## Solutions week 2

## 2.1

Let's split $Y$ and $\theta$ into columns

$$
\begin{aligned}
Y & =X \theta+\epsilon \\
{\left[Y_{1}, \ldots, Y_{m}\right] } & =X\left[\theta_{1}, \ldots, \theta_{m}\right]+\epsilon \\
{\left[Y_{1}, \ldots, Y_{m}\right] } & =\left[X \theta_{1}, \ldots, X \theta_{m}\right]+\epsilon
\end{aligned}
$$

and we see that each column in $Y$ is decided by only one column in $\theta$ together with $X$ and one column from the noise. We can then find the optimal theta column for column, and we already have the solution for one column as

$$
\begin{aligned}
Y_{i} & =X \theta_{i}+\epsilon \\
\hat{\theta}_{i} & =\left(X^{T} X\right)^{-1} X^{T} Y_{i} \\
{\left[\hat{\theta}_{1}, \ldots, \hat{\theta}_{m}\right] } & =\left(X^{T} X\right)^{-1} X^{T}\left[Y_{1}, \ldots, Y_{m}\right] \\
\hat{\theta} & =\left(X^{T} X\right)^{-1} X^{T} Y
\end{aligned}
$$

## 2.2

Programming exercise...

## 2.3

(a)

We want to prove that both ways of writing $\hat{\theta}_{N+1}$ are equivalent, so we set them equal and try to simplify until we can see the equality was true based on the
given definitions.

$$
\begin{align*}
P_{N+1} s_{N+1} & =\hat{\theta}_{N}+P_{N+1} x_{N+1}\left(y_{N+1}-x_{N+1}^{T} \hat{\theta}_{N}\right)  \tag{1}\\
s_{N+1} & =P_{N+1}^{-1} \hat{\theta}_{N}+x_{N+1} y_{N+1}-x_{N+1} x_{N+1}^{T} \hat{\theta}_{N}  \tag{2}\\
s_{N}+x_{N+1} y_{N+1} & =\left(P_{N}^{-1}+x_{N+1} x_{N+1}^{T}\right) \hat{\theta}_{N}+x_{N+1} y_{N+1}-x_{N+1} x_{N+1}^{T} \hat{\theta}_{N}  \tag{3}\\
s_{N} & =P_{N}^{-1} \hat{\theta}_{N}+x_{N+1} x_{N+1}^{T} \hat{\theta}_{N}-x_{N+1} x_{N+1}^{T} \hat{\theta}_{N}  \tag{4}\\
P_{N} s_{N} & =\hat{\theta}_{N} \tag{5}
\end{align*}
$$

Which we know to be equal from the definition, so the update does indeed do the same thing.
(b)

We want to prove that both ways of writing $P_{N+1}$ are equivalent, so we set them equal and try to simplify until we can see the equality was true.

$$
\begin{aligned}
\left(P_{N}^{-1}+x_{N+1} x_{N+1}^{T}\right)^{-1} & =P_{N}-\frac{P_{N} x_{N+1} x_{N+1}^{T} P_{N}}{1+x_{N+1}^{T} P_{N} x_{N+1}} \\
I & =\left(P_{N}^{-1}+x_{N+1} x_{N+1}^{T}\right)\left(P_{N}-\frac{P_{N} x_{N+1} x_{N+1}^{T} P_{N}}{1+x_{N+1}^{T} P_{N} x_{N+1}}\right) \\
& =I+x_{N+1} x_{N+1}^{T} P_{N}-\frac{x_{N+1} x_{N+1}^{T} P_{N}+x_{N+1} x_{N+1}^{T} P_{N} x_{N+1} x_{N+1}^{T} P_{N}}{1+x_{N+1}^{T} P_{N} x_{N+1}} \\
& =I+x_{N+1} x_{N+1}^{T} P_{N}-x_{N+1} \frac{x_{N+1}^{T} P_{N}+x_{N+1}^{T} P_{N} x_{N+1} x_{N+1}^{T} P_{N}}{1+x_{N+1}^{T} P_{N} x_{N+1}} \\
& =I+x_{N+1} x_{N+1}^{T} P_{N}-x_{N+1} \frac{1+x_{N+1}^{T} P_{N} x_{N+1}}{1+x_{N+1}^{T} P_{N} x_{N+1}} x_{N+1}^{T} P_{N} \\
& =I+x_{N+1} x_{N+1}^{T} P_{N}-x_{N+1} x_{N+1}^{T} P_{N} \\
& =I
\end{aligned}
$$

## 2.4

Programming exercise...

## 2.5

$$
\begin{aligned}
J_{W L S}(\theta) & =\sum_{i=1}^{N}\left(y_{i}-\theta^{T} x_{i}\right)^{2} w_{i}^{2} \\
& =\sum_{i=1}^{N}\left(w_{i} y_{i}-\theta^{T} w_{i} x_{i}\right)^{2} \\
& =\left[\hat{y}_{i}=w_{i} y_{i}, \quad \hat{x}_{i}=w_{i} x_{i}\right] \\
& =\sum_{i=1}^{N}\left(\hat{y}_{i}-\theta^{T} \hat{x}_{i}\right)^{2}
\end{aligned}
$$

We know the solution for this, it is $\hat{\theta}=\left(\hat{X}^{T} \hat{X}\right)^{-1} \hat{X}^{T} \hat{y}$. Now we insert $\hat{X}=$ $\sqrt{W} X$ and $\hat{Y}=\sqrt{W} Y$ to get

$$
\begin{aligned}
\hat{\theta} & =\left(X^{T} \sqrt{W}^{T} \sqrt{W} X\right)^{-1} X^{T} \sqrt{W}^{T} \sqrt{W} y \\
& =\left(X^{T} W X\right)^{-1} X^{T} W y
\end{aligned}
$$

## 2.6

$$
\begin{aligned}
J(\theta) & =\sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \theta^{T} \mathbf{x}_{i}}\right) \\
\frac{\partial J(\theta)}{\partial \theta_{j}} & =\sum_{i=1}^{N} \frac{1}{1+e^{-y_{i} \theta^{T} \mathbf{x}_{i}}} e^{-y_{i} \theta^{T} \mathbf{x}_{i}} \cdot\left(-y_{i} x_{i j}\right)
\end{aligned}
$$

## 2.7

Programming exercise...

