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Image Analysis - Motivation



Overview – Parameter 
Estimation, fit
1. Voting, The Hough Transform

2. Fitting one line, least squares, total least squares, svd

3. Curve Fitting

4. Robust Fitting

1. M-estimator

2. RANSAC

5. Fitting Multiple Objects

1. K-means

2. Remove and fit again



Fitting Fitting
We want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.
We use a model to produce compact representations that capture
the relevant image structures we seek.



Example: Line fittingExample: Line fitting
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Many objects characterized by presence of straight lines

Why aren’t we done just by running edge detection?
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Difficulties of line fitting
• Extra edge points (clutter), 

multiple models:
– which points go with which 

line, if any?

• Only some parts of each line 
detected, and some parts 
are missing:

– how to find a line that bridges 
missing evidence?

• Noise in measured edge 
points, orientations:

– how to detect true underlying 
parameters?

Difficulty of line fitting



Line Fitting as Study Problem
• Fitting involves determining what possible structures could have

given rise to a set of tokens in an image. For example, we might
have a set of edge points (the tokens) and wish to determine which
lines fit them best. There are three increasingly more general 
problems that occur in fitting:

• 1. Parameter estimation: Assume we know which tokens came
from particular structure, and we want to know what the parameters 
of the structure are.
• For example, we might have a set of edge points, all of which are

known to have come from a line, and we wish to know what line
they came from.

• Most interesting case is when criterion is not local – cannot tell
whether a set of points lies on a line by looking only at each point
and the next. 



Line Fitting as Study Problem
• 2. Data Association: Assume we know how many structures

are present, and we wish to determine which tokens came
from which structure.

• For example, we might have a set of edge points, and we
need to know the best set of lines fitting these points; this
involves (1) determining which points belong together on a 
line and (2) figuring out what each line is.

• Generally, these problems are not independent (because
one good way of knowing whether points belong together on 
a line is checking how well the best fitting line approximates
them). 



Line Fitting as Study Problem
• 3. Model Selection: We would like to know (1) how many

structures are present (2) which points are associated with
which structure and (3) what the structures are.

• For example, given a set of edge points, we might want to 
return a set of lines that fits them well.

• This is, in general, a substantially difficult problem the answer
to which depends strongly on the type of model adopted (for 
example, we could simply pass a line through every pair of
edge points – this gives a set of lines that fit extremely well, 
but will likely be a poor representation).



What do you see?
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Voting
• It is not easy to check all combinations of features by fitting a model 

to each possible subset (but see later RANSAC)

• Voting is a general technique where we let the features vote for all 
models that are compatible with them

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise and clutter features will cast votes too, but typically their votes 
should be inconsistent with the majority of “good” features. Hence 
they will have less support.

• Ok if some features not observed, as model can span multiple 
fragments. The voting process is distributed (each individual feature 
casts a vote for a possible model, so they can work independently)



Hough Transform
• Goal: Finding linear structures in images

• Used on edge data

• Study the set

• This forms a line in the ab-plane.

Fitting Robustness Hough Fitting Curve fitting Inference

Hough Transform

Goal: Finding linear structures in images.
Used on edge data

la,b : ax + by = 1 (Assume 0 /∈ l)

(xk , yk ) ∈ la,b ⇔ axk + byk = 1

Study the set

Λk = { (a,b) | (xk , yk ) ∈ la,b }

which forms a line in the ab-plane.

Image Analysis - Lecture 8
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Other line representations
Fitting Robustness Hough Fitting Curve fitting Inference

Other line representations

1) Represent lines as
y = kx + l .

Each line is a point in the kl-plane. k is the slope of the line, l is
the y-intercept.
Vertical lines (undefined slope/gradient) cannot be represented.
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Other line representations
Fitting Robustness Hough Fitting Curve fitting Inference

Other line representations (cont.)

2) Represent the lines as

x cos(θ) + y sin(θ) = ρ.

Each line is a point in the ρθ-plane. Represent all lines.
Each point gives a sine-formed curve in the ρθ-plane.

Image Analysis - Lecture 8



Hough transform algorithm
Using the polar parameterization:

Basic Hough transform algorithm
1. Initialize H[ߩ, T]=0
2. for each edge point I[x,y] in the image

for T = 0 to 180  // some quantization

H[ߩ, T] += 1
3. Find the value(s) of (ߩ, T) where H[ߩ, T] is maximum
4. The detected line in the image is given by

H: accumulator array (votes)

ߩ

T

Complexity (in terms of number of votes)?

UTT  � sincos yx

Source: Steve Seitz

TTU sincos yx � 

TTU sincos yx � 



tokens T

Note that most points in the vote array are very dark, because they get only one vote.



tokens votes

What difficulty does this present for an implementation?



Here, everything appears to be “noise”, or random 
edge points, but we still see peaks in the vote space.

tokens votes



Extensions
Extension 1:  Use the image gradient

1. same
2. for each edge point I[x,y] in the image

T = gradient at (x,y)

H[ߩ, T] += 1
3. same
4. same

(Reduces degrees of freedom)

Extension 2
• give more votes for stronger edges

Extension 3
• change the sampling of (d, T) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any 

other shape

TTU sincos yx � 



Extensions
Extension 1:  Use the image gradient

1. same
2. for each edge point I[x,y] in the image

compute unique (ߩ, T) based on image gradient at (x,y)
H[ߩ, T] += 1

3. same
4. same

(Reduces degrees of freedom)

Extension 2
• give more votes for stronger edges (use magnitude of gradient)

Extension 3
• change the sampling of (ߩ, T) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any 

other shape 





Showing longest segments found



Voting: practical tips

• Minimize irrelevant tokens first (take edge points with 
significant gradient magnitude)

• Choose a good grid / discretization
– Too coarse: large votes obtained when too many different lines 

correspond to a single bucket
– Too fine: miss lines because some points that are not exactly collinear 

cast votes for different buckets

• Vote for neighbors, also (smoothing in accumulator array)
• To read back which points voted for “winning” peaks, keep 

tags on the votes.



Hough transform: pros and cons
Pros
• All points are processed independently, so can cope with 

occlusion
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin
• Can detect multiple instances of a model in a single pass

Cons
• Complexity of search time increases exponentially with the 

number of model parameters 
• Non‐target shapes can produce spurious peaks in parameter 

space
• Quantization: hard to pick a good grid size



Hough TransformFitting Robustness Hough Fitting Curve fitting Inference

Hough Transform (ρ, θ representation)

! Construct an array representing [ρ, θ]. For each point,
render the curve ρθ into this array, adding one at each cell.

! Difficulties: How big should the cells be? Too big, and
we cannot distinguish between quite different lines; too
small, and noise causes lines to be missed.

! How many lines? Count the peaks in the Hough array.
! Who belongs to which line? Tag the votes.

Problems with noise and cell size can defeat it

Image Analysis - Lecture 8
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The least squares methodFitting Robustness Hough Fitting Curve fitting Inference

The least squares method

Line fitting
Assume that the points (xi , yi) are measured. Then

yi = kxi + l

for line parameters (k , l).
Assume that:

! that the errors are only in the y-direction.
! the line is not vertical (since we are counting only vertical
offsets from the line as errors, near vertical lines lead to
quite large values of the error)

Image Analysis - Lecture 8



Line FittingFitting Robustness Hough Fitting Curve fitting Inference

Line fitting

Then

y =

⎛

⎜

⎝

y1
...
yn

⎞

⎟

⎠
=

⎛

⎜

⎝

x1 1
...

...
xn 1

⎞

⎟

⎠

(

k
l

)

+ n = Ap + n

If the errors n are independent and Gaussian distributed, then it
is reasonable to solve y = Ap in least squares sense, i.e.
minimizing |y − Ap|.
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Line fitting
Fitting Robustness Hough Fitting Curve fitting Inference

Least squares solution

This least squares problem was studied in Lecture 2 (and in
other courses).
The solution is

p = (ATA)−1ATy

Write this out to obtain
(

k
l

)

=

(

x̄2 x̄
x̄ N

)

−1 (x̄y
ȳ

)
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Least squares in MatlabFitting Robustness Hough Fitting Curve fitting Inference

Least squares in Matlab

In matlab the least squares solution can be obtained using the
slash function

p = A\y

Read the help text ’help slash’ for more information about how
the ’slash’-operator works.
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Total least squaresFitting Robustness Hough Fitting Curve fitting Inference

’Total Least Squares’

! One problem with the idea above lies in the two
assumptions.

! It cannot handle vertical lines.
! For lines that are close to vertical the assumption that the
errors are only in the y-direction gives sub-optimal
estimates of the line.

! It is better to minimize the distance between the point and
the line.
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Distance between point and line
Fitting Robustness Hough Fitting Curve fitting Inference

Distance between point and line

From linear algebra we know that the distance between the
point

(x , y)

and the line
ax + by + c = 0

with line parameters
l = (a,b, c)

is
|ax + by + c|√

a2 + b2

Image Analysis - Lecture 8



Optimization
Fitting Robustness Hough Fitting Curve fitting Inference

Optimization problem

Assume that
a2 + b2 = 1

then the distance is

d = |ax + by + c|.

The line l = (a,b, c) that minimizes the sum of squares of the
distance is given by

min
a,b,c,a2+b2=1

f (a,b, c) =
∑

i
(axi + byi + c)2 .

Image Analysis - Lecture 8



Solving the optimization problem
Fitting Robustness Hough Fitting Curve fitting Inference

Solution

The Lagrange function is

L(a,b, c,λ) =
∑

i
(axi + byi + c)2 + λ(1− a2 − b2)

whose stationary points is given by (denote e.g. x̄2 ←
∑

i x2i )
⎛

⎝

x̄2 x̄y x̄
x̄y ȳ2 ȳ
x̄ ȳ N

⎞

⎠

⎛

⎝

a
b
c

⎞

⎠ = λ

⎛

⎝

a
b
0

⎞

⎠
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Solution

Fitting Robustness Hough Fitting Curve fitting Inference

Solution

We can solve for c using the last equation:

c = −
1
N (ax̄ + bȳ)

Then we can substitute c in the equations above to obtain
(

x̄2 − 1
N x̄x̄ x̄y − 1

N x̄ȳ
x̄y − 1

N x̄ ȳ ȳ2 − 1
N ȳȳ

)

(

a
b

)

= λ

(

a
b

)
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Solution Fitting Robustness Hough Fitting Curve fitting Inference

Solution as eigenvalue problem

(

x̄2 − 1
N x̄x̄ x̄y − 1

N x̄ȳ
x̄y − 1

N x̄ ȳ ȳ2 − 1
N ȳȳ

)

(

a
b

)

= λ

(

a
b

)

is an eigenvalue problem.
There are two solutions, up to scale. Can be obtained in closed
form.
The two solutions are orthogonal. One maximizes the
likelihood, the other minimizes it.
It is straightforward to test which one of the two minimize
f (a,b, c).

Image Analysis - Lecture 8
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Curve fitting

Fitting Robustness Hough Fitting Curve fitting Inference

Curve fitting

Similar ideas can be used to fit conics to points

ax2 + bxy + cy2 + dx + ey + f = 0

or even higher order algebraic curves.
Read chapter 15.3!

Image Analysis - Lecture 8
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Inference
Fitting Robustness Hough Fitting Curve fitting Inference

Inference

Assumes that we measure random points (x , y) along a line
(a,b, c) with an error in the normal direction (a,b) that is
Gaussian distributed.
Then the logarithm of the likelihood function is

1
2σ2

∑

i
(axi + byi + c)2

with constraint a2 + b2 = 1, and σ denoting the standard
deviation of the noise.
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Problems with inference
Fitting Robustness Hough Fitting Curve fitting Inference

Problems with inference

Some practical problems:
! Robustness - often there are points there that do not
belong to the object.

! There might be missing data
! It is difficult to establish correct correspondence between
points and objects.

How can one make the fitting less sensitive to such errors?
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Outliers: M-estimators
Fitting Robustness M-estimators RANSAC

Outliers: M-estimators
A common method is to use an error function which is quadratic
for small errors, but large for larger errors.
Then large errors (outliers) will not affect the fitting as much.
Instead of minimizing

∑

i
(axi + byi + c)2

we minimize
∑

i
ρ(axi + byi + c,σ)

where e.g. one could use

ρ(u,σ) = u2
σ2 + u2
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Outliers: M-estimators
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M-estimators

Fitting Robustness M-estimators RANSAC

M-estimators

! How should σ be chosen?
! Read in the book. Study the examples.
! Problem with convergence to local optima.
! How do we obtain an initial guess?
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Outliers: RANSAC
Fitting Robustness M-estimators RANSAC

Outliers: RANSAC

Another popular method to deal with outliers is RANSAC. It is
an alternative to M-estimators (where we modified the
underlying noise model to have heavier tails):
1. Randomly choose a minimal set of points needed for fitting.
2. Study how many points that now lie close to the line.
3. If there are sufficiently many, stop
4. Iterate 1-3 until stop, but at most k times.

Image Analysis - Lecture 8
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K-means and fitting
Fitting Robustness Hough Fitting Curve fitting Inference

K-means and fitting

Assume that there are points from many lines.
Assume also that the number of lines is known.
Then one can use k −means for clustering points to lines.
Algorithm 15.2
1. Randomly choose k lines or a correspondence function

c = {1 . . . ,n}→ {1, . . . , k}
2. Update c, i.e. assign points to the closest line.
3. Update l , i.e. fit lines to corresponding points.
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RANSAC for multiple objects
Fitting Robustness M-estimators RANSAC

Outliers: RANSAC

Another popular method to deal with outliers is RANSAC. It is
an alternative to M-estimators (where we modified the
underlying noise model to have heavier tails):
1. Randomly choose a minimal set of points needed for fitting.
2. Study how many points that now lie close to the line.
3. If there are sufficiently many, stop
4. Iterate 1-3 until stop, but at most k times.
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