
Competition -
Music classification

September 12, 2022, Version 1.2

Andreas Lindholm (was Svensson),
Dept. of Information Technology

Uppsala University
andreas.svensson@it.uu.se

Bo Bernhardsson
Dept. of Automatic Control

Lund University
bob@control.lth.se

Abstract

This document contains the instructions for laboration 1 which is formed as a
competition 1. The problem is to classify a set of 200 songs, and predict whether
Andreas Lindholm (former Svensson) would like them or not. To your help you
have a training data set with 750 songs, which Andreas has classified as like (1)
or dislike (0). You are expected to (i) try a number of classification methods and
evaluate their performance on the problem, and (ii) make a decision which one to
use and ‘put in production’ by uploading your predictions to a website, where your
prediction will be evaluated and also compared to the performances of the other
competitors. You should also document your project according to the instructions
in Section 3.

0 Setup

Your handin should follow the structure described in Section 3 below and be handed in via Canvas
before the deadline.

1 Problem

The problem is to tell which songs, in a dataset of 200 songs, Andreas Lindholm is going to like
(see Figure 1). The data set consists not of the songs themselves, but of high-level features extracted
using the web-API from Spotify2. These high-level features describe characteristics such as the
acousticness, danceability, energy, instrumentalness, valence and tempo of each song.

To your help, you are provided a training data set with 750 songs, each of which Andreas has labeled
with LIKE or DISLIKE. You are expected to try out classification methods described in the course, to
come up with one algorithm that you think is suited for this problem and which you decide to put ‘in
production’.

1.1 Data sets

The data set to classify is available as songs_to_classify.csv, and the training data is available
as training_data.csv. The format of the data files is described in readme.txt. For details on
the extracted features, see Table 1. The data sets are available at the web page linked in Canvas.

1Thanks to Andreas who originally developed this assignment for the statistical machine learning course at
Uppsala University, http://www.it.uu.se/edu/course/homepage/sml/, and has generously allowed us to reuse it.
The contribution by the second author has been purely editorial.

2https://developer.spotify.com/web-api/get-audio-features/

andreas.svensson@it.uu.se
bob@control.lth.se
http://www.it.uu.se/edu/course/homepage/sml/
https://developer.spotify.com/web-api/get-audio-features/


Figure 1: Andreas Svensson listening to music.

Table 1: Details on the available features (from the Spotify API documentation)

Name Type Description

acousticness float A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic.
danceability float Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm

stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable.
duration_ms int The duration of the track in milliseconds.
energy float Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks

feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual
features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy.

instrumentalness float Predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context. Rap or spoken
word tracks are clearly "vocal". The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal
content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0.

key int The key the track is in. Integers map to pitches using standard Pitch Class notation. E.g. 0 = C, 1 = C major/D minor, 2 = D, and
so on.

liveness float Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was
performed live. A value above 0.8 provides strong likelihood that the track is live.

loudness float The overall loudness of a track in decibels (dB). Loudness values are averaged across the entire track and are useful for comparing
relative loudness of tracks. Loudness is the quality of a sound that is the primary psychological correlate of physical strength
(amplitude). Values typical range between -60 and 0 db.

mode string Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived.
speechiness float Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show,

audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely
of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or
layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks.

tempo float The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given
piece and derives directly from the average beat duration.

time_signature int An estimated overall time signature of a track. The time signature (meter) is a notational convention to specify how many beats
are in each bar (or measure).

valence float A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive
(e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry).

1.2 Background

The problem of predicting user preferences is a hot research topic both in academia and industry:
you have probably seen “you would perhaps also like . . . ” in online services. Within music, a big
player has been the Echo Nest, founded in 2005 as a research spin-off from the MIT Media Lab and
later acquired by Spotify. Their focus was methods for automated understanding of music, and in
2011 they released a popular benchmark dataset ‘the million song dataset’ (Bertin-Mahieux et al.
2011) which has become popular in the research community (see, for example, Fu et al. 2011; Oord,
Dieleman, and Schrauwen 2013), and has similarities to this project. An overview of the scientific
field of music recommendation is found in Kaminskas and Ricci (2012), and some pointers to recent
advances can be found in Dieleman (2016) and Jacobson et al. (2016).

2 Technical tasks

2.1 Methods to explore

You should now have some familiarity with the following ‘families’ of classification methods:

(i) K-nearest neighbor
(ii) Logistic regression

(iii) Discriminant analysis: LDA, QDA
(iv) Tree-based methods: classification trees, random forests, bagging
(v) Boosting

2



(vi) Support Vector Machines

In the laboration task, you decide yourself which method(s) to explore. You should also decide which
features to use and what preprocessing you want to do on the data, such as data normalisation, outlier
detection and encoding of categorical variables. Example code for KNN is provided to you via the
web page linked in Canvas. This code however only uses a subset of the features, and is not optimized
enough, so you shouldn’t hand in this code...

2.2 What to do with each method

For the method(s) you decide to explore, you should

(a) Implement the method. We suggest that you use python and sklearn, but you may write your own
code or use other packages.

(b) Tune the method to perform well.

(c) Evaluate its performance using, e.g., cross validation. Note that each model needs to be evaluated
using only the labeled data that is available in training_data.csv, i.e. for the purpose of
model validation and selection you should not use the test data from songs_to_classify.csv.
(We know it might be possible to cheat here...). Exactly how to carry out the evaluation is up to
you to decide.

Once you have completed the aforementioned tasks, you should select which method you consider
to be best to use ‘in production’. Inspiration for a ‘good motivation’ can for instance be found in
Section 4.5 in James et al. (2013).

When you have decided which method to try ‘in production’, run it on the test data (for which you do
not have the true labels) and submit your results to the server to see how well it performs. You submit
results as a string like 010011011, where 0 means DISLIKE and 1 means LIKE. The web site also
contains a leader board, where you can see how well you are doing in predicting Andreas’ music
taste, compared to the other students. The leaderboard is not available from the start, it opens up (at
least) a week before the deadline.

You only need to submit your final solution to the homepage once! However, for the sake of a fun
competition during the project, we allow each student to submit up to one solution per day (only the
latest submission each day will be considered). The leader board will be updated every day.

3 Your individual handin

You should hand in a zip-file in Canvas before the deadline. Please name this file with your name ,
e.g. Bo-Bernhardsson.zip.

The handin should contain a short presentation (say 5-15 slides) and the code needed to reproduce
your findings.

(1) A concise description of each of the considered methods.

(2) How the methods were applied to the data (any preprocessing of the inputs, which inputs were
used, if the inputs were considered as qualitative or quantitative, how parameters were tuned,
etc), including motivations of the choices made.

(3) Your evaluation of how well each method performs on the problem.

(4) Your conclusions.

After the deadline, some presentations will be chosen and you might be asked to present your work
in class.

4 Your leaderboard handin

You will need a password, which will be sent to you when the scoreboard opens for submissions. Note
the following limitations on the leaderboard. Only one submission per student and day is shown. If

3



several submissions are submitted in the same day, only your latest one is shown. Submissions made
today will be shown from tomorrow. In a tie, the competitor with the least number of submissions
wins. If yet a tie, the submission with the earliest high-score wins.

5 Tip for getting started

We have provided a sample code file knn-example.py, in which the data set is loaded and a k-NN
classifier is trained using scikit-learn.

6 Deadlines & other important dates

See course Canvas page.

Important note

Please keep your solutions non-public, also after the course. The assignment is being reused in later
courses.

Good luck!

References
Bertin-Mahieux, Thierry, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere (2011). “The million

song dataset”. In: Proceedings of the 12th International Society for Music Information Retrieval
Conference (ISMIR).

Dieleman, Sander (2016). “Keynote: Deep learning for audio-based music recommendation”. In:
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.

Fu, Zhouyu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang (2011). “A survey of audio-based
music classification and annotation”. In: IEEE Transactions on Multimedia 13.2.

Jacobson, Kurt, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon (2016). “Music
Personalization at Spotify”. In: Proceedings of the 10th ACM Conference on Recommender Systems.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013). An introduction to
statistical learning. With applications in R. Springer.

Kaminskas, Marius and Francesco Ricci (2012). “Contextual music information retrieval and recom-
mendation: state of the art and challenges”. In: Computer Science Review 6.

Oord, Aaron van den, Sander Dieleman, and Benjamin Schrauwen (2013). “Deep content-based
music recommendation”. In: Advances in Neural Information Processing Systems 26 (NIPS).

4


	Setup
	Problem
	Data sets
	Background

	Technical tasks
	Methods to explore
	What to do with each method

	Your individual handin
	Your leaderboard handin
	Tip for getting started
	Deadlines & other important dates

