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Image Analysis - Motivation



Overview – Machine Learning 1

1. Machine Learning

2. Bayes Theorem

1. Counting

2. Binning

3. Curse of dimensionality

4. Adaptive binning (K-means)

3. Nearest Neighbour, K-NN

4. Parametric Density Estimation (Plug-in classifier)

5. Logistic regression

P (Y |X) =
P (X|Y )P (Y )

P (X)



Machine Learning – Bayes rule
Introduction Classification Other Reduction Statistical Probability K-NN

Assume that one feature vector x and class y are drawn from a
joint probability distribution. If one can calculate the probability
that the class is y = j given the measurements x, i.e. the so
called posterior probability.

P(y = j |x)

The maximum a posteriori classifier is obtained as selecting
the class j that maximizes the posterior probability, i.e.

j = argmaxk P(y = k |x).

It is often easier to model and estimate the likelihood

P(x|y = j) and to model the prior p(y = j). The a posteriori
probabilites can then be calculated using the Bayes rule,

p(y = j |x) = p(x|y = j)p(y = j)
p(x)

.
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Example
• In a small town, there are two bicycle brands albatross and 

butterfly. Albatross sell mostly green bikes (80 percent) are
green and the rest are yellow. Butterfly sell 50 percent green 
bikes and 50 percent yellow. The Albatross brand is more
popular. They have 90 percent of the market in the town. In 
another nearby town, from a distance you see a yellow bike. 
What is the probability that the bike is an Butterfly bike?



P(x,y) x=Green x=Yellow P(x|y) x=Green x=Yellow
y=Albatross 0,72 0,18 0,9 p(y=Albatross) y=Albatross 0,80 0,20 1,00
y=Butterfly 0,05 0,05 0,1 p(y=Butterfly) y=Butterfly 0,50 0,50 1,00

0,77 0,23 1 1,30 0,70 2,00
p(x=Green) p(x=Yellow)

P(y|x) x=Green x=Yellow
y=Albatross 0,94 0,78 1,72
y=Butterfly 0,06 0,22 0,28

1 1 2

Joint probabilites P(x,y)
• Joint probability and the prior

• Joint probability and the total probability

How is the example related to problems in image analysis?

Example 2.1.4. In a medical image, there are two types of pixels background and heart. Background pixels
are usually dark (80 percent) but sometimes bright. Heart pixels are usually bright (50 percent) of the time.
Background pixels are more common. In a usual medical image 80 percent of the pixels are background. You
see a bright pixel. What is the probability that this is a heart pixel?

Assume that one feature vector (measurements) x and class (the unknown quantity) y are drawn from a joint
probability distribution. If one can calculate the probability that the class is y given the measurements x, i.e.
the so called posterior probability

P (y|x)

then it makes sense to classify the measurement according to the class that gives the highest posterior probabil-
ity.
The joint probability P (x,y) is related to the prior probability as

P (x) =
X

y

P (x,y)

and to the total probability
P (y) =

X

x

P (x,y).

The joint probability P (x,y) is related to the prior probability P (y) and the conditional probability P (x|y)
according to P (x,y) = P (x|y)P (y), but also as P (x,y) = P (y|x)P (x)

Example 2.1.5. In a small town, there are two bicycle brands albatross and butterfly. Albatross sell mostly
green bikes (80 percent) are green and the rest are yellow. Butterfly sell 50 percent green bikes and 50 percent
yellow. The Albatross brand is more popular. They have 90 percent of the market in the town. In another nearby
town, from a distance you see a yellow bike. What is the probability that the bike is an Butterfly bike? The prior
probability of the two brands are

P (0Albatross
0) = 0.9,

P (0Butterfly
0) = 0.1.

So if you see a bike, but cannot see the colour or the brand, there is a 90 percent chance that it is an ’Albatross’
bike. This is the prior probability of the two unknown classes before getting any new measurements x.
The measurement probabilites are

P (0green0|0Albatross
0) = 0.8

P (0yellow0|0Albatross0) = 0.2

P (green0|0Butterfly
0) = 0.5

P (yellow0|0Butterfly
0) = 0.5

The Joint probabilites are
P (0green0

,
0
Albatross

0) = 0.8 · 0.9 = 0.72

P (0yellow0
,
0
Albatross

0) = 0.2 · 0.9 = 0.18

P (green0
,
0
Butterfly

0) = 0.5 · 0.1 = 0.05

P (yellow0
,
0
Butterfly

0) = 0.5 · 0.1 = 0.05

The total probabilities of the two measurements are

P (0green0) = 0.8 · 0.9 = 0.72 + 0.05 = 0.77

P (0yellow0) = 0.2 · 0.9 = 0.18 + 0.05 = 0.23
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A posteriori probabilites
• A posteriori probabilites

The a posteriori probabilies are

P (0Albatross0|0green0) = 0.72/0.77 =

P (0Albatross0|0yellow0) = 0.18/0.23 = 0.78

P (Butterfly
0|0green0) = 0.05/0.77 =

P (Butterfly
0|0yellow0) = 0.05/0.23 = 0.22

Before seeing the colour of the bike, the a priori probability of it being a ’Butterfly’ bike is only 5 percent. After
seeing that it is yellow the probability has increased to 22 percent. But if you hade to guess which brand it is,
the best guess is still that it is an ’Albatross’ bike.

Understanding the classification problem often boils down to

1. modelling the a priori probabilites P (y), modelling and then estimating the measurement probabilites
P (x|y).

2. It is then straightforward to calculate the joint probabilites

P (x,y) = P (x|y)P (y)

.

3. From the joint probabilites one can calculate the total probabilites

P (x) =
X

y

P (x,y)

4. and then the a posteriori probabilites

P (y|x) = P (x,y)/P (x)

5. The best guess of the unknown class y is the one that has the highest a posterior probability P (y|x)

Remark. For a given measurement x, the total probability P (x) is constant. Finding the best guess y can be
found by maximizing the joint probability P (x,y).
Remark. Both measurements x and classes y might be discrete or continuous. If they are continuous, similar
formulas are obtained by replacing probabilites with probability density functions.

7

P(x,y) x=Green x=Yellow P(x|y) x=Green x=Yellow
y=Albatross 0,72 0,18 0,9 p(y=Albatross) y=Albatross 0,80 0,20 1,00
y=Butterfly 0,05 0,05 0,1 p(y=Butterfly) y=Butterfly 0,50 0,50 1,00

0,77 0,23 1 1,30 0,70 2,00
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y=Butterfly 0,06 0,22 0,28

1 1 2



Usual workflow
• Model prior           and measurement probabilites

• Joint probability

• Total probability

• A posteriori probability

• Classify according to maximum a posteriori probability
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Another example – heart pixels
(We assume that we have segmented and annotated a number of heart images) 



Use binning (quantization) to get 
fewer gray levels. Here 6 levels



P(x | background) P(x | heart)

Discretize pixel brightness
using 6 bins. Estimate probabilites
from training data 



P(x | background) P(x | heart)

Discretize pixel brightness
using 6 bins. Estimate probabilites
from training data



Estimate a posteriori probabilites.



P(background | x) P(heart | x)

Estimate a posteriori probabilites.
Use these as gray level transforms



Discretize pixel brightness
using 6 bins. Estimate probabilites

P(heart | x)



P(x | background) P(x | heart)

Discretize pixel brightness
using 60 bins. Estimate probabilites



P(background | x) P(heart | x)

Estimate a posteriori probabilites.
Use these as gray level transforms



Discretize pixel brightness
using 60 bins. Estimate probabilites

P(heart | x)



Discretize pixel brightness
using 60 bins. Estimate probabilites

P(heart | x) > 0.5



False Positives, False Negatives
ROC - Curve
• For two class problems - Negatives and Positives

• Negatives that are classified as negatives – True Negatives (TN)

• Positives that are classified as positives – True Positives (TP)

• Negatives that are classified as positives – False Positives (FP)

• Positives that are classified as negatives – False Negatives (FN)

• False Positive Rate FPR = FP/(FP+TN) -> x-axis

• True Positive Rate TPR = TP/(TP+FN) -> y-axis



False Positives, False Negatives
ROC - Curve
• FPR = FP/(FP+TN) -> x-axis

• TPR = TP/(TP+FN) -> y-axis



Bayes Theorem
• Bayes Theorem

• Interpret P as probabilites, e.g. If X and Y are discrete

• Interpret P as probability density functions, e.g. If X and/or Y 
are continuous stochastic variable, 

P (Y |X) =
P (X|Y )P (Y )

P (X)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

fY (y|X = x) =
fX(x|Y = y)fY (y)

fX(x)



From 1 channel to 3
Colour images

Sky

Castle

Grass



Binning in higher dimensions
The curse of dimensionality

• 10 bins in one dimension -> 10 bins

• 10 bins in two dimensions -> 100 bins

• 10 bins in three dimensions -> 1000 bins

• 10 bins in 30 dimensions -> 1 000 000 000 000 000 
000 000 000 000 000 bins

• 10 bins in 128 dimensions -> 10^(128) bins

• ”Many algorithms that work fine in low dimensions 
become intractable when the input is high-
dimensional.”, Bellman, 1961.

Richard Bellman



Clustering – adaptive binning
• Colour images. Pixels are RGB with 8 bits each. 2^24 

= 16777216 types of pixels. 

• Too many. 

• Try to bin in a more clever way?

• Clustering



Clustering: group together similar points and represent them 
with a single token

Key Challenges:

1) What makes two points/images/patches 
similar?
2) How do we compute an overall grouping 
from pairwise similarities? 

Slide: Derek Hoiem



Why do we cluster?
• Summarizing data

• Look at large amounts of data
• Patch-based compression or denoising
• Represent a large continuous vector with the cluster number

• Counting
• Histograms of texture, color, SIFT vectors

• Segmentation
• Separate the image into different regions

• Prediction
• Images in the same cluster may have the same labels

Slide: Derek Hoiem



How do we cluster?

• K-means
• Iteratively re-assign points to the nearest cluster center

• Agglomerative clustering
• Start with each point as its own cluster and iteratively merge 

the closest clusters
• Mean-shift clustering

• Estimate modes of pdf
• Spectral clustering

• Split the nodes in a graph based on assigned links with 
similarity weights



K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 

center

3. Compute new 
center (mean) for 

each cluster

http://en.wikipedia.org/wiki/K-means_clustering


K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 

center

3. Compute new 
center (mean) for 

each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering


K-means
1. Initialize cluster centers: c0 ; t=0

2. Assign each point to the closest center

3. Update cluster centers as the mean of the points

4. Repeat 2-3 until no points are re-assigned (t=t+1)
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Slide: Derek Hoiem



K-means converges to a local 
minimum



K-means: design choices
• Initialization

• Randomly select K points as initial cluster center

• Or greedily choose K points to minimize residual

• Distance measures

• Traditionally Euclidean, could be others

• Optimization

• Will converge to a local minimum

• May want to perform multiple restarts



How to evaluate clusters?

• Generative

• How well are points reconstructed from the clusters?

• Discriminative

• How well do the clusters correspond to labels?

• Note: unsupervised clustering does not aim to be 
discriminative

Slide: Derek Hoiem



How to choose the number of 
clusters?
• Validation set

• Try different numbers of clusters and look at performance

• When building dictionaries (discussed later), more clusters 
typically work better

Slide: Derek Hoiem



K-Means pros and cons
• Pros

• Finds cluster centers that minimize 
conditional variance (good representation 
of data)

• Simple and fast*
• Easy to implement

• Cons
• Need to choose K
• Sensitive to outliers
• Prone to local minima
• All clusters have the same parameters 

(e.g., distance measure is non-adaptive)
• *Can be slow: each iteration is O(KNd) for 

N d-dimensional points
• Usage

• Rarely used for pixel segmentation



Building Visual Dictionaries
1. Sample patches from a 

database

• E.g., 128 dimensional 
SIFT vectors

2. Cluster the patches

• Cluster centers are the 
dictionary

3. Assign a codeword 
(number) to each new 
patch, according to the 
nearest cluster



Examples of learned codewords

Sivic et al. ICCV 2005http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf

Most likely codewords for 4 learned “topics”
EM with multinomial (problem 3) to get topics

http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf


Example:
Colour pixel classification
• Use clustering to assign codewords (bin nr) x 1-10 for 

each pixel

• Estimate measurement probabilites p(x|y) for each
class y (1-grass, 2-castle, 3-sky) and each bin x.

• Use Bayes theorem to calculate p(y|x) for each pixel,

• Classify according to maximum a posteriori probability



Example:
Colour pixel 
classification



Example:
Colour pixel 
classification



Example:
Colour pixel 
classification



Nearest Neighbour Classification
NN and K-NN

• Classify using training data (xi,yi)

• NN: Use the label of the nearest neighbour

• KNN: Use the label of the majority of the k nearest 
neigbhours

• Regression: Use the average of the value of the k nearest 
neighbours

• Easy to implement and understand

• Can use arbitrary distance functions between images

• Converges to the optimum

• Slow when using lots of data, need to store all training data, 
not smooth regression



Nearest Neighbour Classification
(discussion)

Nearest Neighbor

: An Introduction to Machine Learning 7 / 49



7 Nearest Neighbour
Classification

7 Nearest Neighbors

: An Introduction to Machine Learning 8 / 49



7 Nearest Neighbour
Classification

7 Nearest Neighbors

: An Introduction to Machine Learning 9 / 49



Nearest Neighbour Classification
NN and K-NN

• Training is easy, just store the training data T = {(x1,y1), …, 
(xN,yN)}

• Works in any dimension
• Works for regression also: Use the average of the value of 

the k nearest neighbours
• Easy to implement and understand
• Can use arbitrary distance functions between images
• Converges to the optimum

• Slow when using lots of data, 
• Need to store all training data
• Not smooth regression



Parametric density estimation
Plug-in Classifier

• Parametric density estimation
• (compare with Nonparametric density estimation)

• Parametric – fixed nr of parameters

• Nonparametric – nr of parameters grow with training data

• Plug-in classifier, i.e. plug-in the estimated densities in Bayes rule

• Classification



• Bayes Theorem

• Interpret P as probabilites, e.g. If Y – discrete

• Interpret P as probability density functions, e.g. If X and/or Y 
are continuous stochastic variable, 

P (Y |X) =
P (X|Y )P (Y )

P (X)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

fY (y|X = x) =
fX(x|Y = y)fY (y)

fX(x)

Parametric density estimation
Plug-in Classifier



Parametric density estimation
Example: Pixel classification. Gray-scale image, 
easier to plot 1D distributions.
Classify ’Castle’ vs (’sky’ and ’grass’)



Parametric density estimation
’Castle’ vs (’sky’ and ’grass’)
Since it is 1D. Easy to to both binning and parametric
density estimation
Assume normal distribution.
Two parameters, mean m and standard deviation sigma.
Estimate using maximum likelihood method. 



Parametric density estimation

1. Parametric density estimation – estimate m and sigma, 
(estimate or guess prior)

2. Plug-in classifier, i.e. plug-in the estimated densities (and priors) 
in Bayes rule

3. Classification

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)



Compare binning
Vs parametric
1. Binning

1. Works only in 1 or a few
dimensions

2. Can be used in higher
dimensions with adaptive 
binning (clustering, k-means)

3. Discontinuous

2. Parametric density estimation

1. Must guess density model

2. Fewer parameters to estimate

3. Fewer parameters to store

4. Can be smooth
P (Y = y|X = x) =

fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)



Parametric density estimation

• Many interesting and useful parametric densities to choose from

• Estimation of parameters can be 

• easy (simple formulas) or 

• hard 

• involve convex optimization (no local optima, guaranteed results

• non-convex optimization (many local optima, no guarantee on 
finding the best optima.

• Fewer parameters to estimate

• Fewer parameters to store

• Can be smooth



Logistic regression

• Motivation

• In the end we are only interested in the 
posterior distribution

• Why not estimate this instead

• Skip the step of estimating the 
measurement densities

• Details far away from the transition points
are uninteresting (perhaps)

• Notice that the posterior looks like a 
smoothed step function

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)



Example

fX(x|Y = 1)

fX(x|Y = �1)

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)



P (Y = 1|X = x)

Example P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)



Logistic regression
• Discuss ideas and derivations on blackboard

• z = simple function of x, e.g. Linear z = wTx+b

• Output y = smooth threshold of z, for example

• Notice that s(z) looks like a typical P(Y=1 | x) function

x 2 Rd, w 2 Rd, b 2 R, f(x) = s(wTx+ b)

P (Y = 1|x) = 1

1 + e�z

s(z) =
1

1 + e�z



Derivation
• Estimate parameters

• For both cases we have

• Calculate likelihood for training data 

P (Y = 1|x) = 1

1 + e�z

P (Y = �1|x) = 1� 1

1 + e�z
=

e�z

1 + e�z
=

1

ez + 1

T = (x1, y1), . . . , (xn, yn)

P (Y = y|x) = 1

1 + e�yz



Estimate parameters
• Parameters 

T = (x1, y1), . . . , (xn, yn)

P (Y = y|x) = 1

1 + e�yz

✓ = (w, b)

log(P ) = log(
Y

i

P (Y = yi|xi, ✓))

X

i

log(
1

1 + eyi(wT xi+b)
)

LIBLINEAR: A Library for Large Linear Classification
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Appendix: Implementation Details and Practical Guide

Appendix A. Formulations

This section briefly describes classifiers supported in LIBLINEAR. Given training vectors
xi 2 Rn, i = 1, . . . , l in two class, and a vector y 2 Rl such that yi = {1,�1}, a linear
classifier generates a weight vector w as the model. The decision function is

sgn
�
wTx

�
.

LIBLINEAR allows the classifier to include a bias term b. See Section 2 for details.

A.1 L2-regularized L1- and L2-loss Support Vector Classification

L2-regularized L1-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

lX

i=1

(max(0, 1� yiw
Txi)),

whereas L2-regularized L2-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

lX

i=1

(max(0, 1� yiw
Txi))

2. (2)

Their dual forms are:

min
↵

1

2
↵T Q̄↵� eT↵

subject to 0  ↵i  U, i = 1, . . . , l.

where e is the vector of all ones, Q̄ = Q+D, D is a diagonal matrix, and Qij = yiyjxT
i xj .

For L1-loss SVC, U = C and Dii = 0, 8i. For L2-loss SVC, U = 1 and Dii = 1/(2C), 8i.

A.2 L2-regularized Logistic Regression

L2-regularized LR solves the following unconstrained optimization problem:

min
w

1

2
wTw + C

lX

i=1

log(1 + e�yiwTxi). (3)

Its dual form is:

min
↵

1

2
↵TQ↵+

X

i:↵i>0

↵i log↵i +
X

i:↵i<C

(C � ↵i) log(C � ↵i)�
lX

i=1

C logC

subject to 0  ↵i  C, i = 1, . . . , l.

(4)

A.1

max

(dual problem)



Logistic regression
• Linear logistic regression 

• Estimate the posterior

• As linear function followed by standard 
logistic function

• Convex optimization problem

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)

x 2 Rd, w 2 Rd, b 2 R, f(x) = s(wTx+ b)

s(z) =
1

1 + e�x

Standard 
logistic function



Logistic regression
• Estimate w and b

• Posterior distribution

• Simple model

P (Y = y|X = x) =
fX(x|Y = y)P (Y = y)

fX(x)
x 2 Rd, w 2 Rd, b 2 R, f(x) = s(wTx+ b)

s(z) =
1

1 + e�x

Standard 
logistic function



Review
• Machine Learning

• Classification
• Bayes Rule
• Estimating density functions

• Counting
• Binning
• Adaptive binning (k-means)
• Parametric density estimation
• Plug in estimated densities

• Plug-in classifier
• NN and K-NN
• Logistic Regression

• Clustering
• K-means



Image Analysis - Motivation




