
[FRTN65] Exercise 12: Identification of linear dynamical systems-

Part 2

1 Exercise 1

This exercise has the goal to understand the role of covariance in parametric model estimation.

1. We consider Auto-Regressive (AR) process given by

y(t) + a1y(t− 1) + · · ·+ any(t− n) = e(t), E(e2(t)) = λ. (1)

Upon multiplication by y(t− τ), τ ≥ 0 and taking the expectation operator, we arrive at

E[y(t− τ)y(t)] + a1E[y(t− τ)y(t− 1)] + · · ·+ anE[y(t− τ)y(t− n)] = E[y(t− τ)e(t)].

This allows to write,

Ry(τ) + a1Ry(τ − 1) + · · ·+ anRy(τ − n) = E[y(t− τ)e(t)].

Note that for τ > 0, we have E[y(t − τ)e(t)] = 0, since e(t) is uncorrelated with any past
values of y(t− τ). For τ = 0, we determine E[y(t) e(t)] by multiplying eq. (1) with e(t) and
taking the expectation operator, we arrive at E[e2(t)] = λ.

2. We consider the AR- model given by

y(t) + a1y(t− 1) + a2y(t− 2) = e(t), E(e2(t)) = λ. (2)

By using the result from a), we can write

Ry(τ) + a1Ry(τ − 1) + a2Ry(τ − 2) =

{
λ τ = 0

0 τ > 0

• For τ = 0,
Ry(0) + a1Ry(1) + a2Ry(2) = λ.

• For τ = 1,
Ry(1) + a1Ry(0) + a2Ry(1) = 0.

• For τ = 2,
Ry(2) + a1Ry(1) + a2Ry(0) = 0.

In vector form, we can write 1 a1 a2
a1 1 + a2 0
a2 a1 1

Ry(0)
Ry(1)
Ry(2)

 =

λ0
0

 . (3)
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3. There are two ways of estimating models in Matlab: either hand-coded (where for example
using least square estimate is calculated by entering the solution) or through default function
pertaining to the identification toolbox in Matlab. Example of these function are: idpoly,

getcov, present. Using the Matlab help function or online documentation, their function-
alities can be checked.

2 Exercise 2

The goal of this exercise is to compare ARX model described by

A(q) y(t) = B(q)u(t) + e(t), (4)

with OE model described by,

y(t) =
B(q)

F (q)
u(t) + e(t). (5)

We make the following remarks:

• For the AR- process, arx3 and arx15 are good models for high-frequencies (above the cross-
over frequency), where arx9 is better suitable for low-frequencies. As can be seen, there is no
ideal ARX- model that captures the frequency behavior over all frequencies. This can also
be read from the time evolution of the measured output ytest and ypred50w.

• For the AR- process, the default estimated model oe behaves poorly in particular for low-
frequencies. If we use the weighting filter using · command and input the particular frequency
range of interest, i.e. [0, 10] in this case, we obtain oe3w, which shows drastic improvement
in the low frequency estimate.

3 Exercise 3

In this exercise, we understand the role of the weighting filter.

• Based on prbs input, we can excite the system with different frequencies (corresponding to
different periods M). The higher is frequency 1/M , the more jumps has the resulting prbs
signal.

• The filtered signals y0, y1, y2, y3 show the effect of the third-order filter Yk, in the decrease in
the slope of the amplitude magnitude and the decrease of phase angles.

• Using the interactive tool, it is possible to choose a model that best fits the data and this can
be presented into Matlab console.

4 Exercise 4

Given two independent signals x(t), y(s) for all t, s > 0, with E(x(t)) = 0, E(x2(t)) = Rx and
E(y(t)) = 0 and E(y2(t)) = Ry, our goal in this exercise is to calculate the variance of

R̂xy(τ) =
1

N

N∑
t=1

x(t+ τ) y(t). (6)
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We have

Var[R̂xy(τ)] = E[R̂2
xy(τ)]− E[R̂xy(τ)]2︸ ︷︷ ︸

0

,

since 1
N

∑N
t=1E[x(t+ τ) y(t)] = 0. Hence

Var[R̂xy(τ)] = E[R̂2
xy(τ)]

=
1

N2
E

[(
N∑
t=1

x(t+ τ) y(t)

)(
N∑
t=1

x(t+ τ) y(t)

)]

=
1

N2
E[x(1)x(N)y(1)y(N)︸ ︷︷ ︸

Rx(N−1)Ry(N−1)

+x(2)x(N)y(2)y(N) + x(1)x(N − 1)y(1)y(N − 1)︸ ︷︷ ︸
2Rx(N−2)Ry(N−2)

+...

+ x(1)x(1)y(1)y(1) + x(2)x(2)y(2)y(2) + ...+ x(N)x(N)y(N)y(N)︸ ︷︷ ︸
NRx(0)Ry(0)

+...

+ x(N)x(1)y(N)y(1)︸ ︷︷ ︸
Rx(1−N)Ry(1−N)

],

=
1

N

N−1∑
τ=−(N−1)

N − |τ |
N

Rx(τ)Ry(τ).

Here we have re-sorted the N2 different terms and used the fact that E[x(t1)x(t2)y(t3)y(t4)] =
E[x(t1)x(t2)]E[y(t3)y(t4)] when x and y are independent signals. For large N if we approximate
N−|τ |
N = 1 we can conclude that

Var[R̂xy(τ)] ≈ 1

N

∞∑
τ=−∞

Rx(τ)Ry(τ).

(To justify the last step theoretically would require some further conditions on the behavior of
Rx(τ) and Ry(τ) for large |τ |).
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