
Solutions week 4

4.1

Programming exercise...

4.2

(a)

For a vector v we have that vT v = ‖v‖22, so if y = Ux and UTU = I we get

‖y‖22 = yT y = xTUTUx = xTx = ‖x‖22

This means that unitary transformations does not change lengths.

(b)

Let’s first inspect what ATA and AAT are when expressed using singular value
decomposition.

ATA = V STUTUSV T = V STSV T = V STSV −1

AAT = USV TV STUT = USSTUT = USSTU−1

We notice that this is exactly the diagonalization of a matrix using eigenvalues
and eigenvectors (X = V DV −1) and we can identify STS and SST as diagonal
matrices containing eigenvalues of ATA and AAT respectively, while V and U
have columns with eigenvectors for ATA and AAT respectively.

(c)

For a general X matrix, the SVD will be

X = USV T =
r m−r

m
[
U1 U2

] r n−r

r
m−r

[
S1 0
0 0

] n

r
n−r

[
V T1
V T2

]
= U1S1V

T
1 .

With U ∈ Rm×m and V ∈ Rn×n unitary and where S1 ∈ Rr×r is diagonal,
with r positive diagonal elements.
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Note that XTX will be invertible precisely when STS is invertible (since
XTX = USTSUT and U is invertible). Since

STS =

r n−r

r
n−r

[
S2
1 0

0 0

]

this happens precisely when r = n, which means that X has full column rank.
(The interpretation is that there are no ”useless feature-combinations” in our
linear regression model.). Note also that when r = n the matrix V2 will disap-
pear (become an empty matrix), and we will have V = V1.

Let’s now look at how the least squares formula is transformed, using the
economy version SVD X = U1S1V

T
1

XTXθ = XT y

V1S
2
1V

T
1 θ = V1S1U

T
1 y

S2
1V

T
1 θ = S1U

T
1 y

V T1 θ = S−1
1 UT1 y

V1V
T
1 θ = V1S

−1
1 UT1 y

θ = V1S
−1
1 UT1 y

The interpretation of this is then that we transform y by projecting it onto
each of the vectors in U1. This projection will take us to the room where basis
vectors express the data the best, and here we scale with the inverse of the
singular values.

The last step is actually somewhat dangerous (inverting the singular values).
It means that we find θ by allowing θ to get large values to be able to fit the parts
of the data with small singular values, which corresponds to directions with little
information in the data. This is a good motivation for using regularization, as
in the next part of this exercise.

(d)

Updating our earlier calculations we get

(XTX + γI)θ = XT y

(V1S
2
1V

T
1 + γI)θ = V1S1U

T
1 y

V1(S2
1 + γI)V T1 θ = V1S1U

T
1 y

(S2
1 + γI)V T1 θ = S1U

T
1 y

θ = V1(S2
1 + γI)−1S1U

T
1 y
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Looking at the difference from the previous problem we have

S−1
1 =


1
σ1

1
σ2

. . .



(S2
1 + γI)−1S1 =


σ1

σ2
1+γ

σ2

σ2
2+γ

. . .


where if we plot one of the diagonal elements we see that for no regularization
we move towards infinite scaling for theta as the singular values become small
(i.e. we can allow for arbitrary sized values in θ for weak signals to fit as good as
possible) while for regularization with a factor γ we have the same asymptotic
behaviour, but we have a linear behaviour for small σ which mean that we will
allow θ to change less for signals in directions that have too small σ.

We can also note that the peak of this scaling curve for Tikhonov regular-
ization is at

√
γ, so with this you set at what point lower singular value will

vanish quickly.
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(e)

With P1 = U1U
T
1 and using UT1 U1 = I we get

PT1 = (U1U
T
1 )T = U1U

T
1 = P1

P 2
1 = U1U

T
1 U1U

T
1 = U1IU

T
1 = P1

P1(Im − P1) = P1 − P 2
1 = 0

The cases with P2 = U2U
T
2 , Q1 = V1V

T
1 , and Q2 = V2V

T
2 are similar.
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(f)

Programming exercise...

4.3

Programming exercise...

4.4

Programming exercise...

4.5

For linear discriminant analysis we model p(x | y = i) as a Gaussian where all
classes have the same covariance matrix.

p(x | y = i) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µi)TΣ−1(x− µi)

)
We then make predictions based on the optimal bayes classifier,

p(y = i | x) =
p(x | y = i)p(y = i)∑
j p(x | y = j)p(y = j)

,

and as we know we should pick which ever y gives the highest probability which
(since the denominator is constant for any x) is the same as the y giving the
largest p(x | y)p(y). We look at the log of the probability which makes it
nicer (log is a strictly increasing function for x > 0 so the y giving the highest
probability will also give the highest log probability).

log (p(x | y = i)p(y = i)) = log p(x | y = i) + log p(y = i)

= log

(
1√

(2π)k|Σ|
exp

(
−1

2
(x− µi)TΣ−1(x− µi)

))
+ C1

= −1

2
(x− µi)TΣ−1(x− µi) + C2

What we would now like to do is to find the boundary where two classes are
equally likely to be picked, and show that this is linear for any two classes.

−1

2
(x− µi)TΣ−1(x− µi) + Ci = −1

2
(x− µj)TΣ−1(x− µj) + Cj

xTΣ−1x− 2xTΣ−1µi + µTi Σ−1µi − xTΣ−1x+ 2xTΣ−1µj − µTj Σ−1µj = 2(Ci − Cj)
xTΣ−1(µj − µi) = µTj Σ−1µj/2− µTi Σ−1µi/2 + Ci − Cj
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where we have used that xTΣ−1µ = µTΣ−1x since Σ−1 is a symmetric matrix.
Therefore, we get a decision boundary of the form xTw = b which defines

a hyperplane (with normal vector w). Hence all class-boundaries are described
by linear functions.

4.6

Programming exercise...
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