MNXBO01 2022

Working with GIT

Florido Paganelli
Lund University

Fysikum, Hus A, Room 403

Support:

- send me an email or use Canvas

- personal Zoom room: https://lu-se.zoom.us/j/2485752983
Or use github!

MNXB01-2022 - Working with git Tutorial 5 1/127

mailto:florido.paganelli@hep.lu.se

Warning

DO ROT COPY PASTE
COMMARIDS

these exeycises aye wreant fOV

t]ly)(pJlilln]lg] lo](n] [t](h]le]
KkJ(e]lyl(b]lo]la]r](d] (]

(And some typesetting characters and symbols are not accepted by the terminal anyway)

MNXB01-2022 - Working with git Tutorial 5 2/127

Software

@ Required:
@ Git - a free and open source distributed version control system
@ Optional:
@ gitk - a fast git repository viewer
@ Available on Aurora as software installed using module
@ tig - a text repository browser

@ Not available on Aurora
@ There are many more even better! the above it's only my taste.

@ |nstallation:
Debian/Ubuntu: apt install git gitk tig
RedHat/Fedora: yum install git gitk tig

MNXB01-2022 - Working with git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Outline

« What are version/revision control systems
» Generic concepts of version/revision systems
+ git
» Generic concepts of git

MNXB01-2022 - Working with git Tutorial 5 4/127

Notation

» | will be using the following color code for showing

commands:
— Application options and values Second parameter
Application or program [in different formats [to Colrjnmand]
command to application [First parameter]
l to command
v N

app commandwv&ior‘lvalue foption fvalueTlnputparTotherlnputpar

{ BLANK SPACES I will NOT be visible!

gitfcloneflhttps://github.com/floridop/MNXB01-2019MNXB01-2019

\\ command to application \

First parameter Second parameter
to command to command

Application or program

MNXB01-2022 - Working with git Tutorial 5 5/127

https://github.com/floridop/MNXB01-2019

Revision systems concepts

MNXB01-2022 - Working with git

Why version/revision systems?

» Say you wrote some computer program in a text file.

» You discover a bug, something that does not work as it
should, and you want to change it.

» You fix the bug, save the file. Try the program again and... it
doesn't work anymore!

» What went wrong? Would be nice if you could compare
what you changed...

» Solution: make a backup copy before every (important)
change!

» Version systems make it easy to backup and compare

changes
3=

Revision Systems MNXB01-2022 - Working with git Tutorial 5 7/127

Why version/revision systems?

» |f you do many changes, you
might not remember what
changes you made. Version
systems allow you to attach a
comment to the change.

» |If you want to share your code
with other developers, it's nice if

everybody can see who changed
what. Version systems allow you m@]
to author the changes so the

others know what you're done.
This helps sharing code.

Revision Systems MNXB01-2022 - Working with git Tutorial 5 8/127

Why version/revision systems?

« Summary:

» Backup each change in your code
» Compare different versions of your code
» Comment and annotate each change

» Share among developers

=

Revision Systems MNXB01-2022 - Working with git Tutorial 5 9/127

Version systems: products and
features

There are others out there: Mercurial, Darcs, Monotone, Bazaar...

Revision Systems MNXB01-2022 - Working with git

Git: vocabulary and concepts

MNXB01-2022 - Working with git

What and why git

» Was created by Linus Torvalds especially for kernel development

@ Highly distributed community contributions

@ Lots of people forking (later I'll explain this term) and writing their own
version of drivers

» Nowadays there are many collaborative websites systems that
use it to share code (github, gitlab) and make it easier to
integrate everyone's work with discussion and code
revision/testing tools

* |s being used by many because is a free solution that helps
distributed cooperation

» Becoming the most used among research projects
@ |[n other words, mostly fashion

» Good for text, not good for images/archives/executables...
use dropbox or similar cloud storage for that.

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 12/127

Git ain’t the best.

THIS 1S GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROJTECTS THROUGH A BEAUTIFUL
DISIRIBUTED GRAFPH THEORY TREE. IMODEL.

CoOoL. HOU DO LEVSE IT?

NO IDEA. JUST MEMORIZE THESE SHELL
COMMANDS AND TYPE THE TO SYMC UF
IF YOU GET ERRORS, SAVE YOUR WORK
ELSELWHERE, DELETE THE PROJELCT,
AND DOWNLDOAD A FRESH COPY.

\

5 f"%

https://xkcd.com/1597/

Tutorial 5 13/127

GIT Concepts MNXB01-2022 - Working with git

Why using git in this course

@ Aurora will not exist forever, and your home folders will disappear.
If you want to keep your code after the course, you can move it
iInto some cloud service. For example, you can put it on github.

» Today’s job market in IT and scientific programming is no longer
based on your studies or experience. Most companies check if
you wrote code for this and that library or framework by
checking github or similar code sharing platforms. Better to
start early!

@ Suggestion: at the end of each tutorial,
push your changes to the remote github repository we will
create in the Homework.

@ |If you are concerned about privacy, you can create a private github
repository.

*» The final course project material you will create can be only
handed out using a github repository, so get familiar with
git!

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 14/127

Scenarios and goals

@ Scenarios (from less complicated to more):

@ 1: personal project, one user, no server or offline repository
(see end of slides)

@ 2: personal project, one user, single server / repository
(tutorial part 1)

@ 3: community project, multiple users, multiple servers / repositories
(tutorial part 2 / homework)

» Goals:
@ track changes and version files

@ have a backup of files and tracked changes on a remote server

@ establish a way of synchronizing work between a user and the server
or multiple users in a community

MNXB01-2022 - Working with git Tutorial 5 15/127

git tutorial part 1
scenario 2:
track and version your own code
using a remote repository

MNXB01-2022 - Working with git Tutorial 5 16/127

Concepts of version systems

» Repository: A database that contains the
list of changes made.

» A local git repository is shared locally on
your machine in the .git invisible folder

» A remote git repository is shared on a
remote server and can be reached using
a URL, like
https://github.com/floridop/MNXB01-2020.git

» A bare qit repository can be stored in
any folder and contains data in a form
that only the git code understands. Can
be used to have multiple copies of the
same repository. It can be used to share
a repository without GitHub or similar
services.

in git
N

repository

(usually bare)

synchronization
operations

& _,

GIT Concepts MNXB01-2022 - Working with git Tutorial 5

17/127

https://github.com/floridop/MNXB01-2020.git

Concepts of version systems in git

» Repository: A database that contains e
the list of changes made.

] . . i i =‘J

» Since git is distributed, there can be |)

many remote and local repositories. |)

‘Remote

synchronization
operations

GIT Concepts MNXB01-2022 - Working with git

Servers and services:
GitHub, GitLab

@ GitHub, A cloud service that offers for free:
@ hosting space for git projects (they run the git server)
@ A web interface to collaborate on projects
@ Acquired in 2018 by Microsoft, now offers also
@ Private projects (can’t be seen by other users)
@ Enterprise services
@ They claim they will not use your code except for the purposes
of their service and that you retain all the copyrights on the code. Octocat
@ It is not an open source project.
@ Open source alternatives: Gitlab v G I t La b
https://about.qgitlab.com/

https://www.github.com/
@ Paid accounts -

@ Free accounts
@ Free: run your own server [

@ Paid dedicated server
@ Nordic Project CodeRefinery offers free accounts to Nordic Researchers
https://coderefinery.org/repository/ CODE REFINERY

MNXB01-2022 - Working with git Tutorial 5 19/127

https://www.github.com/
https://about.gitlab.com/
https://coderefinery.org/repository/

Create your own repository on
github 1/3
1)Login on

You may see one of the two views below. Graphics may differ a bit.

2)Click on “Repositories” (maybe not needed)
3)Click on “New”

O Search or jump to... Pulls Issues Marketplace Explore

M Ov@ E] Repositories 19 ['l] Projects) Packages
Find a repository... Type: All - Languag@ m ‘

O Search or jump to... Pull requests Issues Marketplace Explore

& floridop ~
You've been added to the OGF-GLUE organization!
Repositories m Here are some quick tips for a first-time organization member.
Find a repository... » Use the switch context button in the upper left corner of this page to s

a member of.

MNXB01-2022 - Working with git Tutorial 5 20/127

https://www.github.com/

Create your own repository on
github 2/3

Fill the blanks with this information
(see also pic in next slide):

1) Repository Name:

» MNXBO1-learn
2) Make it a “Public” repository.
3) Choose a license:

@ Apache License 2.0

@ Just because it's one that gives you some control on the code, no real reason
for this tutorial.

4) Click on “create repository”

MNXB01-2022 - Working with git Tutorial 5 21/127

Create your own repository on github 3/3

Owner * Repository name *

& foridop~ |/ MNXBO1-learn v

Great repository names are short and memorable. Need inspiration? How about crispy-octo-meme?

Description (optional)

® g Public
[Anyone on the internet can see this repository. You choose who can commit.

(o) Private

You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

Add a README file I

This is where you can write a long description for your project. Learn more.

[7] Add .gitignore

Choose which files not to track from a list of templates. Learmn more.

Choose a license
A license tells others what they can and can't do with your code. Leam more.

License: Apache License 2.0~

This will set ¥ main as the default branch. Change the default name in your settings.

Create repository

OJOIONO®

MNXB01-2022 - Working with git

Retrieve the repository URL

1)Click on “code”
2)Select SSH

3)Copy the repo URL (a link) in the field that appears. It looks
like:
@ git@github.com:YOURUSERNAME/MNXBO1-learn.qit

4)Save it for the coming tutorial steps!

* Leave the page open or copy paste the URL in Pluma

F main - F 1branch ©» 0tags Go to file Add file r‘ ‘

Clone ®

HTTPS 88H GitHub CLI

a floridop Initial commit

O LICENSE Initial commit git@github.com:floridop/MNXBO1-learn.g [
README.md [}) Download ZIP

MNXB01-2022 - Working with git Tutorial 5 23/127

Concepts of version systems in git

= Working directory: the latest version of a set of files that
you want to work on. This is usually local to your machine.

» |t is usually the result of a clone, an exact copy, of some
remote repository

» You can synchronize the local git repository with remote
ones using the push (send changes) and pull (retrieve
changes) commands.

» A bit like DropBox but NOT automatic.

................. f N
, ") \ Remote
. Working Server
. directory ©0. github

i(usually bare)l

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 24/127

Concepts of version systems

git clone —

» All the changes can now be retrieved |/ }
by another computer from the . ,
remote repository origin. ‘Remote-

- Server

» The first time using the
clone command
(initialize a copy of a remote) .

N\
NN
‘--\‘\s-\‘\\

New
Working
directory

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 25/127

Clone your repository on Aurora

@ create a folder named git in your home and access it.
@ mkdir ~/git
@cd ~/git
@ Copy the link shown in the github webpage page after the creation

@ Clone your remote repository into a local working copy
@ git clone git@github.com:YOURUSERNAME/MNXBOl-learn.git
@ You can copy paste the URL in the terminal with

@ A window or a request might appear asking to input a password. If everything is configured well, it will
be your private SSH key password which you created during the preparation for the tutorial steps.

@ If the system asks you to accept the server SSH fingerprint, check this webpage to validate the
fingerprint:

@ |t will be created in a subfolder with the same name
MNXBOl-learn.

@ cd into it:
@ cd MNXBOl-learn

N

1
1
1
1

Branch

. Branch Current Revision #: J :

main main hashl = .

S p J"
MNXB01-2022 - Working with git Tutorial 5 26/127

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/git@github.com:YOURUSERNAME/MNXB01-learn.git
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints

.git database, remotes and branches

@ The result of a git clone operation is the creation of a copy of your remote repository, by default called origin .
You can have multiple remote repositories. You can inspect the name and URL of your remotes with

@ git remote -v
origingit@github.com:floridop/MNXBOl-learn.git (fetch)
origingit@github.com:floridop/MNXBOl-learn.git (push)

@ The database of changes are kept in a hidden directory called .git . You can see it with

@1ls -a
. .. .git LICENSE README.md
1s .git/
branches description hooks logs packed-refs
COMMIT_EDITMSG gitk.cache index objects ggit_cache.dat
config HEAD info ORIG_HEAD refs

@ The git command accepts subcommands to do operations on the database.

@ A brand new git repository database is created with the command init. In this case github ran this
command for you in the cloud. See slides at the end of this presentation for examples.

@ A brand new git repository always starts with a branch called main (formerly master). You can see the
branches in your repository with the command

@ git branch
* main

@ The asterisk * identifies the active branch we are currently working on. There can be only one active branch
at a time.

@ A branch identifies a collection of files and their versions/revisions. Let’s understand the revisions, but first we
need to do some configuration steps.

Branch:
main

MNXB01-2022 - Working with git Tutorial 5 27/127

Configuring git 1/2

» Git must be configured for your personal data so that the
authoring information in the commits can be added.

» This can be done globally or for each specific repository

@ the ——global options are stored in your home ~/.gitconfig

@ the ——1ocal options are stored in the repository’s .git/config
folder

» For this course let’s configure your name, email and
favourite text editor:

@ git config —--global user.name “Name LastName”
git config —-—global user.email youremail@your.domain.blah
git config —--global core.editor pluma

MNXB01-2022 - Working with git Tutorial 5 28/127

mailto:youremail@your.domain.blah

Configuring git 2/2

@ One can inspect the config setup with:

@ git config -1
user.name=Test Student 5

core.editor=pluma

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

remote.origin. fetch=+refs/heads/*:refs/remotes/origin/*
remote.origin.url=

branch.main.remote=origin
branch.main.merge=refs/heads/main

MNXB01-2022 - Working with git Tutorial 5 29/127

mailto:user.email%3Dsome.mail@testdomain.info
file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/git@github.com:floridop/MNXB01-learn.git

Concepts of version systems:
revisions/versions/commits

@ When one is happy with the changes they e R
made, it records them in the database by doing _
a commit } Worklng
s A committed set of files is called a revisions directory
and gets a commit ID: every “version” of one ; :
or more files gets a revision tag. This can be :
a number, a label, a string. B/ — -
@ |[n git usually is an hash*, a strange sequence ; hashl
of symbols. It: :
@ Identifies the repository and other details of : ha_ShZ_ .
when the changes where made :
@ |t's universally unique, everywhere in the world) as
that commit will represent a defined sequence of : Current Revision #:
changes. : hash4
@ For this reason these systems are also known as
Revision Systems, as every revision gets a label :),
that depends on time and person who made the : i
change. : :
*Hash: a special injective function that returns a value from a finite : :
set of strings. The return values are unique under certain conditions. 1 |

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 30/127

Concepts of version systems
git basic terminology

> For every set of changes there is a commit.
Every commit generates a new revision with a
different hash. This can be represented as an
ordered graph like the one below. For every

committed change a new hash.

Current Revision #:

hash4

» The latest commit hash is called HEAD.

filel ﬁlezﬁ D The content of each commit is a set of modified

file3 files, different from the previous commit.

Previous Revision #: Previous Revision #: Previous Revision #:
hashl hash2 hash3

MNXB01-2022 - Working with git Tutorial 5 31/127

my

Branch:

main

GIT Concepts

Git log, commit history,
revision numbers

+ All the commit history with you messages

can be browsed using the command
git log
Revision number,
an hash
> git log
commit 30d4b3805d7de65622cfcd21al22644e33ab76dc

Author: Florido Paganelli <tlorido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:39:13 2017 +0200

second change

commit ¢€9af94904c6868ef136d75730fbdeb63e0al5ct31l

Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:38:11 2017 +0200

Created readme

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 32/127

Git log, commit history,
revision numbers

» To see which files have changed for each
commit (A:Added M: Modified D: Deleted...):

git log ——name-status

> git log —--—name-status

commit fced0d917580764b%bc72060233c60£77840a0a7 (HEAD -> main)
Author: Florido Paganelli <florido.paganelli@gmail.com>

Date: Sat Sep 12 18:56:08 2020 +0200

added disclaimer about input paths

M code/smhicleaner.sh.pseudocode
M solution/smhicleaner.sh

commit 7cdlc062daffb615a9f0d6£60d9%9a83dcc29e26e5
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Sat Sep 12 18:51:22 2020 +0200

outputs of the command with and withour errors

result/output_copying

result/output_downloading
result/output_error_no_params
result/output_error_problems_downloading or_copying

i

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 33/127

Looking at the commits: git log

@ The first commit has been created by github when you ticked the
“Create README.md"” and chose a License.

@ You can see the commits by using the command

@ git log
commit 52b9%bc84bf837add309437£8cd30c63521b3940c
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Tue Sep 15 13:23:04 2020 +0200

Initial commit

@ And in more detail which files have been added/changed/deleted
(A/M/D) with
@ git log ——name-status
commit 52b9%bc84bf837add309437£8cd30c63521b3940c

Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Tue Sep 15 13:23:04 2020 +0200

Initial commit

LICENSE
README .md

>

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 34/127

mailto:florido.paganelli@gmail.com
mailto:florido.paganelli@gmail.com

Let’'s change the README

» We will write a fairy-tale. Code is boring!

> Open the geany editor to change the readme:

@ pluma README.mdé&
» Write a line “Once upon a time,” as in the picture and save
(See MNXBO1l-manual.pdf if you don’t yet know how to do this!)

README.md <

1 ¥ MHNXBOl-learn

2

e Once upon a time,
|

MNXB01-2022 - Working with git Tutorial 5 35/127

Concepts of version systems
git status

» If one modifies or changes files contained in a
certain revision, git can see it, and reports to the
user with the status command.

» Git gives the choice to add (include) these
changes to the database.

~

Current Revision #:

hashl Working
directory

-

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 36/127

Concepts of version systems
git status

@ Check the status of the repository with

@ git status
On branch main
Changed but not updated:

il (use "git add <file>..." to update what will be committed)
(use "git checkout —-- <file>..." to discard changes in
working directory)

#

modified: README . md

#

no changes added to commit (use "git add" and/or "git commit -a")

@ Let’'s add the file to be part of the next collection of changes, as git suggests
above

@ git add README.md

MNXB01-2022 - Working with git Tutorial 5 37/127

Concepts of version systems
git add

@ Once files are added, they are marked to be part of a next revision, but
they’re not yet saved in the database.

@ |n git slang, they're staged - shortlisted to be part of the next commit.

@ One may continue working, editing and keep staging other files that might
be part of the same set of changes repeating this task.

@ remember: staged files are not yet versioned nor tracked. They are
not added to the changes database yet.

~

Branch Current Revision #: ‘:
main hashl Working '

directory

README-md

(changed)

staged

-EEEEEEEEE DS S E ..,

Lgit

A

(4

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 38/127

Concepts of version systems
git commit

@ Staged files will then be actually become part of a new revision in the
database once the user commits them.

@ A new commit will generate a new hash, tracking the set of changes in
the database.

@ When you commit you get the chance of describing your commit with
a comment. It is extremely important that your commit explains
very well what are the changes contained: this is the main way one

remembers what changes have been done, and how an externa
reader can understand what the changes are about. Very
descriptive
T Uy text about
i . — — the change
Branch Previous Revision #: Current Revision #:
directory

README.
LICENSE
(changed)

.
[}
1
1
1
1
1
[|
[|
1
1
1
1
1
1
1
1
1
L}

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 39/127

Check staged files and commit

» We can run git status again to check which files are staged:

@ git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README . md

S S S S o o

» README.md is ready to be added to the new set of changes.
We can then commit and write an inline message with -m:

@ git commit —-m 'Added first of the fairy-tale'
[main 8c999d3] Added first 1line of the fairy-tale
1 files changed, 3 i1nsertions(+), 1 deletions(—)

@ Git shows a short version of the hash (8c999d43), the comment, and a
summary of changes.

Branch Previous Revision #:
main hashl

MNXB01-2022 - Working with git Tutorial 5 40/127

Current Revision #:

8c999d3

Check committed changes

@ We can run git log again to check the commits:

@ git log ——name-status
commit 8c999d3896e8a7d01laa’75¢c6601bc3e40e0cfa849
Author: Florido Paganelli < >
Date: Tue Sep 15 14:53:32 2020 +0200

Added first line of the fairy-tale
M README . md
commit 52b%bc84bf837add309437£8cd30c635210b3940c
Author: Florido Paganelli < >
Date: Tue Sep 15 13:23:04 2020 +0200

Initial commit

A LICENSE
A README . md

@ In the logs we can see all the metadata added to the database.

MNXB01-2022 - Working with git Tutorial 5

41/127

mailto:florido.paganelli@hep.lu.se
mailto:florido.paganelli@gmail.com

Concepts of version systems
glt pUSh o

@ All the changes can now be sent to a ()
remote server, to the remote (]
repository origin on github, using
the push command

@ |t is assumed that one is pushing the
currently active branch.

@ When pushing one has to specify the
destination remote and the
destination branch to be pushed

--
~

Branch Previous Revision #: Current Revision #:
main hashl hash2
READM
LICENSE (changed,
committed)

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 42/127

Working
directory

- EmEEEEEEDEEDEE s s =,

-

Pushing from working dir
to github origin main

* We’'re now ready to send our changes to the remote repository. It is
important to select the correct remote and remote branch according
to the branch we're on. We're on main hence we will push main. The
system will ask for our ssh key password, which you have to input:

OpenSSH (on pptest-iridium.luna...

@ git push origin main

COUl’lting Objects : 5’ done . Password:
Delta compression using up to 16 threads.
Compressing objects: 100% (2/2), done. =

Writing objects: 100% (3/3), 338 bytes, done. |pasphaseengnhidderEanaly

Total 3 (delta 0), reused 0 (delta 0)

To git@github.com:floridop/MNXBOl-learn.git e e]
52b9%bc8..8c999d3 main —> mailn

» Git will show some statistics about the upload and information
about branch tracking.

N

S s mEEmamw

MNXB01-2022 - Working with git Tutorial 5 43/127

Check the status of the repo on
github

- Go back to the github page of your repo
and refresh the page with F5. You should
now see the modified README.md file.

» |If you click on “2 commits” you can see
the detail of commits

> You can always click on “<>Code” to go
back to the main page of your repo.

& floridop/ MNXB01-learn

I <> Code I;sues Pull requests Actions Projects Wiki Security Insights Settings
¥ main ~ ¥ 1branch & 0tags Go to file Add file = + Code -
@ floridop Added line that starts the fairy-tale 8c999d3 2 hourslago 9 2 commits I

[a Y 1 e

MNXB01-2022 - Working with git Tutorial 5 44127

Making changes directly on github
1/4

» Github can render your readme file if you write it in
a special formatting language called MarkDown
(README.md)

» |t interprets simple text and formats it as nice
HTML.

» |t also provides an online editor to make quick
changes. Let’s|7t your readme on github by
clicking on the icon

README.md I Z \

MNXBO01-learn
Tutorial 5 45/127

Making changes directly on github
2/4

1)Let’'s add an additional line of text to out fairytale:
there was a **beautiful** _princess_

@ **: bold

_:italic
2)You can preview the changes by clicking on “preview changes”
3)Once you’'re happy with the way the text looks, we're ready to

commit.

@ In the “Commit Changes” area, write a significant comment like
"Introducing the story character”

@ Then click on “commit changes”

@ You can now check the commit History to see how your latest
change has been recorded.

MNXB01-2022 - Working with git Tutorial 5 46/127

Making changes directly on github
3/4

@ I n p i Ct u re S : MNXBO01-learn/ README.md Cancel

MNXB01-learn/ README.md Cancel <> Edit file & Preview changes

<> Edit file & Preview changes

MNXBO01-learn

1 # MNXBO1-learn

I Once upon a time,

Once upon a time,

4 | There was a **beautiful** _princess_ I Once upon a time, There was a beautiful princess

e Commit changes

I Introducing the story character

Add an optional extended description...

0O © Commit directly to the master branch.

I Create a new branch for this commit and start a pull request. Learn more about pull requests.

I Commit changes I Cancel

MNXB01-2022 - Working with git Tutorial 5 47/127

Making changes directly on github
4/4

» History

History for MNXB01-learn / README.md
-o- Commits on Sep 15, 2020

Introducing the story character Verified = EBETFA5 <>
e floridop committed 1 minute ago

Added line that starts the fairy-tale el 809943 o>
a floridop committed 2 hours ago

Initial commit S o) 59h9bcS <>
a floridop committed 4 hours ago

Mewer Older

Concepts of version systems

git pull >
» Now back to our working directory on : 1
Aurora. |]
We made a change in github that is NOT ‘Remote=
present in our working directory. ~ Server
s All the changes should now be retrieved on
Aurora from the remote repository origin

using the pull command (get updates) ¢

o W WM EE E EEEEDEEDE®EDE DD EEDEEEEDEEEEEEEEEEEEEEEEEEEEE S S S S EEEEEEEEmE s I O OE O OE O W OE W OEOEmm W g,
~

] Branch Previous Revision #: Previous Revision #: Current Revision #: U pda!:ed
main hashl hash2 hash3 Working
directory

READM
LICENSE (changed,
committed)

--

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 49/127

Git pull the changes from the
remote server

@ By the fault the pull command retrieves all tracked branches. At the moment
we have that main is tracked. You will be asked the github password.

@ Some modern versions of git can check if the remote is in a different state,
this one on Aurora doesn’t. But in general the rule of thumb is:

@ always pull before starting your work

@ git pull
From

8c999d3..6067£45 MEIHNINESNCEIGHnY/Main

Updating 8c999d3..6067£45
Fast—-forward

README .md | 1 +

1 files changed, 1 insertions(+), 0 deletions (-)

@ git shows a summary of the retrieved changes, new HEAD, the tracked
branches, the lines and changes in the file. 1 + : added one line

N

- Em EN Em N B . N
S s s mmamm

MNXB01-2022 - Working with git Tutorial 5 50/127

github.com:floridop/MNXB01-learn

Concepts of version systems
git branches

» Keeps different developments separated so not to break the
whole code

o If | want to add a new feature to my code but | want to keep the
original as it until I'm done | can create a coolfeature branch

@ If there are some changes that might disrupt the whole logic and |
want to keep the integrity of the code | could have a
dangerouschanges branch

@ |f | just need to fix a bug and test the code with the bug fixed |
might want a bugfix branch

» Helps contributing to code: | can create myownbranch and
then send it to someone as a contribution.

» Command: git branch <branchname>

MNXB01-2022 - Working with git Tutorial 5 51/127

Concepts of version systems
git branches

@ A repository might have one or more branches, that is, different

version of the same repository which modify or propose different
features.

@ They're called branches because they can be visualized like a tree

as they diverge from some initial branch, usually called main
(formerly master).

Every branch has a name.
@ The latest commit of each branch is called the HEAD of that

branch.
Previous Revision #: Current Revision #:
hash7 hash8
Branch:
dangerouschanges

Previous Revision #: Previous Revision #: Previous Revision #:
hashl hash2 hash3

MNXB01-2022 - Working with git

Branch:
coolfeature

Current Revision #:
hash9
Current Revision #:
hash4

Tutorial 5 52/127

Branch:
main

GIT Concepts

Concepts of version systems
git branch

» Every branch history is a continuation of the
history where the main was branched.

It Is possible to branch from a branch, not just
from the main. Use with care, can be confusing!

Branch Previous Revision #: Current Revision #:
oolfeature/ ||| hash7 hash8
Current Revision #:
Branch hash9
dangerouschanges

li

Branch Previous Revision #: —1 Previous Revision #:

main J hashl =1 hash2 FE= hash3 E hash4 :

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 53/127

git branch our fairy-tale

» Back on Aurora, let’s create a branch alttale out of the existing
main:
@ git branch alttale

*» Look at the branches:

@ git branch
alttale
* main

» We're still working on main: one can tell by the asterisk * next to
the branch name.

Branch
alttale
Current Revision #:
hash3

Tutorial 5 54/127

Previous Revision #: Previous Revision #:
hashl hash2

MNXB01-2022 - Working with git

GIT Concepts

Concepts of version systems
git checkout

> A branch can be made active with the checkout
operation. When a branch is checked out you will

be able to see its files in your working
directory.

v To checkout a branch means to select a
certain history of changes.

~

Branch Previous Revision #:
coolfeature hash7

Current Revision #:

Working
hash8 :

directory

--

GIT Concepts

MNXB01-2022 - Working with git

Tutorial 5 55/127

Checkout the alttale branch

* git checkout alttale
Switched to branch 'alttale'

@ git branch
* alttale
main

@ Now we're on the alttale branch

* The last current revision of main is the first of alttale. From
this point on their history diverges, but they share the past

history.
Branch
alttale
Current Revision #:
hash3

- Working with git

Previous Revision #: Previous Revision #:
hashl hash2

MNXB01-2022

Tutorial 5 56/127

Let’'s change the story

@ Let’'s edit README.md again
@ pluma README.mdé&

@ pluma may ask you if you want to reload the file.
Say yes: the copy pluma has is still relative to before our changes on github, it is not up to date.

@ and modify the story as such:

README.md |
MNXEOl-learn
Cnce upon a time,

1

2

3

4 There was aﬂ *=*gyil** witch_
5 And everyone was afraid of her
B

@ Then add and commit:

@ git add README.md
git commit -m 'alternate character tale'
[alttale 8a95450] alternate character tale
1 files changed, 2 insertions(+), 1 deletions(-)

Branch

alttale

Current Revision #:
hash4

Branch Previous Revision #: Previous Revision #: Current Revision #:
main hashl hash?2 hash3

MNXB01-2022 - Working with git Tutorial 5 57/127

Let's push the new branch to origin

@ We think this new story might work, so we want to save also this
one on the remote origin.

@ git push origin alttale
Counting objects: 5, done.
Delta compression using up to 40 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 367 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)

remote:
remote: Create a pull request for 'alttale' on GitHub by visiting:
remote:
remote:
To :floridop/MNXBOl1-learn.git
* [new branch] alttale —-> alttale

@ git suggest us to do a pull request. These are importantin a
collaborative environment, we will see later what they are and how
to perform them.

---m

Branch

alttale

Branch

alttale

4
1
1
1
1
1
1
1
1
|

S s s mm amm

MNXB01-2022 - Working with git Tutorial 5 58/127

https://github.com/floridop/MNXB01-learn/pull/new/alttale
mailto:git@github.com

See branches and history
network on github

& floridop/ MNXBO01-learn @ Unwatch ~ | 1 7 s

<> Code (1) lssues i1 Pull requests (v) Actions [T Projects [0 wiki (1) Security |~ Insights

mairD © 0 tags Golofle = Addfile~ About

Switch branchesitags b No desc
d6pasa3 22 hours ago 9 4 commits topics pn

Find or create a branch...
0 Read

yesterday

Branches Tags

& floridop/ MNXB01-learn @ Unwatch ~ 1 Yrstar | 0 % Fork |

' master default

<> Code (1) Issues i1 Pull requests (*) Actions [Projects [0 Wiki ® SecurityI |~ Insights I@ Settings
alttale

View all branches

Pulse Network graph

Contributors
Timeline of the most recent commits to this repository and its network ordered by most recently pushed to.

Community

Owners Sep
Traffic

15

Commits

floridop |

.]

Code frequency @
Dependency graph

Network

Typical workflows summary Scenario 2:
personal project, one user, single remote
server/repo

The one we just did in the tutorial so far.
1) Login into github (or you own git server)
2)Create a (bare) remote repository (your “origin”)

3) Clone the repository on your laptop. It will create
your local working directory

4) Work/save on your laptop, branch, add and
commit in your working directory

5)Push/pull branches and commits to/from your
origin to synchronize with the remote server

MNXB01-2022 - Working with git Tutorial 5 60/127

git tutorial part 2
scenario 3:
collaborative environment

MNXB01-2022 - Working with git

Typical workflows Scenario 3: introduction
shared project, many users, one or many
servers/repository

« A community creates a project repository that will involve many
user to cooperate

2 scenarios:

1)Multiple users committing/pushing/pulling to the same git repository

@ Pro: quick development provided that no one is touching anyone else code.
@ Cons: one can generate many conflicts (changes on the same file at the same time)

P Only works when developers do not touch each other’s code
» Good for small projects or tasks

2)Multiple users suggesting contributions
@ Pro: controlled development where one release manager accepts

@ Cons: conflicts can be avoided by the release manager

P Only works if developers agree on a git flow - a way of working with git.
P Good for large projects

In this tutorial we will learn scenario 2 as it works well with large
scientific collaborations.

MNXB01-2022 - Working with git Tutorial 5 62/127

What is a software fork

» |In software engineering, a fork of a software
project A it's a copy of the software source code

of A to develop features for a project B,C,... that
follow completely independent choices from

project A.

project B

past / present

— project A =
: All projects share the same —
project A code until this point in time CED
project C
TIME -

GIT Concepts Tutorial 5 63/127

Concepts of version systems
\ forking in git — >

L)
| J

o | Remote

Project
Server

repository

e A fork happens usually between one or more users or organizations
writing software, and one of them (A) is the release manager.

» B,C,D fork A’s project repository where all the contributions will be

collected. In git this is done by cloning (duplicating) the repository of
a project one wants to work on, called upstream

repository
=7

\3

@ Users B,C,D work on their forks/origins independently. At some
point they might want to send the changes they made back to the
A’'s upstream repository.

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 64/127

Fork my MNXBO1-learn repository
on github

@ Goal: write a collaborative fairytale. Each of you will add some lines.

@ Go to my github MNXBO1-fairytale repo at the page:
https://github.com/floridop/MNXBO1-fairytale

@ Click on fork:

& floridop / MNXBO01-fairytale ®Watch ~ 1 7 Star nI Y Fork 0 I

<> Code (1) Issues il Pull requests (¥) Actions [M] Projects [0 wiki (1) Security |~ Insights

@ A copy of my repository is now present in your github.

@ When forking, the following naming conventions apply:

@ The repository from which you fork is called upstream
@ The copy in your personal github page is called origin

MNXB01-2022 - Working with git Tutorial 5 65/127

https://github.com/floridop/MNXB01-fairytale

Setup the MNXBO1-fairytale qit
fork

@ On your fork page, copy the repository URL from the code button as we
saw in the first part of the tutorial (slide 23).

@ On Aurora, clone your origin:
@ cd ~/git
@ git clone git@github.com/YOURUSERNAME/MNXBOl-fairytale.git
@ This will automatically create an origin with information about authentication.
@ Enter the cloned repo
@ cd MNXBOl-fairytale
@ Add my repository as upstream remote with this exact command:
@ git remote add upstream https://github.com/floridop/MNXBOl-fairytale.git

@ Note that you do not need to authenticate to my upstream repository in this
scenario. You will never push to it, only pull from it.

@ |list the remotes. It should look like this:

@ git remote -v
origin git@github.com/YOURUSERNAME/MNXBOl1-fairytale.git (fetch)
origin git@github.com/YOURUSERNAME/MNXBO1-fairytale.git (push)
upstream https://github.com/floridop/MNXBOl-fairytale.git (fetch)
upstream https://github.com/floridop/MNXBOl-fairytale.git (push)

MNXB01-2022 - Working with git Tutorial 5 66/127

https://github.com/floridop/MNXB01-fairytale.git

A git flow model:
Upstream, origin, local, A Tale of a River

: “Lrl!ols gll!ub l Fork
Branch

PULL
REQUEST
devbranch
to main

Branch

devbranch
% -4 your Fork on github

pull or fetch

development,

: main from pull and push
: upstream development branches
Branch to and from 1
origin
' devbranch 1
. Working directory .-
R " Kachemak Bay, AK. Photo credit: Alaska Shorezone.

https://medium.com/@AKSalmonProject/where-the-river-meets-the-tides-salmon-and-estuaries-a9e7aaf78519

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 67/127

Fork, local, origin, upstream
highlights

In the git flow | am showing you the following rules apply. Other flows can have different rules.

@ In this model, the upstream main contains the latest and greatest version of the software.
Only the release manager is allowed to modify its content.

@ A developer forks some user upstream repository on github to obtain an personal origin repo
in their personal account.

@ The developer clones their origin into their working directory

@ The developer codes in their working directory, but:

@ The developer never codes in their main

@ All the development happens in development branches created by the developer
@ The developer pushes and pulls to and from their origin

@ The developer periodically
@ pulls main from the release manager upstream repo to keep their working directory main up-to-date
@ pushes the updated main to their origin main so that also the copy on github is in sync with the upstream

@ After pulling, one typically will have to carefully merge the code in the branches with the upstream
changes.

@ When making changes in a development branch, the developer requests the upstream release
manager to apply their changes by sending a pull request on github against the upstream
main

MNXB01-2022 - Working with git Tutorial 5 68/127

Concepts of version systems
pull requests

Pull request

here’s my changes, would
you like to add them?

No

please make these
changes first!

@ Pull requests are a way to propose changes to the forked repository so that the
owner of the upstream repository can review them and discuss them before
approval

@ |f they are accepted, they will be integrated, that is, the origin development
branch will be merged into the upstream main

@ |f they are rejected, a discussion can be made about why and how to make them
acceptable.

@ After this process the user A will need to pull the changes from upstream for
origin to be in sync with upstream.

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 69/127

Collaborative development 1/2

» We will write a collaborative fairy-tale.

@ Each of you will add a sentence, a line, a picture. Be creative! But only
characters. If you are more into drawing than writing maybe your search
the internet for “ASCII art”

@ Why text? GIT is very bad with files files that are not text. It can only
handle well text. The power of git lies in the ability to use the Linux
command line to do many things with text.

* Any development in this model starts with creating a a
development branch:

@ git checkout -b mystory
Switched to a new branch 'mystory'

@ The above is an equivalent and a faster way for:

@ git branch mystory
@ git checkout mystory

@ Check that you are in the mystory branch (the asterisk marks it!) with:

@ git branch
main
* mystory

MNXB01-2022 - Working with git Tutorial 5 70/127

Collaborative development 2/2

@ Edit the fairytale.md file and add a piece of story (remember to save!)
@ pluma fairytale.mdé&

@ add and commit

@ git add fairytale.md

@ git commit -m ‘my side of the story’
[mystory 1e46496] my side of the story
1 files changed, 3 insertions(+), 0 deletions(-)

@ push the mystory branch to your origin like we did in the first part of the tutorial
(you will be asked the github password):

@ git push origin mystory
Counting objects: 5, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 349 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

remote:

remote: Create a pull request for 'mystory' on GitHub by visiting:

remote:

remote:

To https://GITUSERNAME@github.com/GITUSERNAME/MNXBOl-fairytale.git
* [new branch] mystory —> mystory

@ You just completed the first half of your first collaborative development task!

MNXB01-2022 - Working with git Tutorial 5 71/127

https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory

Your first pull request 1/4

There are three possible ways of performing a pull request, pick one of them:

1)Follow git/github suggestion and click (or copy paste in the browser) the link you saw in the git output in
the previous slide (like the one highlighted below but with your github user instead of GITUSERNAME):

remote: Create a pull request for 'mystory' on GitHub by visiting:
remote:

2)On your fork origin,
¥ user/MNXBO01-fairytale @ Watch ~ 0 o st

forked from floridop/MNXBO01 -fairytale

<> Code i1 Pull requests (v) Actions [Projects [Wiki) Security |~ Insights % Settings
@ Select the mystory branch

¥ mystory - IE—' 2branches) 0tags Go to file Add file = ¥ Code - About
collabor:
This branch is 1 commit ahead of floridop:master. 4>I i1 Pull request I Compare MNXBO"
H " n
@ Click on “Pull request 0 Reac
Test Student 5 my side of the story 146496 1hourago YO 4 commits i CCo-

3)On my upstream repo page, if you're logged in in github, you will see a notification that one of your
branches is ready for a pull request. Click on “Compare & pull request”

& floridop/ MNXBO01-fairytale @Watch v | 1 7St

<> Code (1) Issues i1 Pull requests (v) Actions [T Projects 0 Wiki (1) Security [~ Insights

About
P user :mystory had recent pushes 5 minutes ago Compare & pull request

https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory

Your first pull request 2/4

The pull request submission page presents some interesting tools.

@ One can choose the target branch of a pull request. Submit the pull
request against my upstream main

T.'l base repository: floridop/MNXB01-fairytale « < head repository: user MNXBO01-fairytale « compare: mystory «

v Able to merge. These branches can be automatically merged.

@ You can add additional comments for me to know what to do with your

submission:

Write

my side of the story

Preview H B

Leave a comment

M @ @2 «-

@ |f you scroll down
the page you will
see the differences
between your files
and mine;

Showing 1 changed file with 3 additions and 0 deletions.

~ 3 EEEnS fairytale.md (%)

1 P@ -5,6 +5,9 @9
In a faraway future, in a distant land
lives the *Squonk*

+ The average Squonk 1s 9 meters tall and screams

lou

ines to the story. Can be anything. Inspiration?

d.

Unified Split

ol O | oo

MNXB01-2022 - Working with git Tutorial 5

73/127

Your first pull request 3/4

» When done you can finally submit the pull
request by clicking “Create pull request”

Aftach files by dragging & dropping, selecting or pasting them. M4]

Create pull t -
Allow edits by maintainers (3)

(©) Remember, contributions to this repository should follow our GitHub Gommunity Guidslines.
» You just completed the second half of your first
collaborative development task!
From now on the task flow is handed over to
the release manager (me)

» You can check the progress of your pull request at
the URL generated for the pull request, the page
that you see after creating it. Let’s look at it in
detail in the next slide...

MNXB01-2022 - Working with git Tutorial 5 74/127

Your first pull request 4/4

. affected
my side of the story #1 branches cat | Openwin -

N/l user wants to merge 1 comn[cinto floridop: main fr01 user :mystory [°)
:I file diffs j

L)) Conversation o o Commits 1 [Fl Checks o [£) Files changed 4
pull request

+3 -0 EEN

status user commented now @ - Reviewers
Mo reviews
No description provided. .
Still in progress? Convert to draft
change and
discussion o my side of the story 1246496 Assignees
hlstory Mo one assigned

Add more commits by pushing to the mystory branch on user /MNXBO01-fairytale.
V pushing fo e mystory i merge status

conflicts may be
notified here

Only those with write access to this repository can merge pull requests.

(
‘ ° This branch has no conflicts with the base branch

Pro]
Mone yet
FE Y
.u Write Preview H B 7 = © & £ = @ & a-
Milestone

Mo milest
Leave a comment o milestone

dlSCUSS|On Linked issues
area y Successfully merging this pull request may
Attach files by dragging & dropping, selecting or pasting them. o close these issues.

Mone yet

(% Close pull request

EOSS|b|I|ty to cancel your pU” request iGitHuD Community Guidelines. Notifications Customize

L Unsubscribe

O ProTip! Add .patch or diff to the end of URLSs for Git's plaintext views.

You're receiving notifications because you

MNXB01-2022 - Working with git Tutorial 5 75/127

Reviewing pull requests

» | will now process your pull requests as a
release manager in order of arrival and make
changes to my upstream main

» During the process, the developers can interact
via the github interface to discuss changes.

» The first pull request | will accept is mine, so |
can show you the process of merging and
updating your own origin main and mystory
when the upstream repo changes.

MNXB01-2022 - Working with git Tutorial 5 76/127

Diff-ing on github

» |In the “files changed” tab one can see the differences (diffs in
jargon). They are shown in a standard diff format (more about
it later in these slides):

my side of the story #1 Eat || Openwin -

jgRel=4ll user wants to merge 1 commit into floridop: main from user :mystory (7

) Conversation o o~ Commits 1 [\ Checks o [£] Files changed 1 +3-0 HEN
Changes from all commits ~ File filter..~ Jumpto...~ &3~ 0/1fles viewed ()
v 3 EEE fairytale.md [<>) Viewed

X @8 -5,6 +5,9 @@

In a faraway future, in a distant land In a faraway future, in a distant land
lives the *Sguonk® lives the *Sguonk*
+. added I|ne + The average Squonk is 9 meters tall and screams Loud.
L] - +
— . removed line
+
> Add some lines to the story. Can be anything. > Add some lines to the story. Can be anything.
Inspiration? Inspiration?
> What does a Squonk **look like**? > What does a Squonk **look like**?
> What does it **do**? > What does it **do**?

O ProTip! Use n and p to navigate between commits in a pull request.

MNXB01-2022 - Working with git Tutorial 5 77/127

» The release manager can comment on the overall code status and

Review process

even comment on single lines or blocks of code to tell the developer
what to improve or change, or discuss some coding matter.

my side of the story #1
user wants to merge 1 commit into

) Conversation o -o- Commits 1

v 3 EEmC fairytale.md (7

X @@ -5.6 +5,9 @@

In a faraway future, in a distant

lives the *Squonk*

> Add some lines to the story. C
Inspiration?
> What does a Squonk **look like

> What does it **do**?

QP

floridop: main from user Imystory [S]

[l Checks o [£) Files changed 1

Changes from all commits ~ File filter..~ Jumpto...~ @ v

Write Preview H B I =

Edit

071 files viewed ® Review changes

O @ =T E M @ ¢ a-

Open with -

+3 -0 HEE

| don't think Squonks are so tall. Please change height

Aftach files by dragging & dropping, selecting or pasting them.

Comment
Submit general feedback without explicit approval.

Approve
Submit feedback and approve merging these changes.

O Request changes
Submit feedback that must be addressed before merging.

Submit review

In a faraway fTuture, in a distant land

lives the *Sguonk”

a’ The average Squonk is 9 meters tall and screams loud.

rite H O EevVier = o = s
@ @ &~

Height too much, reduce

Aftach files by dragging & dropping, selecting or pasting them.

Cancel Add single comment

MNXB01-2022 - Working with git Tutorial 5

78/127

Merging - a new history is born

@ Once the changes in a development branch are accepted, these are usually integrated back in the
upstream main with the merge operation. This is done by the release manager.

@ The result of a merge operation between a source and a target branch is a merged history of commits
between the two branches. The commits in the source branch are copied to the target branch.

@A new HEAD is created with a commit that says that there was a merge in a given moment in time.
@ Files are modified according to a distributed timeline. Conflicts may arise and need to be resolved.

@ The result of these two operations (what github does behind the scenes) may look like the one in the
example below
1. Checkout target: git checkout main
2. Merge with source: git merge mystory

@ After a successful merge the source branch can be deleted. But you can keep it for the record.

Previous Revision #: Current Revision #:

Branch: / hash7 ™ | hash8
mystory

Merge of source mystory into target main

Previous Revision #: Current Revision #: Current Revision #:
hash7 hash8 hashll

Previous Revision #: Previous Revision #: Previous Revision #: Current Revision #:
hashl hash2 hash3 hash4

MNXB01-2022 - Working with git Tutorial 5 79/127

Branch:
main

GIT Concepts

The release manager merges

» Once happy with the changes, the release manager can
start the merge. It includes adding a special commit
message concerning the merge.

|'
@ Continuous integration has not been set up

GitHub Actions and several other apps can be used to automatically catch bugs and enforce style.

This branch has no conflicts with the base branch
Merging can be performed automatically.

my side of the story #1
Merged
[ME[-QB pl_.||| quUE.'St - }:'r view command line instructions. floridop merged 2 commits into floridop:master from user :mystory E]

1

v&dd more commits by pushing to the mystory branch or user 'MNXBO01-fairytale.

Resolve conversation

6 Merge pull request #1 from |usert/mystory

o New changes since you last viewed
merging after @ user updated height after my request

- reduced Squonk height according to request

Confirm merge Cancel
_ 2 @ @ floridop merged commit 1e2b279 into loridop:master NOW

MNXB01-2022 - Working with git Tutorial 5 80/127

git merge # github merge

@ |t turns out they're not the same. Linus Torvalds, who wrote both git and the Linux kernel, complained
in the kernel mailing list to a company submitting patches to the kernel in a mail exchange dated 4t of
September 2021:

“... I notice that you have a github merge commit in there. That's another of those things that I *really* don't want to see - github
creates absolutely useless garbage merges, and you should never ever use the github interfaces to merge anything,”

This is the complete commit message of that merge:

Merge branch 'torvalds:master' into master

Yeah, that's not an acceptable message. Not to mention that it has a bogus "github.com" committer etc.”

So github tampers (modifies without alarming the user) the authorship and the content of the commit
messages. The question is, why? This is unfortunately yet another story of a service taken over by a
multinational company that does not respect specifications or good practices.

Torvalds continues with a very nice reminder:
”github is a perfectly fine hosting site, and it does a number of other things well too, but merges is not one of those things.

Linux kernel merges need to be done *properly*. That means proper commit messages with information about what is being
merged and *why* you merge something. But it also means proper authorship and committer information etc. All of which
github entirely screws up.”

So whenever possible do the merge step from the command line or using a good tool, avoid the github
interface, even if it is very convenient. Or you will lose some information.

Source:

http?://Iore.kernel.org/lka/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aLOH3Q@maiI.gmail.
com

A related article:

MNXB01-2022 - Working with git Tutorial 5 81/127

https://lore.kernel.org/lkml/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aL0H3Q@mail.gmail.com/
https://lore.kernel.org/lkml/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aL0H3Q@mail.gmail.com/
https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds
https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds

Open and closed pull requests

- As long as the pull request is open (that
s, | didn’t yet merged your development
branch) you can still make changes and
push them to your origin devbranch.

» Github will recalculate automatically the
possible outcome.

MNXB01-2022 - Working with git Tutorial 5 82/127

After the upstream merge 1/2:
possible conflicts

s At this point, all of your branches (your working directory main
and mystory, your origin main and mystory) will be out of sync
with my upstream main, which has changed after the merge.

» For some of your pull requests that modified the same lines as the
merged ones we will see the following:

This branch has conflicts that must be resolved Resolve conflicts

Use the web editor or the command line to resolve conflicts.

Conflicting files

fairytale.md

or view command line instructions.

* [n most cases, the release manager will have to do all the merges
manually and carefully check your code.

* |n other cases, they may just tell you to sync/update your origin
main to their upstream main and review the changes yourself.
We will do this task to learn how to do a command line merge.

MNXB01-2022 - Working with git Tutorial 5 83/127

Conflicts 1/2

» |n most cases, many developers coding on the same file will
cause total havoc.

» |n a distributed asynchronous collaborative environment is
very likely that everyone is coding at the same time like we're
doing now, so there will be conflicts

» Conflicts arise when two or more developers edited the
same lines of the same file, and it is hard to merge the
different versions of the file automatically. In that case github
cannot do alone and manual intervention is required.

» A way to avoid conflicts is to divide the developers’ job
into independent folders and independent files, limiting as
much as possible editing the same files.

Tutorial 5 84/127

Conﬂicts 2/2

T

Amerged

Branch

devbranch

Remote S Remote
Worklng “ CIVCEI
directory

reposito | —-Amerged E

A\upstream
or Adevbranch')

push

merge:

Branch A i

mai N _, \upstream

Aorig
_, A\upstream .

push _A-—==--- L= pull

@ |n a distributed development environment, different users may modify the same file

@ When the same file is modified more or less around the same lines, and you try to pull from
repositories or merge from branches where the modifications have been made, you may incur in
a conflict

@ A conflict is a set of changes that must be reviewed in order to sort out which of
Aorigin Aupstream Adevbranch should go into the final result of a merge

@ This usually can only be solved by a developer knowledgeable of the code, and it resolves in a
n-way-merge. An example of 3-way merge is at slide

@ The result is often an Amerged file that integrates all the changes all the developers made.
@ In this model we try to never pull from origin, so that we reduce a source of the conflicts.

GIT Concepts MNXB01-2022 - Working with git Tutorial 5 85/127

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/%23Slide%20129

After the upstream merge 2/2:
update your origin repo

@ At this point, your working directory AND your origin main branches will be out of sync with my
upstream main

@ 1) You should update your working directory main to be in sync with mine by running in your work
directory:

@ git checkout main
Switched to branch 'main'

@ git pull upstream main
remote: Enumerating objects: 1, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 1 (delta 0), reused 0 (delta 0), pack-reused O
Unpacking objects: 100% (1/1), done.
From
* branch main —-> FETCH_HEAD
Updating abed28e..1e2b279
Fast-forward
fairytale.md | 3 +++
1 files changed, 3 insertions(+), 0 deletions(-)

@ 2) and then you will need to update also your origin main with the changes:

@ git push origin main
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com/GITUSERNAME/MNXBOl-fairytale.git
abed28e..1e2b279 main -> main

@ See how the commits match.

@ Now we're almost ready for another cycle of development.
Next step: merge these updates into our development branch.

2) -O-r-lé;l’; ------ — s \, ! Working directory g ”

[} : :

. ' Branch o ' ‘ tream Branch

1 Branch Aeﬂgm @ “: Aups C

1 . il Aupstream : mai n : mal n
' _, Aupstream |

: main . : ! pu !

! + push: ;

MNXB01-2022 - Working with git Tutorial 5 86/127

https://github.com/floridop/MNXB01-fairytale

Visualizing changes

» Now we know that there are two different
stories in main and mystory. How much do
they differ?

» git provides several commands to check
differences in both content and history.

» | will show you some examples that | think are
useful. The main commands are:

*» git diff : uses git own diffing system

» git difftool: uses a user defined git diff tool
(must be configured before use).

MNXB01-2022 - Working with git Tutorial 5 87/127

diff a file between two branches

@ To see the differences of the same file versions between two branches, use this

syntax:
@ git diff branchl. .branch2 filename

@ Let’s try with our branches, | added some colors to the output for readability:

@git diff main..mystory fairytale.md
diff --git a/fairytale.md b/fairytale.md
index a98c877..803a%e6 100644

s ;?E:iig;;ii ﬁg -: showing lines 5 to 8 of file in in branch main
@R —-5,8 +5,7 QQ w— |+: showing lines 5 to 7 of file in branch mystory

In a faraway future, in a distant land
lives the *Squonk™*

—The average Squonk 1s 7 meters tall and screams loud.

> +I thought Squonks did not exist!

> What does a Squonk **1look like**?

- : missing lines of file in branch main
+: added lines of file in branch mystory
Lines of file in common between branches

MNXB01-2022 - Working with git Tutorial 5

> Add some lines to the story. Can be anything. Inspiration?

88/127

Merging updated main into mystory

@ In this situation the upstream and origin main contain the latest developments and we need to
incorporate those into our development branch mystory which is pending a pull request.

@ As in the previous merge, the result of a merge operation between a source and a target branch is
a merged history of commits between the two branches. The commits in the source branch are
copied to the target branch.

@ A new HEAD is created with a commit that says that there was a merge in a given moment in time.

@ Files are modified according to a distributed timeline. Conflicts may arise and need to be
resolved.

@ The result of this two operations (what github does behind the scenes) may look like the one in the
example below (note that it is the opposite of what the release manager does! They usually merge
a branch into main and not viceversa.)

1. Checkout target: git checkout mystory
2. Merge with source: git merge main

Merge of source main into target mystory
Previous Revision #: Current Revision #:
Branch: hash7 ™ | hash8

mystory \
\ Previous Revisiojii isi . Current Revision #:
Previous Revisiol Current Revision #:
hash2| ™ 131 hash4 hash11

B ranCh : Previous Revision #: Previous Revision #: Previous Revision #: Current Revision #:
main hashl hash2 hash3 hash4

MNXB01-2022 - Working with git

GIT Concepts Tutorial 5 89/127

git merge on the command line

@ Now we know what will happen when we merge, a conflict may be
generated due to the differences in the files.

@ Let’s try a git merge and learn how to resolve conflicts.

@ Change to the mystory branch and tell git to merge the content of
main:

@ git checkout mystory

@ git merge main
Auto-merging fairytale.md
CONFLICT (content): Merge conflict i1n fairytale.md
Automatic merge failed; fix conflicts and then commit the
result.

@ Let's open the fairytale.md file in pluma to see what the conflict
caused.

@ pluma fairytale.mdé&

MNXB01-2022 - Working with git Tutorial 5 90/127

Conflict resolution from the

command line 1/4

@ This is what the merge generated:

fairytale.md ¢
5 In a faraway future, in a distant land
= lives the *Sguonk*
o
8 <<<<<<< HEAD HEAD (last commit) of the mystory branch
o I thought Squonks did not exist!
10 =======
11 jhe average Sguonk is 7 meters tall and screams loud.
12 o .
13 susssss main content of the same file in branch main
14
15 > Add some lines to the story. Can be anything. Inspiration?
16 > TWhat does a Squonk **look like==*7
17 > What does it *=do**7
18 > What **happened** to **it**7
19 > What does the **world*=* he lives in **look like*=*7?
20 > What happened between it and the *Drowsloks=®?
21
22 "Well... your turn now.’
3

@ The conflicts are identified with the special markers:
<<<<<<< HEAD Beginning of the diffs in the HEAD file current branch

======= end of the diffs of the file in the current branch, beginning of the diffs in main

>>>>>>> main end of the diffs in main
all the other lines are common to the file in both branches

MNXB01-2022 - Working with git Tutorial 5

91/127

Conflict resolution from the
command line 2/4

@ The conflicts are identified with the special markers:
<<<<<<< HEAD Beginning of the diffs in the HEAD file current branch
======= end of the diffs of the file in the current branch, beginning of the diffs in
main
>>>>>>> main end of the diffs in main
all the other lines are common to the file in both branches

@ To resolve the conflict, we need to edit the file to a state that we think is correct and
remove all three markers.

fairytale.md 3£

@ In my case | decided to
keep all lines and then
| saved:

2
3
) 4
@ There are nicer tools 5 In a faraway future, in a distant land
to do merges like 6 lives the *Squonk*
, you will find some |
g

. vl I thought Sguonks did not exist!
infos about it in the end : :

The average Squonk is 7 meters tall and screams loud.

of this presentation, ;10
unfortunately thereisno ' ** > Add some lines to the story. Can be anything. Inspiration?
. . . . 12 > What does a Squonk **look like*=*7?
time to discuss it during 5 . it docs it rdoreo
the course. 14 > What **happened** to **it*=*7
15 > MWhat does the **world** he lives in **look like**7
16 > What happened between it and the *Drowsloks=*?
17
18 "Well... your turn now.’
14

MNXB01-2022 - Working with git Tutorial 5 92/127

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/%23Slide%20129

Conflict resolution from the
command line 3/4

@ back to the terminal, we can now check with git diff the current unstaged changes:

@git diff

diff —--cc fairytale.md

index 803a9e6,a98c877..0000000

-—— a/fairytale.md

+++ b/fairytale.md

@@@ -5,8 -5,9 +5,9 @Qa
In a faraway future, in a distant land
lives the *Squonk*

+I thought Squonks did not exist!
+ The average Squonk is 7 meters tall and screams loud.

> Add some lines to the story. Can be anything. Inspiration?
> What does a Squonk **look like**?

> What does it **do**?

@ Note how this new version of the file is not staged nor committed, so it gets 0000000 as fake commit hash.

@ We can check for the file status, git will say that we're in the middle of a merge:
git status
On branch mystory
Unmerged paths:

(use "git add/rm <file>..." as appropriate to mark resolution)
#

both modified: fairytale.md

#

no changes added to commit (use "git add" and/or "git commit -a")

#

MNXB01-2022 - Working with git Tutorial 5

93/127

Conflict resolution from the
command line 4/4

@ We can now stage(add) the file, git will interpret it as if the conflict was

resolved:

git add fairytale.md

git status

On branch mystory

Changes to be committed:
#

modified: fairytale.md
#

@ Now we can commit:
git commit -m ‘Accepted both lines to complete the merge’
[mystory 11b512d] Accepted both lines to complete the merge

@ And finally push the changes to origin:
git push origin mystory
Counting objects: 7, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 388 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local
objects.
To git@github.com:GITUSERNAME/MNXBOl-fairytale.git

2a4af07..11b512d mystory —> mystory

MNXB01-2022 - Working with git Tutorial 5 94/127

The pull request iIs automatically
updated

- Checking back on github, our pending pull
request has been updated and now it’s
hopefully good to go:

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request Adlll or view command line instructions.

The release manager can now merge it to
his upstream main.

MNXB01-2022 - Working with git Tutorial 5 95/127

Typical workflows summary 3/3:
one project, many users, one or many servers

1) Login into github (or some git server)

2) Fork (make a copy of) a repository of some user community
(the “upstream” repository).

* The resulting forked project will be your “origin” remote repository

 IMPORTANT: your forked origin an upstream DO NOT AUTOMATICALLY SYNC.
THIS IS NOT DROPBOX.

3) Clone the origin repository on your computer. It will create your working
directory

4)Set your remote “upstream” repository to the user community one. This is needed
to keep in sync with the community.

5) Pull (or fetch) the latest updates (usually in main) from the upstream

6)Create a branch that is only for your changes or a specific feature you implement.
7)Work/save on your laptop, add and commit in your branch and in working directory
8)Push/pull branches and commits to/from your origin

9)When the work is done, submit a pull request from your origin branch to the
upstream main (or target branch, depending on the development model) for the
community to accept and review your changes.

)
)
)
)

MNXB01-2022 - Working with git Tutorial 5 96/127

Visualizing the changes network

» There are a lot of tools you can use to visualize the history of
changes both local and on the remote repositories. They’'re
called git browsers

» On Aurora | found gitk?! (graphical). If you want a textual one is
called tig but it is not available on Aurora.

@ You can see the relationships between two branches by running:
command branchl [branch2..]

File Edit View

» Examples:
gitk main myother
tig main myother

@ Show all branches:
t ig * 2020-09-17 21:02 +0200 Test Student 5

gitk *

— remnte;.fpr| i
remotes/orgi

Accepted both lin
reduced Squonk height ag

my other side of the story

Added some clues to a possible plot and a fitle
fairytale.md

Initial commit

SHA1 ID:

Find next | prev |mmmit |Dnntaining: J_

[1] On Aurora, to enable a version of git that includes gitk you need to run this command:
module load GCC/4.9.2 git/2.4.1

MNXB01-2022 - Working with git Tutorial 5 97/127

Homework Tutorial 5

+ This homework depends on how far in the
tutorial we get during the session.

* In any case it may contain:

> You will be required to manage a pull request
submitted by me to your MNXBO1-learn
repository

» You will be asked to contribute to a github
repository and submit a pull request.

- The official homework will come on

canvas.

Homework 5 MNXB01-2022 - Working with git Tutorial 5 98/127

A word on privacy and security

> When you fork my MNXB01-2022 repository and submit pull
requests, everything will be public.
Others will see your code.

@ |t is perfectly ok for me because | believe one learns coding by looking
at other people’s code and sharing/discussing coding with others.

@ |f you're not happy with it, you can create your own private
repository to store the material produced during the MNXBO1 course,
so that nobody else can see it.

» The grading will be done on canvas, not on github

» |If you prefer not to write your name on the github repository,
you can write your nickname, but make sure |1 know who you
are. | will not correct submissions if | don’t have a mapping
nickname-sstudent. You can send me this information privately if
you don’t want others to know who you are.

MNXB01-2022 - Working with git Tutorial 5 99/127

Useful git commands

MNXB01-2022 - Working with git

Setting your default editor with
git

* |If you commit without the —-m option, git will automatically
open a text editor for you to write a commit comment.

* |t Is good practice to:

@ write a commit title
@ |leave a blank line
@ describe your commit in more detail.

* We will use pluma as the default editor, but you can use
any editor you like.

» |If you don't configure anything, the default is a text
editor called nano, which for some is a bit weird at first.
But | suggest to use it so you just use the command line.
Press “CTRL + O” to save the file, "CTRL + X" to exit.

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 101/127

Setting Pluma as the default git
editor

» Run:
git config core.editor pluma

> Note that the commit will only happen ONCE
when you save the file in geany.

» Test by running
git commit
- If you don't like it, revert to default by
writing
git config ——unset core.editor

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 102/127

Removing or renaming a file
from the git database

» Removing: Sometimes one can decide that files in the directory
should not be part of the repository anymore. Rather than

deleting them with the rm command, one can use
git rm filename

» Remove a file using the above command.
@ Check the output of git status.

@ git commit —m 'I have deleted file filename'

Remember: CLEARLY STATE that you removed some files in the
commit message!

» Renaming: git mv oldfilename newfilename IS equivalent to
git rm oldfilename
followed by

git add newfilename

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 103/127

Textual and Graphical [w=[

Diffi o
Iffing -
> Run
git diff

> git diff

Index: thisisfloridofile.txt

--- thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ -1 +1,2-ae ~
Hello! this is florido's file. Line numbers of the two files:
+I am adding this change. -1 : showing line 1 of of file ---

L +1,2 : showing lines 1 to 2 of file +++)

@ If you want a graphical tool to check the diffs, | suggest meld
On Aurora there are two versions of meld. To enable one of the two run one of

these commands:
module load meld

@ Use meld as the default diff tool:
git config diff.tool meld
git difftool thisisfloridofile.txt

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 104/127

Undoing
not staged changes

@ Say that we are not happy with the changes we just made to a single
file and we want to go back to the latest commit (also called HEAD)

@ Change one of the files in your repository and issue git status.

@ The best to do is a simple checkout of the file from the last commit
git checkout thisisfloridofile.txt
git diff

@ Careful! You will lose all the changes done and not committed!!!

@ Note that this is equivalent to checkout the file at the latest revision

HEAD:
git checkout HEAD thisisfloridofile.txt

@ Checking out HEAD of all files in a directory will cancel all the changes

done to the uncommitted files in that directory.
git checkout HEAD *

@ Play a bit with these commands by changing files and see what
happens.

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 105/127

Reverting
to a previous revision

» Say that we don't like the current revision state, and we
want to roll back the code to a state of a different revision
back in time.

» The main suggestion is:
try to never go back in the revision history.
This is actually nice because in a collaborative environment,
keeps track of who-did-what with no cheating allowed :)
Unfortunately git allows for “cheating” by changing the
revision history. It can be useful sometimes, but must be
used with extreme care. Changing the revision history
gives no UNDO.

» To experience with this, change some files and commit, then
follow the next slides.

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 106/127

Reverting to a previous revision
the safe way: revert)

. The revert command restores the state of
all files at a certain revision to the current
working dir.

« Usually the output of a revert gives hints
about the steps to take before committing.

+ Make sure you have at least three commits
(check git log)

» Create a fourth commit

Useful GIT commands MNXB01-2022 - Working with git

Tutorial 5 107/127

Reverting to a previous revision
the safe way: revert

Try to git revert everything to your second

commit in the log:
git revert commithash

» Example:
git revert ¢c9af94904c6868e£f136d75730fbde63e0al5c£f31

» Read the git status output to see what changed

» Take action to make the files ready for commit, and
commit

» Git will automatically start a commit and open the text
editor for you. It will add the “Revert commithash”
comment to your commit and wait for your input.

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 108/127

Reverting to a previous revision
the unsafe way: reset @‘)

» The reset command does something different. It does not
preserve history and allows you to modify an existing commit.
For a detailed explanation see

» Use it only on a private branch and never on a branch you
share with others (typically a main or master branch)

» Additionally, | suggest to use it only when one of these two
happen:

@ You already staged some changes to a file and you want to unstage
them
git reset filetounstage

@ You are totally unhappy with whatever you did so far and want to
unstage all staged files:
git reset

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 109/127

https://www.atlassian.com/git/tutorials/undoing-changes

Fixing commit mistakes

» Commit allows you to amend or change the latest commit

for example, you forgot a file or you wrote the wrong
comment:

git commit —-—-amend

» Note that this will create a new revision hash, and will
DELETE the previous commit hash. So be sure you are done
with amend before you push to your remote repository.

« NEVER DO THIS AFTER YOU PULLED YOUR LOCAL
BRANCH TO A REMOTE REPOSITORY UNLESS YOU'RE
THE ONLY USER OF THE REMOTE REPOSITORY.

» Seehttps://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 110/127

https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Graphical Clients

- Want to try a graphical client?

» Other notable minimalistic ones:
gitg, qgit
» Feature-rich one (not available In
repositories):

» This one is NOT available on Aurora. You need to
download it from the internet if you want the
latest version.

Useful GIT commands MNXB01-2022 - Working with git Tutorial 5 111/127

https://www.gitkraken.com/

Additional material

MNXB01-2022 - Working with git

~ Merging

All

@ Suppose we have two versions of a document with different contents
@ We want to make one out of two

@ This is often referred as three-way-merge

@ We need to choose which part of each document we want to keep

@ There exist tools to do it, for example the excellent meld

@ git can attempt to do merges for us:

@ If the merges are simple, i.e. the changed content of A' can be easily mixed with that of
the content of A". For example, the documents differ a little but the changes in each
document are not overlapping.

@ If we provide it with some hint on how to do the merges
@ |f the above fail, it will ask us to do the merge manually, for example using meld

@ The most frequent case of merge is in case of conflicts described in the slides.

Additional Material MNXB01-2022 - Working with git Tutorial 5 113/127

Merging with meld

Al r All
g : : - Meld -+ X
File Edit C“w 2. save the result by pressing the save button (saves all modified files!)
& sy N ——
= conflictfile.txt....nflictfile.txt.r13 X

/home/fcourseuser/svn/svncoursetrunk/con| v | Browse... /home/courseuser/svn/svncoursetrunk/con| v || Browse...
this file will be used to generate conflicts --F this file will be used to generate conflicts

/home/courseuserfsvn/svncoursetrunk/con| v | Browse...| (3
__F'
= 4= <<<<<<< .mine
this is a line by Florido

this file will be used to generate conflicts --F
= €

A this is a line by Florido

A here's my line --balazsk

here's my line --balazsk
>mnmmm> 13

1. Arrows can be used to merge the highlighted content into the pointed file

Scenario 1
Git offline just to track your files

Create a work directory without a remote repository:

@ If you have git installed, cd into any folder you want to track and initialize the git
database, say myongoingproject:
cd myongoingproject
git init

@ This will create the hidden .git database folder and you can start working immediately
with adds and commits

@ There will be no defined remotes, but you can add them later if you wish.

Local bare repository (optional, could be an external disk for backup):

@ |If you want to create your own remote, where you can push and pull, create a new folder
somewhere, say /externaldisk/mybarerepo:
mkdir /externaldisk/mybarerepo
cd /externaldisk/mybarerepo
git —--bare init

@ Note that you cannot add or commit in this repository. This is really just the database
files. You can only push and pull to it. To do so, let’'s add it to the previous work directory:

@ cd myongoingproject
git remote add mybarerepo file:///externaldisk/mybarerepo

MNXB01-2022 - Working with git Tutorial 5 115/127

Typical workflows summary Scenario 1
personal project, one user, no server

This is the simplest setup just to track your own code quickly.
Instead of creating a repository on github, you create a git
database directly in the directory you want to version.

1)Create a simple local working directory by transforming
a simple directory into a git tracked directory with the
command
cd dirIWantToVersion
git init .

2)Work/save in that working directory, branch, add and

commit to track changes.
git add filel file2 ..
git commit -m ‘done some changes’

MNXB01-2022 - Working with git Tutorial 5 116/127

Preparation for the git tutorial
1/7

@ Since November 13th, 2020 Github no longer accepts usernames
and passwords to upload your code from a cluster or your personal
computer.
https://github.blog/2020-07-30-token-authentication-requirements-
for-api-and-git-operations/

* Among the suggested ways of logging in, there is
SSH keys. | will teach you how to setup SSH keys for github.
There are other methods but | do not think they suit this course.

@ For a detailed discussion of the SSH PKI technology and the commands
read the MNXBO1l-manual.pdf . Here | will just show the practical
commands to run for the tutorial.

@ For a detailed discussion why we suggest this method for this course read
the dedicated slide about github command line access at the end of these
slides.

MNXB01-2022 - Working with git Preparation for Tutorial 5 117/127

Preparation for the git tutorial
2/7

» Create an account on

» To create an account click on the “Sign
Up” button in the upper right corner.

MNXB01-2022 - Working with git Preparation for Tutorial 5 118/127

https://github.com/

Preparation for the git tutorial
3/7

2) Generate a new SSH key pair with the following command:
ssh-keygen -b 4096 -f ~/.ssh/id_rsa_github

2.1) Choose a password for your private key.
11 NEVER GENERATE KEYS WITHOUT PASSWORDS.
Read MNXB01-manual to understand why that is bad.

3) Test that your password is working with this command:
ssh-keygen -y —-f ~/.ssh/id_rsa_github

3.1) If the password didn’t work, the program will say that you provided
an “incorrect passphrase”. Start again from step 2

4) Copy (ctrl +c) and paste (ctrl+shift+v) this entire text below in your terminal to add to your ssh
configuration information on how to login to github. You may need to press enter:

cat << EOF >> ~/.ssh/config

Access to github
Host github.com
HostName github.com
IdentityFile ~/.ssh/id_rsa_github

EOF

5) check the ssh config file contains the lines added above.
cat ~/.ssh/config

MNXB01-2022 - Working with git Preparation for Tutorial 5 119/127

Preparation for the git tutorial
4/7

6) make sure the files have the proper permissions
chmod 600 ~/.ssh/id_rsa_github
chmod 644 ~/.ssh/id_rsa_github.pub

7) Check the contents of your public key:
cat ~/.ssh/id_rsa_github.pub
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAACAQCIVKDNRkMUMAEsY25)fXGCMhXL/57L
XsX5Rell1cd7mMg91tTpzhV+miedOwg30+KM51P1PoN3QpJ1Z226BBcrUJ/+pury7rN/W/
YfYMb+K0Oez74)8eT1gNNYfArZ2zZmKfe9XMFB73XYyChmDZZkEz /UuGPYA2TdDKGBA4Ccg
IMgrvXsnM8FbLfnKHBsu2rrRH51tIJM7VIMkWrGwHvI9UAsndoDEtaj0gaF0SaQ8gz+CK55
O07HSBSIrl/0uQwgH+yOPbaJdvKORfXTp7ewIw3xDpYDtGpP744Z1+q4Bzg67c4DixHEMN
2PDbLSM1AdrfTIalMVePAHTdpt VLt f11AWHmMt ikgLhPLzK3H342kMauXj9ne27wh21Mf
XFIWg8vzOo+fmidjSQI9hFvczMeaKikvkpL16BF3CCS8st5TmkpyOtRohYvAehY/dpsMVV
9exbpnEt8yU6XVx25qJ1iuUls0pliXtJdgESrHgSOVaFGMgO9EWIOW21mPT7JIJX92vXpUZOT
6yvFDfvO0d1lYy8/23ECzdyqpQyk43LrSpX38ELA3K0+8ZN0mpB+c8mxwTAOI/dCnCeS
61iCrOhP87CA8WH5MScS7Q094z+T3Jn3wAXbR/uUbTtXJE/kl1ykknbINfB8x09
3cII9GIVvIUXRQSMKeBWRZAHODLIA11x0oRhpAGENPAQgY1lKr6DSQ==

On your terminal:
7.1) select all the text from ssh-rsa to auroral (or whatever is in the end of your public key, it
depends on the frontend node where you logged in)

7.2) copy the selection with with ctrl-shift-c (or right-click and then select copy)
We will use it later.

MNXB01-2022 - Working with git Preparation for Tutorial 5 120/127

mailto:pflorido@aurora1

Preparation for the git tutorial
5/7

8) Sign in (login) on www.github.com

Search GitHub Signin Sign up

‘ Signed in as floridop

@ Set status

9) Click on your account avatar in the upper right corner and select “Settings” -

10) Click on “SSH and GPG Keys” in the lower left corner: 28, Your profile
. _ Your repositories
Account settings Public pl'OfI'E
o
A ¥o Your codespaces
Name
Account Florido Paganell Your organizations
A Your name may appear around GitHub where you contribute or are mentioned. You can -
ez remove it at an: ti?rpe. ? Y'D u r prﬂ]ems
Account security e .
i Your stars
Billing & plans Select a verified email to display *
Secu[i[y |Og You can manage verified email addresses in your email settings. Y{] ur QiStS
Security & analysis Bio
Sponsorship log Tell us a little bit about yourself - Upgrade
. r
2 4 Feature preview
You can @mention other users and organizations to link to them.
Notifications
. URL Help
http:/fwww.hep.lu.se/staffipaganelli .
SSH and GPG keys Settings
Twitter username
Packages S-Ig n out
Company
Organizations T

MNXB01-2022 - Working with git Preparation for Tutorial 5 121/127

http://www.github.com/

Preparation for the git tutorial
6/7

SSH keys

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

12) Paste the key copied at step (7.2) in slide 4 in the Key field and add the name Aurora to the
Title field as in the picture below.

- PASTE YOUR KEY NOT MINE OR |

WILL BE ABLE TO ACCESS AND SSH keys / Add new

HACK YOUR ACCOUNT! :D

Title
Aurora
- DO NOT PASTE YOUR PRIVATE .
KEY EVER! g
sshrsa

AAAAB3NzaC1yc2ZEAAAADAQABAAACAQCVKDNRKMUMESY 25fXGCMhXL/S7LXsX5Re11c)TmMg91tTpzh
V+miedOwg30+KMSiPIPoN3QpJIZ26BBcrUJ/+pury7rN
MINYTYMb+KOez74j8eT1gNNYTArZZmKie9XMFB73XYyChmDZZkEZTUuGPYAZTdDKGBA4cg9MagrvXsnM8FbL
fnKHBsu2rrRHS 1tJM7VIMkWrGwHvIUAsndoDEtaj0qaF0SaQ8gz+CK550THSBSIrM
[COuQwgH+yOPbaJvKORIXTp7ewlw3xDpYDiGpPT44Z1+q4Bzg67c4DixHIMN2PDbLSM1AdriTIaLMVePAHTdpt
Vifl 1 AWHmtikqLhPLzK3H342kMauXj9ne2 7wh2IMXFIWgBvzOo+imidjSQ9hFvczMeaKikvkpL 16BF3CCS8st5Tm
kpyOtRohYvAehY
ldpsMVV9exbpnEt8yU6XVx25qJiulIs0p1iXtJdqESrHgSOVgFGMgOEWIW21mPT7JX92vXpUZ0TEyvFDvOOd1
Yy8/23ECzdygpQyk43LrSpX38ELA3KO+8ZN0OmpB+cB8mxwTAOI
/dCnCeSEiiCrOhP87CABWbEMScSTQ94z+T3jn3wAXbR/UUbTIXJE
/klykknbINfB8x093cll9GIVAUxRQSMKeBWRZdHIblAi1xoRhpAgENpAgylKr6 DSQ== pflorido@aurora

MNXB01-2022 - Working with git Preparation for Tutorial 5 122/127

Preparation for the git tutorial
1/7

13) You should see something like this below.

SSH keys

New SSH key

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

Aurora

SHA256: 1B48TTGEMTBIWNv3wsk74GGNLqoWYTiooRp4AVZ21hA I
gle
Added on Sep 10, 2021

Last used within the last week — Read/write

S5H

Check out our guide to generating S5H keys or troubleshoot common 55H problems.

Validating the github server
SSH identity

+ As you know from the MNXBO1-
manual.pdf, there is one missing piece of

information:
What is the server SSH Key hash?

« This can be found at the following pages:

- Be sure to check that page before
connecting!

MNXB01-2022 - Working with git Preparation for Tutorial 5 124/127

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints

Github command line
authentication methods

@ The official github documentation regarding these methods is here:

@ There are three suggested ways:

@ Token Authentication, which is the recommended way, same as username and password but you get
a special password from the github website for each repository. The token is very hard to remember.
It’s something like
==mjd//#&vkhnwkbn237y61398hiw——

So the problem here is since no one remembers this, github suggests you to use their own client called
gh that will securely store your tokens on whatever machine you use it.

| personally think it is not appealing for this course. We do not want to teach you how to use one
specific vendor-locked tool that only works with github. If you want to use this, read their
documentation here:

most likely, this tool will disappear with github. | do not consider it valuable knowledge.

@ SSH Keys, which is more or less how we login to Aurora already. | will teach you this because you can
use it in many other ways, such as for logging in to Aurora, university servers, login to any other
possible revision control server out there (qgitlab, cvs, svn, mercurial...)

@ It’s a good piece of knowledge that will not disappear in a year or so - it has been on for more than 20!

@ Authorizing for SAML single sign-on: this is only relevant for companies and it involves anyway
one of the two solutions above already set up.

MNXB01-2022 - Working with git Preparation for Tutorial 5 125/127

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/about-authentication-to-github#authenticating-with-the-command-line
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/about-authentication-to-github#authenticating-with-the-command-line
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git

Pushing to github origin main:
configuring the remote authentication in the case of
token-based for older git versions

» github will only allow you to push if you authenticate to it.
Authenticating to a remote server requires a bit of
configuration.

» We will redefine the origin URL to take into account your
github ID. Different versions of git do this in a different way,
the one | am showing is the best on Iridium that has quite an
old version.

> add a new origin URL with your full username in the URL path:

@ git remote set-url origin https://GITUSERNAMEQgithub.com/GITUSERNAME/MNXB01-
learn.git

@ example for my user:
git remote set-url origin https://floridop@github.com/floridop/MNXBOl-learn.git

@ Check that the setting is correct with
git remote -v
origin https://floridop@github.com/floridop/MNXBOl-learn.git (fetch)
origin https://floridopR@github.com/floridop/MNXBOl-learn.git (push)

MNXB01-2022 - Working with git Tutorial 5 126/127

References

» git cheat sheets:

* Quick guide to git

» Merging with meld

» Reverting

https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Pictures references
» https://openclipart.org/

« http://www.libreoffice.org/
Tutorial 5 127/127

https://training.github.com/
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
http://rogerdudler.github.io/git-guide/
https://lukas.zapletalovi.com/2012/09/three-way-git-merging-with-meld.html
https://lukas.zapletalovi.com/2012/09/three-way-git-merging-with-meld.html
https://www.youtube.com/watch?v=3Qynj8WUwgs
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

