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Features - Motivation

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras
Raul Mur-Artal, Juan D. Tardos

https://arxiv.org/search/cs?searchtype=author&query=Mur-Artal%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Tardos%2C+J+D


Overview –Feature Detection

• Techniques

• Scale space theory

• Detectors

• Edges

• Ridges

• Corners

• SIFT

• Texture



Image data reduction



Image data reduction

Reduce number of colors (10 in this case) using clustering
(We will talk about clustering later on in the course) 



Image data reduction

Half-toning can be used to print and send photographs. 
The local intensity is coded using different sized blobs.



Image data reduction

Line drawings capture much of the content of an image. 
How can we extract lines and edges from an image?



Local Features

• Goal: Find a low-dimensional 
description of image content

• Edges
• Corners
• Other features
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Scale Space

Detection
Edges

Different detectors

Features
Scale space
Noise

Scale Space Theory

Example: What is a cloud?
! something in the sky
! Regions in the atmosphere, where the density of
condensed H2O is above 0.4gm−3 at a resolution of about
1 m.
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Scale Space



Scale Space

Detection
Edges

Different detectors

Features
Scale space
Noise

Properties of a scale space

Principal of causality
If V2 > V1 then d(x ,V2) can be calculated from d(x ,V1) but not
vice versa.
We can go from a finer scale to a courser scale but not the
other way!
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Scale Space
Detection

Edges
Different detectors

Features
Scale space
Noise

Axiomatic scale space theory

The idea behind scale space theory is to every function
f : Rn → R associate a family {Tt f |t ≥ 0} of gradually
smoothed functions

Tt f : R
n → R .

The original signal corresponds to scale t = 0. Increasing scale
simplifies the signal but should not introduce new features (e.g.
new local minima or maxima).
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Scale Space
Detection

Edges
Different detectors

Features
Scale space
Noise

Gaussian scale space theory

Definition
The Gaussian kernel in two dimensions is defined as

Gb(x) =
1

2πb2e
−|x|2/2b2 , x ∈ R

2 .

Definition
The Gaussian scale space corresponding to the function
f : R2 → R is a family of functions {Tt f |t ≥ 0} parameterized by
the variable t , where

Tt f = f ∗G√
t .

Observe that the function Tt f is obtained by solving the heat
equation with initial values f until time

√
t .
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Scale Space
Detection

Edges
Different detectors

Features
Scale space
Noise

The theory of Gaussian scale space

Theorem
An operator Tt with the following properties

! Tt is a linear and translation invariant operator for every
t,

! Scale invariance. If a function is scaled with a factor λ, i.e.
g(x) = f (x/λ) then there exists a scale t ′ = t ′(t ,λ) such
that Ttg(x) = (Tt ′ f )(x/λ),

! Semi group property: Tt1(Tt2 f ) = Tt1+t2 f ,
! Positivity preserving: f > 0 ⇒ Tt f > 0,

is given by
Tt f = f ∗G√

t .
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Scale SpaceDetection
Edges

Different detectors

Features
Scale space
Noise

What do we mean by scale 0

What does
ft = Tt f0 = f0 ∗G√

t ?

There is no image with infinite resolution, i.e. the image at scale
0, f0.
The only information we have about the image is an
observation at one scale t0, i.e. ft0 .
The equation above is only symbolic.
What is the infinite resolution of a cloud or a photo in a
newspaper?
Most images do not exist in all scales.
What is the curvature of the earth, a cloud, a tree?
How long is the coastline of Sweden?
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Two popular uses of 
Scale Space

Detection
Edges

Different detectors

Features
Scale space
Noise

Two popular uses of scale space

! The coarse to fine principle. In many applications it is
useful to first search through the image on a coarse scale
and then refine the search on a finer scale in the most
interesting regions.

! Scale space analysis: Many features (e.g. edges) can be
defined on all scales. Using the whole scale space
representation one can construct robust detectors. Often
features are detected on a coarser scale and positioned
more precisely on a finer scale.
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Scale Space Pyramid

• Fast implementations can 
be made using scale space 
pyramids

• After scale space smoothing 
one does not need to save 
all pixels and can 
subsample the image, 
usually in steps of two. 



Computer Vision -
A Modern 

A bar in the 
big images is 
a hair on the 
zebra’s nose; 

in smaller 
images, a 

stripe; in the 
smallest, the 
animal’s nose
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Edge detection

• Goal:  Identify sudden 
changes (discontinuities) in 

an image
• This is where most 

information in an image is 
coded

• Example: line drawings



What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Changes in surface 

properties
• Light discontinuities (e.g. 

shadows)



Edge detectionDetection
Edges

Different detectors

Laplace
Gradient
Threshold + max

Edge detection

Edge detection is based on finding points in the image, where
the first order derivatives are large.

Two main approaches
! Find points where the second derivative (in some sense) is
zero (Laplacian methods).

! Find points where the first derivative is large (gradient
methods).
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Laplacian methods
Detection

Edges
Different detectors

Laplace
Gradient
Threshold + max

Laplacian methods

Define the edge as the inflexion point. ⇔ second derivative = 0

Find zeros of ∆f = 0 or to ∆Ga ∗ f = 0, where Ga is the
Gaussian function.
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Laplacian methods
Detection

Edges
Different detectors

Laplace
Gradient
Threshold + max

Laplacian methods (ctd.)

Laplacian methods have been used, but they have several
disadvantages

! The Laplace filter is un-oriented
! The result is sometimes strange at sharp corners
! The result is strange where 3 or more intensities/colours
intersect
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Gradient methods
Detection

Edges
Different detectors

Laplace
Gradient
Threshold + max

Gradient methods
One dimension:

Model of an edge: Maximum of derivative = position of edge
Two dimensions: Use discrete approximation of

(

∂f
∂x

)2
+

(

∂f
∂y

)2
= |∇f |2 .
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Scale
Increased scale:

• Eliminates noisy edges
• Makes edges smoother and thicker

• Removes fine details



Suppression of non-maxima:
Choose the local maximum point along a perpendicular

cross section of the edge.



Example: 
Suppression of non-maxima

courtesy of G. Loy

Original image Gradient magnitude Non-maxima 
suppressed



Example: 
Canny Edge Detection

Using Matlab with default thresholds
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Ridge detection

Detection
Edges

Other detectors

Orientation tensor
Corners
Ridges

Ridge detection
Example from Masters thesis project in medical image analysis

Calculated smoothed second derivatives

@2Ga

@x2 ⇤ f
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Ridge detection
Detection

Edges
Other detectors

Orientation tensor
Corners
Ridges

Ridge detection (ctd.)

Different scales (smoothing) is used to find ridges of different
scales (widths)
The second derivatives in an arbitrary direction can be
calculated from a combination of the three second order
derivatives.
Compare with gradient.

Rxx =
@2Ga

@x2 ⇤ f

Rxy =
@2Ga

@x@y
⇤ f

Ryy =
@2Ga

@y2 ⇤ f
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Ridge detection

Detection
Edges

Other detectors

Orientation tensor
Corners
Ridges

Ridge detection (ctd.)

The second order filters:

A filter in an arbitrary direction given by ✓:

�
cos(✓) sin(✓)

�✓Rxx Rxy
Rxy Ryy

◆✓
cos(✓)
sin(✓)

◆
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Ridge detection

• Growing nerve-cell. Find the threadlike
structures growing out from the growth cone

Histogram equalization



Ridge detection
• Filter with elongated gaussians in different directions

• Filterbank with 16 directions



Ridge detection
• Filter with elongated gaussians in different directions
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Illustration of partial derivatives



Structure/Orientation Tensor



Structure Tensor
Detection

Edges
Different detectors

Orientation tensor
Corners
Ridges

Properties of the orientation tensor

The matrix M has the following properties:
! (Flat) Two small eigenvalues in a region - flat intensity.
! (Flow) One large and one small eigenvalue - edges and
flow regions.

! (Texture) Two large eigenvalues - corners, interest points,
texture regions.

This can be used in algorithms for segmenting the image into
(flat, flow, texture).
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Corner Detector

• Compute x- and y-derivatives with a Gaussian 
filter

• Form the orientation tensor M for every pixel
• Compute the product of eigenvalues, i.e. the 

determinant of M
• If both eigenvalues large (product is a local 

maximum), then it is a corner!



Harris Corner Detector

Eigenvalue two of 
the orientation tensor



Harris Corner Detector

Eigenvalue two of 
the orientation tensor

Two large Eigenvalues
Gives a corner



Harris/Foerstner corner detector



Harris/Foerstner corner detector
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SIFT
(Scale Invariant Feature Transform)



SIFT
(Scale Invariant Feature Transform)



SIFT
(Scale Invariant Feature Transform)



SIFT
Descriptor



SIFT examples
• Examples from image search

• Examples from 3D modelling
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Filterbank
Convolve with each filter
Result is a block of data



Filterbank

Chapter 5

Lecture 5: Scale space, Features, Edges,

Ridges, Blobs

Convolution with a Gaussian functions makes the image a little bit blurrier. Repeated convolutions with a
Gaussian function makes the images increasingly blurrier.

5.0.1 Understanding Convolutions

Convolution with a small patch combines local information in an image.
Fouriertransform can be used to understand the result of convolution.
Linear algebra can be used to understand the result of convolution.
Scale-space: Read chapter 3.5 in Szelisky.
Feature detection, points, patches, edges, lines: Read chapter 4 in Szelisky.
Blob detection, sub-pixel: Look at
http://www.ctr.maths.lu.se ... localmaxblobscut.html
which contains an example of detecting centre-points of blobs in images with sub-pixel precision.

Definition 5.0.1. A filterbank is a set of K convolution kernels h. A multi-convolution takes an image f and a
filterbank hăas input and produces a tensor of K images g according to

g(i, j.k) =
X

u

X

v

f(i� u, j � v)h(u, v, k) , (i, j) 2 Z2
, k = 1, . . . ,K. (5.1)
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X

u

X

v

f(i� u, j � v)h(u, v, k) , (i, j) 2 Z2
, k = 1, . . . ,K. (5.1)

g(i, j) =
X

u

X

v

f(i� u, j � v)h(u, v) , (i, j) 2 Z2
. (5.2)

26

Convolution, filter h

Many convolutions, filterbank h with K filters



• Input: Data block x of size

• Output: Data block y of size

• Filter: Filter kernal block w of size

• Offsets: Vector wo of length

(Lecture 7 Deep Learning), CNN-
Blocks - Convolutional layer

m⇥ n⇥ k1

m⇥ n⇥ k2

mw ⇥ nw ⇥ k1 ⇥ k2

k2

y(i, j, k) = wo(k) +
X

u

X

v

X

l

x(i� u, j � v, l)w(u, v, l, k)



Filterbanks
• Blobdetection – uses one filter

• Edge detection – uses two filter (dx,dy)

• Ridgedetection – uses three filters …

• ... Or more

Detection
Edges

Other detectors

Orientation tensor
Corners
Ridges

Ridge detection (ctd.)

The second order filters:

A filter in an arbitrary direction given by ✓:

�
cos(✓) sin(✓)

�✓Rxx Rxy
Rxy Ryy

◆✓
cos(✓)
sin(✓)

◆
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Texture

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Texture (ctd.)

Texture is easy to recognize, but difficult to explain.
A leaf is an object, but foliage is a texture.

I Texture recognition
I Texture synthesis
I Shape from texture
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Computer Vision - A Modern Approach
Set:  Pyramids and Texture

Slides by D.A. Forsyth



• An image obeying some statistical properties
• Similar structures repeated
• Often some degree of randomness

What is texture?



Segmentation and texture

Background/foreground



Segmentation and texture

Different texture



Segmentation and texture

Different objects



Texture
Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Texture Recognition - a classification problem

Images taken from: http:
//www.robots.ox.ac.uk/~vgg/research/texclass/
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Texture – main ideas

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Filter banks: Texture classification

I Several filters (f ⇤ h1, . . . , f ⇤ hn)

I What filters h1, . . . , hn should we use?
I Non-linear transformation, e.g. squares, absolute values,

taking the positive or negative part of a signal,
thresholding.

I Use machine learning - classification on filter responses.

Kalle Åström Image Analysis - Lecture 6Filterbank
Non-linear

and
Smoothing

Machine
Learning



Texture

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Links

http://www.ux.uis.no/~karlsk/tct/
http://www.alceufc.com/2013/09/
texture-classification.html
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Texture – filter banks

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Examples of filters and filter banks

I Spots: Gaussian filters
I Spots: Difference of Gaussian filters
I Bars: Elongated Gaussians
I Edges: Derivatives of Gaussians and of elongated

Gaussians
I Ridges: Second derivatives of Gaussians and of

elongated Gaussians
I Gabor filters:
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Texture – filter banks (Gabor)

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Examples of filters and filter banks
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Texture – non-linear transformations

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Non-linear transformations

You can try several non-linear transformations, e.g.

I Squaring, polynomials
I Absolute value
I Thresholding (in particular taking the positive and negative

parts of a signal).

Kalle Åström Image Analysis - Lecture 6

Texture Segmentation Mathematical morphology Corners Filter bank Non-linear transformations Classification

Spatial Aggregation: Mean value filtering or Max
pooling

After non-linear transformation, often it is a good idea to form
the mean over a region, e.g. using mean value filtering.
Similar to what we did with the orientation tensor.
Alternatively one could take the maximal value over a region.
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Example application

Texture Synthesis

Reading
• Alexei A. Efros and Thomas K. Leung, “Texture Synthesis by Non-

parametric Sampling,” Proc. International Conference on Computer Vision 
(ICCV), 1999.

– http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.pdf

Given a small sample, generate larger realistic versions of the texture
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