
 MNXB01-2022 Handling Datasets 1/16Tutorial 3

Handling datasets

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Support:
- send me an email or use Canvas
- personal Zoom room:
https://lu-se.zoom.us/j/2485752983

MNXB01 2022

mailto:florido.paganelli@hep.lu.se

 MNXB01-2022 Handling Datasets 2/16Tutorial 3

Typical scientist workflow
summary

1. Understand datasets format

2. Cleanup data using tools like
 bash commands, python, perl...

3. Write code to process data
in languages like C, C++

4.Write scripts in Bash, Python, perl
To automate steps 2 and 3 on multiple datasets

 MNXB01-2022 Handling Datasets 3/16Tutorial 3

Typical scientist workflow

Someone (usually your supervisor, today is me)
gives you reference to some data and some
obscure code written by elders who now moved to
the end of the known universe

Nobody knows what the data looks like and what it
contains – just that is it about your science!

Nobody has any idea what the code is like and how to
change it. No documentation, no one left alive to tell you

You have to figure out most of the the details by
yourself

In these slides a few tips to survive

 MNXB01-2022 Handling Datasets 4/16Tutorial 3

Datasets
A dataset is some digital collection, maybe a file or a set of files, that contains data
we want to use. Here are the typical traits of a dataset:

Scope: The knowledge area it targets. Examples: archeology, budget, weather
forecast...

Format

A format is a set of rules that define in a rigorous manner how the content of the dataset
should be read and written, what are their meanings and the relationship among the dataset
information

The format can be a well know data format, more or less standardized, or some custom data
format created by some community.

A description of the format is usually provided by the community that generated the
dataset. It is very rare that a dataset contains information about its format.

Very common format names
CSV (Comma Separated Values)

XML (eXperimental Markup Language)

JSON (JavaScript Object Notation)

Sometimes the format can be made explicit in the file extension, but it is not necessary:
fridaythe13.json

Meaning of each data entry: what is the data exactly about.

In a budget, it’s probably whatever concerned an expense, the goods bought, how they were bought,
maybe billing numbers...

 MNXB01-2022 Handling Datasets 5/16Tutorial 3

Example from project

Stationsnamn;Klimatnummer;Mäthöjd (meter över marken)
Ystad;53260;2.0
Parameternamn;Beskrivning;Enhet
Lufttemperatur;momentanvärde, 1 gång/tim;degree celsius
Tidsperiod (fr.o.m);Tidsperiod (t.o.m);Höjd (meter över havet);Latitud (decimalgrader);Longitud
(decimalgrader)
1949-01-01 00:00:00;1963-09-16 23:59:59;13.0;55.4410;13.8278
1963-09-17 00:00:00;1983-08-31 23:59:59;32.0;55.4410;13.8278
Datum;Tid (UTC);Lufttemperatur;Kvalitet;;Tidsutsnitt:
1949-01-01;00:00:00;3.5;Y;;Kvalitetskontrollerade historiska data (utom de senaste 3 mån)
1949-01-01;06:00:00;3.5;Y;;Tidsperiod (fr.o.m.) = 1949-01-01 00:00:00 (UTC)
1949-01-01;12:00:00;4.2;Y;;Tidsperiod (t.o.m.) = 1983-08-31 23:59:59 (UTC)
1949-01-01;18:00:00;5.5;Y;;Samplingstid = Ej angivet
1949-01-02;00:00:00;4.3;Y;;
1949-01-02;06:00:00;4.6;Y;;Kvalitetskoderna:
1949-01-02;12:00:00;6.2;Y;;Grön (G) = Kontrollerade och godkända värden.
1949-01-02;18:00:00;5.0;Y;;Gul (Y) = Misstänkta eller aggregerade värden. Grovt kontrollerade
1949-01-03;00:00:00;4.2;Y;;
1949-01-03;06:00:00;4.0;Y;;Orsaker till saknade data:
1949-01-03;12:00:00;4.6;Y;; stationen eller givaren har varit ur funktion.
1949-01-03;18:00:00;5.0;Y
1949-01-04;00:00:00;3.2;Y
1949-01-04;06:00:00;1.6;Y
1949-01-04;12:00:00;3.0;Y
1949-01-04;18:00:00;2.0;Y
1949-01-05;00:00:00;1.5;Y
1949-01-05;06:00:00;-0.8;Y

filename: smhi-opendata_1_53260_20210906_214756.csv

 MNXB01-2022 Handling Datasets 6/16Tutorial 3

Finding clues

Tip 1: Search for hints

look at the link, the filename, the filename extension (the part of the name
that comes after a dot .)

Check the top of the file

Look for recurring keywords

Look how the keywords repeat, can you guess there is a structure?
Try to distinguish between data (values) and metadata (description of values/structure)

Look at the numbers/text. Can they be related to something you know, just by
common sense?

Tip 2: Search for format details

Write in a search engine “<format name> format example”

Formal specifications come in the form of an RFC (Request For
Comments) but not easy to read.
Search for them with the “<format name> specification”

Example: “CSV specification RFC”

 MNXB01-2022 Handling Datasets 7/16Tutorial 3

Sample data file: investigation
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing this
data?

• It seems to be structured in some
way.

• There is some metadata information
at the top that might hint at some
known format. Search “XML” on
google?

Can we guess something about the
structure?

● It seems to have opening and
closing tags <tag></tag>

● The tags seems to represent a tree
structure

Can we guess something about the
content? Anything you may know
about?

● Clearly seems to speak about
games of some kind

● Platform seems to hint to some kind
of device, there is the name of some
company in it

 MNXB01-2022 Handling Datasets 8/16Tutorial 3

Datasets can be “dirty”

The data is not always as you expect. Close inspection might reveal
inconsistencies and corner cases that have to be “sanitized” or
“validated”, or simply you need a subset of the whole dataset.
In any case, something that requires special care.

In most cases you will need to rework the dataset in order to
process it with your code

In any case, never tamper the original dataset. Do all the
changes on a separate copy.

Example: take only games whose name starts with B, G or Z: create new
file with such content, do not modify the original database files so that you
can have them as references.

Devil is in the detail:

Encodings. To show the content of a file, especially a text file, an
operating system has to know the encoding of a file.

look for invisible or non-ASCII characters. These are usually symbols
for non English-US languages, or control characters

 MNXB01-2022 Handling Datasets 9/16Tutorial 3

What to “clean”?
Tip 3: Format consistency check: check that the dataset is consistent
with the format it claims/you think it is. Remove or rework any
inconsistencies. Examples:

Additional lines/character/spaces you do not care about in your data analysis or that
scramble the data format or make it hard to process via your code. For example, a
csv that uses commas as separator has also commas in the data itself.

Always try to resolve the inconsistency so to keep the data

Possible solution: Carefully rewrite the relevant data or dataset with a different separator

If the above is not possible, assess the data loss caused by excluding that data: will it
completely change your analysis? By how much?

Possible solution: on a file of 2000 lines, if 10 are bad it’s probably ok to discard them.

Tip 4: Meaning consistency check: treat carefully or try to spot anything
that seems like obviously wrong data, like bad reading from a sensor or a
typo in the data entry Examples:

Suppose you have a file with temperatures from a data station. If there are
temperatures like 1000 degree celsius, something is probably wrong with the data
station, you should discard such data and assess how much of the datasets presents
these wrong values.
Possible solutions:

on a file of 2000 lines, if 10 have strange data it’s probably ok to discard them.

If you’re unsure about how unrealistic the data is, perform multiple analysis with and without
the strange data and assess what difference does it make.

 MNXB01-2022 Handling Datasets 10/16Tutorial 3

Encodings

The encoding is a table that maps bytes contained inside the file to a set of
graphical representations. Some files carry this information at the beginning
of the file, but for most text files this needs to be guessed using a magic
number.
Most editors can guess automatically and allow you to force-save in some
encoding. In linux you can check the encoding of a file with the file
command.
file <filename>
file -i <filename> # identify “mime type”, used in the web

Most common encoding sets for text files are:

ASCII (US-english, Latin)

UTF-8 (US-english and Latin with extended chars like öäå)

UTF-16 (Symbol languages (Asian, Arabic, Hindi…))

On most editors you can read the encoding at the bottom of the window.

Tip 5: encoding check. Always check that you’re reading the correct
encoding.

See CodeBlocks example in MNXB01-manual A.3.1

 MNXB01-2022 Handling Datasets 11/16Tutorial 3

Control Characters

They’re always there especially in text files. Common examples are newlines:

(Most linux-unix) Line Feed (LF): Makes a text file go to the next line. Usually represented
as \n

(Mac OS) Carriage Return (CR): makes a text file go to the beginning of a line. Usually
represented as \r

(Windows) (CR LF): makes a text file go to the beginning of the line and then to a new line.
Usually represented in programming languages as \r\n

More info on https://en.wikipedia.org/wiki/Newline

You can see them with less -u <filename> or with geany through the menu
View→”Show line endings”

The symbols \ is used to represent “escape sequences”, used for special control
characters. Some other common ones:

\t : tab, a fixed size set of spaces

\s : a space

Tip 6: hunt for unexpected control sequences. Always check that the line
terminators are the ones you expect and that there is no weird control sequences.

See CodeBlocks example in MNXB01-manual A.3.1

https://en.wikipedia.org/wiki/Newline

 MNXB01-2022 Handling Datasets 12/16Tutorial 3

Tech advice on cleaning up a dataset

In the case of text-file datasets, usually the best is to use tools that were
created to handle text – or the so-called string datatype

Tip 7: avoid C and C++ for working on strings.
C and C++ are notoriously very bad with strings:
DON’T USE THEM IF POSSIBLE

Tip 8: Best languages for string manipulation are perl, python and bash
commands.
The cleanup is easier if done with any of the above languages.

In the course project you will attempt to automate a workflow where the
data needs to be cleaned up first

I am teaching bash, but there’s nothing preventing you from using any
other tools you fancy such as python or Microsoft Excel or Google
Spreadsheet.
The use if bash is just practical if you have hundreds of text files to
parse, and all the tools are for free.

You can run an ubuntu/linux-like shell also on windows (e.g. cygwin) without
virtualization. The use of these tools will become more and more common, see
the MNXB01-manual about running your own linux for details!

 MNXB01-2022 Handling Datasets 13/16Tutorial 3

Workflows with various tools

In the free software/open source community everyone shares
knowledge about coding.

This usually means that someone’s work is based on someone else’s

This generated a style of creating software that is a mix of different
programming languages, tools, practices:
composing different applications to achieve a goal

It is very common that your C++ code will require some
preparation before the build for which leads to
tedious repetitive commands to type in

“tedious repetitive” is what a computer is good at.
Tip 9: use a computer to do tedious and repetitive stuff
A human has better things to do in life than monkey-coding!

Scripting languages are very good to automate boring work.

 MNXB01-2022 Handling Datasets 14/16Tutorial 3

A case study
We want to go from the file format on the left side to the one on the right side.

Stationsnamn;Klimatnummer;Mäthöjd (meter över marken)
Ystad;53260;2.0

Parameternamn;Beskrivning;Enhet
Lufttemperatur;momentanvärde, 1 gång/tim;degree celsius

Tidsperiod (fr.o.m);Tidsperiod (t.o.m);Höjd (meter över havet);Latitud (decimalgrader);Longitud
(decimalgrader)
1949-01-01 00:00:00;1963-09-16 23:59:59;13.0;55.4410;13.8278
1963-09-17 00:00:00;1983-08-31 23:59:59;32.0;55.4410;13.8278

Datum;Tid (UTC);Lufttemperatur;Kvalitet;;Tidsutsnitt:
1949-01-01;00:00:00;3.5;Y;;Kvalitetskontrollerade historiska data (utom de senaste 3 mån)
1949-01-01;06:00:00;3.5;Y;;Tidsperiod (fr.o.m.) = 1949-01-01 00:00:00 (UTC)
1949-01-01;12:00:00;4.2;Y;;Tidsperiod (t.o.m.) = 1983-08-31 23:59:59 (UTC)
1949-01-01;18:00:00;5.5;Y;;Samplingstid = Ej angivet
1949-01-02;00:00:00;4.3;Y;;
1949-01-02;06:00:00;4.6;Y;;Kvalitetskoderna:
1949-01-02;12:00:00;6.2;Y;;Grön (G) = Kontrollerade och godkända värden.
1949-01-02;18:00:00;5.0;Y;;Gul (Y) = Misstänkta eller aggregerade värden. Grovt kontrollerade
1949-01-03;00:00:00;4.2;Y;;
1949-01-03;06:00:00;4.0;Y;;Orsaker till saknade data:
1949-01-03;12:00:00;4.6;Y;; stationen eller givaren har varit ur funktion.
1949-01-03;18:00:00;5.0;Y
1949-01-04;00:00:00;3.2;Y
1949-01-04;06:00:00;1.6;Y
1949-01-04;12:00:00;3.0;Y
1949-01-04;18:00:00;2.0;Y
1949-01-05;00:00:00;1.5;Y
1949-01-05;06:00:00;-0.8;Y

1949-01-01 00:00:00 3.5 Y
1949-01-01 06:00:00 3.5 Y
1949-01-01 12:00:00 4.2 Y
1949-01-01 18:00:00 5.5 Y
1949-01-02 00:00:00 4.3 Y
1949-01-02 06:00:00 4.6 Y
1949-01-02 12:00:00 6.2 Y
1949-01-02 18:00:00 5.0 Y
1949-01-03 00:00:00 4.2 Y
1949-01-03 06:00:00 4.0 Y
1949-01-03 12:00:00 4.6 Y
1949-01-03 18:00:00 5.0 Y
1949-01-04 00:00:00 3.2 Y
1949-01-04 06:00:00 1.6 Y
1949-01-04 12:00:00 3.0 Y
1949-01-04 18:00:00 2.0 Y
1949-01-05 00:00:00 1.5 Y
1949-01-05 06:00:00 -0.8 Y

Not very easy to process:
- Metadata headers
- inconsistent field structure, some fields are used for comments
- semicolon may not be nice for C++

Simplified raw data
- No headers, just raw data
- Removal of unused fields
- spaces instead of semicolon

See the example code at
https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/casestudy/code/smhicleaner.sh.sol
ution

https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/casestudy/code/smhicleaner.sh.solution
https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/casestudy/code/smhicleaner.sh.solution

 MNXB01-2022 Handling Datasets 15/16Tutorial 3

Dataset Quiz

Click these links:
https://github.com/floridop/MNXB01-2020/blob/master/floridopag/lectur
e2/lecture2examples/data/nintendowiigames.xml

http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278
c7da?inc=aliases&fmt=json

http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin

For each of the above:

What is it about (scope)?

What is the format?

What is the actual information contained?

https://github.com/floridop/MNXB01-2020/blob/master/floridopag/lecture2/lecture2examples/data/nintendowiigames.xml
https://github.com/floridop/MNXB01-2020/blob/master/floridopag/lecture2/lecture2examples/data/nintendowiigames.xml
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin

 MNXB01-2022 Handling Datasets 16/16Tutorial 3

Dataset quiz - solutions

Regarding these links:
a)https://github.com/floridop/MNXB01-2020/blob/master/floridopag/lecture2/lecture2examples/data/nintendowiigames.xml

b)http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json

c) http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin

1) Could you guess what each dataset about?

a) Nintendo WII videogames (check the Platform tag or the filename)

b) Music metadata (check the main website musicbrainz.org)

c) Check the URL, it’s the Swedish weather forecast services SHMI. The URL hints at some climate
issue, probably ozone.

2) What is the format?

a) XML. The format is declared in the first line of the file.

b) JSON. The format is identified by the browser in most cases nowadays.

c) It’s a CSV but instead of Comma Separated Values, the value are separatde by blank spaces.

3) What is the information contained?

a) A database ID, a game name, the year of release, the platform that runs the game

b) Various. But special database ID, band name and year of band fundation seems to be there. JSON is
not a very structured format, it’s just a collection of key-value pairs

c) Hard to tell. The document lacks a description of the fields. The first column seem to be the year,
the second the month, the third the day of the month according to the Swedish way of presenting
dates. The rest of the values are hard to interpret.

https://github.com/floridop/MNXB01-2020/blob/master/floridopag/lecture2/lecture2examples/data/nintendowiigames.xml
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

