Spatial Statistics with Image Analysis

Johan Lindström¹

¹Mathematical Statistics Centre for Mathematical Sciences Lund University

Lund September 26, 2019

Johan Lindström - johanl@maths.lth.

1 Statistics

1/31

Outline

Spatial Statistics with Image Analysis

Examples

Bayesian statistics

Hierarchical modelling

Estimation Procedures

Spatial Statistics

Stochastic Fields

Gaussian Markov Random Fields

Image Reconstruction

Environmental Data

Non-Gaussian Data

Examples

Corrupted Pixels

Learn more

anl@maths.lth.se Spatia

2/:

on-Gaussian Corrupted Pixels More Examples

Spatial Statistics

Many things vary in space and obsevations may depend on what happens at nearby locations. To modell and analys such data we need spatial dependence.

Spatial Interpolation

Given observations at some locations (pixels),

$$y(\mathbf{u}_i), i = 1 \dots n$$

we want to make statements about the value at unobserved location(s), $x(u_0)$.

Stationary Stochastic Processes (FMSF10) in 2+ dimensions!

Johan Lindström - johanl@maths.lth.s

Spatial Statistic

Examples Bayesian statistics Hierarchical Estimation

Bayesian modelling

A Bayesian model consists of

- ► A **prior**, "a priori", model for reality, x, given by the probability density $\pi(x)$.
- A conditional model for data, y, given reality, with density p(y|x).

The **prior** can be expanded into several **layers** creating a **Bayesian hierarchical model**.

Johan Lindström - johanl@maths.lth.se

Spatial Statistic

8/31

Examples Bayesian statistics Hierarchical Estimation

Bayes' Formula

How should the **prior** and **data model** be combined to make statements about the reality x, given observations of y?

Bayes' Formula

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})\pi(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\mathbf{x})\pi(\mathbf{x})}{\int_{\mathbf{x}' \in \Omega} p(\mathbf{y}|\mathbf{x}')\pi(\mathbf{x}') \, \mathrm{d}\mathbf{x}'}$$

p(x|y) is called the **posterior**, or "a posteriori", distribution.

Often, only the proportionality relation

$$p(x|y) \propto p(x,y) = p(y|x)\pi(x)$$

is needed, when seen as a function of x.

Johan Lindström - johanl@maths.lth.se

Spatial Statistics

9/:

Hierarchical Models

- We often have some prior knowledge of the reality.
- ► Given knowledge of the true reality, what can we say about images and other data?
- Construct a model for observations given that we know the truth.
- ► Given data, what can we say about the unknown reality?

This is an inverse problem.

Bayesian hierarchical modelling (BHM)

A hierarchical model is constructed by systematically considering components/features of the data, and how/why these features arise.

Bayesian hierarchical modelling

A Bayesian hierarchical model typically consists of (at least)

Data model, p(y|x): Describing how observations arise assuming known latent variables x.

Latent model, $p(x|\vartheta)$: Describing how the latent variables (reality) behaves, assuming known parameters.

Parameters, $\pi(\vartheta)$: Describing our, sometimes vauge, **prior** knowledge of the parameters.

Estimation Procedures

Maximum A Posteriori (MAP): Maximise the posterior distribution p(x|y) with respect to x.

- Standard optimisation methods
- Specialised procedures, using the model structure

Simulation: Simulate samples from the posterior distribution p(x|y).

- Markov chain Monte Carlo (MCMC)
- Gibbs sampling

Johan Lindström - johanl@maths.lth.se Spatial Stat

Image Reconstruction

Spatial Interpolation

Given observations at some locations (pixels), $y(\mathbf{u}_i), i = 1 \dots n$

we want to make statements about the value at unobserved location(s), $x(\mathbf{u}_0)$.

The typical model consists of a latent Gaussian field

$$\mathbf{x} \in \mathsf{N}\left(\mu, \mathbf{\Sigma}\right)$$

observed at locations u_i , i = 1, ..., n, with additive Gaussian noise (nugget or small scale variability)

$$y_i = x(\boldsymbol{u}_i) + \varepsilon_i$$

$$\varepsilon_i \in N\left(0, \sigma_{\varepsilon}^2\right)$$
.

Stochastic Fields

To perform the reconstruction (interpolation) we need a model for the spatial dependence between locations (pixels).

1. Assume a latent Gaussian field

$$\mathbf{x} \in \mathsf{N}\left(\mu, \mathbf{\Sigma}\right)$$
.

- 2. Assume a regresion model for $\mu = B\beta$.
- 3. Assume a parametric (stationary) model for the dependence (covariance)

$$\Sigma_{i,j} = \mathsf{C}(\mathsf{x}(\mathbf{u}_i), \mathsf{x}(\mathbf{u}_j)) = \mathsf{r}(\mathbf{u}_i, \mathbf{u}_j; \vartheta) = \mathsf{r}(\|\mathbf{u}_i - \mathbf{u}_j\|; \vartheta).$$

 $r(u_i, u_i; \vartheta)$ is called the **covariance function**.

A local model

Instead of specifying the covariance function we could consider the local behaviour of pixels. A popular model is the conditional autoregressive, CAR(1) model.

$$\begin{split} x_{ij} &= \frac{1}{4 + \varkappa^2} \left(x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1} \right) + \varepsilon, \\ \varepsilon &\in N\left(0, \frac{1}{\tau^2}\right). \end{split}$$

This corresponds to a model for x where

$$extbf{ iny x} \in N\left(0, extbf{ extit{Q}}^{-1}
ight),$$

where Q is called the precision matrix

Johan Lindström - johanl@maths.lth.se Spatial Stat

Matérn covariances

The Matérn covariance family

The covariance between two points at distance $\|\boldsymbol{h}\|$ is

$$r_{\mathbf{M}}(\mathbf{h}) = \frac{\sigma^2}{\Gamma(\nu) 2^{\nu-1}} (\varkappa \|\mathbf{h}\|)^{\nu} K_{\nu}(\varkappa \|\mathbf{h}\|)$$

Fields with Matérn covariances are solutions to a **Stochastic Partial Differential Equation (SPDE)** (Whittle, 1954),

$$\left(x^2 - \Delta\right)^{\alpha/2} x(\boldsymbol{u}) = \mathcal{W}(\boldsymbol{u}).$$

Johan Lindström - johanl@maths.lth.

Spatial Statistics

16/31

Spatial Statistics Spatial Non-G

id No. Couries Command Binds Many Eight CMRE

10/5

Lattice on \mathbb{R}^2

Order $\alpha = 1$ ($\nu = 0$):

$$\chi^{2} \underbrace{\left[\begin{array}{c} 1 \\ 1 \end{array}\right]}_{(C)} + \underbrace{\left[\begin{array}{ccc} -1 \\ -1 & 4 & -1 \\ -1 \end{array}\right]}_{\approx -\Delta \left(\mathbf{G}\right)}$$

Order $\alpha = 2$ ($\nu = 1$):

$$\chi^{4} \left[\begin{array}{c} 1 \\ 1 \\ \end{array}\right] + 2\chi^{2} \left[\begin{array}{cccc} -1 \\ -1 & 4 & -1 \\ -1 \\ \end{array}\right] + \left[\begin{array}{ccccc} 1 \\ 2 & -8 & 2 \\ 1 & -8 & 20 & -8 & 1 \\ 2 & -8 & 2 \\ & 1 \\ \end{array}\right] \\ \approx \Delta^{2} \left(\mathbf{G}_{7} = \mathbf{G}\mathbf{C}^{-1}\mathbf{G}\right)$$

Johan Lindström - johanl@maths.lth.s

Spatial Statistic

17/31

Spatial Statistics Spatial Non-Gaussian Corrupted Pixels More

Fields GMRF Reconstruction Environmenta

Spatial models for data

GMRF representations of SPDEs can be constructed for oscillating, anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$(\varkappa^2 - \Delta)(\tau \mathbf{x}(\mathbf{u})) = \mathcal{W}(\mathbf{u}), \quad \mathbf{u} \in \mathbb{R}^d$$

Johan Lindström - johanl@maths.lth.se

Spatial Statistics

Spatial models for data

GMRF representations of SPDEs can be constructed for oscillating, anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$(x^2 - \Delta)(\tau x(\mathbf{u})) = \mathcal{W}(\mathbf{u}), \quad \mathbf{u} \in \Omega$$

Spatial models for data

GMRF representations of SPDEs can be constructed for oscillating, anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$(\varkappa^2 e^{i\pi\vartheta} - \Delta)(\tau x(\mathbf{u})) = \mathcal{W}(\mathbf{u}), \quad \mathbf{u} \in \Omega$$

Spatial models for data

GMRF representations of SPDEs can be constructed for oscillating, anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$(\mathbf{x}_{u}^{2} + \nabla \cdot \mathbf{m}_{u} - \nabla \cdot \mathbf{M}_{u} \nabla)(\tau_{u} \mathbf{x}(\mathbf{u})) = \mathcal{W}(\mathbf{u}), \quad \mathbf{u} \in \Omega$$

Johan Lindström - johanl@maths.lth.se Spatial Sta

Image Reconstruction II

Model with observations, y, and latent field, x,

$$\textbf{\textit{y}}|\textbf{\textit{x}}\in N\left(\textbf{\textit{A}}\textbf{\textit{x}},\sigma^{2}\textbf{\textit{I}}\right) \hspace{1cm} \textbf{\textit{x}}\in N\left(\mu,\textbf{\textit{Q}}^{-1}\right).$$

and
$$\mathbf{Q} = \chi^2 \mathbf{C} + \mathbf{G}$$
 or $\mathbf{Q} = \chi^4 \mathbf{C} + 2\chi^2 \mathbf{G} + \mathbf{G} \mathbf{C}^{-1} \mathbf{G}$.

Interpolation using a GMRF

$$\mathsf{E}\left(\boldsymbol{x}|\boldsymbol{y}\right) = \boldsymbol{\mu} + \frac{1}{\sigma^2}\boldsymbol{Q}_{\boldsymbol{x}|\boldsymbol{y}}^{-1}\boldsymbol{A}^{\top}\left(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\mu}\right)$$

$$V(\boldsymbol{x}|\boldsymbol{y}) = \boldsymbol{Q}_{x|y}^{-1} = \left(\boldsymbol{Q} + \frac{1}{\sigma^2} \boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}$$

Johan Lindström - johanl@maths.lth.s

Spatial Statistics

19/31

Spatial Statistics Spatial Non-Gaussian Corrupted Pixels

Image Reconstruction

Johan Lindström - johanl@maths.lth.se

atistics

20/31

Spatial Statistics Spatial Non-Gaussian Corrupted Pixels More

Fields GMRF Reconstruction Environmenta

Satellite Data — Vegetation

January 1999

July 1999

Johan Lindström - johanl@maths.lth.s

Spatial Statistics

21

Satellite Data — Models

Independent pixels:

For each pixel, do a standard linear regression.

$$\mathbf{x}(t) = \mathbf{k} \cdot \mathbf{t} + \mathbf{m} + \varepsilon_t$$
 $\varepsilon_t \in \mathbf{N}\left(\mathbf{0}, \sigma^2\right)$

Dependent pixels:

But neighbouring pixels probably behave similarly. Account for dependence in regression coefficients.

$$\begin{aligned} x(s,t) &= k(s) \cdot t + m(s) + \varepsilon_{s,t} & \varepsilon_{s,t} \in \mathbb{N} \left(0, \sigma^2 \right) \\ k(s) &\in \mathbb{N} \left(0, \mathbf{Q}_k^{-1} \right) & m(s) \in \mathbb{N} \left(0, \mathbf{Q}_m^{-1} \right) \end{aligned}$$

Satellite Data — Trend in Vegetation

David Bolin

Independent estimates

Correlated estimates

Non-Gaussian Data

Bayesian hierarchical modelling

A Bayesian hierarchical model typically consists of (at least) Data model, p(y|x): Describing how observations arise assuming known latent variables x.

Latent model,
$$p(x|\vartheta)$$
: $x \in N(\mu, Q^{-1})$.

Parameters, $\pi(\vartheta)$

So far we have assumed Gaussian observations

$$y|x \in N\left(Ax, \sigma^2I\right)$$

However we could (almost) as easily handle

$$\mathbf{y}_i|\mathbf{x}\in\mathsf{F}\left(g(\mathbf{A}\mathbf{x});\,\vartheta\right)$$

Insurance Claims — Count data

Oscar Tufvesson

Given the number of insurance claims, y_i , we want to estimate the risk of an accident.

$$y_i | \eta_i \in Po(E_i \exp(\eta_i))$$

 $\boldsymbol{\eta} = \boldsymbol{B}\boldsymbol{\beta} + \boldsymbol{x}$

Parana Rainfall — Positive data Gamma 15 January log(Precip.) $y_i|x_i\in\Gamma\left(b,\frac{e^{x_i}}{b}\right)$

Image Reconstruction — Corrupted Pixels

- ► Typically we don't know which pixels are bad.
- ► A better model is then
 - Assume an underlying image, x.
 - ► Assume an indicator image for bad pixels, z.
 - Given the indicator we either observe the correct pixel value from x or noise.
- ► Use Bayes' formula to compute the distribution for the unknown image (and indicator) given observations and parameters.

Johan Lindström - johanl@maths.lth.se

Spatial Statistics

28/31

patial Statistics Spatial Non-Gaussian Corrupted Pixels More

Image Reconstruction — Corrupted pixels

Johan Lindström - johanl@maths.lth.se

Spatial Statistics

29/31

patial Statistics Spatial Non-Gaussian Corrupted Pixels More

Potential Thesis Project — Images from Combustion Physics

Johan Lindström - johanl@maths.lth.se

Spatial Statistic

Spatial Statistics Spatial Non-Gaussian Corrupted Pixels More

Learn more!

What?

Spatial statistics with image analysis, FMSN20

When?

HT2-2019, October-December

Where?

Information and Matlab files will be available at www.maths.lth.se/matstat/kurser/fmsn20masm25/ (currently the 2018 webpage, updated soon)

Who?

Lecturer: Johan Lindström

MH:319

Johan Lindström - johanl@maths.lth.se Spatial Statistics