MNXBO01 2022

Handling data files
Writing bash scripts

Florido Paganelli
Lund University

Fysikum, Hus A, Room 403

Support:

- send me an emaill or use Canvas
- personal Zoom room:
https://lu-se.zoom.us/}/2485752983

MNXB01-2022 Bash Scripting Tutorial 3 1/96

mailto:florido.paganelli@hep.lu.se

Outline

» Goals

» Motivation:

@ Datasets
@ Automation using scripting

* Introduction to scripting

s Bash
@ |Introduction
@ Tutorial part 1: basic concepts (variables, exit values, conditions)
@ Tutorial part 2: advanced concepts (environment, loops)
@ Useful commands

MNXB01-2022 Bash Scripting Tutorial 3 2/96

Goals and non-goals of this
tutorial

+ Goals:
» Understand the concept of dataset format

» Being able to write a bash script.

» Understanding the concepts of Variable,
Environment, binding, scope.

> Non-goal:

» Become a script-fu master. It takes long time for
the black belt ;)

» Become a coder. We cannot do this in a lecture,
there's plenty of dedicated courses out there

MNXB01-2022 Bash Scripting Tutorial 3 3/96

Motivation 1: Handling datasets

Excerpt from the Datasets document on
Canvas

Typical scientist workflow
summary

1. Understand datasets format

2. Cleanup data using tools like
bash commands, python, perl...

3. Write code to process data
In languages like C, C++
4.\Write scripts in Bash, Python, Perl
To automate steps 2 and 3 on multiple datasets

MNXB01-2022 Bash Scripting Tutorial 3 5/96

Typical scientist workflow

» Someone (usually your supervisor) gives you
reference to some data and some obscure code
written by elders who now moved to the end of the
known universe

= Nobody knows what the data looks like and what it
contains - just that is it about your science!

= Nobody has any idea what the code is like and how to
change it. No documentation, no one left alive to tell you

» You have to figure out most of the the details by
yourself

» Few tips in separate slides

MNXB01-2022 Bash Scripting Tutorial 3 6/96

Datasets

@ A dataset is some digital collection, maybe a file or a set of files, that contains data
we want to use. Here are the typical traits of a dataset:

@ Scope: The knowledge area it targets. Examples: archeology, budget, weather
forecast...

@ Format

@ A format is a set of rules that define in a rigorous manner how the content of the dataset
should be read and written, what are their meanings and the relationship among the dataset
information

@ The format can be a well know data format, more or less standardized, or some custom data
format created by some community.

@ A description of the format is usually provided by the community that generated the
dataset. It is very rare that a dataset contains information about its format.

@ Very common format names

@ CSV (Comma Separated Values)
@ XML (eXperimental Markup Language)
@ JSON (JavaScript Object Notation)

@ Sometimes the format can be made explicit in the file extension, but it is not necessary:
fridaythel3.json

@ Meaning of each data entry: what is the data exactly about.

@ In a budget, it's probably whatever concerned an expense, the goods bought, how they were bought,
maybe billing numbers...

MNXB01-2022 Bash Scripting Tutorial 3 7/96

Datasets can be “dirty”
and need to be “cleaned”

@ The data is not always as you expect. Close inspection might reveal
iInconsistencies and corner cases that have to be “sanitized” or
“validated”, or simply you need a subset of the whole dataset.

@ |In most cases you will need to rework the dataset in order to process it
with your code

@ |[n any case, never tamper the original dataset. Do all the changes on a
separate copy.

@ Devil is in the detail:

@ Format consistency check: is it consistent or some data entries do not
respect the format rules?

@ Meaning consistency check: is the data meaningful or totally nonsense, for
example a temperature of 2000 Celsius in Kiruna in January do not make
sense... maybe the sensor had an issue!

@ file format issues: Look out for encodings, invisible or non-ASCII
characters. These are usually symbols for non English-US languages, or
control characters

@ Bash and the bash commands are usually good for cleaning text files
datasets.

MNXB01-2022 Bash Scripting Tutorial 3 8/96

Example from project

flename: smhi-opendata 1 53260 20210906 214756.csv

Stationsnamn;Klimatnummer;Math6jd (meter 6ver marken)
Ystad;53260;2.0

Parameternamn;Beskrivning;Enhet
Lufttemperatur;momentanvarde, 1 gang/tim;degree celsius

Tidsperiod (fr.o.m);Tidsperiod (t.o.m);H6jd (meter Over havet);Latitud (decimalgrader);Longitud
(decimalgrader)

1949-01-01 00:00:00;1963-09-16 23:59:59;13.0;55.4410;13.8278

1963-09-17 00:00:00;1983-08-31 23:59:59;32.0;55.4410;13.8278

Datum;Tid (UTC);Lufttemperatur;Kvalitet;;Tidsutsnitt:

1949-01-01;00:00:00;3.5;Y; ;Kvalitetskontrollerade historiska data (utom de senaste 3 man)
1949-01-01;06:00:00;3.5;Y;;Tidsperiod (fr.o.m.) = 1949-01-01 00:00:00 (UTC)
1949-01-01;12:00:00;4.2;Y;;Tidsperiod (t.o.m.) = 1983-08-31 23:59:59 (UTC)
1949-01-01;18:00:00;5. 5,Y,,Samp11ngst1d Ej angivet

1949-01-02;00:00:00;4.
1949-01-02;06:00:00;4.
1949-01-02;12:00:00;6.
1949-01-02;18:00:00;5.
1949-01-03;00:00:00;4.
1949-01-03;06:00:00;4.
1949-01-03;12:00:00;4.
1949-01-03;18:00:00;5.
1949-01-04;00:00:00; 3.
1949-01-04;06:00:00;1.
1949-01-04;12:00:00; 3.
1949-01-04;18:00:00;2.
1949-01-05;00:00:00;1.
1949-01-05;06:00:00; -0.

;;Kvalitetskoderna:
;;Gron (G) = Kontrollerade och godkanda varden.
,,Gul (Y) = Misstankta eller aggregerade varden. Grovt kontrollerade

;;0rsaker till saknade data:
; stationen eller givaren har varit ur funktion.

U'IOG)OWNGOOI\JONOUJ

MNXB01-2022 Bash Scripting Tutorial 3

9/96

Motivation 2: Automation

Workflows with various tools

» |In the free software/open source community everyone shares

knowledge about coding.
@ This usually means that someone’s work is based on someone else’s

@ This generated a style of creating software that is a mix of different

programming languages, tools, practices:
composing different applications to achieve a goal

° |t is very common that your C++ code will require some
preparation before the build for which leads to
tedious repetitive commands to type in

» “tedious repetitive” is what a computer is good at.
Tip: use a computer to do tedious and repetitive stuff
A human has better things to do in life than monkey-coding!

» Scripting languages like bash are very good to automate
boring work.

MNXB01-2022 Bash Scripting Tutorial 3 11/96

Automation and
composition of languages

Cornerstone of open source programming:
If something exist that does a task, and it does it
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate
tasks, increasing “debuggability”

Choose the right command/language for
each subtask, compose it with bash

MNXB01-2022 Bash Scripting Tutorial 3 12/96

A bunch of commands you should

know about

The “GNU userland”, the collection of commands that are usually shipped with linux, it’s a great collection of command line

tools that can do a lot for you. Here | write some that are notable, with links to examples.
They mostly do string operations and can be used to cleanup or reformat a dataset.

@ grep - find all the occurences of a substring inside a file.
Example: grep expressiontofind filename.txt

@ sed - substitute strings. The most used form is
sed ‘s/patterntofind/patterntosubstitute/’ filename.txt
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/

@ cat - print a file
cat filename.txt

@ head, tail - print nlines from the top/bottom of a file, see Tutorial 2 slides
head -10 filename.txt ; tail -10 filename.txt

@ cut - remove section from each line of a file - can be used to extract columns
cut -d, —-f5 filename.txt

@ tr - translate (substitute) characters
cat /etc/services | tr s z (will make every s -> 2)

@ awk - a powerful line editor that can be programmed for tasks

@ curl and wget - programs used to download files

@ sort - orders lines of a file give a certain criteria, eventually based on columns or fields
sort -r -k2 -h /etc/services

@ wc - bytes, chars and lines counter
wec -1 /etc/services

MNXB01-2022 Bash Scripting Tutorial 3

13/96

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/
https://www.thegeekstuff.com/2013/06/cut-command-examples/
https://www.thegeekstuff.com/2012/12/linux-tr-command
https://likegeeks.com/awk-command/
https://www.keycdn.com/support/popular-curl-examples
http://www.linuxandubuntu.com/home/12-practical-examples-of-wget-command-on-linux
https://www.geeksforgeeks.org/sort-command-linuxunix-examples/
https://www.tecmint.com/wc-command-examples/

A case study for tutorial

@ We want to go from the file format on the left side to the one on the right side.

Stationsnamn;Klimatnummer;Mathéjd (meter 6ver marken)
Ystad;53260;2.0

Parameternamn;Beskrivning;Enhet
Lufttemperatur;momentanvarde, 1 gang/tim;degree celsius 1949-01-01 00:00:00

1949-01-01 06:00:00
1949-01-01 12:00:00
1949-01-01 18:00:00
1949-01-02 00:00:00
1949-01-02 06:00:00
1949-01-02 12:00:00
1949-01-02 18:00:00
1949-01-03 00:00:00
1949-01-03 06:00:00
1949-01-03 12:00:00

Tidsperiod (fr.o.m);Tidsperiod (t.o.m);H6jd (meter 6ver havet);Latitud (decimalgrader);Longitud
(decimalgrader)

1949-01-01 00:00:00;1963-09-16 23:59:59;13.0;55.4410;13.8278
1963-09-17 00:00:00;1983-08-31 23:59:59;32.0;55.4410;13.8278

Datum;Tid (UTC);Lufttemperatur;Kvalitet;;Tidsutsnitt:
1949-01-01;00:00:00;3.5;Y;;Kvalitetskontrollerade historiska data (utom de senaste 3
1949-01-01;06:00:00;3.5;Y;;Tidsperiod (fr.o.m.) = 1949-01-01 00:00:00 (UTC)
1949-01-01;12:00:00;4.2;Y;;Tidsperiod (t.o.m.) = 1983-08-31 23:59:59 (UTC)
1949-01-01;18:00:00;5. 5,Y,,Samp11ngst1d Ej angivet

I—'NWI—'WU‘I#-&-&U‘IO\#LW#WW
WOOO\NOO\ONGNO\U\JU'INWU'I
K<< << < << << << <

1949-01-02;00:00:00;4.3;Y;; 1949-01-03 18:00:00
1949-01-02;06:00:00;4.6;Y; ;Kvalitetskoderna: 1949-01-04 00:00:00
1949-01-02;12:00:00;6.2;Y;;Gron (G) = Kontrollerade och godkanda véarden. 1949-01-04 06:00:00
1949-01-02;18:00:00;5.0;Y;;Gul (Y) = Misstankta eller aggregerade varden. Grovt kontrollerade 1949-01-04 12:00:00
1949-01-03;00:00:00;4.2;Y;; 1949-01-04 18:00:00
1949-01-03;06:00:00;4.0;Y;;0rsaker till saknade data: 1949-01-05 00:00:00
1949-01-03;12:00:00;4.6;Y;; stationen eller givaren har varit ur funktion. a1. . . _
1949-01-03;18:00:00;5.0;Y 1949-61-65 86:00:00 G 8 Y
1949-01-04;00:00:00;3.2;Y
1949-01-04;06:00:00;1.6;Y - -c-
1949-01-04;12:00:00;3.0;Y Simplified raw data
1949-01-04;18:00:00;2.0;Y - No headers, just raw data
1949-01-05;00:00:00;1.5;Y .
1949-01-05;06:00:00;-0.8;Y - Removal of unused fields

- spaces instead of semicolon

Not very easy to process:

- Metadata headers

- inconsistent field structure, some fields are used for comments
- semicolon may not be nice for C++

MNXB01-2022 Bash Scripting Tutorial 3 14/96

What coder are you?

» Over the years | understood there are two
kinds of coders:

» task-oriented

» They need a task to be motivated to learn the
details of a programming language

» knowledge-oriented

*» They need basic knowledge of the basic of a
language before they dive into coding with that
language

MNXB01-2022 Bash Scripting Tutorial 3 15/96

Two ways to do the tutorial

@ | will provide
@ A set of exercises explaining the basics of BASH,
@ A pseudocode file and my solution to the case study.

@ Your task is to try to write code in the pseudocode file and solve
the case study.

@ Depending on which coder are you, you can complete the Tutorial in
two ways. Or mix.

@ Task-oriented: focus on solving the case study. Read the pseudocode and follow
the suggestions on what exercises to do in the tutorial that help you writing
your own code

@ Knowledge-oriented: focus on concepts and features of the language. Do all
the exercises in the tutorial until the end, then look at the pseudocode and try
to write your own code.

@ |n both cases you can always look at the solution to see how | did it.

@ Maybe you come up with smarter ideas, my code is just one way of solving the
problem.

MNXB01-2022 Bash Scripting Tutorial 3 16/96

Check previous years homework

Check the solutions of previous year
assignments on github or the course
webpage:
@ https://github.com/floridop/MNXB01-2021/tree/main/floridopag/tutorial3/homework3
@ https://github.com/floridop/MNXB01-2020/tree/master/floridopag/tutorial3/homework3
@ https://github.com/floridop/MNXB01-2019/tree/master/floridopag/tutorial3/homework3

@ http://www.hep.lu.se/courses/MNXB01/index-2018.html
@ https://github.com/floridop/MNXB01-2018/tree/master/floridopag/HW3

MNXB01-2022 Bash Scripting Tutorial 3 17/96

https://github.com/floridop/MNXB01-2021/tree/main/floridopag/tutorial3/homework3
https://github.com/floridop/MNXB01-2020/tree/master/floridopag/tutorial3/homework3
https://github.com/floridop/MNXB01-2019/tree/master/floridopag/tutorial3/homework3
http://www.hep.lu.se/courses/MNXB01/index-2018.html
https://github.com/floridop/MNXB01-2018/tree/master/floridopag/HW3
http://www.hep.lu.se/courses/MNXB01/index-2017.html
https://github.com/floridop/MNXB01-2017/tree/master/flopaganelli/HW3b
http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html

Not published yet: Homework3

» |It's about writing a bash script

+ Not yet completed, will be described on
canvas

» |t may involve reusing the
smhicleaner.sh script from the case

study

MNXB01-2022 Bash Scripting Tutorial 3 18/96

Introduction to BASH

MNXBO01-2022 Bash Scripting

Scripting vs coding

» The word script is taken from a theatrical play
script: a description of the environment on
stage, a sequence of lines and gestures to do

» There is no practical difference between writing
code in a compiled language and a scripted
one.

» The main runtime difference is that scripted
languages do not require compilation.

» |n particular, Bash commands are already
precompiled, and you can use bash to execute
existing compiled programs.

MNXB01-2022 Bash Scripting Tutorial 3 20/96

BASH

» Bash stands for Bourne-Again SHell. It's a rewrite by the GNU
member Brian Fox of one of the unix sh shells, called Bourne
shell by its author surname (Stephen Bourne).

» Command Interpreter: defines a language to automate and
manipulate the output and the execution of commands.

@ Some commands are part of the language, the so-called “built-ins”

@ Many of the things one can do actually depends on commands
installed on a machine independently from bash, like most
applications, so it is not possible to be extensive in explaining it.

* Yesterday you learned a few existing commands in bash and
applications, today we will write programs that use them.

MNXB01-2022 Bash Scripting Tutorial 3 21/96

Mastering bash

» To be able to write good programs in bash one
needs two things:

1) Have a good understanding of the bash syntax and
features

» Today’s tutorial!

2) Have a good knowledge of the commands that one can
run in bash
« commands: the GNU programs and other third party tools. They
are best learned when one has a specific problem to solve, but in
the end you actually learn by experience and internet search.

Some we saw yesterday, some suggestions with hints to where to
search information will be in the case study.

 Use the section 5.3 in the manual and slide !

MNXB01-2022 Bash Scripting Tutorial 3 22/96

Notation

@ There's a set of symbols and idioms that are commonly used in command line tutorials and you should
know about. The description of the grammar of a command is often called synopsis, or brief summary.

@ Spacing. In general there is always a space between a command an every of its options, that is, every
word of a command that is shown in these slides.
However, in some cases it might be tricky to see it, and | will use the symtl)l . For example nlan bash

@ command
This graphics above is meant to represent a command. You are supposed to write exactly as it looks.

@ command <argument>
The <> (angle brackets) are used to identify a mandatory argument of the command. The command
will NOT work without the things in the angle bracket.
The above usually means to run the command and to substitute the string <argument> with the
argument without angle brackets.
Remember, in most languages brackets have a special meaning. The special meaning of the angle
brackets was shown in the CLI tutorial.

@ command ARGUMENT
In man pages, sometimes capital letters are used instead of the angle brackets <>. The meaning is
exactly the same as the angle brackets, the capitalized string means mandatory. We will not use this

notation in this tutorial because it might be confusing, but you will find it in the linux man pages

@ command <argument> [<argument>]
The [] (square brackets) are used to identify and optional part of the command. The command will
work if you omit the content of the square brackets [].
However, if you add a second argument, it must be as defined within the angle brackets <>.

@ command [<argumentl> | <argument2>]
In command descriptions, the | (pipe symbol) is used to identify a mutually exclusive part of the
command. You can use EITHER <argumentl> OR <argument2> but NOT both of them.
This is inherited from formal grammar notations.
In code snippets or pieces of code, the pipe is part of the code and must be copied/written as it is.

MNXB01-2022 Bash Scripting Tutorial 3 23/96

A bash script and its components

@Bash is not really a programming language. It is more like a command scripting language
for automation of tasks, with some programming language features.

@|nstead of libraries you will mainly use the GNU/Linux userland and GNU/Linux coreutils
software, a set of commands that help automate common tasks, or other bash scripts.

@However, one can write “bash libraries” as scripts that define usable functions and source
these scripts in another script (see slide &7)

@A bash script is nothing more that a sequence of commands written in a file.
@The bash interpreter will process those in sequence, from the top line to the bottom
@lLike C++, is possible to define variables and control structures in the scripting language.

@However, the bash script language has little to share with the complexity of C++. All that it
can do is to execute commands, test conditions, and store things in variables.

@Most commands we will see today are documented on man. You can type man bash to read
the full documentation.

@ Consider the following code, a script called getcpuinfo.sh:

#!/bin/bash)
Execution result:

1. use the cat command to print the file /proc/cpuinfo,

a system file that contains information about the cpu
2. extract the first two lines of the above output with head
3. store the output of head in the CPUINFO variable
it is all done in the following one line!
CPUINFO=$(cat /proc/cpuinfo | head -2)

H H

$./getcpuinfo.sh
Processor: 0
vendor id: AuthenticAMD

write the content of CPUINFO to screen
echo "$CPUINFO"

MNXB01-2022 Bash Scripting Tutorial 3

24/96

Anatomy of a bash script

#!/bin/bash =" | interpreter to use. It might be another shell!

The first line has a special syntax: #! tells bash which

Every other line starting with a
hash # is a comment. The

put the output of cat in the variable CPUINFO[—__| interpreter ignores everything

that follows until the end of

commands line. Useful to describe code to

CPUINFO=] |$(||cat /proc/cpuinfo | head -7|]) human readers.

This tells bash to execute a
command and return its output.

A variable definition is any string followed by a = symbol. It is a
convention to use capital letters.

Remember that case matters, cpuinfo is different from CPUINFO!

write the content of CPUINFO to screen

1 echo||"$CPUINFO"

A variable call is any variable name prefixed by the $ symbol.
Case does matter here. The quotes affect the output, that in this

case depends on how the echo command works.

The $ symbol stands for “give me the value contained in that

I | variable”

me))

Executing a script

@ The script can be made executable as if it were a command.

pflorido@tjatte:~>chmod +x getcpuinfo.sh

@ If you forgot to make the file executable, you will get the following error:
bash: ./getcpuinfo.sh: Permission denied

@ To run or execute a file in the current directory, prefix it with i

pflorido@tjatte:~> ./getcpuinfo.sh
processor : 0

vendor_id : GenuinelIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz
stepping : 6

cpu MHz » 2127.650

MNXB01-2022 Bash Scripting Tutorial 3 26/96

Digression:
Addressing memory (RAM)

» Computer memory is divided in a 0 |pAm]
certain number of locations.

» A physical memory element at a > 1 [DATA |
specific location is like a reqgister, and
has a size in bit. Usually is 8 bits, a —> 2 [DATA |
byte.

» A location is a memory space
Identified by a
memory address _s _ |pATA |

» A memory address is an integer
number.

*» This number is usually called pointer (
-), as it points to a memory location. — 4GB | DATA |

Accessing Memory

Tutorial 3 27/96

Variables: definition, initialization

@ A variable is an identifier, a name, for a memory location.

@ To define a variable means to tell the interpreter to find a free memory space for that
variable. This memory space has an index.

@ In bash, you define a variable by simply writing a string with CAPITAL LETTERS (by
convention) that starts with a letter on the left side of the symbol =
Note: BASH doesn’t like spaces that much!

ANSWER=

@ If a bash variable is not initialized, the memory space at that index contains the
blank/empty string

#AB104

Initial Memory location
index

ANSWER= — g

@ To initialize a variable is to assign a value to it.

It means putting such value inside the memory location identified by that
variable name.

@ In bash this is done by writing a value on the right side of the equal sign =
ANSHER=""42" > #aB104 [A2 T
ASHER=""FO rty Two" >~ #aB104 [RO O

Variable types in bash

@ |n BASH, variables have no explicitly defined type, because actually there is only
one type.
@ Itis implicitly assumed that the contentis a

string: a sequence of characters.
The maximum size depends on the system.

@ Memory Allocation is always done dynamically depending on the assigned
value.
@ You will never see the memory pointer in bash.

@ Consequence: Doing arithmetic with bash is a bad idea. Bash does not
understand numbers so well...

@ There are, however, a special syntax and operators that force basic
arithmetic interpretation (integer sum, logical algebra)

MNXBO01-2022 Bash Scripting

Variables: retrieving values

- S0 far we've seen how to assign a value
to a variable. But how to read or retrieve
such value from the computer’'s memory?

- In bash one simply prefixes the variable
with the $ (dollar) sign.

» $ANSWER returns the value of the ANSWER
variable. This is sometimes also named
(re)calling a variable value

MNXB01-2022 Bash Scripting Tutorial 3 30/96

Calling variables values In
different ways

» SVAR returns the value contained in the variable called VAR.

» ${VAR} also returns the value contained in the variable
called VAR but it allows you to manipulate the contents of
the variable. This is called shell parameter expansion.

In this course we will not see it in detail, but we will use it
just because it makes it easier to spot the boundaries of
the variable name. It can be used to concatenate string

values and strings, like:
S{TARGETDIR}/*;
someone who reads the code can clearly see that the name

of the variable is TARGETDIR and that /* are something else.

» For the curious, more about shell parameter expansion here:
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

MNXB01-2022 Bash Scripting Tutorial 3 31/96

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Best practices coding in bash

*» Get used to reason in terms of command outputs and
command inputs, it is the real thing that bash can do.
For more complicated things you may need a real
programming language.

» Test a command in the command line first, then add it
to a script.

s Use the debug mode when you do not understand what
IS going on (see slide 4 1)

@ echo (print out) the content of a variable on screen to see what
it contains

» Test you script on different paths/filenames/inputs

» |If In your computer, never run a script you’'re testing
as superuser/root

MNXB01-2022 Bash Scripting Tutorial 3 32/96

Bash Tutorial part 1

Exercises and their solutions

Create and execute a script

Variables

Debugging

Passing input parameters to a script

» The exit status and exit command

» Taking decisions: conditions and IF statement
» Command substitution and pipes

MNXB01-2022 Bash Scripting Tutorial 3 33/96

copy the bash
examples/exercises to your home

Do not copy paste the commands below. Please type them.
Copy pasting from PDF doesn’t always work properly.
@ Change Directory into your home.
cd ~
@ Recursively copy the tutorial3 directory to your home folder from our
shared folder:
cp —ar /projects/hep/fs10/mnxb01/tutorial3 ~

@ Enter the tutorial folder you just copied:

@ To see Examples:

@ cd ~/tutorial3/examples/bash
@ To see exercises:

@ cd ~/tutorial3/exercises/
@ To see the case study:

@ cd ~/tutorial3/casestudy/

@ Remember: you can list the folder contents to see the scripts with
@1ls -1

MNXB01-2022 Bash Scripting Tutorial 3 34/96

Exercises and their solutions

1)cd into the exercise folder ex3.x @ Folder structure:

where x is the number of the .
4 tutorial3/

exercise |
Example, for exercise 3.1: 4 exercises/
cd ~/tutoriall3/exercises/ex3.2 J ex3.x/

2)perform the requested tasks described in < output
4 solution/

these slides you're reading 5 command to run

3)Check the expected output 4 example.sh
(cat output)

4)Try to write the code or run the script
so that it outputs the same

5)If you do not manage, check the solution in solution/

* For exercises that require running commands, the solution can be inspected with
cat command_to run

You may want to open multiple terminals, one to check the solution,
one to run the command(s).

MNXB01-2022 Bash Scripting Tutorial 3 35/96

How to start working on
each exercise

1) Access the exercise directory

Example: exercise 3.1
cd ~/tutorial3/exercises/ex3.1

2) Open Pluma
pluma &

 Read about how to save files in the MNXBO1l-manual.pdf

3) Read the exercise description in these slides
(there is no exercise description in the folders!)

4) Perform the requested tasks

MNXB01-2022 Bash Scripting Tutorial 3 36/96

How to start working
on the case study

- Read the README.md file in the folder
casestudy to understand more about the

case study

> You can see it nicely formatted on my
github, maybe easier to read:

MNXB01-2022 Bash Scripting Tutorial 3 37/96

https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/casestudy/README.md

Create a script

@ Read slides if you are confused about the syntax of these exercises.

@ Exercise 3.1 (write a bash script): Open Pluma (see MNXBO1l-manual.pdf)
write and save the following code as file answers.sh

#'!/bin/bash

define and initialize the ANSWER variable
ANSWER=42

print the content of ANSWER to screen
echo "$ANSWER"

s Exercise 3.2 (execute a bash script): make the script answers.sh
executable and execute it as described in slide

@ Exercise 3.3 (echo): Familiarize with the echo command. It is used to
print out information to the screen.

Edit answers.sh so that at the end of the program it prints out “The
content of the wvariable ANSWER is 42"

s Exercise 3.4 (modify scripts): Modify the content of ANSWER with
42+42, save and execute again. Is it what you expected?

Everything is a string (sequence of characters) in bash, by default there
IS no numerical calculations.

MNXB01-2022 Bash Scripting Tutorial 3 38/96

file:///nfs/users/floridop/Documents/teaching/programming4science2022/florido/tutorial3/%2322

Predefined variables in scripts

@ Prefixed by the $ symbol, they are instantiated automatically in bash at the start of the
shell program.
(They are actually automatically sourced in the environment, we’ll talk about this later)

@ Various:
@ $PATH: list of paths where executable commands are
@ $PS1: prompt format
@ $SHELLOPTS: options with which the shell is run
@ $UID: User ID of the user running the script
@ Process info and status codes:

@ 9: process identifier (PID) of the script itself.
The PID is an integer number that the operating systems assigns to a binary file once it is ran, that is,
when it becomes a process. It uniquely identifies a running program until the machine is shut down.
See Balazs slides for Tutorial 2 and the Advanced Topics in the Lecture 3 module on canvas.

@ $7?: exit code of the last executed command (0 if it ended without errors, any other number otherwise).
More about it later in the tutorial.

@ $!: PID of last command executed in background

@ Script parameters/arguments: $#, $0, $1, $2....
@ $# is the number of arguments passed to the script
@ $0 is the name of the script itself as called to be executed

@ $1..nis each string that follows the name of the script.
@ $* is all the parameters on a line.

MNXB01-2022 Bash Scripting Tutorial 3 39/96

Exercises

Exercise 3.5:
What is the predefined PATH variable?

During Balazs’ lectures we ran commands without typing a / in front of
them. The reason is: the system has a list of paths where to find these
commands.

This list is contained in the predefined variable PATH.

Add the following line at the end of the answers. sh:

echo “PATH value 1is $PATH”

Save and execute the script again: this line above will show the
folder path where the the system looks for executables.

Usually the directory where one creates a script is not in the $PATH
variable. For all executables that are not in PATH, one has to add ./ in
front for the system to find them.

It means: “the script | want to run is in the current directory, do not
search in PATH for it!”

MNXB01-2022 Bash Scripting Tutorial 3 40/96

Exercises

Exercise 3.6 (enable/disable debugging mode):

Enable Debugging to debug the script, that is, see what is doing
while running, modify the first line of answers.sh as below, by

adding a -x option: _
#1/bin/bash -x

Save the file and execute it again. See the differences in the output.
* The lines starting

with + show what

> ./answers.sh | Processing variable: store 42 inside ANSWER

—

line the interpreter
IS processing

+ ANSWER=42

processing echo command

* the lineswithout+—®42 | Result of echo command execution: print 42 on screen

are the output

result of the
process. “PATH value is /nfs/users/floridop/bin:/usr/local/sb

+ echo “PATH value is /nfs/users/floridop/bin:/usr/1

You may delete the ‘-x’ after this exercise, and just add it back
when you do not understand what the code is doing.

MNXB01-2022 Bash Scripting Tutorial 3 41/96

Using parameters and quotes

@ Exercise 3.7: Let's modify the answers.sh script to take as input the
number it has to print. Using the predefined variable $1 in slide

#!/bin/bash

set the variable to the first input parameter
to the answers.sh script
ANSWER=$1

print the content of ANSWER to screen
echo "You asked me to print: $ANSWER"

@Exercise 3.8: execute answers.sh passing a value of your choice, for example:
./answers.sh FortyTwo

@Exercise 3.9: Pass the string (42) (including the parentheses). What happens?

@Certain characters are special in Bash (see Tutorial 2). If you want to pass them as string, you
must enclose them in quotes ‘ or double quotes “.
Try again with the following:

@ “(42)"
@ ‘(42)"
@ “SPATH”
@ ‘SPATH’
@ The meaning of the quotes is different:

@The single quote ‘ is verbatim, that is, what is inside the quotes is taken exactly as it is.
@The double quote “ allows to resolve/fetch the value of variables, as in echo

MNXB01-2022 Bash Scripting Tutorial 3 42/96

Predefined variables example

. #!/bin/bash

. # predefinedvars.sh

. # call with: ./predefinedvars.sh argl arg2 arg3
. #

. # print out info about arguments to this script
echo “Number of arguments: $#”

echo “Name of this script: $0”

echo “Arguments: $1 $2 $3 $4”

O 00O NO Ul & WN -

10.

11.# print this script's Process IDentifier:
12.echo “PID is $$”

Let’s consider the predefined variables in slide and the script called
predefinedvars.sh in folder ex3.10.

Exercise 3.10: Run the script by passing five arguments:
./predefinedvars.sh argl arg2 arg3 arg4 arg5
Note how line 9 cannot print the fifth argument since | didn’t list $5.

Exercise 3.11: modify the script so to check the output of at least the two
predefined variables s* and s@

Hint: you can escape special characters with a backslash in order to print them so
that bash does not interpret them as variables:

o “\$*” will print $*

« guote the var with “$~*

MNXB01-2022 Bash Scripting Tutorial 3 43/96

The process exit status variable $7

@ Every process in an operating system has an exit status.

@ |t is an integer representing the status of an executed program after it
terminated.

@ By convention:
@ 0: Program completed without errors
@ anything else: Program failed with errors

@ When a program completes, bash automatically saves its status in the $2
variable. It's status of the “last executed command”

P We read this variable to check if the commands in our scripts are doing
as expected.

Example: [pflorido@pptest-iridium ~]$ touch ~/myfile

| can create a file in my home [pflorido@pptest-iridium ~]$ echo $7?
folder ~, and the exit statusis
O (file created)

[pflorido@pptest-iridium ~]$ touch /myfile
If | try to create it in the root touch: cannot touch ‘/myfile': Permission denied
filesystem where | have no
permission, | get an error.
Exit status 1 1

MNXB01-2022 Bash Scripting Tutorial 3 44/96

[pflorido@pptest-iridium ~]$ echo $?

Use of $?, process exit status

@ When you write a script, you should always check what is the exit status of the last
command especially if this prevents the logic of your script to continue.
IMPORTANT: BASH will not stop if any of the commands in your script fail. It
will show the error and continue executing the script.

@ You can check the exit value by getting the value of the $? variable as in the example:
echo $7?

@ You can also store it in a variable for future use:

@ touch ~/myfile
MYERRORSTATUS=S$"?

@ REMEMBER: s? just shows the return value of the most recent executed command. It is
therefore essential that you run any check right after a commands has been executed in your
script.

@ Exercise 3.12: Run the following commands and check their exit status.
@ls /
@1ls /etc/MNXBO1
@ls /; 1ls /etc/MNXBO1
@1ls /etc/MNXBO1; 1ls /

@ Notice how the use of ; that is used to execute a list of commands affects the result.
$? Refers only to the last executed command and not to the whole list.

MNXB01-2022 Bash Scripting Tutorial 3 45/96

The exit command

@ |f the return status of one of the commands in your scripts terminates
with error, the exit command can be used to terminate the program
exactly where exit is called, that is, to break cycles and exit the program
with a specific exit value.

@ It takes as input the exit value you want the process to exit with:
@ 0 for SUCCESS
@ 1 (or any other integer) for ERROR

@ |f your script cannot continue due to an error, you should handle the
error and/or exit 1.

Otherwise the code may continue running without the required
information.

@ If your script has encountered no errors, it is nice to exit 0 so that the user
knows everything ended well.
However, to simplify writing scripts, the default exit code is actually O
and exit 0 is actually equivalent to exit with no parameters.
So in most cases you do not need to write it at all.

MNXB01-2022 Bash Scripting Tutorial 3 46/96

Taking decisions:
If syntax and conditions

If you have never heard of binary logic, it is good to watch or read the
Binary System material in AdvancedTopics in Lecture3 on Canvas.

@ Enable the machine to decide on actions depending on certain
conditions. (1f..then.. .else..f1)

¢ A condition is usually a command exit value, it can be specified in
many ways but for this part of the tutorial we will consider the
command “extended test command” syntax:
[[<expression>]]

@ The BASH if syntax is as follows:

1f [[<expression>]]; then
<commandl>; [<commandZ>;..]
else
<commandA>; [<commandB>;...]
fi

@ Let’s have a closer look at those two.

MNXB01-2022 Bash Scripting Tutorial 3 47/96

Basic conditions

° [[<expression>]] where <expression> Is usually

something like:
[<operand>] <comparilison operator> <expression> ..

*» Example expressions:

* just the number 3
[[3 1]

* s 3 equal to 27?
[[3 == 1]

» # does the file filename exist?
[[—e filename]]

*0, 1, 3, 2, filename are operands
» ==, —e are comparison operators.

MNXB01-2022 Bash Scripting Tutorial 3 48/96

Basic conditions

» A condition statement is nothing but a command itself. It
returns an exit value like any other command.

@ This is quite weird because we have the following:
@ 0 means TRUE
@ 1 means FALSE

Which can be misleading if you remember about boolean expressions
in Lecture 3!

» Example:

is 3 equal to 2 ?

[pflorido@pptest-iridium tutorial3]$ [[3 == 2]]
we test the exit value with echo:
[pflorido@pptest-iridium tutorial3]$ echo $7?

1

1 means the test failed. 3 not equal to 2

Let’'s test if 3 is equal to 3...
[pflorido@pptest-iridium tutorial3]$ [[3 == 3]]
[pflorido@pptest-iridium tutorial3]$ echo $7?

0

0 exit value means: yes, the condition is true, 3 is equal to 3

MNXB01-2022 Bash Scripting Tutorial 3 49/96

most used comparison operators

@ Files

@ True if filename exists
[[—e <filename>]]

@ True if a file exists and it is a simple file
[[—f <filename>]]

@ True if a file exists and it is a directory
[[—d <dirname>]]

@ Strings

@ True if a string has length O:
[[-z <string>]]

@ True if a string is equal to another

[[<stringl> == <string2>]]
@ True if a string is different from another
[[<stringl> != <string2> 1]

@ One of the things that are hard to achieve is to check if a variable has been defined
and it is empty. Without explaining the reasons why this is not easy, I'll just show you the
most common trick to test if a variable it's empty:

@ True if the variable VAR is empty.
[|: llX$vARII —_— “X"] :|
What the above does is: it concatenates x to the content of VAR. If var it’'s empty, then x == x it’s true.

@ A full list can be found at
= |
(= |

MNXB01-2022 Bash Scripting Tutorial 3 50/96

https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
https://tldp.org/LDP/abs/html/comparison-ops.html

Bash conditions
and the binary logic

« The two operators:
» && (logical AND)
» || (logical OR)

Do not work exactly as one would expect.

o [[0 && 1]] will always return $7=0, no matter
where you put O or 1

» To do arithmetics and binary logic it's better to use the
“arithmetic expansion” command $(())
((0&&0)) will exit O
((0&& 1)) will exit 1
((1&&0)) will exit 1
((1&& 1)) will exit 1
These are consistent with binary logic, but we will not cover
them in this tutorial.

MNXB01-2022 Bash Scripting Tutorial 3 51/96

Bash conditions
and the binary logic

@ The && and || operators are more commonly used to chain commands with the
principle of lazy evaluation, that is, since we know that FALSE AND (whatever) it
is always FALSE, then the && just checks the first operand to decide the result.
It only goes to the second if needed. || does the same with TRUE.

@ Example usage:

@ commandl && command?
@ If command1 fails, then $? = 1 and command? is not executed

@ [[SFILENAME != ‘wrongfilename’]] && [[—-e SFILENAME]]
(the $SFILENAME variable does not contain wrongfilename)
AND
(there is a file whose name is the value contained in $FILENAME)

@ if SFILENAME contains wrongfilename then the first condition is false, and the second condition is not checked
due to lazy behavior.
The whole statement returns s2=1 (false)
it is enough that one condition is false for the whole statement to be false.

@ commandl || command?2
@ If command1 fails, then $? = 1 but command?2 is also executed

@ [[SFILENAME != ‘wrongfilename’ 1] || [[—-e $SFILENAME 1]]
(the $FILENAME variable does not contain wrongfilename)
OR
(there is a file whose name is the value contained in $FILENAME)

@ if SFILENAME contains wrongfilename then the first condition is false, second condition is checked, and only if
$FILENAME does NOT exist then whole statement returns $2=1 (false)
both conditions must be false for the whole statement to be false.

MNXB01-2022 Bash Scripting Tutorial 3 52/96

Exercises

@ Exercise 3.13: Find the definition of the condition statements below on this page:

@ And test the exit values (echo $?) of the following condition statements:

o [I
o [I
o [I
o [I
o [
o [
o [I
o [I

-e
-e
15
16
15
15

/etc]]
/doesnotexist 1]
-1t 15 1]

-1t 15 1]

-eq 15]]

== 15]]

‘large’ !'= ‘small’]]
‘large’ -ne ‘small’]]

@ Bash has also data types, but they are not explicit. In fact you cannot use —ne with
strings, only with numbers (integers). This is why the last statement will return 1.

MNXB01-2022 Bash Scripting Tutorial 3 53/96

https://tldp.org/LDP/abs/html/comparison-ops.html

Control structures:
If ...then ... else .. f11l/2

» Consider the example below:

(- le is the operator “less than or equal”)

#!/bin/bash
testif.sh
run with: ./testif.sh argl arg2 arg3

test that at least three arguments are passed to the script

if [[$# -le 2]]; then
echo "Not enough arguments. Must be at least 3!";
exit with error, not zero
exit 1;
else
echo "More than 2 arguments. Good!";
exit without error, zero
exit 0;
fi

@ The IF statement will execute the code
between then and else if and only if the condition [[$# -le 2]] is TRUE ($? = 0)

@ Otherwise it will execute the code between else and fi
@ It is possible to write an if statement without the else :

if [[<expression>]]; then
<commands>
fi

MNXB01-2022 Bash Scripting Tutorial 3 54/96

Control structures:
If ... then ... else .. f1 2/2

» Exercise 3.14: test the above code with 1 or 3 arguments

and check that the exit value is consistent with the code.
./testif argl; echo $7?
./testif argl arg2 arg3; echo $?

» Exercise 3.15:Based on the previous example testif.sh,
add to the script an if that checks if the first two
parameters are the same string.

If they are returns an error.
Example output:

[pflorido@pptest—-iridium solution]$./testif.sh argl arg2 arg3
More than 2 arguments. Good!

Good: the first two parameters differ.

[pflorido@pptest—-iridium solution]$./testif.sh argl argl arg3
More than 2 arguments. Good!

Error: the first two parameters are the same string

MNXB01-2022 Bash Scripting Tutorial 3 55/96

BASH power;
Command substitution and pipe

@ Bash can capture the output of a command and you can reuse it in a script with a syntax
that is called “command substitution”

@ Consider the captureoutput. sh script.

#!/bin/bash

capture the output of the id command in a variable
USERINFO=$(id pflorido)

extract the main group by using pipe and the cut command
MAINGROUP=$(id pflorido | cut -d' ' -f 2)

echo "USERINFO is: $USERINFO"
echo "MAINGROUP is: $MAINGROUP"

same as above but using the pipe on the variable content
echo "MAINGROUP reusing the \$USERINFO variable content:"
echo "$USERINFO" | cut -d' ' -f 2

@ Notice the use of the $(..) construct. It is used to capture the output of the commands
between parentheses.

@ Notice the use of the | (pipe) symbol. It sends the output of the id command as the input to
the cut command

@Likewise, one can echo the content of the variable $USERINFO and pipe it as the input of cut

@More about command substitution:
https://www.gnu.org/software/bash/manual/html|_node/Command-Substitution.html

MNXB01-2022 Bash Scripting Tutorial 3 56/96

https://www.gnu.org/software/bash/manual/html_node/Command-Substitution.html

escaping variables and the cut command

#!/bin/bash

same as above but using the pipe on the variable content
echo "MAINGROUP reusing the \$USERINFO variable content:"
echo "$USERINFO" | cut -d' ' -f 2

»Note the use of the backslash \ to escape the special
character \s :

This prevents echo to interpret $USERINFO as a variable value

scut IS a command that divides a string in fields based on a

field separator (-d’J' , a space) and takes the n-th field (the 2nd
In this example). More about cut at:

B htEps://www.geeksforgeeks.org/cut-command-Iinux-exampl
es

s Exercise 3.16: Run the script captureoutput.sh and check
the output against these slides to understand what it does.
Modify the script for cut to print just the user numerical ID.

MNXB01-2022 Bash Scripting Tutorial 3 57/96

https://www.geeksforgeeks.org/cut-command-linux-examples/
https://www.geeksforgeeks.org/cut-command-linux-examples/

Bash Tutorial part 2

» Functions
- Environment, Binding and Scope

Customizing your environment
Conditions
Control structures: loops

Useful commands

MNXB01-2022 Bash Scripting Tutorial 3 58/96

Functions

@ Sometimes we need to do the same task a certain number of times, and it's
a bit boring to copy paste. Consider the following example getsyslines.sh
where we want different lines from different files to get an idea of the
system we’re running: cpu. memory, network name (hostname):

#!/bin/bash

put the first two lines of /proc/cpuinfo in CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -2)

write the content of CPUINFO to screen

echo "First 2 lines of /proc/cpuinfo:"

echo "$CPUINFO"

put the first four lines of /proc/meminfo in MEMINFO
MEMINFO=$(cat /proc/meminfo | head -4)

write the content of MEMINFO to screen

echo "First 4 lines of /proc/meminfo:"

echo "$MEMINFO"

put the first line of /etc/sysconfig/network in HOST
HOST=$(cat /etc/sysconfig/network | head -2)

write the content of MEMINFO to screen

echo "First 2 lines of /etc/sysconfig/network:"

echo "$HOST"

MNXB01-2022 Bash Scripting Tutorial 3 59/96

Functions - identifying parameters

» When you have code like this, it's good to identify
similarities that could be parameters to a function:
can we simplify the code?

#!/bin/bash

put the first two lines of /proc/cpuinfo in CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -2)

write the content of CPUINFO to screen

echo "First B lines of /proc/cpuinfo:"

echo "$CPUINFO"

put the first four lines of /proc/meminfo in MEMINFO
MEMINFO=$(cat /proc/meminfo | head -4)

write the content of MEMINFO to screen

echo "First @ lines of /proc/meminfo:"

echo "$MEMINFO"

put the first line of /etc/sysconfig/network in HOST
HOST=$ (cat /etc/sysconfig/network | head -2)

write the content of MEMINFO to screen

echo "First @ lines of /etc/sysconfig/network:"

echo "$HOST"

MNXB01-2022 Bash Scripting Tutorial 3 60/96

Functions - definitions

@ One can define functions to reduce complexity and increase readability

function definition
myfunction () { echo “this is the body of the function” }
function call

myfunction

@ A bash function has:
@ A name, so that is possible to reuse the function, usually followed by two parentheses ();

@ Example: myfunction ()

@ A definition, where the operations that the functions will do are defined. It is also called the
body of the function.

@ The body of the function MUST be enclosed in curly brackets { }. These delimit a block of code
@ The body of the function is executed ONLY when the function is called, not when it is

defined.
@ Example: { echo “this is the body of the function” }

@ Parameters, that are handled the same as command line arguments with the predefined
variables $#, $0,...$n. $0 is the name of the function!
Example: { echo “the first parameter is $1” }

@ Several calls. A call is when the name of the function appears with parameters to the function.

@ The call will trigger an instantiation of the parameters inside the body of the function, that
is, the values of the $1, $2 variables will be substituted with the parameters.

@ the function body will be executed with the values of the passed parameters.

Example:

myfunction param. ..
MNXB01-2022 Bash Scripting Tutorial 3 61/96

Functions - example refactored

» Please take your time to look at the refactored code for
getsyslines.sh, getsyslines_function. sh:

#!/bin/bash

Function DEFINITION:
Function that takes in input a filename and a number of lines
outputs a message about the printed lines
function NAME
printlinesoffile()
{ # start function BODY
the first parameter is a filename
FILENAME=$1
the second parameter is a number of lines
NUMLINES=$2

RESULT is a variable with side effect: the result is stored
in a global variable

be CAREFUL when to extract the value outside the function!
It changes at every function call!

RESULT=$(cat $FILENAME | head -$NUMLINES)

Print out the lines
echo "First $NUMLINES line(s) of $FILENAME:"
echo "$RESULT"

} # end of function BODY

function CALL: put the first two lines of /proc/cpuinfo in CPUINFO
printlinesoffile /proc/cpuinfo 2
CPUINFO=$RESULT

function CALL: put the first four lines of /proc/meminfo in MEMINFO
printlinesoffile /proc/meminfo 4
MEMINFO=$RESULT

function CALL: put the first two lines of /etc/sysconfig/network in HOST

printlinesoffile /etc/sysconfig/network 2
HOST=$RESULT

MNXB01-2022 Bash Scripting Tutorial 3 62/96

Side effects

» Mathematical functions only return values.

» A programming language function or procedure not only
returns a value, but usually changes the environment of
the process running. This is usually called a side effect.

* The content of $RESULT Is a side effect of the
printlinesoffile() function as it changes the
environment of the process at every function call

» |n bash one could say that the exit value $? is the return
value of the process, and all the produced output is the
side effect: it modifies the screen, the filesystem, the
memory.... side effects in programming languages are
the main reason for programming to be useful.

MNXB01-2022 Bash Scripting Tutorial 3 63/96

Environment, binding

See also the clip about Bash Environment on Canvas.

@ Environment: All the variable and function names “live” in a space called environment. You can think
of it as a table in the compiler or interpreter memory containing all variable names and their
associations with memory chunks.

@ Binding: A name is said to be bound to that environment when its value is associated to a memory
index in that environment. In the table below we can see some bindings.

@ Binding can be:

@ Static, that is, decided at compile time

@ Dynamic, that is, decided at runtime
(yes one can change where in the memory that variable is pointing)

@ When we define a variable or a function, the variable/function name is added to the environment

global PWD Current dir

global SHELL Current shell

global PATH Executable paths
cpuinfo.sh CPUINFO First 2 lines of /proc/cpuinfo
getsomelines function.sh RESULT 18458

getsomelines function.sh printlinesoffile() 3515

MNXB01-2022 Bash Scripting Tutorial 3

64/96

Visibility, scope

@ A variable is visible in an environment when its binding is
present in that environment, that is:

@ There exists a variable name in the environment

@ That variable name is associated to a memory location (this depends
on languages)

» Usually a function has its own environment, that is, a set of
variables in its own environment, and can see the variables in
other environments according to some rules. These rules define
the scope, or visibility, of a variable.

s |n the case of BASH, functions do not have own environment.

The scope or visibility of a variable in bash is limited to a bash
instance and all its children. Let's see some examples.

@ |[n BASH there are two kinds of environment:

@ The set environment, which only belongs to a running process;

@ The export environment, which is a subset of the set environment which
Is exposed to child processes, or processes run inside the same bash.

Exercise: inspect the
environment

» Exercise 3.17:

@ set and export are two bash builtin commands to inspect the environment.

@ print out the set environment with the set command. This contains both exported,
inherited and temporary variables.

@ print out the export environment with the export command. This contains only
exported variables, no functions.

@ env is a stand alone command that works with all the shells.

@ print the environment using the env command. This contains the default environment
an application is ran with when executed outside bash.

» Exercise 3.18:

@ find some functions from the environment: we know that a function name is
followed by (). Hence we can do:

@env | grep ‘ ()’
@ set | grep ‘()

Jgrep IS a command that finds a string in a file.

MNXB01-2022 Bash Scripting Tutorial 3 66/96

The BASH environment: export

Everytime one opens a terminal, the program
bash is executed and a new environment is
Ccreated.

1. Open a terminal.

2a. Run the set command. You’ll see all the
variables in the current bash session. @

Everytime a variable is initialized it ends export MYENV1="This is a global env var”
up in the set environment.

2b. Run the export command. You'll see all the
environment variables in the current bash
session that will be exported to any child
process.

3. Create and initialize a new exported
environment variable:

export MYENV1="This is a global env var”

4. Search for the variable after running export, or just
print its content with
echo $MYENV1

The BASH environment: export

>
5. Now open another bash

instance: @

@ Write the command bash and press enter. Execute “bash”

You are now in a new bash command line. @
@ Run the command export. You will find that
MYENV1 is still there. Terminal environment after
The environment is said to be inherited running bash
from the father process. Inherits all the parent vars

@ This happens every time you start a
bash script => Starting a bash script is
equivalent to executing the command bash
and then a sequence of commands.

6. Open another terminal and run export

echo $MYENV1 ¢
@ MYENV1 should not be there.
There is no environment inheritance New terminal environment

between terminal windows.

@ Switch back to the terminal where MYENV1 ﬂ
is defined. vars

MNXB01-2022 Bash Scripting Tutorial 3 68/96

BASH environment: scope 1/3

» Exercise 3.19 (see clip on Canvas): Consider the
bash script envtest.sh in the examples/ folder with
the following content:

#!/bin/bash

test if an environment variable is defined

if ["X$MYENV1" == "x"]; then
echo "MYENV1 not defined in the environment or empty. Please run"
echo ' export MYENV1="This is my first environment variable. This is exported to all children
processes"'
echo
fi

create an environment variable. Adds only to the environment of this script
MYENV2="This is my second environment variable, MYENV2 is defined only in this process"

export and environment variable. Adds to the environment where this script is ran
export MYENV3="This is my third environment variable, exported. MYENV3 is defined in this process and in all
children processes"

write the content of the environment vars to screen
echo "Content of MYENV1: $MYENV1"
echo "Content of MYENV2: $MYENV2"
echo "Content of MYENV3: $MYENV3"

echo "Now check if MYENV2 and MYENV3 contents are still defined, with the commands:"
echo * echo “Content of MYENV1: $MYENV1"’

echo ' echo "Content of MYENV2: $MYENV2"'

echo ' echo "Content of MYENV3: $MYENV3"'

echo

MNXB01-2022 Bash Scripting Tutorial 3

69/96

BASH environment: scope 2/3

@ | export MYENV1 as in the example before, run ./envtest.sh and check
which variables are defined:
MYENV2 and MYENV3 exist only inside the script, they’re in the scope
of the script but not outside. They disappear once the script finishes.

[pflorido@pptest-iridium ex3.19]$% export MYENV1="This is my first environment
variable. This is exported to all children processes”
[pflorido@pptest-iridium ex3.19]$./envtest.sh
Content of MYENV1: This is my first environment variable. This is exported to all
children processes
Content of MYENV2: This is my second environment variable, MYENV2 is defined only in
this process
Content of MYENV3: This is my third environment variable, exported. MYENV3 is defined
in this process and in all children processes
Now check if MYENV2 and MYENV3 contents are still defined, with the commands:

echo "Content of MYENV1: $MYENV1"

echo "Content of MYENV2: $MYENV2"

echo "Content of MYENV3: $MYENV3"

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV1: $MYENV1"

Content of MYENV1: This is my first environment variable. This is exported to all
children processes

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV2: $MYENV2"

Content of MYENV2:

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV3: $MYENV3"

Content of MYENV3:

MNXB01-2022 Bash Scripting Tutorial 3 70/96

BASH environment: scope 3/3

» When you ran a script, a new bash instance is generated for the
script, that inherits the father environment

» Once the script finishes, all variables defined or exported inside
the script are cleared from the environment table and the
control goes back to the father process.

The “father” environment (where you ran the bash command)
DOES NOT inherit from “children” (executed script), but bash
scripts executed inside it have their own environment that
inherits from the father.

4. After the completion of
envtest.sh the control goes
back to the father process
and all vars defined in the

children are lost

father

1. Child bash
inherits variables

3. subscript finishes, control goes
back to envtest.sh, set3 is deleted

2. child bash. Only

inherits Exp1, €xp2, not §€t2
MNXB01-2022 Bash Scripting Tutorial 3 71/96

Importing an environment
changes the scope 1/4

@ In bash, there is a command that allows you to copy the environment defined in a script to
another script or bash instance, so that it survives the termination of a script. This command is

source
@ Careful! The command also executes EVERYTHING inside the BASH script!

@ |f you now try

@source ./envtest.sh
@ You'll see that the output of export will contain: MYENV1, MYENV2 and MYENV3

@MYENV2 is only in the set or local environment, but sourced from the script
@MYENV1, MYENV3 are in the export environment and they will be copied to every child

process.

[pflorido@pptest-iridium ex3.19]$ source envtest.sh
Content of MYENV1: This is my first environment variable. This is exported to all children processes

Content of MYENV2: This is my second environment variable, MYENV2 is defined only in this process
Content of MYENV3: This is my third environment variable, exported. MYENV3 is defined in this
process and in all children processes
Now check if MYENV2 and MYENV3 contents are still defined, with the commands:

echo "Content of MYENV1: $MYENV1"

echo "Content of MYENV2: $MYENV2"

echo "Content of MYENV3: $MYENV3"

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV1: $MYENV1"
Content of MYENV1: This is my first environment variable. This is exported to all children processes

[pflorido@pptest-iridium ex3.19]% echo "Content of MYENV2: $MYENV2"
Content of MYENV2: This is my second environment variable, MYENV2 is defined only in this process

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV3: $MYENV3"
Content of MYENV3: This is my third environment variable, exported. MYENV3 is defined in this

process and in all children processes

MNXB01-2022 Bash Scripting Tutorial 3 72/96

Importing an environment

changes the scope 2/4

» When sourcing a (child) script, all the variables
declared in the script are copied in the current

(parent) environment.

father

1. sourced child bash
inherits parent variables

the parent

- 2. source copies all the envs to
<

Importing an environment
changes the scope 3/4

» |f you now write bash and open a child bash process, you will
see that MYENV2 is empty. It is actually not defined anymore, it is
lost inside the parent process because it was part of the set

environment.

@ Only the exported environment survives - which is why in bash
the exported environment is usually the one referred as the

environment.

[pflorido@pptest-iridium ex3.19]$% bash
bash-4.1% echo "Content of MYENV1: $MYENV1"
Content of MYENV1: This is my first environment variable. This is exported to

all children processes
bash-4.1% echo "Content of MYENV2: $MYENV2"

Content of MYENV2:
bash-4.1% echo "Content of MYENV3: $MYENV3"
Content of MYENV3: This is my third environment variable, exported. MYENV3 1is

defined in this process and in all children processes

MNXB01-2022 Bash Scripting Tutorial 3 74/96

father

Importing an environment
changes the scope 4/4

» The child of a sourced environment inherits only

process

the exported environment of the father

2. sourced environment is
copied from the script to
the parent

3. child bash. Only "

inherits expl, exp2, not Set2

Clearing the environment

« One can clear the variables added to the
environment using the unset command.
Example:

[pflorido@pptest-iridium ex3.19]% echo "Content of MYENV1: $MYENV1"

Content of MYENV1: This is my first environment variable. This is exported to all children
processes

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV2: $MYENV2"

Content of MYENV2: This is my second environment variable, MYENV2 is defined only in this
process

[pflorido@pptest-iridium ex3.19]$% echo "Content of MYENV3: $MYENV3"

Content of MYENV3: This is my third environment variable, exported. MYENV3 is defined in
this process and in all children processes

[pflorido@pptest-iridium ex3.19]$ unset MYENV1 MYENV2 MYENV3

[pflorido@pptest-iridium ex3.19]% echo "Content of MYENV1: $MYENV1"

Content of MYENV1:

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV2: $MYENV2"

Content of MYENV2:

[pflorido@pptest-iridium ex3.19]$ echo "Content of MYENV3: $MYENV3"

Content of MYENV3:

MNXB01-2022 Bash Scripting Tutorial 3 76/96

Environment summary

@ Every new terminal window creates a new environment.
Environments are not shared within terminal windows.

@ An initialized variable only “exists” in the environment of the bash
iInstance where it was initialized.

@ To make sure a variable survives in all script launched inside a bash
instance, one must export it

@ Exported variables are only inherited by child processes and not by parent
processes.

@ One can import the environment that a script generates by using the
source command

@ Remember: do not write any exit in code you plan to source!

@ The variables in the export environment are commonly called
environment variables.

@ The environment variables can be cleared using the unset command.

MNXB01-2022 Bash Scripting Tutorial 3 77/96

Customizing your environment

@ When opening a terminal or starting bash, there are a few key files that are processes
to initialize your shell environment.

@ Depending on the distribution and the shell, these may vary. Some are system files
and you cannot change them, these are processed first when opening a shell. But you
can override them inside your user files, that are processed after the system ones.

@ System files:
@ /etc/profile
@ All files in /etc/profile.d/
@ /etc/bash.bashrc

@ User files. These are hidden, hence their names starts with a dot.
You can see them with 1s -a ~
@ ~/.profile
@ ~/.bashrc
@ ~/.bash_profile

@ You can inspect the content of those files using cat, less or gedit. Ask me about
things you do not understand.

@ IMPORTANT: .bashrc should NEVER contain code that generates output
when .bashrc is executed.

MNXB01-2022 Bash Scripting Tutorial 3 78/96

Customizing your default
environment - exercise

@ We will add

@ A variable containing Aurora’s folder for the course, MNXBO1DIR

@ an alias - kind of a macro or shortcut - to the cd command, cdmnxb01, that allows us to
quickly access the shared folder.

@ The alias command is used for that. Try it and you will see the list of active
aliases.

@ Exercise 3.20 - add cdmnxb01 alias

@ 1. backup your existing .bashrc file:
@cp ~/.bash_profile ~/bash_profile20200911backup

@ 2. Open .bash_profile with Pluma
@ pluma ~/.bash_profile &

@ 3. Add at the end of the file the following lines:

@ MNXBO1DIR=/projects/hep/£fs10/mnxb01
alias cdmnxb0Ol='cd $MNXBO1DIR’

@ 4. Import the newly created alias by sourcing the new bashrc:
@ source ~/.bash_profile
@ 5. It should now appear in the list if you write alias

@ 6. Test that you can use the newly added cdmnxb01 command! It will move you directly
to the shared folder in Iridium.

@ You can even see it when you press tab

MNXB01-2022 Bash Scripting Tutorial 3 79/96

More on control structures: loops

- Allow the code to loop until a certain
condition is met (while...do...done)

- Allow the code to loop for a definite
number of times or over a list of objects
(for...do...done)

MNXB01-2022 Bash Scripting Tutorial 3 80/96

Control structures:
for ... do ... done

» Repeat something for a predefined number
of times or for each element in a list.

> Syntax:
for <i> 1in <list>; do
<commandl>; [<command2>;...]
done

> The interpreter will substitute <i> with an
element in <list> Iinside the code block do ..
done and execute the code for each element.

MNXB01-2022 Bash Scripting Tutorial 3 81/96

Control structures:
for ... do ... done

- Lists passed to for can
be defined in many ways: & & eamies o

@ plain IiSt: Strings echo "prir.1t three strings:”
for word %n one"two three; do
separated by a space o “suore
Example: a b C d echo "Countdown starting:”

for 1 in {1..10}; do
echo “now counting $i”

@ intervals: {1..10} a” fl\g:;tll second
numbers from 1 to 10. s
It expands to the list N

123456789 10

MNXB01-2022 Bash Scripting Tutorial 3 82/96

Control structures:
for ... do ... done

» The wildcards like * result in a list of files separated by spaces,
hence can be used to do operations on a directory of files.

» The following prints types of files in some directory,
defaults to the home directory ~

#!/bin/bash

listfilestypes.sh

run with: ./listfilestypes.sh <directory>
#

Print the argument values

TARGETDIR=$1

A typical use of IF: if no TARGETDIR defined, then # x == x and the expression in brackets will be false, so the else branch
will be executed and an error message will be shown.

if ["x$TARGETDIR" == "x"]; then

TARGETDIR=~

MESSAGE="No argument found. Listing filetypes for the $TARGETDIR directory by default"
else

MESSAGE="Scanning filetypes for the ${TARGETDIR} directory"
fi

echo "$MESSAGE"

scan all files in TARGETDIR

for somefile in ${TARGETDIR}/*; do
echo "This is the file $somefile, with type:";
the file command tells you the type of a file.
file $somefile

done

MNXB01-2022 Bash Scripting Tutorial 3 83/96

Control structures:
while ... do ... done

» Keeps doing something as long as
<condition> is satisfied.

» Syntax:
while <condition>: do
<commandl>; [<command2>;..]

done
» The code contained inside
do ... done keeps being executed. It will

stop when <condition> is false.

MNXB01-2022 Bash Scripting Tutorial 3 84/96

Control structures:
while ... do ... done

» Ask the user to enter a variable value
(using the read command) until the string
end Is entered

#!/bin/bash

testwhile.sh

run with: ./testwhile.sh

#

Continue asking numbers until the user writes “end”

while ["$varl" !'= "end"]; do # while test "$varl" != "end"
echo "Input variable value (end to exit) "
read varl # Not 'read $varl' (why?).
echo "variable value = $varl" # Need quotes because of "#" . . .

If input is 'end', echoes it here.

Does not test for termination condition until top of loop.
echo
done
exit 0

MNXB01-2022 Bash Scripting Tutorial 3

85/96

Control Structures: Exercises

» Exercise 3.21: Run forexamples.sh and understand
what it does. Reuse the code In forexamples.sh code to
write a bash script that counts 2 4 8 16 BOOM!

(you can keep sleep 1, doesn’t matter!)

*» Exercise 3.22: Run testwhile.sh and understand what it
does. Change the testwhile.sh code to bannerize (using
banner) any word the user inputs and exits when the user
writes STOP'!

*» Exercise 3.23: Improve the above with that the code exits
without printing STOP! as a banner, but prints a message
when STOP! has been typed by the user.

Using a function and variable might help.

MNXB01-2022 Bash Scripting Tutorial 3 86/96

Bash “Libraries”

@ Now that we know what the environment is and how to source a script,
we have all the ingredients to create bash libraries

@ A bash library is just a bash script with the following features:

@ No code is printed out when executing the script

@ |t may contain only initialization of variables and definitions of functions

@ But be careful that variables will be added to the existing environment and will overwrite all
variables with same names!

@ For other scripts to use it, these script must source it
@ The bash library script must be in a location known to all the scripts that source it.

@ |t doesn’t need to start with #! /bin/bash since the calling scripts are supposed
to be bash scripts.

@ |t doesn’t contain any exit statements if possible

@ |t is best if the library is sourced as early as possible in the code to avoid
variable overwrite.

MNXB01-2022 Bash Scripting Tutorial 3 87/96

Bash library example

 An example of libraries is in the
homework for 2021. | did not have time to
develop good examples/exercises.

MNXB01-2022 Bash Scripting Tutorial 3 88/96

https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/homework3/solution/cityandyear.sh
https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/homework3/solution/cityandyear.sh
https://github.com/floridop/MNXB01-2021/blob/main/floridopag/tutorial3/homework3/solution/cityandyear.sh

Additional material
for reference

More on conditions

@ Conditions are of different kinds depending on the languages.
The only condition that BASH can check is whether a command execution
terminates successfully.

@ An exit value of 0 is TRUE (termination successful),
all other values are FALSE (termination unsuccessful).

@ The way to specify conditions is as follow:

@ The square bracket [] or the test command can be used.
Documentation: man test

@ Example: test -e <filename> checks if a file exists; if the file exists, the predefined variable $? will contain 0,
otherwise 1.

@ Try echo $7 after running a test to see the exit value of the test command.

@ The double square bracket or extended test
[[<some test command>]]
Documentation: execute man bash
and search for “conditional expression”

@ Example: [[-e /etc/services 1]

@ The double parentheses for arithmetical expansion and logical operations.
<a> and should be integers.
((<a> &))
Documentation: execute man bash
and search for “Arithmetic Expansion”

@ Tips:
- to search while in man, type the | character followed by a search string and then press
Enter.

- To exit man, use the key q
- To move around use the arrows.

MNXB01-2022 Bash Scripting Tutorial 3 90/96

More on conditions: Exercises

@ Execute the following commands:

@ The /etc file exists, so test should exit with no errors
test -e /etc

@ Hence the following should be 0
echo $7

@ This file for sure does not exist! It should put an error in the exit
status
test -e /thisfiledoesnotexist

@ What is the exit status now? Should be 1, means error, the file did not
exist
echo $7?

@ The brackets are equivalent to the above. Try!
[-e /etc]
echo $7?
[-e /thisfiledoesnotexist]
echo $7?

@ The double brackets are also equivalent for this case, but they can do also logic and
arithmetic evaluation if required, which the others above don’t.
[[-e /etc]]
echo $7?
[[-e /doesnotexist]]
echo $7?

MNXB01-2022 Bash Scripting Tutorial 3 91/96

More on conditions: Exercises

@ Execute the following commands. Do you understand the meaning and results? If not, ask
me.

@ true

@ echo $7?
@ false

@ echo $7

@ Parentheses are Aritmetic Expansion, and the logical operator && is the boolean AND. Check the
lecture on binary system. An important thing to note is the following:

@ Inside the parentheses O=false and 1=true which is the opposite of bash/linux exit code logic.
@ In bash O0=true 1=false.

@ So the $7 exit value of boolean false ((0)) is bash 1

@ So the $7 exit value of boolean true ((1)) is bash 0

@((0))
@ echo $7?
@((1))
@ echo $7?
@((0&& 0))
@ echo $7?
@((1&&0))
@ echo $7?
@((1&& 1))
@ echo $7?

MNXB01-2022 Bash Scripting Tutorial 3 92/96

Control structures:
Alternative for ... do ... done

» Print the arguments using different
condition approaches

#!/bin/bash
testfor.sh
run with: ./testfor.sh argl arg2 arg3 ...

« #$var forces the content
Print the argument values of var to be a number

echo “Using lists of elements” * Parameter substitution
index=1 # Reset argument counter ${ lva r} Gets the value
for arg in "$@"; do ; .
echo "Arg #$index = $arg" of a variable with the
let "index+=1" name $var instead of
done # $@ sees arguments as separate words. var

echo “Using C syntax for the condition”
for ((i=1;i<=%$#;i++)); do

echo "Argument $i is ${!i}";
done

MNXB01-2022 Bash Scripting Tutorial 3 93/96

A bit about
arithmetic expansion

* The arithmetic expansion context can be used for simple
calculations or conditions

» Evaluation (execution of the operation) is done via the
expr command, but you can avoid it when putting the
result in a variable

» on the command line:

@ exprS((5 + 6))
11

* |n a script, you can assing the value to a variable:

@ VAR=S((5 + 6))
echo SVAR
11

MNXB01-2022 Bash Scripting Tutorial 3 94/96

Case construct

- | add this just for reference, but | do not
recommend to use it. It has a lot of
unexpected behaviors. It is used when
you have a lot of If ... then ... else and
you want to avoid writing a lot of them.

« This tutorial is good:

MNXB01-2022 Bash Scripting Tutorial 3 95/96

https://phoenixnap.com/kb/bash-case-statement
https://phoenixnap.com/kb/bash-case-statement

References

» Bash scripting:
» Interactive aid:

> GNU bash manual:

» A nice collection of things that can go wrong
with bash:

MNXB01-2022 Bash Scripting Tutorial 3 96/96

http://tldp.org/LDP/abs/html/
https://explainshell.com/
https://www.gnu.org/software/bash/manual/bash.html
https://www.gnu.org/software/bash/manual/bash.html
https://mywiki.wooledge.org/BashPitfalls

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

