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Binary classification

Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
Training problem

N
mmlemlzeziT (m(z4;0),y:)

Design loss L to train model parameters 6 such that:
® m(x;;60) < 0 for pairs (z;,y:) where y; =0
® m(xz;;60) > 0 for pairs (x;,y;) where y; =1
Predict class belonging for new data points  with trained 6:
. m(x;@ < 0 predict class y = 0
® m(xz;0) > 0 predict class y = 1



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(z;0)

L(u,y) = log(1 + e*) — yu (logistic loss)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(x;0) m(z;0)

nonconvex (Neyman Pearson loss)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,u) — yu

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu) (hinge loss used in SVM)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu)? (squared hinge loss)

m(z;0)
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Support vector machine

® SVM uses:
® affine parameterized model m(z;6) = w¥z 4 b (where § = (w, b))
® |oss function L(u,y) = max(0,1 — yu) (if labels y = —1, y = 1)
® Training problem, find model parameters by solving:
N N
L 5 0), i) = 0,1 —y;(wha; +b
mlnlemlze; (m(z4;0),y;) ZZ;max( , yi(w” x; + b))

® Training problem convex in § = (w,b) since:
® model m(x;0) is affine in ¢
® |oss function L(u,y) is convex in u

L(u,—l) L(U" 1)




Prediction

® Use trained model m to predict label y for unseen data point =
® Since affine model m(z;6) = w™x + b, prediction for = becomes:
e If wTz + b < 0, predict corresponding label y = —1
e If wTz 4+ b >0, predict corresponding label y = 1
® If wTz +b=0, predict either y = —1ory =1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}




Training problem interpretation

® Every parameter choice § = (w,b) gives hyperplane in data space:
H:={z:wTz+b=0} = {z:m(x;0) = 0}

® Training problem searches hyperplane to “best” separates classes
® Example — models with different parameters 6:




What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 6;:

m(z;01) =0
*
*
¢
® Training loss:
L(m(x;el)v_l) L(m(xvel)vl)
€3 m(xz;01) ; #m(x; 01)
5.69992 + 0.0

=5.69992



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 65:

¢
® Training loss:
L(m(x;QQ)v_l) L(m(IVGQ)vl)
; m(x;602) ; ¢ m(z;02)
12.31264 + 0.52513

=12.83777



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 65:

— ¥

* . T m(x;03) =0
*
*
*
® Training loss:
L(m(x;603),—1) L(m(z;63),1)
: m(x;03) ; m(z;03)

3.66974 + 5.13803

=8.80777



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 0) with parameter 6 = 6,:

* w _—m(xz;04) =0
* ////*/
////% *
*
¢
® Training loss:
L(m(x;04),—l) L(m(x794)71)
; m(x;04) ‘ m(x;04)
0.0 + 5.90926

=5.90926



What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;0) with parameter 6 = 6*:

® Training loss:
L(m(z;0%), —1) L(m(w;0%),1)

0.0 + 0.0



Fully separable data — Solution

® Let 0 = (w,b) give model that separates data:
m(x;0) =0

® Let Hy := {z: m(x;0) = wl'z+b = 0} be hyperplane separates
® Training loss:

il m(z;6) \ m(x;0)
1.54938 + 1.78937
=3.33875

10



Fully separable data — Solution

® Also 20 = (2w, 2b) separates data:

® Hyperplane H,j := {x : m(z;20) = 2(wTx +b) = 0} = Hy same

® Training loss reduced since input m(z;20) = 2m(x; 0) further out:

| m(z; 20) % m(x;20)
0.20813 + 0.30518
=0.5133

10



Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

*
3w *

® Hyperplane Hyj := {x : m(x;30) = 3(w”z + b) = 0} = Hy same
® Training loss further reduced since input m(z;36) = 3m(x;0):

L(m(z; 36), —1) L(m(x;36),1)
o m(z; 30) ; m(x; 36)
0.0 + 0.0
=0.0

10



Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

*
3w *

® Hyperplane Hsp := {z : m(x;30) = 3(wTz + b) = 0} = Hy same
® Training loss

L(m(z; 36), —1) L(m(x;36),1)
o m(z; 30) ; m(x; 36)
0.0 + 0.0
=0.0

e As soon as |m(x;;6)| > 1 (with correct sign) for all z;, cost is 0

10



Margin classification and support vectors

® Support vector machine classifiers for separable data
® (lasses separated with margin, o marks support vectors

/’\
v 47
DD
SEe
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Nonlinear example

® Can classify nonlinearly separable data using lifting

* « .
* *
*
* % *
*
*
* *
*
* * 5 %
*
* * *
*
*
* * *
%
*
*
*
* *
* *

* ¥
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Adding features

Create feature map ¢ : R™ — RP of training data
Data points x; € R™ replaced by featured data points ¢(z;) € R?

Example: Polynomial feature map with n = 2 and degree d = 3

2 2 2
o(x) = (71,72, 73, 1129, 73, 23, 2320, 123, 3)

n+d) _ (n+d)!

Number of features p +1 = ("}¢) = =55 grows fast!

SVM training problem

N
minimize ;:1 max (0, yi(w” () + b))

still convex since features fixed

14



Nonlinear example — Polynomial features

e SVM and polynomial features of degree 2

15



Nonlinear example — Polynomial features

e SVM and polynomial features of degree 3
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 4

15



Nonlinear example — Polynomial features

e SVM and polynomial features of degree 5
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 6
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 7
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 8
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 9
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Nonlinear example — Polynomial features

e SVM and polynomial features of degree 10

15
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Overfitting and regularization

SVM is prone to overfitting if model too expressive

Regularization using || - ||1 (for sparsity) or || - [|3
Tikhonov regularization with || - |3 especially important for SVM
Regularize only linear terms w, not bias b

Training problem with Tikhonov regularization of w

N
miniemize;max(o, 1— yi(wT¢(mi) +0))+ %Hw”%

(note that features are used ¢(z;))

17



Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00001

18



Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00006
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00036
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.0021
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.013
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.077
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A\ = 0.46
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Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A\ =2.78

18



Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 16.7

e )\ and polynomial degree chosen using cross validation/holdout

18
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SVM problem reformulation

® Consider Tikhonov regularized SVM:

N
mirgglizeZmax(O, 1-— yz(wT¢(l‘z) +0)) + %HwH%

i=1
® Derive dual from reformulation of SVM:

minirglize 1" max(0,1 — (X¢,yw + Yb)) + 3[|w|3
w,

where max is vector valued and

y1¢(331)T Y1

YN

20



Dual problem

® Let L =[X4y,Y] and write problem as

minimize 17 max(0,1 — (Xy yw + Yb)) + 5 ||wl|3
w,b N—_——
F(L(w,b)) g(w,b)

where

* f() =N, filwi) and fi(1h;) = max(0,1 — ;) (hinge loss)

® g(w,b) = 5||wl3, i.e., does not depend on b

® Dual problem

minimize f*(v) + g*(—L"v)

21



Conjugate of ¢

* Conjugate of g(w,b) = 3 |w[|3 =: g1(w) + g2(b) is

9 (s 1) = 95 () + 95 (1) = 55 110 ||3 + 1403 (126)

® Evaluated at —LTv = —[X, v, Y]Tv:

5 I =g (= | v) = &l - XEyviB + oy -¥ T

= il/TX@Y}(;jyl/ + t{0 (YTV)

22



Conjugate of f

¢ Conjugate of f;(v;) = max(0,1 — v;) (hinge-loss):

% v; |f—1§1/1§0
fi (i) :{

oo else

® Conjugate of f(¢) = Zf\il fi(2;) is sum of individual conjugates:

N
)= fiw) =1Tv 4 1,0/()

i=1

23



SVM dual

The SVM dual is
minimize f*(v) + g* (- LTv)
v
Inserting the above computed conjugates gives dual problem
miniymize vazl v + ﬁVTXquXg,YV
subjectto —-1<r<0
YTy =0

Since Y € RV, Y7v = 0 is a hyperplane constraint

If no bias term b; dual same but without hyperplane constraint

24



Primal solution recovery

Meaningless to solve dual if we cannot recover primal
Necessary and sufficient primal-dual optimality conditions

af*(v) — L(w,b)
0e {Bg*(—LTV) ~ (w,b)

From dual solution v, find (w,b) that satisfies both of the above

For SVM, second condition is

o ({50

which gives optimal w = —+ X{ v (since unique)

Cannot recover b from this condition

25



Primal solution recovery — Bias term

® Necessary and sufficient primal-dual optimality conditions

0 {8f() L(w, )
0y (~L"v) = (w,)

® For SVM, row i of first condition is 0 € f(v;) — L;(w, b) where

[—o0,1] ify;=-1
1 if —1 i < 0
o) = T L et
0 else

® Pick ¢ with v; € (—1,0), then unique subgradient df;(v;) is 1 and
0=1—y(w¢(x;) +b)

and optimal b must satisfy b = y; — w” ¢(x;) for such i

26
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SVM dual — A reformulation

® Dual problem

o N
minimize Sivit s T Xy XD v
subjectto —-1<vr <0

YTy =0

® Let k;j == ¢(x;)T¢(x;) and rewrite quadratic term:

[¢(x1)T
yTXd,)ng)YV = vdiag(Y) : [gb(:z:l) cee gb(xN)} diag(Y)v
Lo(zn)T
(k11 -+ KN
=vdiag(Y) | © .. o | diag(Y)v
|[AN1  “* KNN
K

where K is called Kernel matrix
28



SVM dual — Kernel formulation

® Dual problem with Kernel matrix

minimize YN v + 5 vT diag(Y)K diag(Y)v
subjectto —-1<rv <0
YTy =0

® Solved without evaluating features, only scalar products:

Rij = ¢(I1)T¢(Ij)

29



Kernel methods

® We explicitly defined features and created Kernel matrix

® We can instead create Kernel that implicitly defines features

30



Kernel operators

® Define:

® Kernel operator k(z,y) : R* x R" - R
® Kernel shortcut k;; = K(zi, ;)
® A Kernel matrix

K11 R1IN

RN1 RNN

o A Kernel operator £ : R” x R" — R is:
® symmetric if k(z,y) = k(y, )
® positive semidefinite (PSD) if symmetric and

m
E aiajk(zi, z;) >0
2%}

forallm e N, a;,a; € R, and z;,2; € R"
o All Kernel matrices PSD if Kernel operator PSD

31



Mercer’s theorem

Assume £ is a positive semidefinite Kernel operator
Mercer's theorem:

There exists continuous functions {e;}2°; and nonnegative
{152, such that

K(z,y) =Y Ajej(x)e;(y)
j=1

Let ¢(z) = (VAre1(x), vV Azea(), ...) be a feature map, then
w(,y) = (d(x), o(y))

where scalar product in {5 (space of square summable sequences)

A PSD kernel operator implicitly defines features

32



Kernel SVM dual and corresponding primal

® SVM dual from Kernel s with Kernel matrix K;; = x(x;, ;)

minimize Zfil Vi + 55 v diag(Y) K diag(Y)v

subjectto —-1<vr<0
YTy =0

® Due to Mercer's theorem, this is dual to primal problem

N
L Al 12
minimize E_l max(0,1 — y;((w, ¢(z4)) + b)) + 5 [|w]|

with potentially an infinite number of features ¢ and variables w

33



Primal recovery and class prediction

Assume we know Kernel operator, dual solution, but not features

® Can recover: Label prediction and primal solution b
® Cannot recover: Primal solution w (might be infinite dimensional)

Primal solution b = y; — w’ ¢(x;):
y1(a1)” Yi1k1i
w' (@) = =3 Xpyd(z:) = —5v7 : dla) =—3v' |
yno(an)” YNKNi
Label prediction for new data z (sign of w” ¢(x) + b):
y1(x1)" p(x) yik(z1, )
w¢(z) +b=—1v" 5 +b=—1" 5 +b
yn(zn) " é(z) ynk(zN, )

We are really interested in label prediction, not primal solution

34



Valid kernels

® Polynomial kernel of degree d: x(z,y) = (1 4+ 27y)?
® Radial basis function kernels:

llz—yli3
® Gaussian kernel: k(z,y) =e 202

lz—yll2
® Laplacian kernel: k(z,y) =e~ o

® Bias term b often not needed with Kernel methods

35



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 0.01

36



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 0.035938

36



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 0.12915

36



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 0.46416

36



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 1.6681

36



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A = 5.9948
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with 0 =1
e Regularization parameter: A\ = 21.5443

36



Example — Laplacian Kernel

e What if there is no structure in data? (Labels are randomly set)

* *

* *

* * *
* *

*
* *
*
* * wF *
*
* * * *
*
2 *
* *,
*
* *
*
*
]
*
* *
* *
*

37



Example — Laplacian Kernel

e What if there is no structure in data? (Labels are randomly set)

e Regularized SVM Laplacian Kernel, regularization parameter: A = 0.01

e Linearly separable in high dimensional feature space

e Can be prone to overfitting = Regularize and use cross validation
37
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Composite optimization — Dual SVM

Dual SVM problems

o N
minimize Y1 v + x0T Xg vy X v
» :

subjectto —-1<v <0
YTy =0

can be written on the form
minimize hq (v) + hz(—ngl/)7
" ;

where

. hl(V) =17y + L[-1,0] (Z/) + L{0} (YTZ/)
® First part 170 + t[-1,0](¥) is conjugate of sum of hinge losses
® Second part L{o}(YTZ/) comes from that bias b not regularized

® ha(p) = 55||ul3 is conjugate to Tikhonov regularization 4 |wl|3

39



Gradient and function properties

® Gradient of (hg o —ng) satisfies:

V(hao =X y)(v) =V (50" Xov XJ yv) = 3 Xy X yv
= 1 diag(Y)K diag(Y)v

where K is Kernel matrix

® Function properties

. _ .Ix 2
® h, is convex and A\~ l-smooth, hs o —Xiy is @-smooth

® h; is convex and nondifferentiable, use prox in algorithms
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