
Solutions week 3

3.1

In 1-nearest neighbours you will always perfectly fit the training set, so etrain =
0. The average over all data will be the average of the errors for the individual
datasets since they are equally large, and so we get

e =
etrain + etest

2
=

etest
2

= 18% ⇒ etest = 36% (1)

Given that the test error for the logistic regression was 30%, which is less
that 36%, we choose it over 1-NN since it has better generalization error.

3.2

Programming task...

3.3

We get the distributions for the test given the persons status (healthy = 1 or
sick = 2) as

p(x | y = 1) = N (10, 42)

p(x | y = 2) = N (20, 52)

and we also get that p(y = 1) = 0.99 = 1− p(y = 2).

(a)

We can calculate the expression for the cancer probability given a measurement
using the given distributions and bayes theorem.

p(y = 2 | x) =
p(x | y = 2)p(y = 2)

p(x | y′ = 1)p(y′ = 1) + p(x | y′ = 2)p(y′ = 2)

=

1√
2π52

e−
(x−20)2

2·52 0.01

1√
2π42

e−
(x−10)2

2·42 0.99 + 1√
2π52

e−
(x−20)2

2·52 0.01
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We now just insert the values for our patients and get

pA(y = 2 | 15) = 0.01059

pB(y = 2 | 20) = 0.1553

pC(y = 2 | 25) = 0.8472

(b)

Assuming our assumptions about the distributions are correct, we want to use
the most probable according to Bayes classifier, so A and B are healthy while
B has cancer.

(c)

Test (maybe in some programming language) for which x we get p(y = 2 | x) =
0.5, and this turns out to be x ≈ 22.59

(d)

Given the impact of misclassification in the different cases (miss someone who
has cancer, or do a more accurate test on someone who didn’t have) we might
want to err on the side of predicting cancer.

3.4

(a)

Programming task...

(b)

Catching 99% of all true cancer cases requires that the ratio between true pos-
itive cases and actual positive cases is larger or equal to 99%. This fraction is
called TPR or recall.

It can be found looking at the cumulative distribution function for the mea-
surements given it is a cancer case. So we want to find for what t we get that
p(x > t | y = 2) = 0.99, and since the cdf is the cumulative sum we get that
p(x < t) = cdf(t) and can thus write

p(x > t | y = 2) = 1− p(x < t | y = 2)

= 1− cdf(t | y = 2) = 0.99

cdf(t | y = 2) = 0.01

In some languages you have functions for the inverse normal cdf, but if you
you can just test what t gives a good approximation of 0.01, I got it to around
t ≈ 8.36826.
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(c)

Now we want to look at the ratio of true positive cases and predicted positive
cases which is called precision. We predict cancer if x > t, so what is the
probability we actually have cancer given that x > t?

p(y = 2 | x > t) =
p(x > t | y = 2)p(y = 2)

p(x > t | y = 1)p(y = 1) + p(x > t | y = 2)p(y = 2)

=
(1− p(x < t | y = 2))0.01

(1− p(x < t | y = 1))0.99 + (1− p(x < t | y = 2))0.01

=
(1− cdf(t | y = 2))0.01

(1− cdf(t | y = 1))0.99 + (1− cdf(t | y = 2))0.01

≈ 0.014962

3.5

Programming task...
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