

Selective Attention Test

from Simons & Chabris (1999)

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Overview – Systems & Segmentation

- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Computer Vision Tasks

- Classifying images
- Estimating the spatial layout of structurally distinct scene elements
 - Segmentation
- Identifying geometric structure
 - 3d surface or volume of objects
 - Pose of people or other biological forms
- Recognizing objects and actions

Recognition by Detection

Search at multiple locations, scales and for all object categories of interest

Recognizing objects, poses, actions

Dynamic Scenes, 3D Reasoning

Figure-ground segmentation essential

Scene Understanding

sky

tree

Scene Understanding

Ideally, we would want a framework that `uniformly' accommodates color, depth and video analysis

Problems

Region generation

- Systematic, figure-ground hypotheses, combinatorial
- Boundaries from RGB, depth, motion

Region selection, hypothesis set compression

- Object-like = Class-independent = Objectness
- Maximum marginal diversification

Region description

Second-order methods

Complete scene recognition by composition

- Re-combination, re-segmentation of figure-ground
- Sequential vs. simultaneous

Segmentation

 Image segmentation: breaking the pixels or tokens of an image into regions (groups) that share some property

 Semantic segmentation: attach category labels to groups

Mid-level Image Segmentation

- Google Scholar returns over 1.000.000 hits for search terms "Image segmentation".
- 50 years after the first segmentation algorithm.
 - "Experimental evaluation of techniques for automatic segmentation of objects in a complex scene", J. Muerle and D. Allen, 1968.
- Modern well know techniques still aim to segment homogeneous regions, not objects:
 - Normalized Cuts
 - Mean Shift
 - Hierarchical clustering

Mid-level Image Segmentation

Philosophy: split the image into homogeneous regions

Problems with the multi-scale window recognition-by-detection approach

- Computational overhead
 - 10⁴ categories x 10⁶ windows x 10 scales
- Segmentation not considered
 - Improper handling of irregular shapes
 - Window descriptor dominated by background
- Context not considered
 - No criterion for global consistency

Does spatial support matter?

MSRC segmentation dataset

MSRC data-set: 591 images of 23 object classes + pixel-wise segmentation masks

Spatial support matters!

Segmentation

- Important
- Many methods
- Many systems are built along the lines
- Image -> Segments -> Features -> Result
- In this lecture:
 - Discussion on system building and testing
 - More on a few segmentation methods

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Testing your system

- Image analysis systems
 - Often complex and varying data
 - Often a system of systems
- Important to test your system
- Questions
 - Obtain data
 - Obtain 'ground truth' ('Gold Standard')
 - Construct benchmark scripts
 - · Visualize the results
- Adress these questions early in a project

Testing your system, Example 1 Labelled Faces in the wild

- Collection of images from the web
- Face detection
- Pairs of matching faces
- Pairs of non-matching faces

Evaluating segmentation

- The Jaccard score
- A pixels of system segmentation
- B pixels of ground truth segmentation

$$J = \frac{|A \cap B|}{|A \cup B|}$$

Phoning

Playing Instrument

Reading

Riding Bike

Riding Horse

Running

Taking Photo

Using Computer

Walking

True Positives - Cat

UVA_DETMONKEY

MITUCLA_HIERARCHY

False Positives - Cat

UVA_DETMONKEY

MITUCLA HIERARCHY

Example Annotations

lmage

Object segmentation

Class segmentation

Example Segmentations

Ground truth

BONN_FGT_SEGM

BERKELEY_POSELETS_ALIGN_PB

CVC_HARMONY_DET

Example Segmentations

Image

UOCTTI_LSVM_MDPM

Accuracy by Class/Method

Trained on VOC2010 data

	[mean]	back ground		bicycle	bird	boat	bottle	bus	car	cat	chair		dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
BONN_FGT_SEGM	36.5	82.5	54.6	22.5	25.1	27.6	40.0	60.2	48.3	39.4	7.3	30.8	21.3	25.3	34.9	54.1	36.6	22.5	45	17.6	33.5	37.0
BONN_SVR_SEGM	39.7	84.2	52.5	27.4	32.3	34.5	47.4	60.6	54.8	42.6	9.0	32.9	25.2	27.1	32.4	47.1	38.3	36.8	50.3	21.9	35.2	40.9
BROOKES_AHCRF	30.3	70.1	31.0	18.8	19.5	23.9	31.3	53.5	45.3	24.4	8.2	31.0	16.4	15.8	27.3	48.1	31.1	31.0	27.5	19.8	34.8	26.4
CVC_HARMONY	35.4	80.8	56.7	20.6	31.0	33.9	20.8	57.6	51.4	35.8	7.1	28.1	22.6	24.3	29.3	49.4	37.8	23.3	37.6	18.1	45.6	30.7
CVC_HARMONY_DET	40.1	81.1	58.3	23.1	39.0	37.8	36.4	63.2	62.4	31.9	9.1	36.8	24.6	29.4	37.5	60.6	44.9	30.1	36.8	19.4	44.1	35.9
STANFORD_REGLABEL	29.1	0.08	38.8	21.5	13.6	9.2	31.1	51.8	44.4	25.7	6.7	26.0	12.5	12.8	31.0	41.9	44.4	5.7	37.5	10.0	33.2	32.3
UC3M_GENDISC	27.8	73.4	45.9	12.3	14.5	22.3	9.3	46.8	38.3	41.7	0.0	35.9	20.7	34.1	34.8	33.5	24.6	4.7	25.6	13.0	26.8	26.1
UOCTTI_LSVM_MDPM	31.8	80.0	36.7	23.9	20.9	18.8	41.0	62.7	49.0	21.5	8.3	21.1	7.0	16.4	28.2	42.5	40.5	19.6	33.6	13.3	34.1	48.5

Trained on external data

		back	aero										dining			motor		potted				tv/
	[mean]	ground	plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	bike	person	plant	sheep	sofa	train	monitor
BERKELEY_POSELETS	34.7	82.0	49.7	23.3	20.6	19.0	47.1	58.1	53.6	32.5	0.0	31.1	0.0	29.5	42.9	41.9	43.8	16.6	39.0	18.4	38.0	41.5

- Best results exceed best detection-based results for all classes
- BERKELEY_POSELETS method uses additional training annotation for object detection: improves on "horse"

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Segmentation

Goal: Segment the image into pieces/segments, i.e. regions that belong to the same object or that has the same properties. Can also be seen as a problem of 'grouping' of pieces (pixels, regions) together.

Edges, Ridges, Blobs, Interest Points, Textures - already a step towards segmentation.

More generally - segmentation is about cutting out the interestings regions/parts.

Segmentation

Some typical segmentation problems are:

- Cut an image sequence into shots
- Find manufactured parts in an industrial environment
- Find humans in images and video
- Find houses in satellite images
- Find faces in images

Example: OCR.

Example: Image interpretation

Example: Road user analysis

Example: Medical Image Analysis, e.g. Cell analysis

Segmentation

Using clustering:

- Segment images into pieces
- Fit lines to a set of points
- Fit a fundamental matrix to image pairs

In some cases it is easier to view segmentation as the problem of putting pieces together. This is usually called **grouping** (less precise) or **clustering** (which has a precise meaning in the field of pattern recognition).

Why do these tokens belong together?

Gestalt theory

Around 1900 the 'Gestalt' theory was developed by psychologists in Germany, the Berlin school. They developed a descriptive theory of mind and brain. Some principles that they discovered for human grouping of features are:

- Proximity
- Similarity
- Same fate
- Same region
- Closedness
- Symmetry
- Parallelism

Parallelism

Symmetry

Continuity

Closure

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Segmentation using what we have learnt so far

- Pixelwise classification
- Colour-pixel classification
- Filterbanks and classification
- Deep learning
- Clustering
- Connected Components
- Cleaning up among the segments
 - Classification
 - Morphology

Pixels, clustering, segmentation

- At each pixel one could define a feature vector
 - Intensity f(i,j)
 - RGB colour channel (r,g,b)
 - Multispectral channel
 - Position (i,j)
 - Response from a filter bank
- Use machine learning to define a mapping from pixel feature vector to segment
- Either supervised (using lots of old examples) ...
- ... unsupervised (k-means, other clustering methods)

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

Operations on binary images. Can be regarded as non-linear filtering.

 $A = \{(x, y) \in \mathbb{Z}^2 \mid f(x, y) = 1\}$ is considered as a subset of the image.

Definition

Let A and $B \subset \mathbb{Z}^2$.

The **translation** of *A* with $x = (x_1, x_2) \in \mathbb{Z}^2$ is defined as

$$(A)_{x} = \{ c | c = a + x, a \in A \}$$
.

The **reflection** of *A* is defined as

$$\hat{A} = \{ c \mid c = -a, a \in A \}$$
.

Definition

The **complement** of *A* is defined as

$$A^c = \{ c | c \notin A \}$$
.

The **difference** of *A* and *B* is defined as

$$A - B = \{ c | c \in A, c \notin B \} = A \cap B^{c} .$$

Let $B \subset \mathbb{Z}^2$ denote a **structure element**. (Usually B="a circle" with centre at the origin is chosen.)

Definition

The **dilatation** of *A* with *B* is defined by

$$A \oplus B = \{ x \mid (\hat{B})_X \cap A \neq \emptyset \}$$
.

This can also be written

$$A \oplus B = \{ x \mid ((\hat{B})_X \cap A) \subseteq A \}$$
.

The dilation of A with B can be seen as extending A with B.

Definition

The **erosion** of *A* with *B* is defined by

$$A \ominus B = \{ x \mid (\hat{B})_X \subseteq A \}$$
.

The erosion of A with B can be seen as diminishing (eroding) A with B.

Definition

The **opening** of *A* with *B* is defined by

$$A \circ B = (A \ominus B) \oplus B$$
.

Opening = first erosion, then dilation.

- Gives smoother contours.
- Removes narrow passages.
- Eliminates thin parts.

Definition

The **Closing** of *A* with *B* is defined by

$$A \cdot B = (A \oplus B) \ominus B$$
.

Closing = first dilation, then erosion.

- Gives smoother contours.
- Fills up small parts.
- Fills up holes.

Image dilation

Image erosion

Image close

Image open

I

$$I_2 = |I - \text{median}(I)|$$

 $I_3 = imopen(I_2)$

$$I_4 = I \cdot (I_3 > 0.2)$$

Definition

Start with a binary image $A \subset \mathbb{Z}^2$ and a metric d(x, y) that defines the distance between x and y and fulfils

- $ightharpoonup d(x,y) \ge 0$ with equality iff x=y.
- d(x,y) = d(y,x).
- $ightharpoonup d(x,z) \le d(x,y) + d(y,z)$ (the triangle inequality)

Try to for each pixel calculate the shortest distance to A.

Different metrics gives different distances!

- $d^{E}(x, y) = \sqrt{x^2 + y^2}$ (Euclidean metric)
- $d^4(x,y) = |x| + |y| (Manhattan)$
- $b d^{8}(x,y) = \max(|x|,|y|)$ (Chess-board)
- $ightharpoonup d^{oct} = \text{compromise between } d^4 \text{ and } d^8 \quad \text{(Octagonal)}$
- $ightharpoonup d^{ch} = Chamfer 3-4 given by the mask$

The distance transform can be calculated by

- Forward propagation
- Backward propagation

A "mask" is propagated through the image row-wise from the upper left corner to the lower right corner and another "mask" is propagated in the reverse direction. This procedure is repeated until convergence.

The **Skeleton** to a binary image, *A*, is defined by

- For each point, x, in A find the closest boundary point.
- ▶ If there are more than one closest boundary point, then *x* belongs to the skeleton of *A*.

The skeleton is dependent on the chosen metric! Given the skeleton and the actual distance to the boundary for each skeleton point, the binary image A can be recovered.

Calculating the skeleton:

- Using a distance map
- Using morphological operations (thinning).

Overview – Systems & Segmentation

- Recap and outlook
- Computer and Segmentation. Does segmentation matter?
- System
 - Build
 - Test
- Segmentation principles
- Segmentation using tools from lectures 1-7
- Mathematical Morphology

