[FRTN65] Exercise 13: Identification of linear dynamical systems

Exercise 13-2

a) Just plug in $x=T \bar{x}$ and $\dot{x}=T^{\dot{x}} x$ in the equation $\dot{x}=A x+B u$ and $y=C x+D u$ and identify the new matrices $\bar{A}, \bar{B}, \bar{C}, \bar{D}$.
b) Plugging in the transformed matrices in the formulas for the Gramians gives

$$
\bar{P}=\sum_{k=0}^{\infty}\left(T^{-1} A T\right)^{k}\left(T^{-1} B\right)\left(T^{-1} B\right)^{T}\left(\left(T^{-1} A T\right)^{T}\right)^{k}=T^{-1}\left(\sum_{k=0}^{\infty} A^{k} B B^{T} A^{T k}\right) T=T^{-1} P T
$$

and similarly for $\bar{Q}=\sum_{k=0}^{\infty}\left(\bar{A}^{k}\right)^{T} \bar{C}^{T} \bar{C} \bar{A}^{k}=\ldots=T^{T} Q T$.
c) With $P=R R^{T}$ and $R^{T} Q R=U \Sigma^{2} U^{T}$ and the transformation $T=R U \Sigma_{-1 / 2}$ we get

$$
\bar{P}=T^{-1} P T^{-T}=\Sigma^{1 / 2} U^{T} R^{-1} R R^{T} R^{-T} U \Sigma^{1 / 2}=\Sigma
$$

using that $U^{T} U=I$. Similarly, we get

$$
\bar{Q}=T^{T} Q T=\Sigma^{-1 / 2} U^{T} R^{T} Q R U \Sigma^{-1 / 2}=\Sigma^{-1 / 2} U^{T} U \Sigma^{2} U^{T} U \Sigma^{-1 / 2}=\Sigma
$$

