
MNXB01-2022 Programming Languages 1/50Lecture 3

Programming Languages

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01-2022

MNXB01-2022 Programming Languages 2/50Lecture 3

Purpose of this lecture
and of the ”Advanced Topics”

The purpose of these slides is to have a basic
knowledge of key concepts in programming,
giving you some references or starting points.

Some topics are discussed in depth in another
set of slides called ”Advanced Topics”.

Some of the advanced topics are also small clips,
max 20 min.

You will be recommended to watch or read about
the topic before a lecture or a tutorial, so that you
have a better understanding about what is going to
be discussed

MNXB01-2022 Programming Languages 3/50Lecture 3

Outline

Part A: Programming languages

Brief history and classification

Programming paradigms

Compilation and Interpretation

Features of C++ and Bash

Part B: Algorithms and Programming

Part A: Programming Languages

MNXB01-2022 Programming Languages 4/50Lecture 3

Part A: Programming languages

Goals:

Understanding what a programming language is

Understanding the path from code to machine
executable applications

This part is important to understand the
differences between the code you write and the
resulting program.

Part A: Programming Languages

MNXB01-2022 Programming Languages 5/50Lecture 3

Programming languages:
A brief history

Modern classification of programming languages is based on generations. As
generation increases, the languages are closer to the human way of expressing
concepts.

1st generation. Machine code language. This includes punchboards and
binary code. Machine dependent.

2nd generation. Assembly or instruction-based languages. Still used in
embedded programming, but through 3rd generation ones. Machine
dependent. Hard to use for complex things.

3rd generation. Also called High-Level programming languages. Mostly use
English to describe commands. Machine independent. General Purpose:
you can use them for EVERYTHING.
These include: C, C++, C#, Java, Javascript, Python, Bash, PHP, Pascal,
Fortran...

4th generation. Domain specific languages. Report or Form generator, or
Data manipulation. Examples: Mathematica, Matlab, SPSS, R (statistics).
Targeted to a specific set of tasks.

5th generation. Mathematical or logical languages. Solving problem by
specifying constraints, without focusing on the algorithm. Mainly used in
artificial intelligence research. Examples: Prolog, NetLogo. Very narrow scope.

Part A: Programming Languages

MNXB01-2022 Programming Languages 6/50Lecture 3

1st generation: Machine Language

CPU

Part A: Programming Languages

MNXB01-2022 Programming Languages 7/50Lecture 3

1st generation: Machine Language

Minimal instructions set in binary code:
binary sequences corresponding to
operations like move, read, sum, multiply
Programming done via switches or punch
cards as in the pictures in the previous slide.
Direct edit of computer components such as
CPU Registers, Memory Pointers, Start of
Program Counter.
Direct programming, not portable = specific
to a machine, code cannot be reused.

Part A: Programming Languages

MNXB01-2022 Programming Languages 8/50Lecture 3

Why binary?

Digital circuits are based on mapping voltage to information

Measuring voltage can be error-prone, so one must minimize
the error

Years of engineering studies showed that the safest choice is
either to have three voltage states or two

Two proved to be safest and easiest to handle as the number
of circuits on a circuit board grows: they interfere with each
other! (magnetic fields etc)

Modern computing sets the voltage difference to be ∓5V

Mapping: ∓5V = 0, 0V = 1 (yeah, I know, misleading. But there
are practical reasons for it. We don't have to care.)

Binary System

MNXB01-2022 Programming Languages 9/50Lecture 3

Mapping things to binary

In a computer, a sequence of bits contained in a memory chunk can be one of:

Boolean expression:
1 = True , 0 = False
but even the opposite in some cases!
binary strings of true and false:
1001 = true false false true

Number or Value
Example: 11110000
A binary string as a value like the one above can be mapped to anything. It can
be a number, a character, a sequence of characters… it all depends on how the
current instruction or running program wants to interpret it

Operation or Instruction
There are circuits in the CPU that interpret sequences of bits into operations
such as addition, transfer to memory, comparison …
One instruction can be made of multiple sequences of bits.

The way for a computer to distinguish among those depends on where in the
computing cycle the information is accessed.

Binary System

MNXB01-2022 Programming Languages 10/50Lecture 3

Digital circuits are discrete
(countable)

Digitization is the process of transforming what is
continuous (infinite) into something discrete (finite) with
electronic devices.

A dreadful consequence of having a finite set of countable
memory components representing information is that
there is a finite set of numbers we can represent.

Problems:

What happens when the result of an operation
exceeds the finite representation space?

How do one represents negative numbers?

How do we represent fractions/irrational
numbers/periodic numbers/complex numbers?

How do we represent the concept of infinity?

Binary System

MNXB01-2022 Programming Languages 11/50Lecture 3

Issues with limited representation
overflow example

Digitization

Result

Operand 2

Operand 1

+

=

1

Real
world

Computers
world

9 +
1 =

 10

Imagine a fictious computer system
that is made out of boxes and tiles.
● Tiles are numbered from 0 to 9.
● Each box is a memory location and

can only contain
one tile at time.

● The system has three boxes, two for
the operands and one for the result.
● There is no space

in a box to add the
carry.

 Result from

the fictious computer:
 9 + 1 = 0 ???

 Real world arithmetics:

 1 is the carry. One simply adds it on the left.

This is called overflow, as in
the result is outside the
range of representable
numbers.
It also causes the observer
to see a symbol among the
representable numbers as if
the numbering restarted
(0 after 9).

9

1

0

Part A: Programming Languages

MNXB01-2022 Programming Languages 12/50Lecture 3

Issues with limited representation
scaling example

MAY CAUSE LOSS OF
INFORMATION!!

Digitization

≠ ≠ ≠

Real
world

Computers
world

Scaling is the process
with which the size of
an image is reduced
or enlarged

1. reducing size cuts away
 information,

to use less memory

2. enlarging size of a reduced image
cannot regenerate lost information,

hence the pixellated artifacts

Part A: Programming Languages

MNXB01-2022 Programming Languages 13/50Lecture 3

2nd generation:
Assembly Code

Assembler

CPU

Part A: Programming Languages

MNXB01-2022 Programming Languages 14/50Lecture 3

2nd generation:
Assembly Code and Microcode

X68000
Assembler

Assembler

x86
Assembler

Motorola Intel

Other Architecure

Not Portable!

CPU CPU

CPU

Part A: Programming Languages

MNXB01-2022 Programming Languages 15/50Lecture 3

2nd generation:
Assembly Code and Microcode

Each instruction is represented by an opcode and its
arguments.

A more human readable language is introduced, assembly, that
maps each opcode and arguments to a human readable syntax.

The program used to code is called assembler, takes in input a
sequence of assembly statements and translates them into
binary code

New CPUs emerge that contain a more complex instruction set
called microcode, stored physically in a ROM inside the CPU: a
single instruction can do more than a single operation. Different
assembly for different architectures.

Not portable: code can only be used for a specific machine.

Used for home computers, nowadays for small devices.

Live example: https://schweigi.github.io/assembler-simulator/

Part A: Programming Languages

https://schweigi.github.io/assembler-simulator/

MNXB01-2022 Programming Languages 16/50Lecture 3

3rd generation: Human-oriented

Algorithm oriented: the user translates an algorithm into language
commands

Introduces programming paradigms:

Imperative

Object Oriented

Functional

… more!

Introduces various
translation to machine language
methods:

Compiled

Interpreted

Bytecode interpreted

Grace Hopper
1959 invents COBOL

Donald Knuth
1970 Writes

“The Art of Computer Programming”

Part A: Programming Languages

MNXB01-2022 Programming Languages 17/50Lecture 3

Imperative languages

Programming style that describes computation
in terms of a program state and statements
that change the program state.

Adheres to the separation of code and data
principle.

Examples: C, FORTRAN, Python, Bash

Example: printf ("%s \n", "Hello World!");

 Hello World!

Code

Data

Part A: Programming Languages

MNXB01-2022 Programming Languages 18/50Lecture 3

Object-oriented languages
A computer program is a collection of objects that act
on each other.

Each object is capable of sending and receiving
messages and processing data. Each object is
independent.

An object is a ‘black box’ which sends and receives
messages, and consists both of code (computer
instructions) and data (information which these
instructions operate on).

Breaks the separation of code and data principle.

Examples: Java, C++, Python

Data

Data
Data

Data

Code
Code

Code
Code

Object A
Data

Data
Data

Object B

Messages

Part A: Programming Languages

MNXB01-2022 Programming Languages 19/50Lecture 3

Object-Oriented Languages
Concepts

A Class is a piece of code that defines the object’s:

properties (also called attributes) usually data that the object
can handle or carries

Methods (Usually functions or procedures) that is usually code
used to modify the properties of the object or other objects.

An instance of a class is an object, that is, something that a
computer can run.

Classes can inherit properties and methods from each other.
If class A is inherits from class B, B is said to be the parent
class of the child class A.

Classes can override properties and methods that belong to
their parent class by reusing the same names of properties
and methods

More practical stuff during C++ tutorials

Part A: Programming Languages

MNXB01-2022 Programming Languages 20/50Lecture 3

From code to machine language
The process with which source code becomes a binary file
that can be executed by a computer is called compilation.

The result of a compilation is also called a build.

We will detail it later in the course, but we can summarize
its main steps with this algorithm:

Build code

1.Transform the source code into assembly code.

2.Enrich the assembly code by linking it to assembly code or
binary code offered by the Operating System and external
libraries, to manage hardware (memory, access to
devices…) or functionalities provided by other programmers

3.Produce an executable binary file in machine language.

MNXB01-2022 Programming Languages 21/50Lecture 3

From code to machine language

Code

Assembly
Binary

file

Compiler and Linker

Software
Libraries

OS
Libraries

#include <stdlib.h>
int main(int argc,

Build code

Compilation

Library or
Executable

MNXB01-2022 Programming Languages 22/50Lecture 3

Compiled vs Interpreted

In this course we will see two types of languages:

Compiled: developer needs to manually run the compiler

steep learning curve

lots of freedom on how to manage the memory contents

usually good for high performance and precision

good for serious calculations

Interpreted: it either does the compilation for for the developer,
or just uses precompiled software to do its job

easy to learn

limited or no memory management

very limited ability to tweak and customize performance and precision

good for automation and prototyping

Part A: Programming Languages

MNXB01-2022 Programming Languages 23/50Lecture 3

To every language its purpose

Most programming languages were invented for a
purpose. That is actually where they shine

Most programming languages can do things they
were not meant for.
Usually the result is very sad.

When you choose a programming language, make
sure that it fits the task you want it to do.

In the next two slides there is a summary of the
good and bad of the two we will use, BASH and C+
+.

Part A: Programming Languages

MNXB01-2022 Programming Languages 24/50Lecture 3

Bash
Features:

Interpreted

Runs commands, executables

Imperative paradigm

Not explicitly typed

No memory pointers: only
environment

Pros:

Use existing commands
to do tasks

Lots of community
experience

Very low learning curve

Very intuitive approach

Preferred use:

Scripting

Automation of
command tasks

Combine several
commands

Cons:

Not portable; code depends on installed
software

Lack of types might cause unexpected
results

No memory management, only
environment variables might cause
scope issues: all variables are global!

Not rich in native datastructures, that
are hard to use and very rarely used in
practice

Part A: Programming Languages

MNXB01-2022 Programming Languages 25/50Lecture 3

C++
Features:

Compiled

Imperative paradigm

Object oriented paradigm

Types and type creation

Templating

Memory Pointers

Based on standards

Pros:

Very efficient

Empowers C with objects, allowing
extending existing code

Can directly use Assembly

Lots of community experience

Good debugging tools

Good coding environments

Control on the code preprocessor (for
efficiency)

Preferred use:

System development

Embedded devices

Low-level coding, i.e.
hardware drivers

Performance

Cons:

Requires deep knowledge of pointers
and memory handling – developer has
to free memory by herself

Has high learning curve

Not suitable for fast prototyping

Hard to foresee runtime errors at
compile time

Control on the code preprocessor
(hard to debug and understand

Part A: Programming Languages

MNXB01-2022 Programming Languages 26/50Lecture 3

Outline

Part A: Programming languages

Part B: Algorithms and Programming

What is an algorithm

From algorithm to code
ingredients of programming

pseudocode examples

concepts and tools

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 27/50Lecture 3

Part B: Algorithms and
Programming

Goals:

Understanding the coding/programming process

Understanding the concepts and tools involved

This part is important to understand what we
will do during the tutorials.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 28/50Lecture 3

General concepts in
programming

Programming is the process of writing a
computer program, that is, translating an idea
into something that can be executed by a
computer.

This translation happens in several steps and,
like a recipe for cooking a meal, one needs to
understand the ingredients and how to mix/cook
them.

The idea usually takes the form on an
algorithm.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 29/50Lecture 3

Ingredients of programming:
What is an algorithm?

A finite sequence of
instructions to carry out a
task or solve a problem.

An algorithm can be written
in natural language or in
mathematical terms.

The term is derived from
the name of the Persian
scholar Al-Khwarizmi.

Ada Lovelace,
First programmer

in history

Alan Turing, Alonso Church
Hypothesis on computability

Theoretical foundations of computing

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 30/50Lecture 3

Algorithm example

1. Ask the user to input two numbers

2. Sum the two numbers

3. Print the sum on screen

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 31/50Lecture 3

Ingredients of programming:
Code

Code or source code

source because is the information from which a program is
generated.

Is a structured description of an algorithm, it
determines what a program will do

It is usually stored in digital format on one or more files

The description is usually done via a programming
language

It is called language because one must respect several
grammar rules, like in spoken or written natural human
languages.

It can refer to other programs or program components,
often called libraries

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 32/50Lecture 3

Ingredients of programming:
Code example

Code might look weird at first. But there is a strive
to make it human-readable. Consider the following
example of C code, what do you think it does?

printf ("%s \n", "Hello World!");

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 33/50Lecture 3

Ingredients of programming:
Code example

Yes, it prints on screen the text string

Hello World!

Let's analyze the components of the language statement:

printf ();"%s \n", "Hello World!"

Issues a command:
function or procedure printf();

Command argument:
two function arguments
1.Formatting information:

● “%s \n” means “I want you to print a
string (%s) and then go to next line (\n)

2.Content information:
“Hello World!” is the actual thing to
print.

Grammar syntax:
<function name>(<argument or parameter>);

WARNING:
NOT A MATHEMATICAL FUNCTION!!!! : it has a domain, codomain and
range, but it also has side effects: it changes the state of a machine.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 34/50Lecture 3

From algorithm to code
The translation of an algorithm into code, using
a programming language, is called
implementation

The transition between an algorithm and and its
implementation can have an intermediate
representation that is still human readable, which
mixes natural language and programming language.
This is often called pseudo-code.

Writing pseudo-code is one of the best techniques to
implement an algorithm, although it can be time
consuming.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 35/50Lecture 3

Pseudocode and code example

1. Ask the user for 2 numbers:
- print (echo) a message
- use the read command to
 gather the input

2. Sum the 2 numbers using a for
loop
- initialize the variable sum
- for each number in input do:
 sum = sum + number

3. Print (echo) the sum on screen

#!/bin/bash
sum2num.sh : sum two numbers

read input from user
echo "Enter two numbers separated by spaces, then press Enter"
read stores data in the special variable REPLY by default
read;

initialize sum
sum=0
calculate sum by summing up each number separated by space
for value in $REPLY; do
 sum=$(($sum + $value))
done

print output to screen
echo "The sum of the two numbers is $sum"

Implementation in Bash source code:Algorithm in Pseudo code:

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 36/50Lecture 3

Ingredients of programming:
Libraries

Libraries are code written by other people, that
can be used to write other code, so that one does
not have to rewrite everything from scratch

Typically one needs to specify in the source code
what libraries are going to be used.

Two kinds:

User libraries, like scientific libraries to
 calculate Fourier transform or solve equations;

System libraries, specific to the
operating system, that are required
to allow your program to talk to the
operating system where it will run.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 37/50Lecture 3

Ingredients of programming:
Tools

Text editors and/or IDE (Integrated development environments) to help
the developer writing code.

Compilers and Interpreters are software that allows you to convert your
code into machine language. They are language-specific.
Examples:

gcc, g++ for C, C++

python, python3 for Python (various versions)

bash for the Bash command line interpreter

Build tools that help the coder preparing all the software and libraries
required for its program to compile. Examples are:

make and its configuration files Makefiles

cmake and its configuration tool ccmake

Package managers to download and install user libraries independently
from the operating system

npm for JavaScript

conda, anaconda, pip, virtualenv for Python

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 38/50Lecture 3

Ingredients of programming:
Data

Often provided by the user

NOT code, but used by code to do things

Carries information, most likely understandable by a
scientist.

Input data: provided in input to the code to process
information.

Example: the formatting information "%s \n", and the text
string ”Hello World!”

Output data: the result of the code execution, that will be
generated as output from the code execution.

Example: the output string Hello World!

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 39/50Lecture 3

Separation of Code and Data
principle

Code is information about logic, arithmetics and
algorithms.

One can think of it like a mathematical function, that defines a
domain and co-domain in generic terms.

Data is information that is to be read, processed,
written.

Input data should be left untouched and not modified.
Think about is as a science fact or empirical/experimental
data.

One does modify it in memory while running a program, but the
changes should never be written back to the original data (would
pollute science facts!)

Output Data is usually the result of something code did on
it. For ease of use, it might be represented the same way as
Input Data.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 40/50Lecture 3

Code and data highlighted

1. Ask the user for 2 numbers:
- print (echo) a message
- use the read command to
 gather the input

2. Sum the 2 numbers using a for
loop
- initialize the variable sum
- for each number in input do:
 sum = sum + number

3. Print (echo) the sum result on
screen

#!/bin/bash
sum2num.sh : sum two numbers

read input from user
echo "Enter two numbers separated by spaces, then press Enter"
read stores data in the special variable REPLY by default
read;

initialize sum
sum=0
calculate sum by summing up each number separated by space
for value in $REPLY; do
 sum=$(($sum + $value))
done

print output to screen
echo "The sum of the two numbers is $sum"

Implementation in Bash source code:Algorithm in Pseudo code:

If I input the numbers 3 and 4 to obtain the result 7, then for that specific execution of the
algorithm/program the input data is 3, 4 and the output data is 7

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 41/50Lecture 3

Ingredients of programming:
the build

Putting together source code, libraries and operating system libraries
to generate a program that can run in a computer is called a build.

A minimum build process for C++ it’s the compilation that we have
seen earlier. We will use it later in the course.
A build process is usually automated by bash scripts or other tools. It
can include other tasks happening before and after the compilation,
for example:

Downloading required libraries

Checking that all required libraries are present

Selecting functionalities that may or may not be included in the build

Running some basic tests on the compiled software

Sometimes software includes a build number to identify exactly
when and how the software was created.

Check the “about” menu of software you know to discover build numbers!
Sometimes they contain the date of the build.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 42/50Lecture 3

Examples of build numbers

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 43/50Lecture 3

Ingredients of Programming
Software Build ≠ Version

A Software Version identifies a fixed set of
functionalities the software will offer. There can be
multiple builds for the same version of a software.

For example a version X of a software that runs both on
Windows and Linux has at least a Windows build and a Linux
build, because they use different OS libraries.

A build is the practical step of ”putting things together”,
its requirements come from the features the
software at a given Version X should contain

For example, version 5 of the Zoom client supports virtual
backgrounds, and this support must be built independently on
Windows, Linux and Mac.

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 44/50Lecture 3

Ingredients of Programming
Comments and Documentation

Software becomes quickly complicated and hard to maintain. Sometimes it
is not possible to read all the code. Sometimes the code is not even
accessible due to legal or intellectual property reasons. Having information
in human language is therefore very important. Some rules of thumb:

Write inline comments in your code that explain what the code is doing.

Adhere to good standards regarding coding styles and
text formatting.

These are not just for sharing, it’s also for you to remember what the code does
after many years that you’ve developed it.

Keep track of the ”big picture” by writing Documentation that describes

overall architecture

common usage and coding patterns

ChangeLog to keep track of important changes (Hint: See example in the
last page of the course manual!)

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 45/50Lecture 3

Ingredients of Programming
testing and reviewing

Testing is the process of writing additional code that tests a
functionality or a limitation of your code

There are different kind of tests one can run. For a list, see
https://www.ibm.com/topics/software-testing

What if I try to sum negative numbers in the bash example? Try to ”break
your own code” to identify possible faults – We will do with your project!

Reviewing is the process of inspecting the code, usually by some
other programmer, to get feedback about the quality of code

Improvements

Possible bottlenecks

Comments on whether is easy or not to understand the code. Code that
is difficult to read is more likely to generate bugs and makes it hard to
solve them.

https://www.ibm.com/topics/software-testing

MNXB01-2022 Programming Languages 46/50Lecture 3

Algorithm complexity is a theoretical tool to help estimating

Time complexity: how much time it takes for a program to end
Knowing when a program will end is a known undecidable problem, called ”the halting
problem” (see https://brilliant.org/wiki/halting-problem/ for a mathematical discussion)

Space complexity: how much memory a program will use
This is actually easier to estimate.

See https://towardsdatascience.com/algorithmic-complexity-101-28b567cc335b

Optimization is the process of identifying bottlenecks or high complexity
issues above and finding workarounds to make a program faster or use
less memory.

It is usually better to optimize at a late stage of development. Trying to write
optimal code from the beginning rarely helps understanding the code bottlenecks
– instead it tends to create unnecessary limitations.

We don’t really have time to discuss these topics in this course, but
they’re very important to save time and money.

Ingredients of Programming
Complexity and Optimization

https://brilliant.org/wiki/halting-problem/
https://towardsdatascience.com/algorithmic-complexity-101-28b567cc335b

MNXB01-2022 Programming Languages 47/50Lecture 3

Ingredients of Programming
Modern Collaboration and Automation

Tools used by a community to develop software.

Versioning systems, e.g. git that we will see in this course

Continuous integration tools: automation that builds your
code at every change

Deployment and testing suites: tools that install and test
your code

Common errors and code proofing tools: tools that help
making your code better

More on Oxana’s slides

MNXB01-2022 Programming Languages 48/50Lecture 3

Golden rules
for a scientific programmer

(1) Never trust the computer, but trust your scientific intuition
● The digitization problem: a computer has limited precision

(2) Keep your code simple and functionalities separate in
your code
● Write and test each functionality
● Will help you figure out what is wrong

(3) Write many (significant) comments
● Science is knowledge sharing: others will read your code sooner or later

(4) Don't blame the sysadmin unless you're absolutely sure it's
their fault! ;-)

Part B: Algorithms and Programming

MNXB01-2022 Programming Languages 49/50Lecture 3

References

A brief history of computing
http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site

http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site

MNXB01-2022 Programming Languages 50/50Lecture 3

Pictures references (not complete)

http://www.jegerlehner.ch/intel/

http://www.cpu-world.com/CPUs/68000/

http://en.wikipedia.org/wiki/X86

http://www.jegerlehner.ch/intel/
http://www.cpu-world.com/CPUs/68000/
http://en.wikipedia.org/wiki/X86

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

