
MNXB01-2022 - Working with git 1/127Tutorial 5

Working with GIT

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Support:
- send me an email or use Canvas
- personal Zoom room: https://lu-se.zoom.us/j/2485752983
Or use github!

MNXB01 2022

mailto:florido.paganelli@hep.lu.se

MNXB01-2022 - Working with git 2/127Tutorial 5

Warning

DO NOT COPY PASTE
commands

these exercises are meant for
typing on the

keyboard!

(And some typesetting characters and symbols are not accepted by the terminal anyway)

MNXB01-2022 - Working with git 3/127Tutorial 5

Software
Required:

Git - a free and open source distributed version control system

Optional:

gitk – a fast git repository viewer

Available on Aurora as software installed using module

tig – a text repository browser

Not available on Aurora

 There are many more even better! the above it’s only my taste.

Installation:
Debian/Ubuntu: apt install git gitk tig
RedHat/Fedora: yum install git gitk tig

Platform Package names

Ubuntu, Debian git, gitk, tig

RedHat, CentOS, Fedora,
SuSE

git, gitk, tig

Windows, MacOS https://git-scm.com/book/en/v2/Getting-Start
ed-Installing-Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

MNXB01-2022 - Working with git 4/127Tutorial 5

Outline

What are version/revision control systems

Generic concepts of version/revision systems

git

Generic concepts of git

git tutorial part 1: own repository

git tutorial part 2: collaborative repository

Useful git commands

Additional material

MNXB01-2022 - Working with git 5/127Tutorial 5

Notation
I will be using the following color code for showing
commands:

Application or program

app command --option=value -option value inputpar otherinputpar 

command to application

Application options and values
 in different formats

First parameter
to command

Second parameter
to command

BLANK SPACES will NOT be visible!

git clone https://github.com/floridop/MNXB01-2019 MNXB01-2019

Example:

Application or program

command to application

First parameter
to command

Second parameter
to command

https://github.com/floridop/MNXB01-2019

MNXB01-2022 - Working with git 6/127Tutorial 5

Revision systems concepts

MNXB01-2022 - Working with git 7/127Tutorial 5

Why version/revision systems?

Say you wrote some computer program in a text file.

You discover a bug, something that does not work as it
should, and you want to change it.

You fix the bug, save the file. Try the program again and… it
doesn't work anymore!

What went wrong? Would be nice if you could compare
what you changed...

Solution: make a backup copy before every (important)
change!

Version systems make it easy to backup and compare
changes

Revision Systems

MNXB01-2022 - Working with git 8/127Tutorial 5

If you do many changes, you
might not remember what
changes you made. Version
systems allow you to attach a
comment to the change.

If you want to share your code
with other developers, it's nice if
everybody can see who changed
what. Version systems allow you
to author the changes so the
others know what you're done.
This helps sharing code.

Why version/revision systems?

Revision Systems

MNXB01-2022 - Working with git 9/127Tutorial 5

Summary:

Backup each change in your code

Compare different versions of your code

Comment and annotate each change

Share among developers

Why version/revision systems?

Revision Systems

MNXB01-2022 - Working with git 10/127Tutorial 5

Version systems: products and
features

Product staging Local
commit

diff Fork/branch
management

Distributed/
Collaborative

Compatibility

CVS
(Current
Version Stable)

N N Y Y N ?

SVN
(SubVersioN)

N N Y N N ?

Git Y Y Y Y Y
SVN
CVS

Revision Systems

There are others out there: Mercurial, Darcs, Monotone, Bazaar...

MNXB01-2022 - Working with git 11/127Tutorial 5

Git: vocabulary and concepts

MNXB01-2022 - Working with git 12/127Tutorial 5

What and why git

Was created by Linus Torvalds especially for kernel development

Highly distributed community contributions

Lots of people forking (later I'll explain this term) and writing their own
version of drivers

Nowadays there are many collaborative websites systems that
use it to share code (github, gitlab) and make it easier to
integrate everyone's work with discussion and code
revision/testing tools

Is being used by many because is a free solution that helps
distributed cooperation

Becoming the most used among research projects

In other words, mostly fashion

Good for text, not good for images/archives/executables…
use dropbox or similar cloud storage for that.

GIT Concepts

MNXB01-2022 - Working with git 13/127Tutorial 5

Git ain’t the best.

https://xkcd.com/1597/
GIT Concepts

MNXB01-2022 - Working with git 14/127Tutorial 5

Why using git in this course

Aurora will not exist forever, and your home folders will disappear.
If you want to keep your code after the course, you can move it
into some cloud service. For example, you can put it on github.

Today’s job market in IT and scientific programming is no longer
based on your studies or experience. Most companies check if
you wrote code for this and that library or framework by
checking github or similar code sharing platforms. Better to
start early!

Suggestion: at the end of each tutorial,
push your changes to the remote github repository we will
create in the Homework.

If you are concerned about privacy, you can create a private github
repository.

The final course project material you will create can be only
handed out using a github repository, so get familiar with
git!

GIT Concepts

MNXB01-2022 - Working with git 15/127Tutorial 5

Scenarios and goals

Scenarios (from less complicated to more):

1: personal project, one user, no server or offline repository
 (see end of slides)

2: personal project, one user, single server / repository
 (tutorial part 1)

3: community project, multiple users, multiple servers / repositories
 (tutorial part 2 / homework)

Goals:

track changes and version files

have a backup of files and tracked changes on a remote server

establish a way of synchronizing work between a user and the server
or multiple users in a community

MNXB01-2022 - Working with git 16/127Tutorial 5

git tutorial part 1
scenario 2:

track and version your own code
using a remote repository

MNXB01-2022 - Working with git 17/127Tutorial 5

Concepts of version systems in git
Repository: A database that contains the
list of changes made.

A local git repository is shared locally on
your machine in the .git invisible folder

A remote git repository is shared on a
remote server and can be reached using
a URL, like
https://github.com/floridop/MNXB01-2020.git

A bare git repository can be stored in
any folder and contains data in a form
that only the git code understands. Can
be used to have multiple copies of the
same repository. It can be used to share
a repository without GitHub or similar
services.

remote
repository

(usually bare)

Remote
Server

Local
repository

synchronization
operations

GIT Concepts

https://github.com/floridop/MNXB01-2020.git

MNXB01-2022 - Working with git 18/127Tutorial 5

Concepts of version systems in git
Repository: A database that contains
the list of changes made.

Since git is distributed, there can be
many remote and local repositories.

remote
repositoryZ

(usually bare)

Remote
Server3

Local
repositoryC

synchronization
operations

remote
repositoryX

(usually bare)

Remote
Server1

remote
repositoryY

(usually bare)

Remote
Server2

Local
repositoryB

Local
repositoryA

GIT Concepts

MNXB01-2022 - Working with git 19/127Tutorial 5

Servers and services:
GitHub, GitLab

GitHub, A cloud service that offers for free:

hosting space for git projects (they run the git server)

A web interface to collaborate on projects

Acquired in 2018 by Microsoft, now offers also

Private projects (can’t be seen by other users)

Enterprise services

They claim they will not use your code except for the purposes
of their service and that you retain all the copyrights on the code.

It is not an open source project.
https://www.github.com/

Free accounts

Paid dedicated server

Open source alternatives: Gitlab
https://about.gitlab.com/

Paid accounts

Free: run your own server
Nordic Project CodeRefinery offers free accounts to Nordic Researchers
https://coderefinery.org/repository/

Octocat

https://www.github.com/
https://about.gitlab.com/
https://coderefinery.org/repository/

MNXB01-2022 - Working with git 20/127Tutorial 5

Create your own repository on
github 1/3

1) Login on https://www.github.com
You may see one of the two views below. Graphics may differ a bit.

2) Click on “Repositories” (maybe not needed)

3) Click on “New”

2

3

3

https://www.github.com/

MNXB01-2022 - Working with git 21/127Tutorial 5

Create your own repository on
github 2/3

Fill the blanks with this information
(see also pic in next slide):

1) Repository Name:

MNXB01-learn

2) Make it a “Public” repository.

3) Choose a license:
Apache License 2.0
Just because it’s one that gives you some control on the code, no real reason
for this tutorial.

4) Click on “create repository”

MNXB01-2022 - Working with git 22/127Tutorial 5

Create your own repository on github 3/3

4

3

2

1

5

MNXB01-2022 - Working with git 23/127Tutorial 5

Retrieve the repository URL

1) Click on “code”

2) Select SSH

3) Copy the repo URL (a link) in the field that appears. It looks
like:

git@github.com:YOURUSERNAME/MNXB01-learn.git

4) Save it for the coming tutorial steps!
● Leave the page open or copy paste the URL in Pluma

MNXB01-2022 - Working with git 24/127Tutorial 5

Concepts of version systems in git
Working directory: the latest version of a set of files that
you want to work on. This is usually local to your machine.

It is usually the result of a clone, an exact copy, of some
remote repository

You can synchronize the local git repository with remote
ones using the push (send changes) and pull (retrieve
changes) commands.

A bit like DropBox but NOT automatic.

.git

Working
directory

remote
repository

(usually bare)

Remote
Server
 e.g. github

pull

push

GIT Concepts

MNXB01-2022 - Working with git 25/127Tutorial 5

Concepts of version systems
git clone

All the changes can now be retrieved
by another computer from the
remote repository origin.

The first time using the
clone command
(initialize a copy of a remote)

New
Working
directory

.git
clone

origin
repository

Remote
Server

GIT Concepts

MNXB01-2022 - Working with git 26/127Tutorial 5

Clone your repository on Aurora
create a folder named git in your home and access it.

mkdir ~/git

cd ~/git

Copy the link shown in the github webpage page after the creation

Clone your remote repository into a local working copy
git clone git@github.com:YOURUSERNAME/MNXB01-learn.git

You can copy paste the URL in the terminal with CC

A window or a request might appear asking to input a password. If everything is configured well, it will
be your private SSH key password which you created during the preparation for the tutorial steps.

If the system asks you to accept the server SSH fingerprint, check this webpage to validate the
fingerprint:
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/gith
ubs-ssh-key-fingerprints

It will be created in a subfolder with the same name
MNXB01-learn.

cd into it:
cd MNXB01-learn

Branch

main
Current Revision #:

hash1
Branch

main
Current Revision #:

hash1

originWorking directory ~/git/MNXB01-learn

clone

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/git@github.com:YOURUSERNAME/MNXB01-learn.git
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints

MNXB01-2022 - Working with git 27/127Tutorial 5

.git database, remotes and branches

The result of a git clone operation is the creation of a copy of your remote repository, by default called origin .
You can have multiple remote repositories. You can inspect the name and URL of your remotes with

git remote -v
 origin git@github.com:floridop/MNXB01-learn.git (fetch)
 origin git@github.com:floridop/MNXB01-learn.git (push)

The database of changes are kept in a hidden directory called .git . You can see it with

ls -a
 git LICENSE README.md
ls .git/
 branches description hooks logs packed-refs
 COMMIT_EDITMSG gitk.cache index objects qgit_cache.dat
 config HEAD info ORIG_HEAD refs

The git command accepts subcommands to do operations on the database.

A brand new git repository database is created with the command init. In this case github ran this
command for you in the cloud. See slides at the end of this presentation for examples.

A brand new git repository always starts with a branch called main (formerly master). You can see the
branches in your repository with the command

git branch
 * main

The asterisk * identifies the active branch we are currently working on. There can be only one active branch
at a time.

A branch identifies a collection of files and their versions/revisions. Let’s understand the revisions, but first we
need to do some configuration steps.

Branch:
main

MNXB01-2022 - Working with git 28/127Tutorial 5

Git must be configured for your personal data so that the
authoring information in the commits can be added.

This can be done globally or for each specific repository

the --global options are stored in your home ~/.gitconfig

the --local options are stored in the repository’s .git/config
folder

For this course let’s configure your name, email and
favourite text editor:
git config --global user.name “Name LastName”
git config --global user.email youremail@your.domain.blah
git config --global core.editor pluma

Configuring git 1/2

mailto:youremail@your.domain.blah

MNXB01-2022 - Working with git 29/127Tutorial 5

One can inspect the config setup with:

git config -l
user.name=Test Student 5
user.email=some.mail@testdomain.info
core.editor=pluma
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
remote.origin.url=git@github.com:floridop/MNXB01-learn.git
branch.main.remote=origin
branch.main.merge=refs/heads/main

Configuring git 2/2

mailto:user.email%3Dsome.mail@testdomain.info
file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/git@github.com:floridop/MNXB01-learn.git

MNXB01-2022 - Working with git 30/127Tutorial 5

.git

Working
directory

Concepts of version systems:
revisions/versions/commits

Previous Revision #:

hash1

When one is happy with the changes they
made, it records them in the database by doing
a commit

A committed set of files is called a revisions
and gets a commit ID: every “version” of one
or more files gets a revision tag. This can be
a number, a label, a string.

In git usually is an hash*, a strange sequence
of symbols. It:

Identifies the repository and other details of
when the changes where made

It’s universally unique, everywhere in the world
that commit will represent a defined sequence of
changes.

For this reason these systems are also known as
Revision Systems, as every revision gets a label
that depends on time and person who made the
change.

*Hash: a special injective function that returns a value from a finite
set of strings. The return values are unique under certain conditions.

Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

GIT Concepts

MNXB01-2022 - Working with git 31/127Tutorial 5

Concepts of version systems
git basic terminology

For every set of changes there is a commit.
Every commit generates a new revision with a
different hash. This can be represented as an
ordered graph like the one below. For every
committed change a new hash.

The latest commit hash is called HEAD.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4
Branch:

main

HEAD

file1 file2 file3 The content of each commit is a set of modified
files, different from the previous commit.

GIT Concepts

MNXB01-2022 - Working with git 32/127Tutorial 5

Git log, commit history,
revision numbers

All the commit history with you messages
can be browsed using the command
 git log

> git log
commit 30d4b3805d7de65622cfcd21a122644e33ab76dc
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:39:13 2017 +0200

 second change

commit c9af94904c6868ef136d75730fbde63e0a15cf31
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:38:11 2017 +0200

 Created readme

30d4b3805d7de65622cfcd21a122644e33ab76dc

Revision number,
an hash

Commit
comments

c9af94904c6868ef136d75730fbde63e0a15cf31

Useful GIT commands

MNXB01-2022 - Working with git 33/127Tutorial 5

Git log, commit history,
revision numbers

To see which files have changed for each
commit (A:Added M: Modified D: Deleted...):
 git log --name-status

Useful GIT commands

> git log --name-status
commit fced0d917580764b9bc72060233c60f77840a0a7 (HEAD -> main)
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Sat Sep 12 18:56:08 2020 +0200

 added disclaimer about input paths

M code/smhicleaner.sh.pseudocode
M solution/smhicleaner.sh

commit 7cd1c062daffb615a9f0d6f60d9a83dcc29e26e5
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Sat Sep 12 18:51:22 2020 +0200

 outputs of the command with and withour errors

A result/output_copying
A result/output_downloading
A result/output_error_no_params
A result/output_error_problems_downloading_or_copying

MNXB01-2022 - Working with git 34/127Tutorial 5

Looking at the commits: git log
The first commit has been created by github when you ticked the
“Create README.md” and chose a License.

You can see the commits by using the command
git log
commit 52b9bc84bf837add309437f8cd30c63521b3940c
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Tue Sep 15 13:23:04 2020 +0200

 Initial commit

And in more detail which files have been added/changed/deleted
(A/M/D) with

git log –-name-status
commit 52b9bc84bf837add309437f8cd30c63521b3940c
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Tue Sep 15 13:23:04 2020 +0200

 Initial commit

A LICENSE
A README.md

GIT Concepts

mailto:florido.paganelli@gmail.com
mailto:florido.paganelli@gmail.com

MNXB01-2022 - Working with git 35/127Tutorial 5

Let’s change the README

We will write a fairy-tale. Code is boring!

Open the geany editor to change the readme:
pluma README.md&

Write a line “Once upon a time,” as in the picture and save
(See MNXB01-manual.pdf if you don’t yet know how to do this!)

MNXB01-2022 - Working with git 36/127Tutorial 5

Concepts of version systems
git status

If one modifies or changes files contained in a
certain revision, git can see it, and reports to the
user with the status command.

Git gives the choice to add (include) these
changes to the database.

Current Revision #:

hash1
Branch

main Working
directory

add
.git

LICENSE README.md changed

GIT Concepts

MNXB01-2022 - Working with git 37/127Tutorial 5

Concepts of version systems
git status

Check the status of the repository with

git status
On branch main
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in
working directory)
#
modified: README.md
#
no changes added to commit (use "git add" and/or "git commit -a")

Let’s add the file to be part of the next collection of changes, as git suggests
above

git add README.md

MNXB01-2022 - Working with git 38/127Tutorial 5

Concepts of version systems
git add

Once files are added, they are marked to be part of a next revision, but
they’re not yet saved in the database.

In git slang, they’re staged – shortlisted to be part of the next commit.

One may continue working, editing and keep staging other files that might
be part of the same set of changes repeating this task.

remember: staged files are not yet versioned nor tracked. They are
not added to the changes database yet.

Branch

main Working
directory

.git
stagedadd

GIT Concepts

Current Revision #:

hash1

LICENSE README.md
(changed)

MNXB01-2022 - Working with git 39/127Tutorial 5

Concepts of version systems
git commit

Staged files will then be actually become part of a new revision in the
database once the user commits them.

A new commit will generate a new hash, tracking the set of changes in
the database.

When you commit you get the chance of describing your commit with
a comment. It is extremely important that your commit explains
very well what are the changes contained: this is the main way one
remembers what changes have been done, and how an external
reader can understand what the changes are about.

Previous Revision #:

hash1
Branch

main Working
directory

.git

Current Revision #:

hash2

commit

GIT Concepts

LICENSE README.md
(changed)

Very
descriptive
text about
the change

MNXB01-2022 - Working with git 40/127Tutorial 5

Check staged files and commit

We can run git status again to check which files are staged:
git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README.md
#

README.md is ready to be added to the new set of changes.
We can then commit and write an inline message with -m:

git commit -m 'Added first of the fairy-tale'
[main 8c999d3] Added first line of the fairy-tale
 1 files changed, 3 insertions(+), 1 deletions(-)

Git shows a short version of the hash (8c999d3), the comment, and a
summary of changes.

Previous Revision #:

hash1
Branch

main
Current Revision #:

8c999d3

commit

MNXB01-2022 - Working with git 41/127Tutorial 5

Check committed changes

We can run git log again to check the commits:
git log –-name-status
commit 8c999d3896e8a7d01aa75c6601bc3e40e0cfa849
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Tue Sep 15 14:53:32 2020 +0200

 Added first line of the fairy-tale

M README.md

commit 52b9bc84bf837add309437f8cd30c63521b3940c
Author: Florido Paganelli <florido.paganelli@gmail.com>
Date: Tue Sep 15 13:23:04 2020 +0200

 Initial commit

A LICENSE
A README.md

In the logs we can see all the metadata added to the database.

mailto:florido.paganelli@hep.lu.se
mailto:florido.paganelli@gmail.com

MNXB01-2022 - Working with git 42/127Tutorial 5

Concepts of version systems
git push

All the changes can now be sent to a
remote server, to the remote
repository origin on github, using
the push command

It is assumed that one is pushing the
currently active branch.

When pushing one has to specify the
destination remote and the
destination branch to be pushed

Previous Revision #:

hash1
Branch

main Working
directory

.git

Current Revision #:

hash2

push

origin
repository

Remote
Server

GIT Concepts

LICENSE
README.md

(changed,
committed)

MNXB01-2022 - Working with git 43/127Tutorial 5

We’re now ready to send our changes to the remote repository. It is
important to select the correct remote and remote branch according
to the branch we’re on. We’re on main hence we will push main. The
system will ask for our ssh key password, which you have to input:

git push origin main
Counting objects: 5, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 338 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:floridop/MNXB01-learn.git
 52b9bc8..8c999d3 main -> main

Git will show some statistics about the upload and information
about branch tracking.

Pushing from working dir
to github origin main

Branch

main
Branch

main

origin

push

Working directory
Previous Revision #:

hash1Current Revision #:

hash4

Previous Revision #:

hash1Current Revision #:

hash4

MNXB01-2022 - Working with git 44/127Tutorial 5

Check the status of the repo on
github

Go back to the github page of your repo
and refresh the page with F5. You should
now see the modified README.md file.

If you click on “2 commits” you can see
the detail of commits

You can always click on “<>Code” to go
back to the main page of your repo.

MNXB01-2022 - Working with git 45/127Tutorial 5

Making changes directly on github
1/4

Github can render your readme file if you write it in
a special formatting language called MarkDown
(README.md)

It interprets simple text and formats it as nice
HTML.

It also provides an online editor to make quick
changes. Let’s edit your readme on github by
clicking on the icon

MNXB01-2022 - Working with git 46/127Tutorial 5

Making changes directly on github
2/4

1) Let’s add an additional line of text to out fairytale:
there was a **beautiful** _princess_

** : bold
_ : italic

2) You can preview the changes by clicking on “preview changes”

3) Once you’re happy with the way the text looks, we’re ready to
commit.

In the “Commit Changes” area, write a significant comment like
”Introducing the story character”

Then click on “commit changes”

You can now check the commit History to see how your latest
change has been recorded.

MNXB01-2022 - Working with git 47/127Tutorial 5

Making changes directly on github
3/4

In pictures:

MNXB01-2022 - Working with git 48/127Tutorial 5

Making changes directly on github
4/4

History

MNXB01-2022 - Working with git 49/127Tutorial 5

Concepts of version systems
git pull

Now back to our working directory on
Aurora.
We made a change in github that is NOT
present in our working directory.

All the changes should now be retrieved on
Aurora from the remote repository origin
using the pull command (get updates)

Updated
Working
directory

.git
pull

origin
repository

Remote
Server

GIT Concepts

LICENSE
README.md

(changed,
committed)

Previous Revision #:

hash1
Branch

main
Previous Revision #:

hash2
Current Revision #:

hash3

MNXB01-2022 - Working with git 50/127Tutorial 5

Git pull the changes from the
remote server

By the fault the pull command retrieves all tracked branches. At the moment
we have that main is tracked. You will be asked the github password.

Some modern versions of git can check if the remote is in a different state,
this one on Aurora doesn’t. But in general the rule of thumb is:

always pull before starting your work

git pull
From github.com:floridop/MNXB01-learn
 8c999d3..6067f45 main -> origin/main
Updating 8c999d3..6067f45
Fast-forward
 README.md | 1 +
 1 files changed, 1 insertions(+), 0 deletions(-)

git shows a summary of the retrieved changes, new HEAD, the tracked
branches, the lines and changes in the file. 1 + : added one line

Branch

main
Branch

main

originWorking directory
Previous Revision #:

hash1Current Revision #:

hash4

Previous Revision #:

hash1Current Revision #:

hash4
pull

github.com:floridop/MNXB01-learn

MNXB01-2022 - Working with git 51/127Tutorial 5

Concepts of version systems
git branches

Keeps different developments separated so not to break the
whole code

If I want to add a new feature to my code but I want to keep the
original as it until I’m done I can create a coolfeature branch

If there are some changes that might disrupt the whole logic and I
want to keep the integrity of the code I could have a
dangerouschanges branch

If I just need to fix a bug and test the code with the bug fixed I
might want a bugfix branch

Helps contributing to code: I can create myownbranch and
then send it to someone as a contribution.

Command: git branch <branchname>

MNXB01-2022 - Working with git 52/127Tutorial 5

Concepts of version systems
git branches

A repository might have one or more branches, that is, different
version of the same repository which modify or propose different
features.

They're called branches because they can be visualized like a tree
as they diverge from some initial branch, usually called main
(formerly master).
Every branch has a name.

The latest commit of each branch is called the HEAD of that
branch.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch:
main

Branch:
coolfeature

Branch:
dangerouschanges

HEAD

GIT Concepts

MNXB01-2022 - Working with git 53/127Tutorial 5

Concepts of version systems
git branch

Every branch history is a continuation of the
history where the main was branched.

It is possible to branch from a branch, not just
from the main. Use with care, can be confusing!

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch
main

Branch
coolfeature

Branch
dangerouschanges

GIT Concepts

MNXB01-2022 - Working with git 54/127Tutorial 5

git branch our fairy-tale
Back on Aurora, let’s create a branch alttale out of the existing
main:

git branch alttale

Look at the branches:

git branch
 alttale
* main

We’re still working on main: one can tell by the asterisk * next to
the branch name.

Previous Revision #:

hash1
Previous Revision #:

hash2
Branch
main

Branch
alttale

GIT Concepts

HEAD

Current Revision #:

hash3

*

MNXB01-2022 - Working with git 55/127Tutorial 5

Concepts of version systems
git checkout

A branch can be made active with the checkout
operation. When a branch is checked out you will
be able to see its files in your working
directory.

✔ To checkout a branch means to select a
certain history of changes.

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature
Working
directory

checkout
coolfeature.git

file1 file2 file3

GIT Concepts

*

MNXB01-2022 - Working with git 56/127Tutorial 5

Checkout the alttale branch

git checkout alttale
Switched to branch 'alttale'

git branch
* alttale
 main

Now we’re on the alttale branch

The last current revision of main is the first of alttale. From
this point on their history diverges, but they share the past
history.

Branch

alttale*

Previous Revision #:

hash1
Branch

main
Previous Revision #:

hash2
Current Revision #:

hash3

MNXB01-2022 - Working with git 57/127Tutorial 5

Let’s change the story
Let’s edit README.md again

pluma README.md&

pluma may ask you if you want to reload the file.
Say yes: the copy pluma has is still relative to before our changes on github, it is not up to date.

 and modify the story as such:

Then add and commit:

git add README.md
git commit -m 'alternate character tale'
[alttale 8a95450] alternate character tale
 1 files changed, 2 insertions(+), 1 deletions(-)

Branch

alttale*
Previous Revision #:

hash1
Branch

main
Previous Revision #:

hash2
Current Revision #:

hash3

Current Revision #:

hash4

MNXB01-2022 - Working with git 58/127Tutorial 5

Let’s push the new branch to origin

We think this new story might work, so we want to save also this
one on the remote origin.

git push origin alttale
Counting objects: 5, done.
Delta compression using up to 40 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 367 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'alttale' on GitHub by visiting:
remote: https://github.com/floridop/MNXB01-learn/pull/new/alttale
remote:
To git@github.com:floridop/MNXB01-learn.git
 * [new branch] alttale -> alttale

git suggest us to do a pull request. These are important in a
collaborative environment, we will see later what they are and how
to perform them.

Branch

alttale
Current Revision #:

hash4
Branch

alttale
Current Revision #:

hash4

origin

push

Working directory

https://github.com/floridop/MNXB01-learn/pull/new/alttale
mailto:git@github.com

MNXB01-2022 - Working with git 59/127Tutorial 5

See branches and history
network on github

MNXB01-2022 - Working with git 60/127Tutorial 5

Typical workflows summary Scenario 2:
personal project, one user, single remote

server/repo

The one we just did in the tutorial so far.

1) Login into github (or you own git server)

2) Create a (bare) remote repository (your “origin”)

3) Clone the repository on your laptop. It will create
your local working directory

4) Work/save on your laptop, branch, add and
commit in your working directory

5) Push/pull branches and commits to/from your
origin to synchronize with the remote server

MNXB01-2022 - Working with git 61/127Tutorial 5

git tutorial part 2
scenario 3:

collaborative environment

MNXB01-2022 - Working with git 62/127Tutorial 5

Typical workflows Scenario 3: introduction
shared project, many users, one or many

servers/repository
● A community creates a project repository that will involve many
user to cooperate

● 2 scenarios:

1) Multiple users committing/pushing/pulling to the same git repository
Pro: quick development provided that no one is touching anyone else code.

Cons: one can generate many conflicts (changes on the same file at the same time)

 Only works when developers do not touch each other’s code
Good for small projects or tasks

2) Multiple users suggesting contributions
Pro: controlled development where one release manager accepts

Cons: conflicts can be avoided by the release manager

 Only works if developers agree on a git flow – a way of working with git.
Good for large projects

In this tutorial we will learn scenario 2 as it works well with large
scientific collaborations.

MNXB01-2022 - Working with git 63/127Tutorial 5

What is a software fork

In software engineering, a fork of a software
project A it's a copy of the software source code
of A to develop features for a project B,C,... that
follow completely independent choices from
project A.

project A
project A

project B

project C

All projects share the same
code until this point in time

past / present

fu
tu

re

GIT Concepts

TIME

MNXB01-2022 - Working with git 64/127Tutorial 5

Concepts of version systems
forking in git

A fork happens usually between one or more users or organizations
writing software, and one of them (A) is the release manager.

B,C,D fork A’s project repository where all the contributions will be
collected. In git this is done by cloning (duplicating) the repository of
a project one wants to work on, called upstream

Users B,C,D work on their forks/origins independently. At some
point they might want to send the changes they made back to the
A’s upstream repository.

origin
repository

Remote
Server

upstream
repository

Remote
Project
Server

Fork

B
A

GIT Concepts

Fork

origin
repository

Remote
Server

Fork
origin
repository

Remote
Server

D

C

MNXB01-2022 - Working with git 65/127Tutorial 5

Fork my MNXB01-learn repository
on github

A copy of my repository is now present in your github.

When forking, the following naming conventions apply:

The repository from which you fork is called upstream

The copy in your personal github page is called origin

Branch

main
Current Revision #:

hash4

origin

Branch

main
Current Revision #:

hash4

upstream

Fork

Goal: write a collaborative fairytale. Each of you will add some lines.

Go to my github MNXB01-fairytale repo at the page:
https://github.com/floridop/MNXB01-fairytale

Click on fork:

https://github.com/floridop/MNXB01-fairytale

MNXB01-2022 - Working with git 66/127Tutorial 5

Setup the MNXB01-fairytale git
fork

On your fork page, copy the repository URL from the code button as we
saw in the first part of the tutorial (slide 23).

On Aurora, clone your origin:
cd ~/git

git clone git@github.com/YOURUSERNAME/MNXB01-fairytale.git

This will automatically create an origin with information about authentication.

Enter the cloned repo
cd MNXB01-fairytale

Add my repository as upstream remote with this exact command:
git remote add upstream https://github.com/floridop/MNXB01-fairytale.git

Note that you do not need to authenticate to my upstream repository in this
scenario. You will never push to it, only pull from it.

list the remotes. It should look like this:
git remote -v
origin git@github.com/YOURUSERNAME/MNXB01-fairytale.git (fetch)
origin git@github.com/YOURUSERNAME/MNXB01-fairytale.git(push)
upstream https://github.com/floridop/MNXB01-fairytale.git (fetch)
upstream https://github.com/floridop/MNXB01-fairytale.git (push)

https://github.com/floridop/MNXB01-fairytale.git

MNXB01-2022 - Working with git 67/127Tutorial 5

A git flow model:
Upstream, origin, local, A Tale of a River

 UPSTREAM
 florido’s github

Local
repository

Aurora

 ORIGIN
 your Fork on github

PULL
REQUEST
devbranch
to main

pull or fetch
main from
upstream

development,
pull and push
development branches
to and from
origin

Kachemak Bay, AK. Photo credit: Alaska Shorezone.
https://medium.com/@AKSalmonProject/where-the-river-meets-the-tides-salmon-and-estuaries-a9e7aaf78519

Fork

GIT Concepts

Branch

devbranch

Branch

main

Branch

main

Branch

devbranch

Working directory

MNXB01-2022 - Working with git 68/127Tutorial 5

Fork, local, origin, upstream
highlights

In the git flow I am showing you the following rules apply. Other flows can have different rules.

In this model, the upstream main contains the latest and greatest version of the software.
Only the release manager is allowed to modify its content.

A developer forks some user upstream repository on github to obtain an personal origin repo
in their personal account.

The developer clones their origin into their working directory

The developer codes in their working directory, but:

The developer never codes in their main

All the development happens in development branches created by the developer

The developer pushes and pulls to and from their origin

The developer periodically

pulls main from the release manager upstream repo to keep their working directory main up-to-date

pushes the updated main to their origin main so that also the copy on github is in sync with the upstream

After pulling, one typically will have to carefully merge the code in the branches with the upstream
changes.

When making changes in a development branch, the developer requests the upstream release
manager to apply their changes by sending a pull request on github against the upstream
main

MNXB01-2022 - Working with git 69/127Tutorial 5

Concepts of version systems
pull requests

Pull requests are a way to propose changes to the forked repository so that the
owner of the upstream repository can review them and discuss them before
approval

If they are accepted, they will be integrated, that is, the origin development
branch will be merged into the upstream main

If they are rejected, a discussion can be made about why and how to make them
acceptable.

After this process the user A will need to pull the changes from upstream for
origin to be in sync with upstream.

origin
repository

Remote
Server

upstream
repository

Remote
Server

Pull request
here’s my changes, would
you like to add them?

No
please make these
changes first!

Yes

A B

GIT Concepts

MNXB01-2022 - Working with git 70/127Tutorial 5

Collaborative development 1/2

We will write a collaborative fairy-tale.

Each of you will add a sentence, a line, a picture. Be creative! But only
characters. If you are more into drawing than writing maybe your search
the internet for “ASCII art”

Why text? GIT is very bad with files files that are not text. It can only
handle well text. The power of git lies in the ability to use the Linux
command line to do many things with text.

Any development in this model starts with creating a a
development branch:

git checkout -b mystory
Switched to a new branch 'mystory'

The above is an equivalent and a faster way for:
git branch mystory

git checkout mystory

Check that you are in the mystory branch (the asterisk marks it!) with:
git branch
 main
* mystory

MNXB01-2022 - Working with git 71/127Tutorial 5

Collaborative development 2/2

Edit the fairytale.md file and add a piece of story (remember to save!)
pluma fairytale.md&

add and commit
git add fairytale.md

git commit -m ‘my side of the story’
[mystory 1e46496] my side of the story
 1 files changed, 3 insertions(+), 0 deletions(-)

push the mystory branch to your origin like we did in the first part of the tutorial
(you will be asked the github password):

git push origin mystory
Counting objects: 5, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 349 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
remote:
remote: Create a pull request for 'mystory' on GitHub by visiting:
remote: https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory
remote:
To https://GITUSERNAME@github.com/GITUSERNAME/MNXB01-fairytale.git
 * [new branch] mystory -> mystory

You just completed the first half of your first collaborative development task!

https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory

MNXB01-2022 - Working with git 72/127Tutorial 5

Your first pull request 1/4

There are three possible ways of performing a pull request, pick one of them:

1) Follow git/github suggestion and click (or copy paste in the browser) the link you saw in the git output in
the previous slide (like the one highlighted below but with your github user instead of GITUSERNAME):
remote: Create a pull request for 'mystory' on GitHub by visiting:
remote: https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory

2) On your fork origin,

Select the mystory branch

Click on “Pull request”

3) On my upstream repo page, if you’re logged in in github, you will see a notification that one of your
branches is ready for a pull request. Click on “Compare & pull request”

user

user

https://github.com/GITUSERNAME/MNXB01-fairytale/pull/new/mystory

MNXB01-2022 - Working with git 73/127Tutorial 5

Your first pull request 2/4
The pull request submission page presents some interesting tools.

One can choose the target branch of a pull request. Submit the pull
request against my upstream main

You can add additional comments for me to know what to do with your
submission:

If you scroll down
the page you will
see the differences
between your files
and mine:

user

MNXB01-2022 - Working with git 74/127Tutorial 5

Your first pull request 3/4
When done you can finally submit the pull
request by clicking “Create pull request”

You just completed the second half of your first
collaborative development task!
From now on the task flow is handed over to
the release manager (me)

You can check the progress of your pull request at
the URL generated for the pull request, the page
that you see after creating it. Let’s look at it in
detail in the next slide...

MNXB01-2022 - Working with git 75/127Tutorial 5

Your first pull request 4/4

user

pull request
status

affected
branches

file diffs

change and
discussion

history

merge status
conflicts may be

notified here

discussion
area

Possibility to cancel your pull request

user

user

user

main

MNXB01-2022 - Working with git 76/127Tutorial 5

Reviewing pull requests

I will now process your pull requests as a
release manager in order of arrival and make
changes to my upstream main

During the process, the developers can interact
via the github interface to discuss changes.

The first pull request I will accept is mine, so I
can show you the process of merging and
updating your own origin main and mystory
when the upstream repo changes.

MNXB01-2022 - Working with git 77/127Tutorial 5

Diff-ing on github
In the “files changed” tab one can see the differences (diffs in
jargon). They are shown in a standard diff format (more about
it later in these slides):

user usermain

MNXB01-2022 - Working with git 78/127Tutorial 5

Review process
The release manager can comment on the overall code status and
even comment on single lines or blocks of code to tell the developer
what to improve or change, or discuss some coding matter.

user main user

MNXB01-2022 - Working with git 79/127Tutorial 5

Merge of source mystory into target main

Merging – a new history is born
Once the changes in a development branch are accepted, these are usually integrated back in the
upstream main with the merge operation. This is done by the release manager.

The result of a merge operation between a source and a target branch is a merged history of commits
between the two branches. The commits in the source branch are copied to the target branch.

A new HEAD is created with a commit that says that there was a merge in a given moment in time.

Files are modified according to a distributed timeline. Conflicts may arise and need to be resolved.

The result of these two operations (what github does behind the scenes) may look like the one in the
example below
1. Checkout target: git checkout main
2. Merge with source: git merge mystory

After a successful merge the source branch can be deleted. But you can keep it for the record.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Branch:
main

Branch:
mystory

HEAD

Previous Revision #:

hash7
Current Revision #:

hash8
Current Revision #:

hash11

GIT Concepts

MNXB01-2022 - Working with git 80/127Tutorial 5

The release manager merges
Once happy with the changes, the release manager can
start the merge. It includes adding a special commit
message concerning the merge.

1

2

user

user

user

user

MNXB01-2022 - Working with git 81/127Tutorial 5

git merge ≠ github merge
It turns out they’re not the same. Linus Torvalds, who wrote both git and the Linux kernel, complained
in the kernel mailing list to a company submitting patches to the kernel in a mail exchange dated 4th of
September 2021:

“... I notice that you have a github merge commit in there. That's another of those things that I *really* don't want to see - github
creates absolutely useless garbage merges, and you should never ever use the github interfaces to merge anything,”

This is the complete commit message of that merge:

 Merge branch 'torvalds:master' into master

Yeah, that's not an acceptable message. Not to mention that it has a bogus "github.com" committer etc.”

So github tampers (modifies without alarming the user) the authorship and the content of the commit
messages. The question is, why? This is unfortunately yet another story of a service taken over by a
multinational company that does not respect specifications or good practices.

Torvalds continues with a very nice reminder:

”github is a perfectly fine hosting site, and it does a number of other things well too, but merges is not one of those things.

Linux kernel merges need to be done *properly*. That means proper commit messages with information about what is being
merged and *why* you merge something. But it also means proper authorship and committer information etc. All of which
github entirely screws up.”

So whenever possible do the merge step from the command line or using a good tool, avoid the github
interface, even if it is very convenient. Or you will lose some information.

Source:
https://lore.kernel.org/lkml/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aL0H3Q@mail.gmail.
com/

A related article: https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds
https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds

https://lore.kernel.org/lkml/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aL0H3Q@mail.gmail.com/
https://lore.kernel.org/lkml/CAHk-=wjbtip559HcMG9VQLGPmkurh5Kc50y5BceL8Q8=aL0H3Q@mail.gmail.com/
https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds
https://www.techradar.com/news/dont-use-github-to-merge-commits-suggests-torvalds

MNXB01-2022 - Working with git 82/127Tutorial 5

Open and closed pull requests

As long as the pull request is open (that
is, I didn’t yet merged your development
branch) you can still make changes and
push them to your origin devbranch.

Github will recalculate automatically the
possible outcome.

MNXB01-2022 - Working with git 83/127Tutorial 5

After the upstream merge 1/2:
possible conflicts

At this point, all of your branches (your working directory main
and mystory, your origin main and mystory) will be out of sync
with my upstream main, which has changed after the merge.

For some of your pull requests that modified the same lines as the
merged ones we will see the following:

In most cases, the release manager will have to do all the merges
manually and carefully check your code.

In other cases, they may just tell you to sync/update your origin
main to their upstream main and review the changes yourself.
We will do this task to learn how to do a command line merge.

MNXB01-2022 - Working with git 84/127Tutorial 5

Conflicts 1/2

In most cases, many developers coding on the same file will
cause total havoc.

In a distributed asynchronous collaborative environment is
very likely that everyone is coding at the same time like we’re
doing now, so there will be conflicts

Conflicts arise when two or more developers edited the
same lines of the same file, and it is hard to merge the
different versions of the file automatically. In that case github
cannot do alone and manual intervention is required.

A way to avoid conflicts is to divide the developers’ job
into independent folders and independent files, limiting as
much as possible editing the same files.

MNXB01-2022 - Working with git 85/127Tutorial 5

Conflicts 2/2

In a distributed development environment, different users may modify the same file

When the same file is modified more or less around the same lines, and you try to pull from
repositories or merge from branches where the modifications have been made, you may incur in
a conflict

A conflict is a set of changes that must be reviewed in order to sort out which of
Aorigin,Aupstream,Adevbranch should go into the final result of a merge

This usually can only be solved by a developer knowledgeable of the code, and it resolves in a
n-way-merge. An example of 3-way merge is at slide 114.

The result is often an Amerged file that integrates all the changes all the developers made.

In this model we try to never pull from origin, so that we reduce a source of the conflicts.

origin
repository

Remote
Server

upstream
repository

Remote
Server

A

B
Local

repository
Adevbranch

→Amerged

pull

Aorigin

→ Aupstream

GIT Concepts

merge:

Branch

main

 Aupstream
or Adevbranch?

Branch

main

Branch

devbranch

Branch

mainAupstream

Working
directory

push

Branch

devbranch

Aorigin

→ Aupstream

push

Amerged

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/%23Slide%20129

MNXB01-2022 - Working with git 86/127Tutorial 5

After the upstream merge 2/2:
update your origin repo

At this point, your working directory AND your origin main branches will be out of sync with my
upstream main

1) You should update your working directory main to be in sync with mine by running in your work
directory:

git checkout main
Switched to branch 'main'

git pull upstream main
remote: Enumerating objects: 1, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 1 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (1/1), done.
From https://github.com/floridop/MNXB01-fairytale
 * branch main -> FETCH_HEAD
Updating abed28e..1e2b279
Fast-forward
 fairytale.md | 3 +++
 1 files changed, 3 insertions(+), 0 deletions(-)

2) and then you will need to update also your origin main with the changes:
git push origin main
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com/GITUSERNAME/MNXB01-fairytale.git
 abed28e..1e2b279 main -> main

See how the commits match.

Now we’re almost ready for another cycle of development.
Next step: merge these updates into our development branch.

pull

Aorigin

→ Aupstream
Branch

main
Branch

main
Branch

main
Aupstream

push

Aorigin

→ Aupstream

Working directoryorigin upstream

12

https://github.com/floridop/MNXB01-fairytale

MNXB01-2022 - Working with git 87/127Tutorial 5

Visualizing changes

Now we know that there are two different
stories in main and mystory. How much do
they differ?

git provides several commands to check
differences in both content and history.

I will show you some examples that I think are
useful. The main commands are:

git diff : uses git own diffing system

git difftool: uses a user defined git diff tool
(must be configured before use).

MNXB01-2022 - Working with git 88/127Tutorial 5

diff a file between two branches
To see the differences of the same file versions between two branches, use this
syntax:

git diff branch1..branch2 filename

Let’s try with our branches, I added some colors to the output for readability:

git diff main..mystory fairytale.md
diff --git a/fairytale.md b/fairytale.md
index a98c877..803a9e6 100644
--- a/fairytale.md
+++ b/fairytale.md
@@ -5,8 +5,7 @@
 In a faraway future, in a distant land
 lives the *Squonk*

-The average Squonk is 7 meters tall and screams loud.
-
+I thought Squonks did not exist!

 > Add some lines to the story. Can be anything. Inspiration?
 > What does a Squonk **look like**?

MNXB01-2022 - Working with git 89/127Tutorial 5

Merge of source main into target mystory

Merging updated main into mystory
In this situation the upstream and origin main contain the latest developments and we need to
incorporate those into our development branch mystory which is pending a pull request.

As in the previous merge, the result of a merge operation between a source and a target branch is
a merged history of commits between the two branches. The commits in the source branch are
copied to the target branch.

A new HEAD is created with a commit that says that there was a merge in a given moment in time.

Files are modified according to a distributed timeline. Conflicts may arise and need to be
resolved.

The result of this two operations (what github does behind the scenes) may look like the one in the
example below (note that it is the opposite of what the release manager does! They usually merge
a branch into main and not viceversa.)
1. Checkout target: git checkout mystory
2. Merge with source: git merge main

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Branch:
main

Branch:
mystory

HEAD

Current Revision #:

hash11

GIT Concepts

Previous Revision #:

hash2 Previous Revision #:

hash3
Current Revision #:

hash4

MNXB01-2022 - Working with git 90/127Tutorial 5

git merge on the command line

Now we know what will happen when we merge, a conflict may be
generated due to the differences in the files.

Let’s try a git merge and learn how to resolve conflicts.

Change to the mystory branch and tell git to merge the content of
main:

git checkout mystory

git merge main
Auto-merging fairytale.md
CONFLICT (content): Merge conflict in fairytale.md
Automatic merge failed; fix conflicts and then commit the
result.

Let’s open the fairytale.md file in pluma to see what the conflict
caused.

pluma fairytale.md&

MNXB01-2022 - Working with git 91/127Tutorial 5

Conflict resolution from the
command line 1/4

This is what the merge generated:

The conflicts are identified with the special markers:
<<<<<<< HEAD Beginning of the diffs in the HEAD file current branch
======= end of the diffs of the file in the current branch, beginning of the diffs in main
>>>>>>> main end of the diffs in main
all the other lines are common to the file in both branches

main

MNXB01-2022 - Working with git 92/127Tutorial 5

Conflict resolution from the
command line 2/4

The conflicts are identified with the special markers:
<<<<<<< HEAD Beginning of the diffs in the HEAD file current branch
======= end of the diffs of the file in the current branch, beginning of the diffs in
main
>>>>>>> main end of the diffs in main
all the other lines are common to the file in both branches

To resolve the conflict, we need to edit the file to a state that we think is correct and
remove all three markers.

In my case I decided to
 keep all lines and then
 I saved:

There are nicer tools
to do merges like
meld, you will find some
infos about it in the end
of this presentation,
unfortunately there is no
time to discuss it during
the course.

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial5/%23Slide%20129

MNXB01-2022 - Working with git 93/127Tutorial 5

Conflict resolution from the
command line 3/4

back to the terminal, we can now check with git diff the current unstaged changes:

git diff
diff --cc fairytale.md
index 803a9e6,a98c877..0000000
--- a/fairytale.md
+++ b/fairytale.md
@@@ -5,8 -5,9 +5,9 @@@
 In a faraway future, in a distant land
 lives the *Squonk*

 +I thought Squonks did not exist!
+ The average Squonk is 7 meters tall and screams loud.

 -
 > Add some lines to the story. Can be anything. Inspiration?
 > What does a Squonk **look like**?
 > What does it **do**?

Note how this new version of the file is not staged nor committed, so it gets 0000000 as fake commit hash.

We can check for the file status, git will say that we’re in the middle of a merge:
git status
On branch mystory
Unmerged paths:
(use "git add/rm <file>..." as appropriate to mark resolution)
#
both modified: fairytale.md
#
no changes added to commit (use "git add" and/or "git commit -a")
#

MNXB01-2022 - Working with git 94/127Tutorial 5

Conflict resolution from the
command line 4/4

We can now stage(add) the file, git will interpret it as if the conflict was
resolved:
git add fairytale.md
git status
On branch mystory
Changes to be committed:
#
modified: fairytale.md
#

Now we can commit:
git commit -m ‘Accepted both lines to complete the merge’
[mystory 11b512d] Accepted both lines to complete the merge

And finally push the changes to origin:
git push origin mystory
Counting objects: 7, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 388 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local
objects.
To git@github.com:GITUSERNAME/MNXB01-fairytale.git
 2a4af07..11b512d mystory -> mystory

MNXB01-2022 - Working with git 95/127Tutorial 5

The pull request is automatically
updated

Checking back on github, our pending pull
request has been updated and now it’s
hopefully good to go:

The release manager can now merge it to
his upstream main.

MNXB01-2022 - Working with git 96/127Tutorial 5

Typical workflows summary 3/3:
one project, many users, one or many servers

1) Login into github (or some git server)

2) Fork (make a copy of) a repository of some user community
(the “upstream” repository).
● The resulting forked project will be your “origin” remote repository
● IMPORTANT: your forked origin an upstream DO NOT AUTOMATICALLY SYNC.
THIS IS NOT DROPBOX.

3) Clone the origin repository on your computer. It will create your working
directory

4) Set your remote “upstream” repository to the user community one. This is needed
to keep in sync with the community.

5) Pull (or fetch) the latest updates (usually in main) from the upstream

6) Create a branch that is only for your changes or a specific feature you implement.

7) Work/save on your laptop, add and commit in your branch and in working directory

8) Push/pull branches and commits to/from your origin

9) When the work is done, submit a pull request from your origin branch to the
upstream main (or target branch, depending on the development model) for the
community to accept and review your changes.

MNXB01-2022 - Working with git 97/127Tutorial 5

Visualizing the changes network
There are a lot of tools you can use to visualize the history of
changes both local and on the remote repositories. They’re
called git browsers

On Aurora I found gitk¹ (graphical). If you want a textual one is
called tig but it is not available on Aurora.

You can see the relationships between two branches by running:
command branch1 [branch2..]

Examples:
gitk main myother
tig main myother

Show all branches:
tig *
gitk *

[1] On Aurora, to enable a version of git that includes gitk you need to run this command:
module load GCC/4.9.2 git/2.4.1

MNXB01-2022 - Working with git 98/127Tutorial 5

Homework Tutorial 5
This homework depends on how far in the
tutorial we get during the session.

In any case it may contain:

You will be required to manage a pull request
submitted by me to your MNXB01-learn
repository

You will be asked to contribute to a github
repository and submit a pull request.

The official homework will come on
canvas.

Homework 5

MNXB01-2022 - Working with git 99/127Tutorial 5

A word on privacy and security

When you fork my MNXB01-2022 repository and submit pull
requests, everything will be public.
Others will see your code.

It is perfectly ok for me because I believe one learns coding by looking
at other people’s code and sharing/discussing coding with others.

If you’re not happy with it, you can create your own private
repository to store the material produced during the MNXB01 course,
so that nobody else can see it.

The grading will be done on canvas, not on github

If you prefer not to write your name on the github repository,
you can write your nickname, but make sure I know who you
are. I will not correct submissions if I don’t have a mapping
nickname→student. You can send me this information privately if
you don’t want others to know who you are.

MNXB01-2022 - Working with git 100/127Tutorial 5

Useful git commands

MNXB01-2022 - Working with git 101/127Tutorial 5

Setting your default editor with
git

If you commit without the -m option, git will automatically
open a text editor for you to write a commit comment.

It is good practice to:

write a commit title

leave a blank line

describe your commit in more detail.

We will use pluma as the default editor, but you can use
any editor you like.

If you don't configure anything, the default is a text
editor called nano, which for some is a bit weird at first.
But I suggest to use it so you just use the command line.
Press “CTRL + O” to save the file, ”CTRL + X” to exit.

Useful GIT commands

MNXB01-2022 - Working with git 102/127Tutorial 5

Setting Pluma as the default git
editor

Run:
 git config core.editor pluma

Note that the commit will only happen ONCE
when you save the file in geany.

Test by running

 git commit

If you don't like it, revert to default by
writing

 git config --unset core.editor

Useful GIT commands

MNXB01-2022 - Working with git 103/127Tutorial 5

Removing or renaming a file
from the git database

Removing: Sometimes one can decide that files in the directory
should not be part of the repository anymore. Rather than
deleting them with the rm command, one can use
 git rm filename

Remove a file using the above command.

Check the output of git status .

git commit -m 'I have deleted file filename'
Remember: CLEARLY STATE that you removed some files in the
commit message!

Renaming: git mv oldfilename newfilename is equivalent to
 git rm oldfilename
followed by
 git add newfilename

Useful GIT commands

MNXB01-2022 - Working with git 104/127Tutorial 5

Textual and Graphical
 Diffing

Run
git diff

> git diff
Index: thisisfloridofile.txt
===
--- thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ -1 +1,2 @@
 Hello! this is florido's file.
+I am adding this change.

 A' A''
==
?
!=

Line numbers of the two files:
-1 : showing line 1 of of file ---

+1,2 : showing lines 1 to 2 of file +++

If you want a graphical tool to check the diffs, I suggest meld
On Aurora there are two versions of meld. To enable one of the two run one of
these commands:
module load meld

Use meld as the default diff tool:
 git config diff.tool meld
 git difftool thisisfloridofile.txt

Useful GIT commands

MNXB01-2022 - Working with git 105/127Tutorial 5

Undoing
not staged changes

Say that we are not happy with the changes we just made to a single
file and we want to go back to the latest commit (also called HEAD)

Change one of the files in your repository and issue git status.

The best to do is a simple checkout of the file from the last commit
git checkout thisisfloridofile.txt
git diff

Careful! You will lose all the changes done and not committed!!!

Note that this is equivalent to checkout the file at the latest revision
HEAD:
git checkout HEAD thisisfloridofile.txt

Checking out HEAD of all files in a directory will cancel all the changes
done to the uncommitted files in that directory.
git checkout HEAD *

Play a bit with these commands by changing files and see what
happens.

Useful GIT commands

MNXB01-2022 - Working with git 106/127Tutorial 5

Reverting
to a previous revision

Say that we don't like the current revision state, and we
want to roll back the code to a state of a different revision
back in time.

The main suggestion is:
try to never go back in the revision history.
This is actually nice because in a collaborative environment,
keeps track of who-did-what with no cheating allowed :)
Unfortunately git allows for “cheating” by changing the
revision history. It can be useful sometimes, but must be
used with extreme care. Changing the revision history
gives no UNDO.

To experience with this, change some files and commit, then
follow the next slides.

Useful GIT commands

MNXB01-2022 - Working with git 107/127Tutorial 5

Reverting to a previous revision
the safe way: revert

The revert command restores the state of
all files at a certain revision to the current
working dir.

Usually the output of a revert gives hints
about the steps to take before committing.

Make sure you have at least three commits
(check git log)

Create a fourth commit

Useful GIT commands

MNXB01-2022 - Working with git 108/127Tutorial 5

Reverting to a previous revision
the safe way: revert

Try to git revert everything to your second
commit in the log:
git revert commithash

Example:
git revert c9af94904c6868ef136d75730fbde63e0a15cf31

Read the git status output to see what changed

Take action to make the files ready for commit, and
commit

Git will automatically start a commit and open the text
editor for you. It will add the “Revert commithash”
comment to your commit and wait for your input.

Useful GIT commands

MNXB01-2022 - Working with git 109/127Tutorial 5

Reverting to a previous revision
the unsafe way: reset

The reset command does something different. It does not
preserve history and allows you to modify an existing commit.
For a detailed explanation see
https://www.atlassian.com/git/tutorials/undoing-changes

Use it only on a private branch and never on a branch you
share with others (typically a main or master branch)

Additionally, I suggest to use it only when one of these two
happen:

You already staged some changes to a file and you want to unstage
them
 git reset filetounstage

You are totally unhappy with whatever you did so far and want to
unstage all staged files:

git reset

Useful GIT commands

https://www.atlassian.com/git/tutorials/undoing-changes

MNXB01-2022 - Working with git 110/127Tutorial 5

Fixing commit mistakes

Commit allows you to amend or change the latest commit if,
for example, you forgot a file or you wrote the wrong
comment:
 git commit --amend

Note that this will create a new revision hash, and will
DELETE the previous commit hash. So be sure you are done
with amend before you push to your remote repository.

NEVER DO THIS AFTER YOU PULLED YOUR LOCAL
BRANCH TO A REMOTE REPOSITORY UNLESS YOU’RE
THE ONLY USER OF THE REMOTE REPOSITORY.

Seehttps://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Useful GIT commands

https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

MNXB01-2022 - Working with git 111/127Tutorial 5

Graphical Clients

Want to try a graphical client?

Other notable minimalistic ones:
gitg, qgit

Feature-rich one (not available in
repositories):
https://www.gitkraken.com/

This one is NOT available on Aurora. You need to
download it from the internet if you want the
latest version.

Useful GIT commands

https://www.gitkraken.com/

MNXB01-2022 - Working with git 112/127Tutorial 5

Additional material

MNXB01-2022 - Working with git 113/127Tutorial 5

Merging

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

git can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mixed with that of
the content of A''. For example, the documents differ a little but the changes in each
document are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts described in the slides.

A'
A' + A''

A''

Additional Material

MNXB01-2022 - Working with git 114/127Tutorial 5

Merging with meld
A'

A' + A''
A''

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing the save button (saves all modified files!)

Additional Material

MNXB01-2022 - Working with git 115/127Tutorial 5

Scenario 1
Git offline just to track your files

Create a work directory without a remote repository:

If you have git installed, cd into any folder you want to track and initialize the git
database, say myongoingproject:
cd myongoingproject
git init .

This will create the hidden .git database folder and you can start working immediately
with adds and commits

There will be no defined remotes, but you can add them later if you wish.

Local bare repository (optional, could be an external disk for backup):

If you want to create your own remote, where you can push and pull, create a new folder
somewhere, say /externaldisk/mybarerepo:
mkdir /externaldisk/mybarerepo
cd /externaldisk/mybarerepo
git –-bare init

Note that you cannot add or commit in this repository. This is really just the database
files. You can only push and pull to it. To do so, let’s add it to the previous work directory:

cd myongoingproject
git remote add mybarerepo file:///externaldisk/mybarerepo

MNXB01-2022 - Working with git 116/127Tutorial 5

Typical workflows summary Scenario 1
personal project, one user, no server

This is the simplest setup just to track your own code quickly.
Instead of creating a repository on github, you create a git
database directly in the directory you want to version.

1) Create a simple local working directory by transforming
a simple directory into a git tracked directory with the
command
cd dirIWantToVersion
git init .

2) Work/save in that working directory, branch, add and
commit to track changes.
git add file1 file2 …
git commit -m ‘done some changes’

MNXB01-2022 - Working with git 117/127Preparation for Tutorial 5

Preparation for the git tutorial
1/7

Since November 13th, 2020 Github no longer accepts usernames
and passwords to upload your code from a cluster or your personal
computer.
https://github.blog/2020-07-30-token-authentication-requirements-
for-api-and-git-operations/

Among the suggested ways of logging in, there is
SSH keys. I will teach you how to setup SSH keys for github.
There are other methods but I do not think they suit this course.

For a detailed discussion of the SSH PKI technology and the commands
read the MNXB01-manual.pdf . Here I will just show the practical
commands to run for the tutorial.

For a detailed discussion why we suggest this method for this course read
the dedicated slide about github command line access at the end of these
slides.

MNXB01-2022 - Working with git 118/127Preparation for Tutorial 5

Create an account on
https://github.com

To create an account click on the “Sign
Up” button in the upper right corner.

Preparation for the git tutorial
2/7

https://github.com/

MNXB01-2022 - Working with git 119/127Preparation for Tutorial 5

Preparation for the git tutorial
3/7

1) Login to Aurora (if possible...)

2) Generate a new SSH key pair with the following command:
ssh-keygen -b 4096 -f ~/.ssh/id_rsa_github

2.1) Choose a password for your private key.
 !!! NEVER GENERATE KEYS WITHOUT PASSWORDS.
 Read MNXB01-manual to understand why that is bad.

3) Test that your password is working with this command:

ssh-keygen -y -f ~/.ssh/id_rsa_github

3.1) If the password didn’t work, the program will say that you provided
 an “incorrect passphrase”. Start again from step 2

4) Copy (ctrl +c) and paste (ctrl+shift+v) this entire text below in your terminal to add to your ssh
configuration information on how to login to github. You may need to press enter:

cat << EOF >> ~/.ssh/config

Access to github
Host github.com
 HostName github.com
 IdentityFile ~/.ssh/id_rsa_github

EOF

5) check the ssh config file contains the lines added above.
cat ~/.ssh/config

MNXB01-2022 - Working with git 120/127Preparation for Tutorial 5

Preparation for the git tutorial
4/7

7) Check the contents of your public key:
cat ~/.ssh/id_rsa_github.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCjVKDNRkMUMdEsY25jfXGCMhXL/57L
XsX5Re11cJ7mMq91tTpzhV+miedOwq30+KM5iPlPoN3QpJlZ26BBcrUJ/+pury7rN/W/
YfYMb+KOez74j8eT1gNNYfArZZmKfe9XMFB73XYyChmDZZkEz7UuGPYA2TdDKGBA4cg
9MqrvXsnM8FbLfnKHBsu2rrRH51tJM7VlMkWrGwHv9UAsndoDEtaj0qaF0SaQ8qz+CK55
o7HSBSIr1/0uQwgH+yOPbaJvKORfXTp7ewIw3xDpYDtGpP744ZI+q4Bzg67c4DixHfMN
2PDbLSM1AdrfTIaLMVePAHTdptVtfl1AWHmtikqLhPLzK3H342kMauXj9ne27wh2lMf
XFIWg8vzOo+fmidjSQ9hFvczMeaKikvkpL16BF3CCS8st5TmkpyOtRohYvAehY/dpsMVV
9exbpnEt8yU6XVx25qJiuUls0p1iXtJdqESrHgS9VqFGMq9Ew9W21mPT7JX92vXpUZ0T
6yvFDfvOOd1Yy8/23ECzdyqpQyk43LrSpX38ELA3K0+8ZN0mpB+c8mxwTA0I/dCnCeS
6iiCrOhP87CA8Wb5MScS7Q94z+T3jn3wAXbR/uUbTtXJE/klykknbINfB8xo9
3cII9GIv9UxRQSMKeBWRZdH9bIAi1xoRhpAgENpAgylKr6DSQ== pflorido@aurora1

On your terminal:
7.1) select all the text from ssh-rsa to aurora1 (or whatever is in the end of your public key, it
depends on the frontend node where you logged in)

7.2) copy the selection with with ctrl-shift-c (or right-click and then select copy)

We will use it later.

6) make sure the files have the proper permissions
chmod 600 ~/.ssh/id_rsa_github
chmod 644 ~/.ssh/id_rsa_github.pub

mailto:pflorido@aurora1

MNXB01-2022 - Working with git 121/127Preparation for Tutorial 5

Preparation for the git tutorial
5/7

8) Sign in (login) on www.github.com

9) Click on your account avatar in the upper right corner and select “Settings” →

10) Click on “SSH and GPG Keys” in the lower left corner:

http://www.github.com/

MNXB01-2022 - Working with git 122/127Preparation for Tutorial 5

Preparation for the git tutorial
6/7

11) Click on New SSH key

12) Paste the key copied at step (7.2) in slide 4 in the Key field and add the name Aurora to the
Title field as in the picture below.
- PASTE YOUR KEY NOT MINE OR I
WILL BE ABLE TO ACCESS AND
HACK YOUR ACCOUNT! :D

- DO NOT PASTE YOUR PRIVATE
KEY EVER!

MNXB01-2022 - Working with git 123/127Preparation for Tutorial 5

Preparation for the git tutorial
7/7

13) You should see something like this below.

MNXB01-2022 - Working with git 124/127Preparation for Tutorial 5

Validating the github server
SSH identity

As you know from the MNXB01-
manual.pdf, there is one missing piece of
information:
What is the server SSH Key hash?

This can be found at the following pages:
https://docs.github.com/en/github/authen
ticating-to-github/keeping-your-account-a
nd-data-secure/githubs-ssh-key-fingerprin
ts

Be sure to check that page before
connecting!

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints

MNXB01-2022 - Working with git 125/127Preparation for Tutorial 5

Github command line
authentication methods

The official github documentation regarding these methods is here:
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-s
ecure/about-authentication-to-github#authenticating-with-the-command-line

There are three suggested ways:

Token Authentication, which is the recommended way, same as username and password but you get
a special password from the github website for each repository. The token is very hard to remember.
It’s something like
==mjd//#&vkhnwkbn237y61398hiw--
So the problem here is since no one remembers this, github suggests you to use their own client called
gh that will securely store your tokens on whatever machine you use it.
I personally think it is not appealing for this course. We do not want to teach you how to use one
specific vendor-locked tool that only works with github. If you want to use this, read their
documentation here:
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git
most likely, this tool will disappear with github. I do not consider it valuable knowledge.

SSH Keys, which is more or less how we login to Aurora already. I will teach you this because you can
use it in many other ways, such as for logging in to Aurora, university servers, login to any other
possible revision control server out there (gitlab, cvs, svn, mercurial…)

It’s a good piece of knowledge that will not disappear in a year or so – it has been on for more than 20!

Authorizing for SAML single sign-on: this is only relevant for companies and it involves anyway
one of the two solutions above already set up.

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/about-authentication-to-github#authenticating-with-the-command-line
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/about-authentication-to-github#authenticating-with-the-command-line
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git

MNXB01-2022 - Working with git 126/127Tutorial 5

Pushing to github origin main:
configuring the remote authentication in the case of

token-based for older git versions

github will only allow you to push if you authenticate to it.
Authenticating to a remote server requires a bit of
configuration.

We will redefine the origin URL to take into account your
github ID. Different versions of git do this in a different way,
the one I am showing is the best on Iridium that has quite an
old version.

 add a new origin URL with your full username in the URL path:
git remote set-url origin https://GITUSERNAME@github.com/GITUSERNAME/MNXB01-
learn.git

example for my user:
git remote set-url origin https://floridop@github.com/floridop/MNXB01-learn.git

Check that the setting is correct with
git remote -v
origin https://floridop@github.com/floridop/MNXB01-learn.git (fetch)
origin https://floridop@github.com/floridop/MNXB01-learn.git (push)

MNXB01-2022 - Working with git 127/127Tutorial 5

References
git cheat sheets:
https://training.github.com/
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Quick guide to git
http://rogerdudler.github.io/git-guide/

Merging with meld
https://lukas.zapletalovi.com/2012/09/three-way-git-merging
-with-meld.html
https://www.youtube.com/watch?v=3Qynj8WUwgs

Reverting
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Pictures references
https://openclipart.org/

http://www.libreoffice.org/

https://training.github.com/
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
http://rogerdudler.github.io/git-guide/
https://lukas.zapletalovi.com/2012/09/three-way-git-merging-with-meld.html
https://lukas.zapletalovi.com/2012/09/three-way-git-merging-with-meld.html
https://www.youtube.com/watch?v=3Qynj8WUwgs
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

