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Spatial Statistics

Many things vary in space and obsevations may
depend on what happens at nearby locations. To
modell and analys such data we need spatial
dependence.

Spatial Interpolation

Given observations at some locations (pixels),
y(ui), i = 1 . . .n
we want to make statements about the value at
unobserved location(s), x(u0).

Stationary Stochastic Processes (FMSF10)
in 2+ dimensions!
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Examples: Image Reconstruction
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Global Temperature — Data

January 2003 July 2003
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Global Temperature — Reconstruction
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Bayesian modelling

A Bayesian model consists of
I A prior, “a priori”, model for reality, x, given by the

probability density π(x).
I A conditional model for data, y, given reality, with

density p(y|x).

The prior can be expanded into several layers creating a
Bayesian hierarchical model.
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Bayes’ Formula

How should the prior and data model be combined to make
statements about the reality x, given observations of y?

Bayes’ Formula

p(x|y) = p(y|x)π(x)
p(y)

=
p(y|x)π(x)∫

x′∈Ω p(y|x′)π(x′) dx′

p(x|y) is called the posterior, or “a posteriori”, distribution.

Often, only the proportionality relation

p(x|y) ∝ p(x,y) = p(y|x)π(x)

is needed, when seen as a function of x.
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Hierarchical Models

I We often have some prior knowledge of the reality.
I Given knowledge of the true reality, what can we say

about images and other data?
I Construct a model for observations given that we know

the truth.
I Given data, what can we say about the unknown

reality?

This is an inverse problem.
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Bayesian hierarchical modelling (BHM)

A hierarchical model is constructed by systematically
considering components/features of the data, and how/why
these features arise.

Bayesian hierarchical modelling

A Bayesian hierarchical model typically consists of (at least)

Data model, p(y|x): Describing how observations arise
assuming known latent variables x.

Latent model, p(x|θ): Describing how the latent variables
(reality) behaves, assuming known parameters.

Parameters, π(θ): Describing our, sometimes vauge, prior
knowledge of the parameters.
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Estimation Procedures

Maximum A Posteriori (MAP): Maximise the posterior
distribution p(x|y) with respect to x.

I Standard optimisation methods
I Specialised procedures, using the model

structure

Simulation: Simulate samples from the posterior
distribution p(x|y).

I Markov chain Monte Carlo (MCMC)
I Gibbs sampling
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Image Reconstruction

Spatial Interpolation

Given observations at some locations (pixels),
y(ui), i = 1 . . .n
we want to make statements about the value at
unobserved location(s), x(u0).

The typical model consists of a latent Gaussian field

x ∈ N (μ,Σ) ,

observed at locations ui, i = 1, . . . ,n, with additive Gaussian
noise (nugget or small scale variability)

yi = x(ui)+ εi εi ∈ N
(

0,σ2
ε

)
.
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Stochastic Fields

To perform the reconstruction (interpolation) we need a
model for the spatial dependence between locations
(pixels).

1. Assume a latent Gaussian field

x ∈ N (μ,Σ) .

2. Assume a regresion model for μ = Bβ.

3. Assume a parametric (stationary) model for the
dependence (covariance)

Σi,j = C(x(ui), x(uj)) = r(ui,uj;θ) = r(
∥∥ui − uj

∥∥ ;θ).

r(ui,uj;θ) is called the covariance function.
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A local model

Instead of specifying the covariance function we could
consider the local behaviour of pixels. A popular model is
the conditional autoregressive, CAR(1) model.

xij =
1

4 + κ2

(
xi−1,j + xi+1,j + xi,j−1 + xi,j+1

)
+ ε,

ε ∈ N
(

0,
1
τ2

)
.

This corresponds to a model for x where

x ∈ N
(

0,Q−1
)
,

where Q is called the precision matrix
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Matérn covariances

The Matérn covariance family

The covariance between two points at distance ‖h‖ is

rM(h) =
σ2

Γ(ν)2ν−1 (κ‖h‖)
νKν(κ‖h‖)

Fields with Matérn covariances are solutions to a Stochastic
Partial Differential Equation (SPDE) (Whittle, 1954),

(
κ2 −Δ

)α/2
x(u) =W(u).
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Lattice on R2

Order α = 1 (ν = 0):
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Spatial models for data

GMRF representations of SPDEs can be constructed for
oscillating, anisotropic, non-stationary, non-separable
spatio-temporal, and multivariate fields on manifolds.

(κ2 −Δ)(τ x(u)) =W(u), u ∈ Rd
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Spatial models for data

GMRF representations of SPDEs can be constructed for
oscillating, anisotropic, non-stationary, non-separable
spatio-temporal, and multivariate fields on manifolds.

(κ2 −Δ)(τ x(u)) =W(u), u ∈ Ω
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Spatial models for data

GMRF representations of SPDEs can be constructed for
oscillating, anisotropic, non-stationary, non-separable
spatio-temporal, and multivariate fields on manifolds.

(κ2 eiπθ −Δ)(τ x(u)) =W(u), u ∈ Ω
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Spatial models for data

GMRF representations of SPDEs can be constructed for
oscillating, anisotropic, non-stationary, non-separable
spatio-temporal, and multivariate fields on manifolds.

(κ2
u +∇ ·mu −∇ ·Mu∇)(τux(u)) =W(u), u ∈ Ω
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Image Reconstruction II

Model with observations, y, and latent field, x,

y|x ∈ N
(

Ax,σ2I
)

x ∈ N
(
μ,Q−1

)
.

and Q = κ2C + G or Q = κ4C + 2κ2G + GC−1G.

Interpolation using a GMRF

E (x|y) = μ+
1
σ2 Q−1

x|y A> (y − Aμ)

V (x|y) = Q−1
x|y =

(
Q +

1
σ2 A>A

)−1
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Image Reconstruction
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Satellite Data — Vegetation

January 1999

July 1999
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Satellite Data — Models

Independent pixels:
For each pixel, do a standard linear regression.

x(t) = k · t + m + εt εt ∈ N
(

0,σ2
)

Dependent pixels:
But neighbouring pixels probably behave
similarly. Account for dependence in regression
coefficients.

x(s, t) = k(s) · t + m(s)+ εs,t εs,t ∈ N
(

0,σ2
)

k(s) ∈ N
(

0,Q−1
k

)
m(s) ∈ N

(
0,Q−1

m

)
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Satellite Data — Trend in Vegetation David Bolin
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Non-Gaussian Data

Bayesian hierarchical modelling

A Bayesian hierarchical model typically consists of (at least)

Data model, p(y|x): Describing how observations arise
assuming known latent variables x.

Latent model, p(x|θ): x ∈ N
(
μ,Q−1

)
.

Parameters, π(θ)

So far we have assumed Gaussian observations

y|x ∈ N
(

Ax,σ2I
)

However we could (almost) as easily handle

yi|x ∈ F (g(Ax); θ)
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Larynx Cancer — Count data

Given counts of larynx cancer cases, yi, and population in
each region, Ei, we want to estimate the risk of cancer.

Counts of Larynx Cancer Population (truncated)

yi|xi ∈ Po (Ei exp(xi))
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Insurance Claims — Count data Oscar Tufvesson

Given the number of insurance claims, yi, we want to
estimate the risk of an accident.

0,7500 1,5000

exp(X*beta)
0,7500 1,5000

exp(u)

yi|ηi ∈ Po (Ei exp(ηi))

η = Bβ+ x
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Parana Rainfall — Positive data

January Precip.
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Image Reconstruction — Corrupted Pixels

I Typically we don’t know which pixels are bad.
I A better model is then

I Assume an underlying image, x.
I Assume an indicator image for bad pixels, z.
I Given the indicator we either observe the correct pixel

value from x or noise.

I Use Bayes’ formula to compute the distribution for the
unknown image (and indicator) given observations and
parameters.
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Image Reconstruction — Corrupted pixels

image reconstruction

bad pixels − estimatebad pixels
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Potential Thesis Project — Images from Combustion Physics
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Learn more!

What?
Spatial statistics with image analysis, FMSN20

When?
HT2-2019, October–December

Where?
Information and Matlab files will be available at
www.maths.lth.se/matstat/kurser/fmsn20masm25/

(currently the 2018 webpage, updated soon)

Who?
Lecturer: Johan Lindström

MH:319
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