Image Analysis (FMANZ20)
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Features - Motivation

ORB-SLAMZ2: an Open-Source SLLAM System for Monocular, Stereo and RGB-D Cameras
Raul Mur-Artal, Juan D. Tardos



https://arxiv.org/search/cs?searchtype=author&query=Mur-Artal%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Tardos%2C+J+D

Overview —Feature Detection

- Techniques

- Scale space theory

- Detectors

- Edges
- Ridges
- Corners
- SIFT

- Texture



Image data reduction




Image data reduction

Reduce number of colors (10 in this case) using clustering
(We will talk about clustering later on in the course)



Image data reduction
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he local intensity is coded using ditferent sized blobs.

Half-toning can be used to print and send photographs.



Image data reduction

Line drawings capture much of the content of an image.
How can we extract lines and edges from an image”?



| ocal Features

Goal: Find a low-dimensional
description of image content
Edges | g
Corners

Other features
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Scale Space

Example: What is a cloud?
» something in the sky

» Regions in the atmosphere, where the density of
condensed H,O is above 0.4gm~ at a resolution of about
1 m.



Scale Space




Scale Space

Principal of causality

If Vo > V; then d(x, V) can be calculated from d(x, V1) but not
vice versa.

We can go from a finer scale to a courser scale but not the
other way!



Scale Space

The idea behind scale space theory is to every function
f: R" — R associate a family { T;f|t > 0} of gradually
smoothed functions

th : ]Rn — R .

The original signal corresponds to scale t = 0. Increasing scale
simplifies the signal but should not introduce new features (e.qg.
new local minima or maxima).



Scale Space

Definition
The Gaussian kernel in two dimensions is defined as
1 _IxI2/2p2 5
Gb(X):zwaG X|7/20% X € R=.

Definition
The Gaussian scale space corresponding to the function
f: R? — R is a family of functions {T;f|t > 0} parameterized by

the variable t, where



Scale Space

Theorem
An operator T; with the following properties

» T;is alinear and translation invariant operator for every
L,

» Scale invariance. If a function is scaled with a factor )\, i.e.
g(x) = f(x/)\) then there exists a scale t' = t'(t, \) such
that T:g(x) = (T#f)(x/A),

» Semi group property: T; (T:,f) = Ty 41,
» Positivity preserving: f >0 = T;f > 0,

IS given by



Scale Space

What does
ft: thO:fO*G\/f ?

There is no image with infinite resolution, i.e. the image at scale
0, f.

The only information we have about the image is an
observation at one scale f, i.e. f;,.



Two popular uses of
Scale Space

» The coarse to fine principle. In many applications it is
useful to first search through the image on a coarse scale
and then refine the search on a finer scale in the most
iInteresting regions.

» Scale space analysis: Many features (e.g. edges) can be
defined on all scales. Using the whole scale space
representation one can construct robust detectors. Often
features are detected on a coarser scale and positioned
more precisely on a finer scale.



Scale Space Pyramid

* Fast implementations can
be made using scale space
pyramids

» After scale space smoothing
one does not need to save
all pixels and can
subsample the image,
usually in steps of two.




A bar in the
big Images Is
\' a hair on the
. Zzebra’'s nose;
| L Insmaller

1 images, a
- stripe; in the
smallest, the
animal’s nose
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Edge detection

* Goal: Identify sudden o
changes (discontinuities) in %
an image | '
* This Is where most

information in an image is
coded

 Example: line drawings




What causes an edge?

* Depth discontinuity
» Surface orientation

discontinuity
» Changes in surface SN , iR

* Light discontinuities (e.qg.
shadows)



Edge detection

Edge detection is based on finding points in the image, where
the first order derivatives are large.
Two main approaches

» Find points where the second derivative (in some sense) is
zero (Laplacian methods).

» Find points where the first derivative is large (gradient




Laplacian methods

Define the edge as the inflexion point. < second derivative = 0

A

Find zeros of Af =0orto AG, *x f = 0, where G, is the
Gaussian function.



Laplacian methods

Laplacian methods have been used, but they have several
disadvantages

» The Laplace filter is un-oriented
» The result is sometimes strange at sharp corners

» The result is strange where 3 or more intensities/colours
Intersect




Gradient methods

One dimension:

Model of an edge: Maximum of derivative = position of edge
Two dimensions: Use discrete approximation of

Of\* [ Of\° )
- — ) =|Vf]?.
(3x) + () ="



Scale

Increased scale:
* Eliminates noisy edges
* Makes edges smoother and thicker
 Removes fine details



Suppression of non-maxima:

Choose the local maximum point along a perpendicular
cross section of the edge.



Example:
Suppression of non-maxima

courtesy of G. Loy

Original image Gradient magnitude Non-maxima
suppressed



Example:
Canny Edge Detection

Using Matlab with default thresholds
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Ridge detection

Example from Masters thesis project in medical image analysis

Calculated smoothed second derivatives

0°G,

x2 x f




Ridge detection

Different scales (smoothing) is used to find ridges of different
scales (widths)

The second derivatives in an arbitrary direction can be
calculated from a combination of the three second order
derivatives.

Compare with gradient.

0°G
RXX — 8)(23 *f
0% G
Ry = Ixy * f
2

oy?



Ridge detection

The second order filters:

A filter in an arbitrary direction given by 6:

(cos(#) sin(6)) (ZX gjﬁ) (Z(i)r?((g))>



1011

Ridge detect

ke

Find the threadli
ing out from the growth cone

cell.

INg nerve-

Grow

structures grow

Histogram equalization




Ridge detection

Filter with elongated gaussians in different directions

Filterbank with 16 directions — N\ . /S




Ridge detection

Filter with elongated gaussians in different directions
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lllustration of partial derivatives

lllustrations of the partial derivatives i’—’ and 2 }f,



Structure/Orientation Tensor

Construct the matrix

7 Wik ny- » (df) * Gp ((()))f((())}f/)*Gb
Wy Wyl |[(5x8y)* G (5))° * G

where G denotes the Gaussian function with parameter b.
M - orientation tensor.

Note: We construct a matrix for every pixel.



Structure Tensor

The matrix M has the following properties:
» (Flat) Two small eigenvalues in a region - flat intensity.
» (Flow) One large and one small eigenvalue - edges and
flow regions.
» (Texture) Two large eigenvalues - corners, interest points,
texture regions.

This can be used in algorithms for segmenting the image into
(flat, flow, texture).



Corner Detector

 Compute x- and y-derivatives with a Gaussian
filter

» Form the orientation tensor M for every pixel

» Compute the product of eigenvalues, i.e. the
determinant of M

* |f both eigenvalues large (product is a local
maximum), then it is a corner!



Harris Corner Detector

Eigenvalue two of
the orientation tensor



Harris Corner Detector

Eigenvalue two of Two large Eigenvalues
the orientation tensor Gives a corner



- Harris/Foerstner corner detector




Harris/Foerstner corner detector
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SIFT
Scale Invariant Feature Transform)

Scale A ﬁ /:’9 %
| =
=" -

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)



SIFT
Scale Invariant Feature Transform
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SIFT
(Scale Invariant Feature Transform)




SIFT
Descriptor

16x16 window 128 dimensional vector
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SIFT examples

Examples from image search

Examples from 3D modelling



GROBNER BASIS METHODS

OR MINIMAL PROBLEMS IN
VIPUTER VISION




Scalable Recognition with a Vocabulary Tree

David Nistér and Henrik Stewénius
Center for Visualization and Virtual Environments
Department of Computer Science, University of Kentucky

http: //www.vis.uvky.edu/~dnister/ http://www.vis.uky.edu/~stewe/

Abstract

A recognition scheme that scales efficiently 1o a large
number of objects is presented. The efficiency and quality is
exhibited in a live demonstration that recognizes CD-covers
from a database of 4NN images of popular music CD'’s.
The scheme builds upon popular technigues of indexing
descriptors extracted from local regions, and is robust
to background clunter and occlusion. The local region
descriptors are hierarchically quantized in a vocabulary
tree.  The vocabulary mee allows a larger and more
discriminatory vocabulary to be used effictently, which we
show experimentally leads to a dramatic improvement in
retrieval quality. The most significans property of the



* Query (text):
* "wikl Lund University”

* Query contains
'words’”: 9, 6, 8

e Dict.

‘Aardvark’ - 1
‘Abba’ - 2
‘Conference’ - 3
‘Eslov’' - 4
Lomma’ - 5
Lund’ - 6
‘Malmo’' - 7
‘University’' - 8
‘wiki' - 9

'Os’ - 10



Qu ery (|maq ) Visual dict
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« Image contains 'visual words’: 1, 8, ...
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&

Filterbank

Convolve with each filter

Result 1s a block of data
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Filterbank oo I0IC ....

Convolution, filter h

= S:ij(i—u,j — v)h(u,v)

Many convolutions, filterbank h with K filters

q(t,7.k) = > >1 fi —u,7 —v)h(u,v, k)

&t



(Lecture 7 Deep Learning), CNN-
Blocks - Convolutional layer

- Input: Data block x of size \ N |
AN

m X n X ki =)
- Output: Data block y of size

m X n X ko

- Filter: Filter kernal block w of size ¢
Y Y N NN

o
&

. Offsets: Vector w, of length k 5

y(ivja _wo _|_> > >1 Z—U]—Ul) (U,U,l,k)




Filterbanks

Blobdetection — uses one filter

Edge detection — uses two filter (dx,dy) l-
Ridgedetection — uses three filters ... = . B
' -

... Or more

= NS R\ RIB /A B~




Texture

Texture is easy to recognize, but difficult to explain.
A leaf Is an object, but foliage is a texture.

» Texture recognition

» Texture synthesis

» Shape from texture



squared responses

vertical

.;-:a > l -

smoothed mean

classification

Computer Vision - A Modern Approach
Set: Pyramids and Texture
Slides by D.A. Forsyth



What 1s texture?

An image obeying some statistical properties
Similar structures repeated
Often some degree of randomness

UNIVERSITY



Segmentation and texture

o

Background/toreground



Segmentation and texture

Different texture



Segmentation and texture

Different objects



Texture

Leaves

-0

HNowel image to
be classified

Labelled images comprise training data

Images taken from: http:
//Www.robots.ox.ac.uk/~vgg/research/texclass/



Texture — main 1deas

» Several filters (f x hy,. ..,
» What filters hyq, ...,

fx hp)

h, should we use?

» Non-linear transformation, e.g. squares, absolute values,

taking the positive or negative part of a signal,
thresholding.

» Use machine learning - classification on filter responses.
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Texture

http://www.ux.uls.no/~karlsk/tct/
http://www.alceufc.com/2013/09/

texture—classification.html



Texture — filter banks

» Spots: Gaussian filters
» Spots: Difference of Gaussian filters
» Bars: Elongated Gaussians

» Edges: Derivatives of Gaussians and of elongated
Gaussians

» Ridges: Second derivatives of Gaussians and of
elongated Gaussians

» Gabor filters:



Texture — filter banks (Gabor)




Texture — non-linear transformations

You can try several non-linear transformations, e.g.

» Squaring, polynomials
» Absolute value

» Thresholding (in particular taking the positive and negative
parts of a signal).

After non-linear transformation, often it is a good idea to form
the mean over a region, e.g. using mean value filtering.
Similar to what we did with the orientation tensor.
Alternatively one could take the maximal value over a region.



Example application

Texture Synthesis

Given a small sample




Example application

Texture Synthesis

Given a small sample, generate larger realistic versions of the texture




[LUND

UNIVERSITY




