
Introduction to Programming and Computing for
Scientists

Oxana Smirnova

Lund University

Lecture 1

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 1 / 35

Evolution of science paradigms

Oxana Smirnova (Lund University) Programming for Scientists

1st paradigm:
Empirical
science

•Descriptive

2nd paradigm:
Theoretical
science

•Models

3rd paradigm:
Computational
science

•Simulations

4th paradigm:

Data-intensive
exploration
(e-Science)

•Unifies the rest
to explore
large data

after Jim Gray

Lecture 1 2 / 35

It all starts with data
• The ultimate goal of science is to understand natural phenomenae

• Understanding leads to anticipation, reproduction, prevention, utilization etc

• Information is key to understanding

• Data is information organised in a structured manner

• There are very many ways of structuring information

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 3 / 35

All data today are digitized for computer processing

Oxana Smirnova (Lund University) Programming for Scientists

All scientific research needs data
(making discoveries, testing models, finding patterns)

All data and information are getting digitized

Modern instruments can produce digital data in huge
amounts

Instruments and data are accessible by all scientists
on the planet

Different data sets are stored all over the world

Lecture 1 4 / 35

Scientific data: different scales

• Small devices

• Portable USB drives

• Personal computers

Small
data

• Large devices

• Storage servers

• Supercomputers

Large
data

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 5 / 35

History: from small data to large data (particle physics case)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 6 / 35

Most data come from measurements
• Exclusive measurement: focussed on one particular object, process or

phenomenon, excluding all others

• Example: measure all particles emitted at a particular angle

• Simpler experimental setup

• Little data, simple analysis

• Inclusive measurement: registers all the processes, objects etc

• Example: digital sky survey (could produce 1 Exabyte a day, 1 EB = 109 GB)

• More complex experimental setup

• Lots of data, complicated analysis (“needle in a haystack” problem)

• Inclusive measurements can be “filtered” to exclude unwanted information

• Threshold: minimal value of the measurement to be recorded

• Trigger: a set of conditions that must be satisfied in order to record
measurements

• A trigger may consist of a number of thresholds on different
observables, or other requirements (simultaneous occurrences,
absence of other effects etc)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 7 / 35

Raw data, derived data, metadata, data sets
• Raw data: data as acquired by an experimental device or method

• Examples: filled questionnaires, unprocessed satellite images, electronic hits
in a detector

• Raw data often contain unnecessary or excessive information, have large
volume, and are recorded in different method-specific ways

• Derived data: data derived from raw data by applying various algorithms:
filtering, compression, enhancement etc
• There can be a chain of derived data
• Derived data usually contain less information, but can also contain

additional information as a result of processing

• Metadata: data about data, such as time stamps, data ownership, quick
summary etc
• Metadata often are stored together with data

• Data set: a set of data characterised by common data taking conditions
• Examples: same year, same object, same device settings etc
• Data and data sets can be mutable (can be changed) or immutable (never

change once recorded)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 8 / 35

Where are the data?
• Scientific data are often stored as files

• A data set may consist of a large number of files
• Such files would typically have similar names
• File names often contain metadata, e.g. data14ver8nocalib.dat

• There are many different ways of writing data to a file
• Alphanumeric text files: strings or arrays of data and keywords, readable by

any document processing utility
• Binary files: packaged information to be read by a dedicated software

• Examples: JPEG pictures, Excel spreadsheets, ROOT files

• Data can also be stored in databases
• A database is a structured file (or set of files), interpreted by a specialized

software
• Data from a database are read directly, from files – sequentially

• Databases can establish relations between data objects
• Databases are needed to enable quick access to large amounts of data
• Typically, databases are hosted by specialised servers, and are accessed

(queried) remotely, using special query languages
• Files are easy to copy and transfer, databases are not

Oxana Smirnova (Lund University) Programming for Scientists

Data (not
simulation)

year

Software
version

Non-
calibrated

Lecture 1 9 / 35

Example of data hierarchy: particle physics

Oxana Smirnova (Lund University) Programming for Scientists

D
at

a
se

t File
Measurement

Measurement

File
Measurement

Measurement

• Different sciences use different
data models

• Data are often recorded in
structured files

• Each file contains many
measurements

• Many files recorded in identical
conditions constitute a data set

• Data sets are derived from each
other: from raw data to analysis
objects

Raw data

Event Summary Data

Analysis Object Data

Tagged Data

Derived Data

Lecture 1 10 / 35

Sizes of scientific data sets and scientists teams

Oxana Smirnova (Lund University) Programming for Scientists

G
ra

p
h

 b
y

El
i D

a
rt

, E
Sn

et
/L

B
N

L

Lecture 1 11 / 35

• Larger is data set, more scientists work on collecting and analyzing it
• Need to follow common rules, have common software etc

• Petabytes and Exabytes of data are a reality today

Data are stored all over the World

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 12 / 35

What do storage servers look like

Oxana Smirnova (Lund University) Programming for Scientists

An 8-drive rack unit

A disk storage rack fragment
Tape robot at Fermi National Accelerator
Laboratory (USA)

Lecture 1 13 / 35

How to find my data?
• Step #1: Ask your supervisor!

• Hint: Master-copies are usually preserved and catalogued by the scientists who
collect the data

• There’s no catalogue of catalogues though (Google is still your friend)

• Small data sets are simply copied to office computers and USB memory sticks

• Memory sticks capacity increases, but data volumes increase, too

• Office computers become more powerful and can process more data

• Large data sets can be too large for your office computer!

• Petabytes (1 PB = 1 million GB) are stored in specialized storage centers of
research labs

• Approach #1: get login/password for the computer that has access to the
data set

• Usually, a large High Performance Computer in a research lab

• Approach #2: send your analysis program to a distributed computing system
(Grid), which will find the best place for it to work

• This is not available yet to all sciences, but is used in particle physics

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 14 / 35

CERN data: distributed across the World

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 15 / 35

• Some data are difficult to measure experimentally

• Inaccessible location

• Lack of adequate experimental tools

• Very rare or hypothetical processes

• Ethical issues

• If a scientific model exists for a process, such data
can be computer-generated – simulated

• Nuclear explosions

• Effects of drugs

• Planet formation

• Aerodynamic characteristics

• Quantum effects

• Weather forecasts

• Etc etc etc…

• Simulation of probabilistic processes (common in e.g. subatomic physics) relies
on random number generators – hence called Monte Carlo

Data can also be computer-generated

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 16 / 35

Why do we need simulation in physics?
• To design new experiments and plan for new searches

• Any new theory can be coded and plugged into a simulation program

• To identify unexpected experimental signals

• When simulation prediction does not correspond to experimental data, it
might mean that we see an unexplained phenomenon (or there is a bug in
the program)

• To correct for experiment imperfections

• Our devices are never 100% efficient, and sometimes produce fake signals

Oxana Smirnova (Lund University) Programming for Scientists

Figure from Phys. Lett. B
688 (2010) 21–42

Lecture 1 17 / 35

Data acquisition and processing: particle physics case

• Every such step requires computing
• Even the tiniest detectors are driven by programmable microchips

• Software is a scientific tool

Oxana Smirnova (Lund University) Programming for Scientists

Real process

Electronic detection of the signal

Signal digitization
10001111

01011101

01100101

11011010

0
Process reconstruction

Derived data for analysis

Analysis, results

Can be
simulated

On-line

Off-line

Lecture 1 18 / 35

On-line vs off-line

• Refers to the time and manner in which data are being processed

• On-line: data are processed real-time while being taken, usually at a
specialized computer embedded within the experimental device

• Off-line: data are processed after the experiment finishes, normally by other
computers elsewhere

• On-line processing has to be fast, so not very complex

• Produces raw data and some derived data (using triggers and fast filters)

• Off-line processing can be as complex as necessary

• Produces derived data and simulation

• Terminology actually comes from computer science, where it describes different
algorithms

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 19 / 35

Special data need special software
• Many scientific data sets are small enough to be processed by generic software

tools, for example:

• Spreadsheets: good for social sciences and simple processing

• MATLAB, Origin etc: offer specialized languages for complex processing and
modelling, as well as advanced visualization

• There are reasons why not everybody uses such commercial tools:

• Data volumes: when data are very big and/or very complex, commercial
tools are not suitable (too generic, or too rigid, or too expensive)

• Data formats: custom-built instruments produce data in customized formats

• Particle physics detectors, telescopes, satellites etc
• Customized formats often appear due to the necessity to compress raw

data

• Simulation: advanced complex models are beyond the scope of commercial
tools

• What do we do when MATLAB doesn’t help? We develop our own software!

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 20 / 35

What kind of software do scientists develop?

• Some examples:

• Device programming

• “firmware” that makes custom-made experimental devices working,
executed on-line

• On-line pattern recognition

• fast software that can be used for triggering or raw data filtering

• Device calibration, alignment etc

• higher-level software needed to correct for technical imperfections, can
be executed on-line or off-line at a generic computer

• Raw data pre-processing, production of derived data

• more complex software, takes large computing resources and longer
time; executed both on-line and off-line

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 21 / 35

What kind of software do scientists develop?

• More examples:

• Device performance simulation, process modelling

• complex and demanding software implementing various interaction
models and simulation of physics processes; executed off-line

• Data analysis

• algorithms for statistical analysis, pattern recognition, data mining etc
etc; off-line

• System software

• tools and services to support data storage, management and processing
across different computers

• Data presentation and publication

• software for visualisation of results, preparation of plots, typesetting –
nowadays mostly professional tools are used

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 22 / 35

Software is a tool that you can make yourself
• In many scientific disciplines, experimental devices and tools are manufactured

on industrial scale

• Even unique accelerators and telescopes are made from industry-produced
components and assembled by professional engineers

• In areas like particle physics or radioastronomy, students rarely have a
chance to make an own scientific tool – unless it is a prototype of some new
technology

• Inclusive measurements produce data that can not be used without heavy
computer processing and comparison with models (simulation)

• Software is a scientific tool, as important as any other instrument

• There are infinite possibilities to improve software or develop a better one

• Inadequate software means that it may take months or even years to
analyze data, and the results may not be accurate enough…

• …or even wrong, if there are bugs

• Many research projects require development of new analysis or modelling
algorithms – you will have to make your tool yourself

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 23 / 35

Specifics of scientific software
• While other scientific instruments are made mostly by professionals, scientific

software is made mostly by amateurs

• Algorithms require knowledge of the research object, which professional
software engineers don’t have

• Still, some scientists are good programmers

• Scientific software is often rather simplistic, poorly documented, and is not
easy to install outside the computer where it was developed

• On the bright side, scientific software is usually freely available to be used,
modified and customized

Oxana Smirnova (Lund University) Programming for Scientists

Good programmers know what to write.
Great ones know what to rewrite (and reuse).

Eric S. Raymond

Lecture 1 24 / 35

We will start with software useful for students

• Admittedly biased towards tools used in particle physics

• Basic principles are the same everywhere

• Most typical programming tasks of a student:

• Modelling and simulation – needs no data even

• Data analysis and presentation of results

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 25 / 35

Example of simulation software born in Lund: Pythia
• Pythia was known as the Oracle of

Delfi, possessed immense predictive
powers (until year 393)

• In 21st century, Pythia is arguably the
most successful particle physics
Monte Carlo generator

• Pythia highlights:

• Software to simulate particle collisions (particularly in accelerators)

• Can simulate hard processes: Standard Model and beyond, resonance
decays etc

• Showers: initial- and final-state radiation, transverse momentum ordered

• Underlying event: multiple interactions, colour-connected beam remnants

• Hadronisation: Lund model, particle decays, Bose-Einstein effects

• Various auxiliary utilities

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 26 / 35

A
d

a
p

te
d

 f
ro

m
 T

. S
jö

st
ra

n
d

, L
U

Simplest code using Pythia 8 (C++)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 27 / 35

A
d

a
p

te
d

 f
ro

m
 T

. S
jö

st
ra

n
d

, L
U

Example of simulation software: GEANT
• Our experimental devices are never perfect!

• But we know how they work

• In particle physics, we know how particles interact with materials

• This is also relevant for radiation therapy

• Every detector (and even a human body) can be simulated by software

• Making use of knowledge of particle
interactions with matter

• Needs precise knowledge of detector
geometry, magnetic field, gas status
etc

• Although largely deterministic, has
some probabilistic effects as well

• Most complete detector simulation software: GEANT (version 4 is the latest)

• Pythia (or other good Monte Carlo) and GEANT are absolutely necessary to
calculate corrections for detector inefficiencies

Oxana Smirnova (Lund University) Programming for Scientists

Fi
g

u
re

 t
a

ke
n

 f
ro

m
 g

ea
n

t.
ce

rn
.c

h

Lecture 1 28 / 35

Final analysis: ROOT

• ROOT is a C++ based tool and
framework (program and library) for
data analysis

• C++ as script language with
interpreter

• Graphical interface for
interactive visualization

• Input/Output and analysis of
large amounts of data

• Histogramming, plotting, fitting

• Physics and mathematics

• Object organisation

• Parallel analysis via network

Oxana Smirnova (Lund University) Programming for Scientists

P
lo

t
ta

ke
n

 f
ro

m
 r

o
o

t.
ce

rn
.c

h

Lecture 1 29 / 35

Big data need big computers

• Even the most advanced desktop workstation will take years to process
Petabytes of data

• And will require a dedicated network connection to transfer all that

• Similarly, simulation of a statistically significant sample on a workstation will take
years

• But we need our Nobel prize tomorrow!

• It took ~2 weeks of massive data processing to find a hint of the Higgs boson
– the fastest discovery of this kind

• Solution: use supercomputers or large computer clusters, with large attached
storage and very fast network

• 10 Gbps now, 1 Tbps in the near future

• There is a catch: big computers need special operating systems

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 30 / 35

Operating systems (OS)

Oxana Smirnova (Lund University) Programming for Scientists

• An operating system is software that
makes computers work,
orchestrating different components
– hardware and software

• Microsoft Windows, Mac OS X or
Android OSs were designed for
personal computers

• On servers, computer clusters and
supercomputers, Linux is by far
dominant
• Comes in many flavors –

distributions
• Often – RedHat Linux or its

derivatives
• Most Linux distributions are

actually free and their code is
open for everybody to tweak

UNIX

Linux

year

Sh
ar

e
am

o
n

g
to

p
 5

0
0

 s
u

p
er

co
m

p
u

te
rs

,
%

P
lo

t
ta

ke
n

 f
ro

m
 t

o
p

5
0

0
.o

rg

Lecture 1 31 / 35

How do Linux clusters look like

Oxana Smirnova (Lund University) Programming for Scientists

A very old traditional Linux cluster

The Aurora Linux cluster in Lund
– will be used for this course

Lecture 1 32 / 35

We use Linux!
• Linux is a UNIX-like OS designed to be flexible and portable to about any hardware

• UNIX was designed as an OS for multiuser environments (as opposed to personal
computing), capable of handling many simultaneous tasks

• Linux is not really meant for desktop PCs, but it gives the user real control of the
system

• It is also more difficult to infect by viruses, since every Linux machine is different

• It still has vulnerabilities, but they are quickly rectified by the worldwide
community of volunteer developers

• Linux comes in many distributions: RedHat, Debian, SuSE, their derivatives (CentOS is
a derivative of RedHat), etc

• Differ in software packaging, organization of directories, policies etc

• Software that works on one Linux system may not work on another

• For personal use, Ubuntu (a derivative of Debian) is the best, as it was designed to be
user-friendly

• Many Smart Home appliances, SmartTVs, WiFi routers etc are powered by Linux

• Android is also Linux, but stripped of many characteristic components

• iOS, like Linux, is based on a UNIX kernel

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 33 / 35

Some peculiarities of working with Linux
• Command-line interface (CLI)

• Most stages of scientific computing do not require graphical interfaces
• Many scientific softwares do not even have graphical interfaces

• Scientific software tools have many options and parameters that are difficult
to accommodate in graphical tools
• CLIs support basic programming, scripting

• When connecting to a remote computer, graphics slows down the work –
and can even be a security threat when intercepted

• For these reasons, we communicate with computers by
typing instructions

• Non-interactive and batch processing
• Analysis of large data sets, or a complex simulation, can take hours and even

days
• You may need to execute several analyses or simulations at the same time
• On Linux, such tasks can be executed in a non-interactive mode, in

“background”
• For batches of many such tasks, special softwares exist to take care of

processing
• Called “batch systems”, many different kinds exist

Oxana Smirnova (Lund University) Programming for Scientists

echo $[2+2]
4

Lecture 1 34 / 35

Short summary
• Experimental sciences work with increasingly large data sets, and theoretical

sciences use increasingly complex models

• The largest experimental data sets are produced by complex and unique
instruments, and require unique software

• To analyze such data, or to simulate various phenomena on a large scale, massive
computing power is needed

• Linux clusters are the main working horse of scientific computing

• Knowledge of Linux and programming is essential for many scientists

Home assignment (see Canvas page for MNXB01):

• Please fill the short programming background questionnaire by the end of this
week

Oxana Smirnova (Lund University) Programming for Scientists Lecture 1 35 / 35

