[FRTN65] Exercise 13: Identification of linear dynamical systems

Exercise 13-2

- a) Just plug in $x = T\bar{x}$ and $\dot{x} = T\bar{x}$ in the equation $\dot{x} = Ax + Bu$ and y = Cx + Du and identify the new matrices $\bar{A}, \bar{B}, \bar{C}, \bar{D}$.
- b) Plugging in the transformed matrices in the formulas for the Gramians gives

$$\bar{P} = \sum_{k=0}^{\infty} (T^{-1}AT)^k (T^{-1}B)(T^{-1}B)^T ((T^{-1}AT)^T)^k = T^{-1} (\sum_{k=0}^{\infty} A^k B B^T A^{Tk}) T = T^{-1} P T$$

and similarly for $\bar{Q} = \sum_{k=0}^{\infty} (\bar{A}^k)^T \bar{C}^T \bar{C} \bar{A}^k = \dots = T^T Q T$.

c) With $P=RR^T$ and $R^TQR=U\Sigma^2U^T$ and the transformation $T=RU\Sigma_{-1/2}$ we get

$$\bar{P} = T^{-1}PT^{-T} = \Sigma^{1/2}U^TR^{-1}RR^TR^{-T}U\Sigma^{1/2} = \Sigma$$

using that $U^TU = I$. Similarly, we get

$$\bar{Q} = T^TQT = \Sigma^{-1/2}U^TR^TQRU\Sigma^{-1/2} = \Sigma^{-1/2}U^TU\Sigma^2U^TU\Sigma^{-1/2} = \Sigma$$