[FRTN65] Exercise 12: Identification of linear dynamical systemsPart 2

1 Exercise 1

This exercise has the goal to understand the role of covariance in parametric model estimation.

1. We consider Auto-Regressive (AR) process given by

$$
\begin{equation*}
y(t)+a_{1} y(t-1)+\cdots+a_{n} y(t-n)=e(t), \mathbb{E}\left(e^{2}(t)\right)=\lambda . \tag{1}
\end{equation*}
$$

Upon multiplication by $y(t-\tau), \tau \geq 0$ and taking the expectation operator, we arrive at

$$
\mathbb{E}[y(t-\tau) y(t)]+a_{1} \mathbb{E}[y(t-\tau) y(t-1)]+\cdots+a_{n} \mathbb{E}[y(t-\tau) y(t-n)]=\mathbb{E}[y(t-\tau) e(t)] .
$$

This allows to write,

$$
R_{y}(\tau)+a_{1} R_{y}(\tau-1)+\cdots+a_{n} R_{y}(\tau-n)=\mathbb{E}[y(t-\tau) e(t)] .
$$

Note that for $\tau>0$, we have $\mathbb{E}[y(t-\tau) e(t)]=0$, since $e(t)$ is uncorrelated with any past values of $y(t-\tau)$. For $\tau=0$, we determine $\mathbb{E}[y(t) e(t)]$ by multiplying eq. (1) with $e(t)$ and taking the expectation operator, we arrive at $\mathbb{E}\left[e^{2}(t)\right]=\lambda$.
2. We consider the AR- model given by

$$
\begin{equation*}
y(t)+a_{1} y(t-1)+a_{2} y(t-2)=e(t), \mathbb{E}\left(e^{2}(t)\right)=\lambda . \tag{2}
\end{equation*}
$$

By using the result from a), we can write

$$
R_{y}(\tau)+a_{1} R_{y}(\tau-1)+a_{2} R_{y}(\tau-2)= \begin{cases}\lambda & \tau=0 \\ 0 & \tau>0\end{cases}
$$

- For $\tau=0$,

$$
R_{y}(0)+a_{1} R_{y}(1)+a_{2} R_{y}(2)=\lambda
$$

- For $\tau=1$,

$$
R_{y}(1)+a_{1} R_{y}(0)+a_{2} R_{y}(1)=0
$$

- For $\tau=2$,

$$
R_{y}(2)+a_{1} R_{y}(1)+a_{2} R_{y}(0)=0
$$

In vector form, we can write

$$
\left[\begin{array}{ccc}
1 & a_{1} & a_{2} \tag{3}\\
a_{1} & 1+a_{2} & 0 \\
a_{2} & a_{1} & 1
\end{array}\right]\left[\begin{array}{l}
R_{y}(0) \\
R_{y}(1) \\
R_{y}(2)
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
0 \\
0
\end{array}\right] .
$$

3. There are two ways of estimating models in Matlab: either hand-coded (where for example using least square estimate is calculated by entering the solution) or through default function pertaining to the identification toolbox in Matlab. Example of these function are: idpoly, getcov, present. Using the Matlab help function or online documentation, their functionalities can be checked.

2 Exercise 2

The goal of this exercise is to compare ARX model described by

$$
\begin{equation*}
A(q) y(t)=B(q) u(t)+e(t) \tag{4}
\end{equation*}
$$

with OE model described by,

$$
\begin{equation*}
y(t)=\frac{B(q)}{F(q)} u(t)+e(t) \tag{5}
\end{equation*}
$$

We make the following remarks:

- For the AR- process, arx3 and arx15 are good models for high-frequencies (above the crossover frequency), where arx9 is better suitable for low-frequencies. As can be seen, there is no ideal ARX- model that captures the frequency behavior over all frequencies. This can also be read from the time evolution of the measured output ytest and ypred50w.
- For the AR- process, the default estimated model oe behaves poorly in particular for lowfrequencies. If we use the weighting filter using • command and input the particular frequency range of interest, i.e. $[0,10]$ in this case, we obtain oe3w, which shows drastic improvement in the low frequency estimate.

3 Exercise 3

In this exercise, we understand the role of the weighting filter.

- Based on prbs input, we can excite the system with different frequencies (corresponding to different periods M). The higher is frequency $1 / M$, the more jumps has the resulting prbs signal.
- The filtered signals $y_{0}, y_{1}, y_{2}, y_{3}$ show the effect of the third-order filter Y_{k}, in the decrease in the slope of the amplitude magnitude and the decrease of phase angles.
- Using the interactive tool, it is possible to choose a model that best fits the data and this can be presented into Matlab console.

4 Exercise 4

Given two independent signals $x(t), y(s)$ for all $t, s>0$, with $\mathbb{E}(x(t))=0, \mathbb{E}\left(x^{2}(t)\right)=R_{x}$ and $\mathbb{E}(y(t))=0$ and $\mathbb{E}\left(y^{2}(t)\right)=R_{y}$, our goal in this exercise is to calculate the variance of

$$
\begin{equation*}
\hat{R}_{x y}(\tau)=\frac{1}{N} \sum_{t=1}^{N} x(t+\tau) y(t) \tag{6}
\end{equation*}
$$

We have

$$
\operatorname{Var}\left[\hat{R}_{x y}(\tau)\right]=\mathbb{E}\left[\hat{R}_{x y}^{2}(\tau)\right]-\underbrace{\mathbb{E}\left[\hat{R}_{x y}(\tau)\right]^{2}}_{0}
$$

since $\frac{1}{N} \sum_{t=1}^{N} \mathbb{E}[x(t+\tau) y(t)]=0$. Hence

$$
\begin{aligned}
\operatorname{Var}\left[\hat{R}_{x y}(\tau)\right] & =\mathbb{E}\left[\hat{R}_{x y}^{2}(\tau)\right] \\
& =\frac{1}{N^{2}} \mathbb{E}\left[\left(\sum_{t=1}^{N} x(t+\tau) y(t)\right)\left(\sum_{t=1}^{N} x(t+\tau) y(t)\right)\right] \\
& =\underbrace{\frac{1}{N^{2}} \mathbb{E}[\underbrace{x(1) x(N) y(1) y(N)}_{R_{x}(N-1) R_{y}(N-1)}+\underbrace{x(2) x(N) y(2) y(N)+x(1) x(N-1) y(1) y(N-1)}_{N R_{x}(0) R_{y}(0)}+\ldots}_{2 R_{x}(N-2) R_{y}(N-2)} \\
& +\underbrace{x(1) x(1) y(1) y(1)+x(2) x(2) y(2) y(2)+\ldots+x(N) x(N) y(N) y(N)}_{R_{x}(1-N) R_{y}(1-N)}+\ldots \\
& +\underbrace{}_{\left.\sum_{\tau=-(N-1)}^{x(N) x(1) y(N) y(1)}\right]} \quad \begin{array}{l}
\frac{1}{N} \frac{N-|\tau|}{N} R_{x}(\tau) R_{y}(\tau)
\end{array} .
\end{aligned}
$$

Here we have re-sorted the N^{2} different terms and used the fact that $\mathbb{E}\left[x\left(t_{1}\right) x\left(t_{2}\right) y\left(t_{3}\right) y\left(t_{4}\right)\right]=$ $\mathbb{E}\left[x\left(t_{1}\right) x\left(t_{2}\right)\right] \mathbb{E}\left[y\left(t_{3}\right) y\left(t_{4}\right)\right]$ when x and y are independent signals. For large N if we approximate $\frac{N-|\tau|}{N}=1$ we can conclude that

$$
\operatorname{Var}\left[\hat{R}_{x y}(\tau)\right] \approx \frac{1}{N} \sum_{\tau=-\infty}^{\infty} R_{x}(\tau) R_{y}(\tau)
$$

(To justify the last step theoretically would require some further conditions on the behavior of $R_{x}(\tau)$ and $R_{y}(\tau)$ for large $\left.|\tau|\right)$.

