Image Analysis (FMANZ20)
Lecture 6, 2019

MAGNUS OSKARSSON




Image Analysis - Motivation




Overview — Machine Learning 2

- Machine Learning — supervised vs unsupervised
- More Classification

- Logistic Regression

. Support Vector Machines

- Discriminants

- Multiclass problems



Machine Learning

. Supervised learning - classification
- Training data consists of many pairs (X4,y1), ... (Xn,¥)

- Here x; are examples of input and y; are the corresponding correct
output

- The estimated model is used to classify future data f(x)=y
- Unsupervised learning - clustering

- Training data consists of input data only x4, ..., X,

. After training, the examples are clustered in groups

- Also future data x can be assigned to groups
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- Machine Learning typically has two phases

- Phase 1 — Training

- A training dataset is used to estimate model parameters. Store
these parameters. Code usually assumes that input are vectors

- Phase 2 — Prediction

- Once the parameters have been estimated, we can use the
model to classify future data

Input Label
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Support Vector Machines

@® Positive

e Formulation: O Negative

Margin

_ 1 2
min  —|w|
w,b 2

such that

y.(W'x, +b)>1

e (Quadratic program with -
linear constraints




Solving the Optimization Problem

1 2
Quadratic min —HWH
programming w,b 2
with linear
constraints S.t. ¥, (WTXZ. + b) > ]

Lagrangian \ ‘
Function

minmax L (w,b,a,)= %HWHZ —Zn:al. (yl. (W' X, +b) —1)
i=1

w,b o

S.t. o >0

l

The Lagrangian needs to be minimized w.r.t. w, b, and maximized w.r.t a;



Solving the Optimization Problem

min max L,(w,b,a,)= %Hw”z —Zn:al. (yl.(wal. +b) —1)
i=1

w,b a

st. «a =20
OL 5 Solution is an
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Due to strict convexity, w is unique although a;’s need not be



Solving the Optimization Problem

min max L, (w,b,a,)= %Hw”z —Zn:al. (yl.(wal. +b) —1)
i=1

Wb «

st. a =20

l

Lagrangian Dual \
Problem

o i=1

i=1 j=1

st. « =20, and Zaiyl. =0
=1




Solving the Optimization Problem

e From the KKT conditions, we know:

al.(yl.(wal. +b)—1):O

* Thus, only support vectors have «; # 0

e The solution has the form: Support Vectors 5
W= Zn:aiyixi — Z ;)i X,
i=1 1eSV
get b from y. (W' x. +b)—1=0, | Ny
where x; is support vector b = N_SVZ(WTXi — ;)
i

more robust estimate, average over SVs



Solving the Optimization Problem

e The linear discriminant function is:

g(x)=w'x+b=) ax x+b

1eSV

e Relies on a dot product between the test point X and
the support vectors X;

e Solving the optimization problem involved computing the
dot products xixiT between all pairs of training points



‘Soft Margin’ Linear Classifier

@® denotes +1

e What if data is not linear O denotes -1

separable due to noise or
outliers?

e Slack variables ¢, can be
added to allow for the
mis-classification of
difficult or noisy data




‘Soft Margin’ Linear Classifier

Formulation:
. | 2 &
min —|w[ +C> &
w,b,$ 2 i=1 — for0 < ¢ <1, point
is between margin
such that and correct side of

hyperplane
yi(WTXi +b) > 1 - é

— foré > 1, pointis
misclassified

&0

Parameter C can be viewed as a means to control over-fitting
— small C allows constraints to be easily ignored: large margin

— large C makes constraints hard to ignore: narrow margin

— ( = oo enforces all constraints: hard margin



‘Soft Margin’ Linear Classifier

e Formulation (Lagrangian Dual Problem)

max Za ——ZZO! VY XI X,

u 11]1

such that

O0<a <C

Zn:aiyi =0
i=1



“Soft Margin’ Interpretation (1)

g(X;)
e The constraint y;(W'x; + b) = 1 — ¢; can be written
more concisely as

vigx;) =21 —¢; & §;=max(0,1 — y;g(x;))

e Hence we need to solve the learning problem

N
_ 2
min|lw||" + C z max(0,1 — y;g(x;))
’ i=1



‘Soft Margin’ Interpretation (ll)

We need to solve the learning problem
N
migl||w|‘2 + CE max(0,1 — y;9(x;))
W,
i=1

- y;g(X;) > 1 = point is outside margin and does not
contribute to loss

- y;g(X;) = 1 = point is on margin and does not contribute
to loss (as in hard margin)

- y;9(X;) < 1 = point violates margin constraint and
contributes to loss



SVM uses Hinge Loss

y >
yig(X;)

Can be viewed as an approximation to the 0-1 loss

k. ST S— o 1 2 3



Non-linear SVMs

e Datasets that are linearly separable with noise work out
great:

*—0 .-@'|®—. >x

e But what are we going to do if the dataset is just too hard?

O ® *—0— *0—0—0—0—0—>
0 X

e How about... mapping data to a higher-dimensional space:




Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to
some higher-dimensional feature space where the training
set is separable
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How to Use the Feature Space?

The feature point z = ¢(X) corresponding to an input point x is called
the image (or the lifting) of X ; the input point X, if any, corresponding to
a given feature vector z is called the pre-image of z

The naive way to use a feature space is to explicitly compute the image of
every training and testing point, and run algorithm fully in feature space

Two potential problems

— The feature space may be very high dimensional or infinite

dimensional, so direct (explicit) calculations in such feature space
may not be practical, or even possible

— We may sometimes want to map back an answer from feature space
to the input space. This is called the pre-image problem. For some
feature maps (kernels), analytical expressions are available, but in
most other cases some form of (local) optimization may be necessary



Nonlinear SVMs: The Kernel Trick

e With this mapping, our discriminant function is now:

g(X)=w'g(x)+b= ) ap(x,) p(x)+b

1eSV

e No need to know this mapping explicitly, because we only
use the dot product of feature vectors both in training and

in testing

e A kernel function is defined as a function that corresponds
to a dot product of two feature vectors in some expanded

feature space:

K(x,,x;)=¢(x;) ¢(x,)



Positive Definite Kernels

e Gram Matrix. Given a function k: X? - R (or C), and
patterns x4, ..., X, € X, the m x m matrix K with elements
K;; == k(x;, x;) is called the Gram matrix (or kernel matrix) of

kw.rtx..B X,

e Positive definite kernel. A complex m x m matrix K satisfying
2.ij CiCiK;; = 0,V ¢; € Cis called positive definite. Similarly, a
real symmetric m X m matrix K satisfying the above for all
¢; € Ris called positive definite.

positive definite kernels =Mercer kernels =reproducing kernels =admissible
kernels = support vector kernels =covariance functions



Examples of Kernels

Examples of commonly-used kernel functions:
. T
— Linearkernel:  K(X;,X;)=X; X,
. . T p
~ Polynomial kernel:  K(X;,X,)=(1+X;X )

— Gaussian (Radial-Basis Function (RBF) ) kernel:

)

2
X -x |
i J

20°

K(Xiaxj) = exp(

— Sigmoid:
K(x;,X ;)= tanh(,b’oxij + )



Generality of Kernel Trick

Given an algorithm expressed in terms of a positive-definite
kernel k, we can construct an alternative algorithm by

replacing k with another positive-definite kernel k

This is not limited to only cases when k is a dot product in
the input domain

Any algorithm that only depends on dot products (i.e. is
rotationally invariant) can be kernelized

Kernels are defined on general sets (rather than just dot
product spaces!) and their use leads to an embedding of
general data types in linear spaces



Nonlinear SVM: Optimization

e Formulation (Lagrangian Dual Problem)

max Za ——ZZCZCZ vy K(X;,X;)

11]1
such that

e The solution of the discriminant function is

g(x) = Z o, K(x;,X)+b

1eSV



Support Vector Machine: Algorithm

1. Choose a kernel function

2. Choose a value for C

3. Solve the quadratic programming problem
(many software packages available, e.g. libsvm)

4. Construct the discriminant function from the support vectors



Support Vector Machines

- SVM Applet demo
- http://cs.stanford.edu/people/karpathy/svmjs/demo/

- Other demos

. http://cs.stanford.edu/people/karpathy/convnetjs/



http://cs.stanford.edu/people/karpathy/svmjs/demo/
http://cs.stanford.edu/people/karpathy/convnetjs/

Properties of Kernels

Kernels are symmetric in their arguments:
K(xy,x,) = K(Xp, %)

They are positive valued for any inputs: K(x,,X,) = 0

The Cauchy-Schwartz inequality holds:
K*(x;,%X,) < K(X;,x)K(X;,X;)

Technically, to use a function as a kernel, it must satisfy Mercer’s conditions for
a positive-definite operator

The intuition is easy to grasp for finite spaces
— Discretize X space as densely as desired into buckets Xx;

— Between each two cells x,, X;, compute the kernel function, and write these values
as a (symmetric) matrix M;; = K(x;,X;)
— |If the matrix is positive definite, the kernel is OK



Kernel Closure Rules

Very useful for desighing new kernels from existing kernels
— The sum of any two kernels is a kernel

— The product of any two kernels is a kernel

— A kernel plus a constant is a kernel

— A scalar times a kernel is a kernel



Support Vector Machine Detector

o N e P descriptors
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SVM — Pedestrian detection
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Multi-Class Decision Problems

The goal in classification is to take an input vector X and to assign it to one of K
discrete classes C;, where k = 1,...,K.

The classes are taken to be disjoint, so that each input is assigned to one and only
one class (N.B. This does not necessarily mean that data is separable!)

The input space is thereby divided into decision regions whose boundaries are
called decision boundaries or decision surfaces.

We consider linear models for classification, by which we mean that the decision
surfaces are linear functions of the input vector x and hence are defined by
(D — 1) — dimensional hyperplanes within the D — dimensional input space.

Data sets whose classes can be separated exactly by linear decision surfaces are
said to be linearly separable.



Linear Classification

Classification is intrinsically non-linear because of the training constraints
that place non-identical inputs in the same class

Differences in the input vector sometimes causes 0 change in the answer

The presence of more than two classes makes formulation harder (see next)

Linear classification means that the adaptive part wis linear
— The adaptive part is cascaded with a fixed non-linearity f

— It may also be preceded by a fixed non-linearity ¢ when nonlinear basis

functions are used

fixed i : i Since the decision
IXed non-linear functions boundary is

y v y(X) = constant,
— wl — for p(x) = X, the
Y (X) W ¢(X) T Wos ¢ f (y (X)) decision surfaces
1 1 1 are linear functions
of X even if

adaptive linear parameters  decision _ _
fis non-linear!



Approach 1: Discriminant Function

e Use discriminant functions directly, and do not compute probabilities

 Convert the input vector into one or more real values so that a simple
process (threshold, or majority vote) can be applied to assign the input to
the class

e The real values should be chosen to maximize the useable information
about the class label present in the real value

e Given discriminant functions f; (x), ..., fx (X)

Classify x as class Cy, iff fi,(x) > f;(x),Vj # k



Approach 2: Class-conditional Probabilities

* Infer conditional class probabilities p(Cy |X)

* Use conditional distribution to make optimal decisions, e.g. by
minimizing some loss function

 Example, 2 classes

p(C1|x) = U(WTCP); P(Czb? =1-p(C]x)

1+ exp(—a)

where o(a) =



Approach 3: Class Generative Model

« Compare the probability of the input under separate, class-
specific, generative models

* Model both the class conditional densities p(x|C} ), and the prior
class probabilities p(Cy,)

 Compute posterior using Bayes’ theorem
class conditional density cliss prior

C _ p&ICp(Cr) _  pXICk)P(Ck)
p(Ci|x) = = . .
1 p(x) z;p(x|c;))p(c))
posterior for class
 Example: fit a multivariate Gaussian to the input vectors
corresponding to each class, model class prior probabilities by
training data frequency counts, and see which Gaussian makes a

test data vector most probable using Bayes’ theorem




2 —class case: The decision
surface in data-space for the
linear discriminant function

Y(X) =W X+ w,

W is orthogonal to
any vector which lies
on the decision
surface, y(x) = 0

w controls the
orientation of the
decision surface

y(x,) =w'x, +wy =0
w
xZXJ_‘l‘T'

Ixw' + wy
|lwl]



Represent Target Values: Binary vs. Multiclass

 Two classes (N=2): typically use a single real valued output that has

target values of 1 for the positive class and O (or -1) for the negative
class

— For probabilistic class labels, the target can be the probability of
the positive class and the output of the model can be the
probability the model assigns to the positive class

* For the multiclass (N>2), we use a vector of N target values containing
a single 1 for the correct class and zeros elsewhere

— For probabilistic labels we can then use a vector of class
probabilities as the target vector



Discriminant Functions for Multiclass

* One possibility is to use N binary (2-way) discriminants

— Each function separates one class from the rest.

* Another possibility is to use N(A;_l) binary (2-way) discriminants

— Each function discriminates between two specific classes. We have 1
discriminant for each class pair. For decision, we can take a majority vote

 Both methods have ambiguities



Problems with Multi-class Discriminant Functions
Constructed from Binary Classifiers

not Cs

1-vs.-all 1vs. 1

If we base our decision on binary classifiers, we can encounter
ambiguities



Simple Solution

Use N discriminant functions, Vir Yjr Vs v s and
take the max over their response
— Consider linear discriminants y
V(%) = WX + Wi

— The decision boundary between class k and j
is given by the D — 1 hyperplane

(WkT—WjT)X +(Wko —Wjp) =0

(analogous geometrical properties as in the two class case apply)

In this linear case the decision regions are
convex (max will give consistent results)

Xa, Xp (S RK, )?:AXA + (1_/1)XB'0 SA < 1
From the linearity of y = y;.(X) = Ay, (X4) + (1 — D)y (Xp)
But y,(Xx,)> yj(XA) and y,(xz)> yj(XB) Vj # k= yr(X) > y;(X)

= X also lies inside Ry,
Hence Ry, is convex



Fisher’s Linear Discriminant

We can view classification in terms of dimensionality reduction

A simple linear discriminant function is a projection of the
D — dimensional data X down to 1 dimension

Project: y = w'x;

Classify: if y = —w, then C; else C,

However projection results in loss of information. Classes well
separated in the original input space may strongly overlap in 1d

However, by adjusting the projection (weight vector w) we can
aim at the best separation among classes. But what do we mean
by best separation?



Fisher’s View of Class Separation (I)

Consider a two-class problem. There are N;points of class C;and N, of class C,

The simplest measure of class separation when projected onto w is the one
between the projected class means. This suggests choosing w so to maximize

1 1
— wT — wT _ E _ E
m,—m;=w (m,—mq),m, =W my, m; = - Xp, My = X,
1 2

nec, nec,

This can be made arbitrarily large by increasing “W| ‘ We could handle this by
imposing unit norm constraints using Lagrange multipliers. We get

maXWWT(mz —m,), s.th. HWH =1=>wxXm, —m,
However, still, if the main direction of variance in each class is not orthogonal

to the direction between means, we will not get good separation (see next
slide). This is often due to strongly non-diagonal class distribution covariances



Advantage of using Fisher’s Criterion

% u_%s
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Although well separated in
the original 2d space, when
projected onto the 1d (line)
joining their means, the
classes are not well separated

Fisher chooses a direction that makes
the projected classes much tighter,
even though their projected means are
less far apart



Fisher’s View of Class Separation (ll)

Fisher: maximize a function that gives a large separation between
the projected class means, while also giving a small variance within
each class, thereby minimizing class overlap

— Choose direction maximizing the ratio of between class
variance to within class variance

— This is the direction in which the projected points contain the
most information about class membership (under Gaussian
assumptions)



Fisher’s Linear Discriminant

We seek a linear transformation that is best for discrimination
T
V=W X
Projection onto the vector separating the class seems right, initially
W oC m2 — ml
But we also want small variance within each class

Si¢ = z (O — my)?, my = wimy

necCy

Fisher’s objective function

5 — ml)z «— Between class

J(W) = (m2 >

S1 T8, <«— Within class




Fisher’s Linear Discriminant Derivations

(mz )2 . WTSBW

T
7 +S2 W S, W

~
2
|
|

where
=(m, —m,) (m, —ml)T
- Z(Xn -m,) (x,—m,)’ +Z(Xn -m,) (x, —m,)"

scalar scalar

W) _ 0 = (wi'Szw)S,w = (WI'S,,w)Spw

dw

Optimal solution: w oc S (m,—m,) o (m,—m,)

The above result is known as Fischer’s linear discriminant. Strictly it is not a discriminant,
but rather a direction of projection that can be used for classification in conjunction with
a decision (e.g. threshold) operation.



Fischer’s Linear Discriminant Computation

However, the objective J/(w) is invariant to rescaling w — aw. We can
chose the denominator to be unity. We can then minimize

1
min ——w/Szw
w2

wis,w=1

This corresponds to the (primal) Lagrangian

1 T 1 T

From the KKT conditions . .
Generalized eigenvalue

-1
Spw = AS,,w = S;ylst — Aw problem,.as S/ S not
symmetric



Fischer’s Linear Discriminant Computation

S Spw = Aw
* Given that Sg is symmetric positive definite, we can write
Sp= 531/2531/2
where Sz = UXUT, S,1/? = yxt/2yT

* Defining v = SBl/Zw, we get
S;1/%28.18 .12y = Jv

 We have to solve a regular eigenvalue problem for a symmetric, positive
definite matrix Sz /2S;;1Sz 1/

— We can find solutions A;, and v;, corresponding to SBl/zw

 Which eigenvector and eigenvalue should we chose? The largest! Why?

* Transforming to dual

1 1
wiSew=1, wi'S,w = — = Lp = const. + -4
k

(need to maximize over A)



The Logistic Sigmoid (due to S-shape)

 Thisis also called a squashing function because
it maps the entire real axis into a finite interval

* For classification, the output a is a smooth
function of the inputs and the weights w —— g = WTX + W,

* Properties

1
o
g(—a) =1—o(a), a=In y=o(a)= —
(1 - “) 1+e ¢
logit function oa oa
~ N P
T ow, OX,
y 0.5 &y
(11—
b (1-y)
0 |



Probabilistic Generative Models

Use a class prior and a separate generative model of the input
vectors for each class, and compute which model makes a test

input vector most probable Logistic
The posterior probability of class 1 is given by: sigmoid
p(C)p(x|C) 1
p(Cx) = : 1 = —
p(C)p(x|C)+ p(C,)p(x]|C,) l+e

p(C)p(x|C) —1n p(C [ x)
p(C,)p(x|C,) 1-p(C[x)
]

z is called the logit and is given
by the log odds

where a = In




Multiclass Model (Softmax)

x|Cr)p(Ck) p(xX|Cr)p(Ck)

C. |X — P —

P(Ciclx) p(x) ij(x|Cj)p(Cj)
exp(ag)
Zjexl)(aj)

where a;, = Inp(X|Cr)p(Cy)

 This is known as the normalized exponential
 Can be viewed as a multiclass generalization of the logistic sigmoid

* ltis also called a softmax function (it is a smoothed version of ‘max’)

if ap > a; Vj # k,then p(Cy|x) = 1and p(C;| x) = 0



Gaussian Class-Conditionals

 Assume that the input vectors for each class are from a

Gaussian distribution, and all classes have the same covariance
matrix. The class conditionals are

normalizer (same) inverse covariance matrix

| |
p(x|C)=1/Zexpl-Lt(x—p,) =7 (x—p, )

* Fortwo classes, (; and C,, the posterior turns out to be a
logistic

p(C | x)=c(W x+w,)

Quadratic terms in X canceled

W = Z_l (ul — u2) due to common covariance

p(C))
p(C,)

Wy =5 E +o I, +in



Interpretation of Decision Boundaries

p(C | x)=o(W x+w,)

W= E_I(Hl _uz)
p(C)
p(C,)

Quadratic terms canceled due to common covariance

Wp =5 R+ T, +In

The sigmoid takes a linear function of X as argument

The decision boundaries correspond to surfaces along which the
posteriors p(Cy |X) are constant, so they will be given by linear functions
of X. Thus, decision boundaries are linear functions in input space

The prior probabilities p(C; ) enter only through the bias parameter wy, so
changes in priors have the effect of making parallel shifts of the decision
boundary (more generally of the parallel contours of constant posterior
probability)



A picture of the two Gaussian models and the
resulting posterior for the red class

p(X|C1), p(X|C3) p(Cy]x)

The logistic sigmoid in the right-hand plot is coloured using a proportion of red tone
given by p(C;|x) and a proportion of blue tone given by p(C,|x) = 1 — p(C;|x).



Class posteriors when covariance matrices are
different for different classes
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p(Cy|Xx)

The decision surface is planar when the
covariance matrices are the same and
quadratic when they are not
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