
Introduction to Programming and Computing for
Scientists (2022 HT)

Tutorial-2: The Linux CLI

Balazs Konya (Lund University)

HTTP://WWW.HEP.LU.SE/COURSES/MNXB01

Programming for Scientists Tutorial-2 1 / 22

Why Command Line Interface (CLI)?
May look old-fashioned compared to GUI & touchscreens BUT:

• Powerfull way of interacting with the computer

• CLI is the best option for complex actions:

• Repeat and automate

• Operate with many objects

• To restart a chain of actions at various phases

• Options and actions are invoked in a consistent form

• Offers the simplest user environment

• Consumes little system resources (cpu, memory)

• Offers much more control over the system

• Working with CLI is faster than most of the GUIs

• Best suited for remote sessions with limited bandwidth

• More stable interface: not changing as much as the GUIs

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 2 / 22

Connecting to aurora cluster and launching a terminal

Exercise 1: log in to the aurora cluster using one of the methods
described in the Manual (Thinlinc, ssh client such as putty)

• on the desktop: click on the terminal icon

• from the command line execute: mate-terminal, xterm

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 3 / 22

The prompt and the shell
• The Linux prompt:

user@machine directory$ all the typing is done after the prompt

• The linux SHELL:

• Linux uses a program called SHELL to accept and interpret commands
entered in text mode

• Wide range of shells exists: bash, tcsh, csh

• When you log into Linux or start a terminal you are dropped into the
”default shell”

• The linux shell is a very powerfull command language interpreter

• Built-in commands (e.g. pwd, cd, echo, exit, logout)

• Variables, functions, arrays

• Logical expressions

• Controll structures

• Expansion, substitution, pattern matching (regular expressions)

• Command history

• Special characters , e.g.: ~ . $ & * ? |

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 4 / 22

The prompt and the shell

Exercise 2:

• Take a look at the actual prompt of your session, what is your ”directory”?

• Open a new terminal from a different folder (use the file browser) and
check the prompt

• Find out what is your shell by using a built-in command: echo $0

• Start up a new shell session (run bash), then try to „logout” with exit
command

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 5 / 22

Executing, suspending, killing commands
• You execute a command by typing its name at the linux prompt. BUT:

• When you type a command that is not recognized as an internal shell
command the shell searches for a program on the system with that name
under locations specified by the PATH environment variable

• Alternatively, you can specify the command name including its full path:
/directory1/directory2/program_name (see details later)

• Program files for commands have to be set as ”executable”. This usually
occurs during installation or can be done manually by the user (see details
later)

• To stop (suspend) a program use ctrl + z

• To continue the program either use fg or bg commands

• To check, list your running or suspended programs use the jobs command

• To kill a program use ctrl + c

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 6 / 22

Executing, suspending, killing commands

Exercise 3:

• Try to run the toy program xeye. What is the problem?

• Suspend it (ctrl + z) to get back the prompt

• Find out the location of the program (which xeyes), check if the PATH
contains that directory (echo $PATH)

• Resume the program with fg and bg. What is the difference?

• Kill the program with ctrl + c

• Play with another „X” applcation, the xclock

• Read the manual (man xclock) and try to customize the clock’s behaviour

• command [–o option] [parameter]

• xclock -d or xclock -digital

• xclock –update 10

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 7 / 22

The power of the linux prompt

• Tab expansion:

• To help minimize errors and increase typing speed the shell offers automatic
command/file name completion feature. Type a section of a word and press
Tab key

• Command history:

• Use the up and down arrow keys to cycle through the commands

• Use the ctrl + r to search the command history

• Text modifications at the prompt

• Delete texts after the cursor: ctrl + k, transpose characters: ctrl + t,
transpose words: esc + t

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 8 / 22

The power of the linux prompt

Exercise 4:

• Try out tab expansion, command history and some of the text manipulation
(e.g. transpose two words)

• Play with „hitting the tab”

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 9 / 22

Getting help & and information
• Linux provides a text-based help system, the man pages: man command_name

• Navigate with page up/down

• Search with /text, press n to repeat search

• Exit with Q

• Many of the commands come with built-in short help: - - help cli option

• Use the - - help command line option after the command

• Another built-in help is the info command that prints the info pages

• info command_name

• In case you feel lost, you can try some of the following commands:

• whoami, who, pwd

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 10 / 22

Getting help & and information

Exercise 5:

• Browse the bash documentation (man bash), navigate, search the
exhaustive manual

• Find out what the who command does

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 11 / 22

Text processing, filtering
• Linux is very strong at text file and stream processing.

• System adminstration is done via configuration files that are mostly text files

• Command outputs are text streams

• Read the content of a file:

• cat, head, tail, more, less

• Manipulate or measure text file (content):

• wc, sort, nl, uniq, od

• More advanced tools (including a programming language):

• grep, sed, awk

• Chaining tools together: the linux pipe | will feed the output of the first
command as the input for the second command:

• command1 | command2

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 12 / 22

Text processing, filtering

Exercise 6:

• Inspect the content of a text file (e.g. the /etc/services config file) with
cat,head,tail, more or less (bonus material: read the manpage of less 

• Play with some of the text manipulation commands, try to chain them
together, e.g. run sort /etc/services | more

• Use the grep command to search text patterns in a file: grep ”ftp”
/etc/services

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 13 / 22

Files & Directories

• Linux uses a file system to organize and store files so they can be easily
accessed

• These files can be made up of text, data, or program source code, or
can represent hardware devices. Actually, all major entities are
represented as files

• Each of the files in a file system has its own unique filename:
• ASCII symbols, 255 characters
• Case sensitive: Backup12 and backup12 are two different files!
• A file name may contain extension(s): detector.data.tgz

• Avoid: - ! # & @ $? * / | (e.g. –openfile may be seen as a command
option)

• Files are stored, organized in folders (or directories). Directories can
also contain directories (called subdirectories), which can in turn store
files

• This structure is the hierarchical tree structure
• The base – or parent – directory of the file system is called root (/)
• The rules for naming directories are the same as filenames

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 14 / 22

Files & directories (advanced topic)
• Linux supports a number of file types:

• Regular or ordinary files

• Directory entries

• Device or special files (character or block device)

• Sockets or named pipes

• Hard and symbolic links:
• Hard links: a hard-linked file is accessible from multiple

directories. Changes made to a hard-linked file are
synched with all instances. Each hard link must be
deleted in order to make the file inaccessible. Share the
same inode number.

• Symbolic links: Very similar to shortcuts in Windows.
Allows users to refer to files in other locations. You can
rename symbolic links. These links are simply references
to a filename and won't work when the original file is
deleted. Have different inode numbers.

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 15 / 22

Files & directories (advanced topic)

Exercise 7: Create, modify, delete and compare hard and soft links

• ln origfile hardlink_to_orig

• ln –s origfile softlink_to_orig

• ls –li

• Modify the content of the original file

• ls -li

• rm origfile

• ls -li

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 16 / 22

Navigating the directory tree: cd, pwd
• The topmost directory is the root, represented by /

• When a user or program is working in the file system, their location is known as
the active or current working directory, represented by ./

• Use the pwd command to determine the full path to the current directory

• Another special directory is the home, it is represented by the tilda symbol ~

• Each directory, except the root, has a parent directory, represented by ../

• A path in the tree is the route leading to a file or directory:

• Absolut path (always from the root)

• /root/home/john/data.txt

• Relative path (e.g. from home or from the active directory)

• ~/data.txt or ./experiment/data2.txt

• Moving in the tree is done using the change directory cd command:

• cd absolute_path, cd .., cd ~, cd relative_path

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 17 / 22

Navigating the directory tree

Exercise 8: Navigate the directory tree using the cd command

• Change to root, home, determine the active directory, move to the parent
directory

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 18 / 22

Listing, creating, copying,moving files and directories
• Listing the content of a directory: ls directory_name

• Without argument the ls command lists the current directory
• Useful switches: -a (all files), -F (file types), -l (long outpout)

• Creating new files:
• The touch command creates an empty file:

• touch newfile

• Using ”>” redirection, i.e. saving the output of a command to a new file:
• ls -la > dirlist.txt

• cat > my.file (finish the typing with ctrl+d)
• Using an application (e.g. editor)

• Creating a directory: mkdir
• mkdir directory_name

• Copy files and directories: cp
• cp original new_copy

• Move files and directories: mv
• mv old_location new_location

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 19 / 22

Listing, creating, copying,moving, deleting files and directories
• Deleting files and directories: rm

• rm filename(s)

• rm –d dir_name or rm –r dir_name

• There is no ”undelete” command in Linux!

• rm –rf is very powerfull ! –r is for recursive deletion

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 20 / 22

Listing, creating, copying,moving, deleting files and directories

Exercise 9:

• The ls command has many useful other switches, e.g. find out how to list
files time ordered, including reverse ordering

• Create new files with ”>” redirection of various commands such as echo, ls,
cat

• Create multi-level directory structure, cp or mv files into it

• Then, use rm to remove subdirs

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 21 / 22

Searching in the directory tree (advanced topic)
• Shell wildcards are useful in searching for files and directories

• Asterisk (*): matches zero or more instances of any character

• ls a*.exe will return a.exe, aa.exe, a1.exe, aaaa.exe

• Question mark (?): matches a single instance of any character

• ls a?.exe will return a1.exe, ab.exe

• Square brackets []: matches a set of characters specified via explicit list or
inclusive ranges

• ls a[a-c].exe will return aa.exe, ab.exe, ac.exe

• Exclamation mark in square brackets [!]: match any character that is NOT
listed in the bracket

• ls a[!e].exe will NOT return ae.exe but every other combination

• The powerful find command can search files by name, owner,
access/modification time, etc..

• find /home –name “*.cpp”

• find /tmp –user courseuser

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 22 / 22

Searching in the directory tree (advanced topic)

Exercise 10:

• Try to list files using wildcard-based ls searches

• Search for your executable files (hint: use the –executable option of find)

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 23 / 22

Some additional handy commands

• tar: creates/extracts archive files (file boundles)
• tar –cvf myarchive.tar /home/user/ tar –xvf myarchive.tar

• ps and top: check/monitor the running processes; kill to terminate a process
• kill PID
• PID:process identifier, a number assigned by the opsys, can be used to manipulate

processes

• export and unset to define and clear environment variables
• export TODAY=Wednesday unset TODAY

• wget: download files
• wget some_url

Exercise:
• Download a tarball e.g. from download.nordugrid.org with wget and extract its

content wih tar and gzip

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 24 / 22

Some additional handy commands

Exercise 11:

• Download a tarball e.g. from download.nordugrid.org with wget and extract
its content wih tar and gzip

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 25 / 22

Permissions
• Every Linux file and directory has

• three ownership levels

• three set of permissions

associated with them.

• WHO: owner, group, other users

• Use the id and the groups commands to find out who you are

• WHAT: read, write, execute

• Means slightly different actions for files and directories.

• e.g. “execute” for directories grant permission to enter into the
directory

• The permissions can be set using symbolic or octal notation:

• read r=4; write w=2; execute x=1, no permission -=0

• Changing permissions: chmod, there is also a chown command to change
owner/group of a file or directory.

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 26 / 22

Permissions

Exercise 12:

• Find out which group(s) you or a certain user belong with groups and id

• Check the ownership and permissions of a newly created file and
directory (use the ls –l or ls –ld command)

• Remove permissions, e.g. try chmod u-x new_dir, and see if you can list
the content or change to the new_dir

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 27 / 22

and now some dangerous stuff
• Recursive remove:

rm –rf or

• recursively force-remove all the files it can
• without prompting you

• The fork bomb:
:(){ :|: & };:

• An innocently looking short code that creates bash
function that reproduces itself. A Denial Of Service
(DOS) attack.

Don’t run stuff you don’t understand!
• Just because someone recommended it on a

webpage/forum...

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 28 / 22

Further reading

• Online interactive Linux fundamentals tutorial (4 modules). Very much
recommended:

http://linuxsurvival.com

• Introduction to Linux CLI:

• Not a tutorial, rather ”online textbook”. For those who would like to read
more than the just these slides

http://ryanstutorials.net/linuxtutorial/

• One-page Linux reference card:

http://cheat-sheets.s3.amazonaws.com/for-mobile/linux-commands-cheat-sheet-
new.pdf

• Linux basics (Lunarc documentation):

https://lunarc-documentation.readthedocs.io/en/latest/linux_basics/

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 29 / 22

http://cheat-sheets.s3.amazonaws.com/for-mobile/linux-commands-cheat-sheet-new.pdf

Take away message:
• Linux Command Line is a very powerful toolbox

• It is much more than file management, there are tools (commands)
that look more like full-scale programming environments

• After mastering it, the CLI gives you full control over the system,
directory structure, file content, processes and much more

• (almost) everything can be done in the CLI

• be careful, you might destroy your system!

• Linux is the native environment for scientific computing, many
scientific tools are deeply rooted in the Linux culture

• The more you use it, the more addicted you’ll become 

• Or as the manual says „as you proceed in your career

you will find that it is a much more efficient way to use a cluster
to just login with a text interface”

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 30 / 22

Homework
• Complete the HW-tutorial2 assignment in Canvas

Balazs Konya (Lund University) Programming for Scientists Tutorial-2 31 / 22

