmm̂k−1 + (1− bm)gk
3. v̂k = bv v̂k−1 + (1− bv)g2k
4. mk = m̂k/(1− bkm)
5. vk = v̂k/(1− bkv)
6. xk+1 = xk − γmk./(

√
vk + ε1)

• Suggested choices: bm = 0.9, bv = 0.999, ε = 10−8, γ = 0.001

• More succinctly

xk+1 = xk − γH−1k mk

where metric Hk = diag(
√
vk,1 + ε, . . . ,

√
vk,n + ε)

12

Adam vs SGD

• Adam designed to converge faster than SGD by adaptive scaling

• Often observed to give worse generalization than SGD

• Two possible reasons for worse generalization:
• Convergence to larger norm solutions?
• Convergence to sharper minima?

13

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

14

Generalization in neural networks

• Recall: Lipschitz constant L of neural network

L = ‖Wn‖2 · ‖Wn−1‖2 · · · ‖W1‖2

or with ‖Wj‖2 replaced by (1 + ‖Wj‖2) for residual layers

• Can use ‖θ‖2 where θ = {(Wi, bi)}ni=1 as proxy

• Overparameterized networks
• Infinitely many solutions exist
• Want a solution with small ‖θ‖2 for good generalization

15

Explicit vs implicit regularization

• Tikhonov adds ‖ · ‖22 norm penalty for better generalization

minimize
θ

N∑
i=1

L(m(xi; θ), yi) + λ
2 ‖θ‖

2
2

which gives a smaller θ and is a form of explicit regularization

• Deep learning has no explicit regularization ⇒ training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

with many 0-loss solutions in overparameterized setting

• Implicit regularization if algorithm finds small norm solution

16

(S)GD limit points

• Assume overparameterized convex least squares problem

• Gradient descent converges to projection point of initial point

• If SGD converges, it converges to same projection point

17

Least squares

• Consider least squares problem of the form

minimize
x

1
2‖Ax− b‖

2
2

where A ∈ Rm×n, b ∈ Rm, m < n, and ∃x̄ such that Ax̄ = b

• Problem is overparameterized and has many solutions

• Since m < n, solution set is

X := {x : Ax = b}

which is (at least) n−m-dimensional affine set

18

Gradient method convergence to projection point

• Will show that scaled gradient method

xk+1 = xk − γkH−1∇f(xk)

converges to ‖ · ‖H -norm projection onto solution set from x0
• Means that scaled gradient method converges to solution of

minimizex ‖x− x0‖2H
subject to Ax = b

where H decides metric in which to measure distance from x0
• If x0 = 0, we get minimum ‖ · ‖H -norm solution in {x : Ax = b}

19

Characterizing projection point

• The unique projection point x̂ = argmin
x∈X

(‖x−x0‖2H) if and only if

Hx̂−Hx0 ∈ R(AT) and Ax̂ = b

where R(AT) is the range space of AT

• The range space is R(AT) = {v ∈ Rn : v = ATλ and λ ∈ Rm}

20

Convergence to projection point

• The scaled gradient method can be written as

Hxk+1 = Hxk − γkAT (Axk − b),

if all γk > ε > 0 are small enough, it converges to a solution x̄:

xk → x̄ and Ax̄ = b

• Letting λk = −
∑k
l=0 γl(Axl − b) ∈ Rm and unfolding iteration:

Hxk+1 −Hx0 = −
k∑
l=0

γlA
T (Axl − b) = ATλk ∈ R(AT)

• In the limit xk → x̄, we get

Hx̄−Hx0 ∈ R(AT)

which with Ax̄ = b gives optimality conditions for projection
• If x0 = 0, the algorithm converges to argmin

x∈X
(‖x‖H)

21

Graphical interpretation

• What happens with scaled gradient method?

• Solution set X extends infinitely
• sequence is perpendicular to X in scalar product (Hx)T y
• algorithm converges to projection point argminx∈X(‖x− x0‖H)

{x : Ax = b}

Gradient method

{x : Ax = b}

A scaled gradient method

22

SGD – Convergence to projection point

• Least squares problem on finite sum form

minimize
x

1
2‖Ax− b‖

2
2 = 1

2

m∑
i=1

(aTi x− bi)2

where A = [a1, . . . , am]T

• Applying single-batch scaled SGD:

xk+1 = xk − γkH−1aik(aTikxk − bik)

• The iteration can be unfolded as

Hxk+1 −Hx0 = −
k∑
l=0

ailγl(a
T
ilxl − bil) = AT

−

k∑
l=0

χ
il=1

(γl(a
T
1 xl − b1))

...

−
k∑
l=0

χ
il=m

(γl(a
T
mxl − bm))

where χ

il=j
(v) = v if il = j, else 0, so Hxk+1 −Hx0 ∈ R(AT)

• Assume xk → x̄ with Ax̄ = b ⇒ convergence to projection point
23

SGD vs Adam

This analysis hints towards that SGD gives smaller norm solutions and
better generalization than variable metric Adam. Is this true?

24

How about deep learning?

• The analysis does not carry over to nonconvex DL settings

• However, often convergence to similar norm as initial point

25

How to select initial point?

• For standard networks:
• To avoid vanishing and exploding gradient, we want:

L‖Wj‖2 ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant (L = 0.5 for
ReLU)

• Initialization for ReLU:
• (Wj)il ∼ N (0, 2√

mjnj
) gives average ‖Wj‖2 = 2

• (bj)i small or 0

• For residual networks:
• To avoid vanishing and exploding gradient, we want

L(1 + ‖Wj‖2) ≈ 1 and ‖bj‖2 small

where L is average activation Lipschitz constant
• Use smaller initilization than for standard networks

26

Initialization in next example

• Set scaling of weights by σ

• For the residual layers (all square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by σ
• (bj)i ∼ N (0, 1), normalize bj , scale by σ

• For the non-residual layers (non-square layers)
• (Wj)ij ∼ N (0, 1), normalize Wj , scale by max(1, σ)
• (bj)i ∼ N (0, 1), normalize bj , scale by max(1, σ)
• use max(1, σ) for gradient to not vanish in non-residual layers

27

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: SGD

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =3.57

9.9 0.051

8.4 · 104

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: SGD

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =3.8

10.4 0.042

2.0 · 105

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: SGD

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =10.8

14.4 0

2.4 · 105

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: SGD

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =54.2

49.5 0.036

1.9 · 1012

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: SGD

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =107.2

96.2 0

1.6 · 1015

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.01 Algorithm: Adam

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =3.6

17.4 0.12

9.3 · 107

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 0.1 Algorithm: Adam

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =3.9

16.2 0

4.5 · 107

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 1 Algorithm: Adam

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =10.7

18.7 0

4.3 · 107

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 5 Algorithm: Adam

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =54.61

54.61 0

1.9 · 1012

28

Convergence from different initial point

• Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

• Lm is Lipschitz constant in x of final model m(x; θ)

• Initialization scaling σ: 10 Algorithm: Adam

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

‖θ0‖2 =

‖θend‖2 = loss(θend) =

Lm =109.278

109.282 0

3.8 · 1016

28

Conclusions

• Choice of initial point is significant for generalization

• Here, Adam gives models with larger Lipschitz constant Lm

Adam SGD

scaling σ ‖θ0‖2 ‖θend‖2 Lm ‖θ0‖2 ‖θend‖2 Lm

0.01 3.6 17.4 9.3 · 107 3.57 9.9 8.4 · 104

0.1 3.9 16.2 4.5 · 107 3.8 10.4 2.0 · 105

1 10.7 18.7 4.3 · 107 10.8 14.4 2.4 · 105

5 54.61 54.61 1.9 · 1012 54.2 49.5 1.9 · 1012

10 109.278 109.282 3.8 · 1016 107.2 96.2 1.6 · 1015

29

Outline

Variable metric methods

Convergence to projection point

Convergence to sharp or flat minima

30

Convergence to sharp or flat minima

• Have argued flat minima generalize well, sharp minima poorly

• Is Adam or SGD most likely to converge to sharp minimum?

31

Variable metric methods – Interpretation

• Variable metric methods

xk+1 = xk − γkH−1k ∇f(xk) (1)

can be interpreted as taking pure (stochastic) gradient step on

fHk
= (f ◦H−1/2k)(x)

• Why? Gradient method on fHk
is

vk+1 = vk − γk∇fHk
(vk) = vk − γkH−1/2k f(H

−1/2
k vk)

which after
• multiplication with H−1/2

• and change of variables according to xk = H
−1/2
k vk

gives (1)

32

Interpretation consequence

• Variable metric methods choose Hk to make fHk
well conditioned

• Consequences:
• Sharp minima in f become less sharp in fHk

• (Flat minima in f become less flat in fHk)

• Adam maybe more likely to converge to sharp minima than SGD

• This can be a reason for worse generalization in Adam than SGD

33

Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 1000

SGD Adam

34

Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 100000

SGD Adam

34

Adam vs SGD – Flat or sharp minima

• Data from previous classification example with σ = 10

• Loss landscape around final point θend for SGD and Adam

• SGD and Adam reach 0 loss but Adam minimum much sharper

• Same θ1, θ2 directions, same axes, zmax = 109

SGD Adam

34

