
FRTN65 Modeling and Learning from Data

Laboratory Exercise 2

Modeling and Simulation of Furuta Pendulum

Department of Automatic Control LTH
Lund University

Fall 2021

Figure 1 The Furuta pendulum

Hand in your final modelica code and a brief report in PDF format with
results and short discussions for each task. You do not have to complete
the parts marked as extra. You may ask for help and cooperate on the
laboration, but the handin should be done individually. (Your are e.g. not
allowed to copy material from another persons’ report).

Introduction

In this lab you will be tasked with completing and extending an already existing
Modelica model of the Furuta pendulum shown in Figure 1.

The purpose of this lab is for you to get some hands-on experience in working
with object-oriented equation-based languages, so don’t spend too much time
trying to get the model and its parameters perfect. Before starting, it is highly
recommended that you complete Exercise 8.

1

IMPORTANT: When working with Impact, please download your models
and save them on your personal computer often! The workspaces saved on one
remote computer will not be accessible on other remote computers, and the
files will be purged from time to time. If you have not saved the files on your
own personal computer, you risk to loose that work.

1. Hands-on parameter tuning

Figure 2 The given Modelica diagram

The supplied Modelica code implements a simple, yet accurate model of the
Furuta pendulum, where frictions and drag are modeled as two dampening
constants of the torques on the rotor and pendulum bearings. The Modelica
block diagram can be seen in Figure 2, and a snapshot from the animation
window in Figure 3.

Unfortunately, the dampening constants are not known and needs to be esti-
mated in some manner. To do this, we have performed an experiment on the
real Furuta pendulum were the pendulum was released from an almost upright
position, and the angles of the rotor and pendulum bearings logged over time.
The experiment data is plotted in the first part of the supplied notebook.

Task 1.1: Upload FurutaPendulum.mo to your workspace in Impact and iden-
tify and set the two dampening constants by simulating the model and com-
paring with the experimental data.

Hint: The initial angle can be set in the pendulumAxis block under "Variables
-> phi -> start".

2

Figure 3 Image of the Furuta pendulum from the animation window

By changing the amplitude in the block pulse, external disturbances can be
added to the pendulum.

Task 1.2: Set the initial pendulum angle to its original downright position, and
try a disturbance with amplitude {0.025, 0, 0} and plot how the pendulum
and rotor angles change over time. Try two more amplitudes of your choice.

2. Adding an additional pendulum arm

Figure 4 Image of the two-armed Furuta pendulum from the animation window

One powerful feature of having a good model, is that it becomes easy to try
out extensions that are difficult and time consuming to perform on the real

3

process. In this part we want to extend our Furuta pendulum model with a
second pendulum at the opposite side of the first, as shown in Figure 4.

To do this, we need

• Two Modelica.Mechanics.MultiBody.Parts.BodyCylinder objects rep-
resenting the second pendulumAttachment of length 43 mm and
pendulumArm of length 30 mm. Both should have the same density and
diameter as the components of the first pendulum.

• A Modelica.Mechanics.MultiBody.Joints.Revolute object represent-
ing the second pendulum bearing. To activate the flange, check the
useAxisFlange box in the settings window of the block.

• A Modelica.Mechanics.Rotational.Components.Damper object connected
to the flange of the second pendulum bearing, with a dampening constant
half as large as for the first pendulum bearing.

• Two Modelica.Mechanics.Rotational.Sensors.{AngleSensor,
SpeedSensor} objects connected to the axis flange of the second pen-
dulum bearing.

• A Modelica.Mechanics.MultiBody.Forces.WorldForce object connected
to the end of the second pendulum, to enable the generation of external
disturbances on this pendulum. Connect the force[3] connector to the
same pulse block as the disturbance for the first pendulum, make sure
you choose the option [:] in both drop-down menus to correctly connect
all the dimensions in the connector.

IMPORTANT: For part 3 the second pendulum axis needs to have the same
axis of rotation as the original, i.e. clock-wise in regards to a vector pointing to
the central rotor. This is dictated by the parameter n in the Revolute block.

Task 2.1: Extend the existing model with this second pendulum. From an
initial downright position of the two pendulums, simulate the model with the
same disturbances as the previous part and plot how the two pendulum and
the rotor angles change over time.

Hint: The second pendulum is easiest implemented with blocks in the Diagram
window. Look at how the first pendulum is implemented, the second pendulum
can be created almost identically.

3. Adding a damping controller

The two pendulums are quite sensitive to external disturbances, which can
introduce a lot of oscillation on the arm positions. In this part we will demon-
strate how a model can be used to perform initial control design for a real
process, by implementing a state feedback controller to dampen these oscilla-
tions.

In state feedback the control signal u(t) = −Lx(t) is directly proportional to
the states via some feedback gain vector L, which we here will generate via a
Linear-Quadratic Regulator (LQR). Given a linear state-space representation

ẋ(t) = Ax(t) +Bu(t)

4

the LQR provides a powerful way to generate the optimal control signal u(t)
such that the cost

J = ||x||2Q + ||u||2R =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

is minimized. Here Q and R are tuneable cost matrices.

The dynamics of the Furuta pendulum is however not linear, but we can use
the steps in part 7 of this technical report1 to linearize it around the bottom
position, yielding for the states x =

(
φ, φ̇, θ1, θ̇1, θ2, θ̇2

)

A =



0 1 0 0 0 0

0 0 − d1c1
a1b1−c21

0 − d2c2
a2b2−c22

0

0 0 0 1 0 0

0 0 − a1d1
a1b1−c21

0 0 0

0 0 0 0 0 1

0 0 0 0 − a2d2
a2b2−c22

0


, B =



0
b1

a1b1−c21
+ b2

a2b2−c22
0
c1

a1b1−c21
0
c2

a2b2−c22


where a1, a2, b1, b2, c1, c2, d1, d2 are parameters depending on e.g. the weight or
length of the pendulums, φ, φ̇ the angle/angular velocity of the central rotor
and θ, θ̇ the angle/angular velocity of the first and second pendulum bearings
respectively.

Your task is to implement the LQR controller for the double Furuta pendulum
model. To your help, consider the following hints.

1. The supplied notebook contains the necessary code to generate a LQR
gain vector for the double pendulum given some Q and R.

2. The controller needs to be able to actuate torque on the central rotor, add
a Modelica.Mechanics.Rotational.Sources.Torque object and con-
nect it to the axis flange on the rotor block. The torque block has a
RealInput tau to connect u(t) to.

3. In FurutaPendulum.mo there is an almost complete nested controller
model. Complete it, create an instance and connect its output to
torque.tau and its inputs to the correct sensor values.

Task 3.1: Implement the controller and simulate the model with the same
disturbances as in part 1 and 2. Plot how the two pendulum and rotor angles
change over time.

Feel free to try some different values of Q and R in the LQR design script.

Hint: It is a possibility that implementations of the controller can give an un-
stable system, e.g. via some coding error or if the disturbance is too large.
Unfortunately, this can cause Impact to get stuck when simulating. A quick
fix is to switch to the Radau5ODE solver under "Experiment -> Advanced ->
Solver", which instead throws an error in these cases. However, if Impact do get
stuck, you can simply revisit JupyterHub, stop the server, and start it again.

1https://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/
FRTN10/2020/Gafvert1998.pdf

5

4. (Extra) Adding a stabilizing controller

Figure 5 Image of the inverted two-armed Furutapendulum from the animation
window

Controlling the pendulums in a downright position is not very hard, as the
system is stable around this point. Instead you can consider the much harder
task of balancing the pendulums in an upright position, as shown in Figure 5.

However, performing this feat for our Furuta pendulum model is actually not
that difficult, but some changes have to be made in both the Modelica model,
and the linearized model from part 3. More precise, you will have to

1. Re-linearize the model for the upright position to generate a new L vec-
tor. Here you can consider part 7 of the technical report, where it is clear
that the linearizations around (0, 0, π, 0, π, 0) and (0, 0, 0, 0, 0, 0) differ
only with a handful of signs (which?).

2. Trim Q and R, good initial values to try are Q = I and R = 1.

3. Update your setpoint in the controller model.

4. Update the initial angles of the pendulum bearings to some value very
close to 0.

5. Set the disturbance amplitude to some very small value, e.g. {0.001,0,0}.

Good Luck !

6

