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Today: Image Filters

Smooth/Sharpen Images...  Find edges...       Find waldo…



Overview – Convolutions
1. Convolution

1. Definition, properties

2. Convolution vs Cross-corellation

3. Convolution and translation invariant linear systems

4. Motivation using sliding means (1D and 2D)

5. Interpretation as ‘sliding’ scalar product.

6. Median Filter (not a convolution)

7. Gaussian smoothing

8. Derivatives + Smoothing

2. Convolution theorem

3. Connecting linear algebra, Fourier transform and convolutions



Convolution Operator

Chapter 4

Lecture 4: Convolution, Filtering,

Convolution theorem

4.1 Introduction

This lecture is about convolution and its connection to the Fourier transform.
Convolution: Every linear operator on images, which is translation invariant can be represented as a convolu-
tion. Read chapter 3.2-3.3 in Szelisky.
Convolution theorem: The convolution theorem states that if f = g ⇤ h then

F (u, v) = G(u, v)H(u, v).

In other words if the image f is the result of convolving g with h, then the fourier transform of F is the
elementwise product of the fourier transforms of g and h. This ties together the concepts of convolution and
the fourier transform.

4.2 Convolution

One and two-dimensional convolution is defined and describes in chapter 3.2 in Szelisky.
The convolution is an operation that takes two images f and hăas input and produces a new image g = f ⇤ h.
For simplicity here we are going to assume that images are infinite, but that the non-zero elements are at a finite
number of positions. for an M ⇥N ăimage, we can think of the image being extended with zeroes outside the
actual image.

Definition 4.2.1. The convolution is an operation that takes two images f and hăas input and produces a new
image g = f ⇤ h. It is defined as

g(i, j) =
X

u

X

v

f(i� u, j � v)h(u, v) , (i, j) 2 Z2
. (4.1)

To understand what convolution means it is sometimes useful to flip the second operand, h, i.e. introduce

ȟ(u, v) = h(�u,�v).

The convolution can then be re-written as

g(i, j) =
X

u

X

v

f(i� u, j � v)ȟ(�u,�v) , (i, j) 2 Z2
. (4.2)

Change summation variable y = �uăand x = �v,

g(i, j) =
X

y

X

x

f(i+ y, j + x)ȟ(y, x) , (i, j) 2 Z2
. (4.3)
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ȟ(u, v) = h(�u,�v).

The convolution can then be re-written as

g(i, j) =
X

u

X

v
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Cross-Correlation
Sliding scalar product
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Compare with convolution



Why use convolution?
Cross-correlation seems much simpler.
One motivation: Convolution has simpler calculation rules

This operation is called cross-correlation or sliding dot product. Study the result at position (0, 0), i.e.

g(0, 0) =
X

y

X

x

f(y, x)ȟ(y, x) (4.4)

and notice that this is simply the scalar product between the image f and ȟ. Study the result at another position,
for example (7, 3), i.e.

g(7, 3) =
X

y

X

x

f(7 + y, 3 + x)ȟ(y, x) (4.5)

and notice that this is simply the scalar product between a translated version of the image f and ȟ.
The cross-correlation is sometimes easier to understand. What are the arguments for using the convolution
operator, which involves flipping the operand? One strong argument for using convolution is that it several nice
properties, such as

f ⇤ h = h ⇤ f,

f ⇤ (g ⇤ h) = (f ⇤ g) ⇤ h,

f ⇤ (g + h) = f ⇤ g + f ⇤ h,

a(f ⇤ g) = (af) ⇤ g,

� ⇤ f = f,

@(f ⇤ g) = (@f) ⇤ g,

Example 4.2.1. Often it is useful to think of f as a large image and hăas a small image in the sense that h is
non-zero only at a few positions. Let h be such that

h(0, 0) = 2, h(1, 0) = 1, h(�1, 0) = 1, h(0, 1) = 1, h(0,�1) = 1

and h zero everywhere else. Let f be the image

f =

2

66664

10 0 10 10 10
0 0 10 10 10
0 0 10 20 10
0 0 10 10 10
0 10 10 10 10

3

77775
.

Note that we here assume that f is indexed so that the upper left corner has indices (1, 1). We also assume that
f is zero everywhere else. So for example f(�2, 1) = 0 and f(0, 0) = 0.
The convolution is found by sliding the flipped version of h over f and computing the scalar product at each
place. Think of

ȟ =

2

4
0 1 0
1 2 1
0 1 0

3

5

as a small window sliding over f , where the (0, 0)-element of ȟ is considered the centre point. To compute
g(1, 1) we place the centre point of ȟ over the f(1, 1) element and cut out corresponding sub-matrix centered
around f(1, 1), i.e. 2

4
0 0 0
0 10 0
0 0 0

3

5

and calculate the scalar product. The result is 20. To calculate g(1, 2) we cut out the sub-matrix one step to
the right, i.e. 2

4
0 0 0
10 0 10
0 0 10

3

5
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Convolutions and linear
systems
Convolution as image transform

S is called a system or filter.
I S is linear if S(�1f1 + �2f2) = �1S(f1) + �2S(f2).

Implies that

g(x) =

Z
h(x , y)f (y)dy ,

where h called the impulse response.
I S is translation invariant if

S(f (x)) = g(x) ) S(f (x � a)) = g(x � a).

Kalle Åström Image Analysis - Lecture 3

Any linear and translation invariant system 
can be represented as a convolution.



Motivation: noise reduction

• We can measure noise in 
multiple images of the same 
static scene.

• How could we reduce the 
noise, i.e., give an estimate 
of the true intensities?



Motivation: noise reduction

• How could we reduce the noise, i.e., give an estimate 
of the true intensities?

• What if there’s only one image?



First attempt at a solution
• Let’s replace each pixel with an average of all the values in its 

neighborhood

• Assumptions: 

• Expect pixels to be like their neighbors

• Expect noise processes to be independent from pixel to pixel



First attempt at a solution
• Let’s replace each pixel with an average of all the values in its 

neighborhood

• Moving average in 1D:

Source: S. Marschner



Weighted Moving Average
• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average
• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Moving Average In 2D
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Convolution - repetition

• Convolution: 
• Flip the filter in both dimensions (bottom to top, right to left)

• Then apply cross-correlation

• Produces scalar product of flipped filter at every position!

F

H



Not all filters can be written using 
convolutions!



Median filter – an example of a non-
linear sliding window smoother
(Not a convolution)

• No new pixel values 
introduced

• Removes spikes: good 
for impulse, salt & 
pepper noise

• Not linear

• Not a convolution



Median filter

Salt and 
pepper 
noise

Median 
filtered

Source: M. Hebert

Plots of a row of 
the image



Smoothing with a Gaussian

for sigma=1:3:10 
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h); 
imshow(out);
pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.



Partial derivatives of an image

Which shows changes with respect to x?

-1     
1

1     
-1or

?
-1    1

x
yxf

¶
¶ ),(

y
yxf

¶
¶ ),(

(showing flipped filters)



Effects of noise
Consider a single row or column of the image

• Plotting intensity as a function of position gives a 
signal

Where is the edge?



Where is the edge?  

Solution:  smooth first

Look for peaks in 



Derivative property of convolution

Differentiation property of convolution.



Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik



Effect of σ on derivatives

The apparent structures differ depending on 
Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels



So, what scale to choose?
It depends what we’re looking for.

Too fine of a scale…can’t see the forest for the trees.
Too coarse of a scale…can’t tell the maple grain from the cherry.



Template matching
• Filters as templates: 

Note that filters look like the effects they are intended to 
find --- “matched filters”

• Use normalized cross-correlation score to find a given 
pattern (template) in the image.
• Szeliski Eq. 8.11

• Normalization needed to control for relative brightnesses.



Template matching

Scene
Template (mask)

A toy example



Template matching

Template
Detected 
template



Template matching

Detected 
template

Correlation map



Contents

Generate toy data

The smaller pattern h is hidden somewhere in f. Where?

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

Calculate the error r for each possible cutout

Notice that the error is zero at position (3,4)

Generate toy data

h = [0 1 2;1 4 1;0 1 0];
f = [ ...
5 , 3 , 1 , 5 , 5 ; ...
5 , 2 , 0 , 1 , 2 ; ...
1 , 2 , 1 , 4 , 1 ; ...
1 , 5 , 0 , 1 , 0 ; ...
1 , 4 , 5 , 4 , 2 ];

The smaller pattern h is hidden somewhere in f. Where?

h
f

h =
     0     1     2
     1     4     1
     0     1     0
f =
     5     3     1     5     5
     5     2     0     1     2
     1     2     1     4     1
     1     5     0     1     0
     1     4     5     4     2

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

e = ones(size(h))
hnorm2 = norm(h,'fro')^2;
hhat = flipud(fliplr(h))

e =
     1     1     1
     1     1     1
     1     1     1
hhat =
     0     1     0
     1     4     1
     2     1     0

Template matching

Scene

Template (mask)

and calculate the scalar product with ȟ The result is 20 again. To calculate g(1, 3) we cut out the sub-matrix
around the element (1, 3) , i.e. 2

4
0 0 0
0 10 10
0 10 10

3

5

The result this time is 40. The result g(i, j) for i = 1, . . . , 5, j = 1, . . . , 5 is
0

BBBB@

20 20 40 50 40
10 10 50 70 50
0 10 60 80 60
0 20 50 70 50
10 30 50 50 40

1

CCCCA
.

For images taken with an ordinary camera, it is somewhat strange to assume that all pixels outside the field of
view are 0. Sometimes we are only interested in the result for which we haven’t used any information outside
the field of view. For this example these are the values g(i, j) for i = 2, . . . , 4, j = 2, . . . , 4, i.e.

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
⇤ 10 50 70 ⇤
⇤ 10 60 80 ⇤
⇤ 20 50 70 ⇤
⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCA
.

In other situations it is relevant to calculate all non-zero values of g. In our case this would mean calculating
g(i, j) for i = 0, . . . , 6, j = 0, . . . , 6, i.e.

0

BBBBBBBB@

0 10 0 10 10 10 0
10 20 20 40 50 40 10
0 10 10 50 70 50 10
0 0 10 60 80 60 10
0 0 20 50 70 50 10
0 10 30 50 50 40 10
0 0 10 10 10 10 0

1

CCCCCCCCA

.

These three different versions of convolution are found in many programming languages, e.g. matlab, python,
julia. In matlab they are called

conv2(f,h,’same) % produces a result g of the same size as f
conv2(f,h,’valid’) % does not use any pixels outside the field of view
conv2(f,h) % calculates all non-zero values of g. Size of g is larger.

If the imageăf ăis large and if h is small, the size difference is relatively small.
There is also a fourth version on how to handle the border effects. That is to consider the image to be double
periodic. In other words we think of the pixels to the right of the right edge of the image, to be that of the left
part of the image. This fourth version of the convolution is used in the next sections. Using periodic convolution
we can prove a nice theorem that links convolution and the fourier transform.

4.2.1 Convolution as sliding scalar product

Let’s assume that we are looking for small patterns in a discrete image f . Assume that the this pattern is such
that if we crop out a small sub-image fcut from f it is close to a pattern h. Is there a way to use convolution to
determine which such cutouts fcut of the image f fits the pattern h best.
First think about how the comparison could be made for a cutout fcut. One possible error is to use

r = ||fcut � h||2.
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Contents

Generate toy data

The smaller pattern h is hidden somewhere in f. Where?

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

Calculate the error r for each possible cutout

Notice that the error is zero at position (3,4)

Generate toy data

h = [0 1 2;1 4 1;0 1 0];
f = [ ...
5 , 3 , 1 , 5 , 5 ; ...
5 , 2 , 0 , 1 , 2 ; ...
1 , 2 , 1 , 4 , 1 ; ...
1 , 5 , 0 , 1 , 0 ; ...
1 , 4 , 5 , 4 , 2 ];

The smaller pattern h is hidden somewhere in f. Where?

h
f

h =
     0     1     2
     1     4     1
     0     1     0
f =
     5     3     1     5     5
     5     2     0     1     2
     1     2     1     4     1
     1     5     0     1     0
     1     4     5     4     2

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

e = ones(size(h))
hnorm2 = norm(h,'fro')^2;
hhat = flipud(fliplr(h))

e =
     1     1     1
     1     1     1
     1     1     1
hhat =
     0     1     0
     1     4     1
     2     1     0



Template matching

We rewrite this error as

r = (fcut � h) · (fcut � h) = fcut · fcut � 2fcut · h+ h · h.

The residual consists of three parts. Part one can be rewritten

fcut · fcut = f
2
cut · e

where f
2
cut is the result of taking the square of each pixel elementwise and where e is an image of the same

size as h, where each element is one. Part two is already a scalar product. Part three is a constant that does not
depend on which cutout we are considering.
Thus to calculate the error r for each cutout we calculate

(f.2) ⇤ e� 2f ⇤ ĥ+ h · h.

4.2.2 Periodic convolution in one dimension

This is a short description of the periodic convolution and the convolution theorem.
Given a column vector of length N ,

f =

2

64
f(1)

...
f(N)

3

75 .

Think of this as representing a periodic extension with period N . We will in the sequel use the same variable
f for both the original vector of length N and the periodic extension. In this sense we have e.g. f(0) = f(N),
and

f =

2

6666666666666664

...
f(N � 1)
f(N)
f(1)

...
f(N)
f(0)
f(1)

...

3

7777777777777775

.

N -periodic sequences are characterized by

f(x+N) = f(x) för alla x .

If also h is a N -periodic sequence, then the following operator is defined.

Definition 4.2.2. The periodic convolution of f with h is the periodic sequence, whose element at position x is

g(x) = f ⇤ h(x) =
NX

m=1

h(x�m+ 1)f(m) , x 2 Z.

In order to calculate g(x) fore every x = 1, . . . , N requires ⇡ N
2 multiplications. It turns out that FFT can be

used to significantly reduce this number.
To see the structure of the g-vector.

g(N) =
P

m
h(N �m)f(m)

g(N + 1) =
P

m
h(N + 1�m)f(m)

· · · · · ·
g(2N � 1) =

P
m
h(2N � 1�m)f(m)

(4.6)
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and calculate the scalar product with ȟ The result is 20 again. To calculate g(1, 3) we cut out the sub-matrix
around the element (1, 3) , i.e. 2
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5
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In other situations it is relevant to calculate all non-zero values of g. In our case this would mean calculating
g(i, j) for i = 0, . . . , 6, j = 0, . . . , 6, i.e.
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0 10 10 50 70 50 10
0 0 10 60 80 60 10
0 0 20 50 70 50 10
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.

These three different versions of convolution are found in many programming languages, e.g. matlab, python,
julia. In matlab they are called

conv2(f,h,’same) % produces a result g of the same size as f
conv2(f,h,’valid’) % does not use any pixels outside the field of view
conv2(f,h) % calculates all non-zero values of g. Size of g is larger.

If the imageăf ăis large and if h is small, the size difference is relatively small.
There is also a fourth version on how to handle the border effects. That is to consider the image to be double
periodic. In other words we think of the pixels to the right of the right edge of the image, to be that of the left
part of the image. This fourth version of the convolution is used in the next sections. Using periodic convolution
we can prove a nice theorem that links convolution and the fourier transform.

4.2.1 Convolution as sliding scalar product

Let’s assume that we are looking for small patterns in a discrete image f . Assume that the this pattern is such
that if we crop out a small sub-image fcut from f it is close to a pattern h. Is there a way to use convolution to
determine which such cutouts fcut of the image f fits the pattern h best.
First think about how the comparison could be made for a cutout fcut. One possible error is to use

r = ||fcut � h||2.
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We rewrite this error as

r = (fcut � h) · (fcut � h) = fcut · fcut � 2fcut · h+ h · h.

The residual consists of three parts. Part one can be rewritten

fcut · fcut = f
2
cut · e

where f
2
cut is the result of taking the square of each pixel elementwise and where e is an image of the same

size as h, where each element is one. Part two is already a scalar product. Part three is a constant that does not
depend on which cutout we are considering.
Thus to calculate the error r for each cutout we calculate

(f.2) ⇤ e� 2f ⇤ ĥ+ h · h.

4.2.2 Periodic convolution in one dimension

This is a short description of the periodic convolution and the convolution theorem.
Given a column vector of length N ,

f =

2

64
f(1)

...
f(N)

3

75 .

Think of this as representing a periodic extension with period N . We will in the sequel use the same variable
f for both the original vector of length N and the periodic extension. In this sense we have e.g. f(0) = f(N),
and

f =

2

6666666666666664

...
f(N � 1)
f(N)
f(1)

...
f(N)
f(0)
f(1)

...

3

7777777777777775

.

N -periodic sequences are characterized by

f(x+N) = f(x) för alla x .

If also h is a N -periodic sequence, then the following operator is defined.

Definition 4.2.2. The periodic convolution of f with h is the periodic sequence, whose element at position x is

g(x) = f ⇤ h(x) =
NX

m=1

h(x�m+ 1)f(m) , x 2 Z.

In order to calculate g(x) fore every x = 1, . . . , N requires ⇡ N
2 multiplications. It turns out that FFT can be

used to significantly reduce this number.
To see the structure of the g-vector.

g(N) =
P

m
h(N �m)f(m)

g(N + 1) =
P

m
h(N + 1�m)f(m)

· · · · · ·
g(2N � 1) =

P
m
h(2N � 1�m)f(m)

(4.6)
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Template matching

We rewrite this error as

r = (fcut � h) · (fcut � h) = fcut · fcut � 2fcut · h+ h · h.

The residual consists of three parts. Part one can be rewritten

fcut · fcut = f
2
cut · e

where f
2
cut is the result of taking the square of each pixel elementwise and where e is an image of the same

size as h, where each element is one. Part two is already a scalar product. Part three is a constant that does not
depend on which cutout we are considering.
Thus to calculate the error r for each cutout we calculate

(f.2) ⇤ e� 2f ⇤ ĥ+ h · h.

4.2.2 Periodic convolution in one dimension

This is a short description of the periodic convolution and the convolution theorem.
Given a column vector of length N ,

f =
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...
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Think of this as representing a periodic extension with period N . We will in the sequel use the same variable
f for both the original vector of length N and the periodic extension. In this sense we have e.g. f(0) = f(N),
and
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N -periodic sequences are characterized by

f(x+N) = f(x) för alla x .

If also h is a N -periodic sequence, then the following operator is defined.

Definition 4.2.2. The periodic convolution of f with h is the periodic sequence, whose element at position x is

g(x) = f ⇤ h(x) =
NX

m=1

h(x�m+ 1)f(m) , x 2 Z.

In order to calculate g(x) fore every x = 1, . . . , N requires ⇡ N
2 multiplications. It turns out that FFT can be

used to significantly reduce this number.
To see the structure of the g-vector.

g(N) =
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m
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Contents

Generate toy data

The smaller pattern h is hidden somewhere in f. Where?

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

Calculate the error r for each possible cutout

Notice that the error is zero at position (3,4)

Generate toy data

h = [0 1 2;1 4 1;0 1 0];
f = [ ...
5 , 3 , 1 , 5 , 5 ; ...
5 , 2 , 0 , 1 , 2 ; ...
1 , 2 , 1 , 4 , 1 ; ...
1 , 5 , 0 , 1 , 0 ; ...
1 , 4 , 5 , 4 , 2 ];

The smaller pattern h is hidden somewhere in f. Where?

h
f

h =
     0     1     2
     1     4     1
     0     1     0
f =
     5     3     1     5     5
     5     2     0     1     2
     1     2     1     4     1
     1     5     0     1     0
     1     4     5     4     2

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

e = ones(size(h))
hnorm2 = norm(h,'fro')^2;
hhat = flipud(fliplr(h))

e =
     1     1     1
     1     1     1
     1     1     1
hhat =
     0     1     0
     1     4     1
     2     1     0

Contents

Generate toy data

The smaller pattern h is hidden somewhere in f. Where?

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

Calculate the error r for each possible cutout

Notice that the error is zero at position (3,4)

Generate toy data

h = [0 1 2;1 4 1;0 1 0];
f = [ ...
5 , 3 , 1 , 5 , 5 ; ...
5 , 2 , 0 , 1 , 2 ; ...
1 , 2 , 1 , 4 , 1 ; ...
1 , 5 , 0 , 1 , 0 ; ...
1 , 4 , 5 , 4 , 2 ];

The smaller pattern h is hidden somewhere in f. Where?

h
f

h =
     0     1     2
     1     4     1
     0     1     0
f =
     5     3     1     5     5
     5     2     0     1     2
     1     2     1     4     1
     1     5     0     1     0
     1     4     5     4     2

A cutout of f centered at (3,4) is identical to h!

Precalculate e, hhat and h^2

e = ones(size(h))
hnorm2 = norm(h,'fro')^2;
hhat = flipud(fliplr(h))

e =
     1     1     1
     1     1     1
     1     1     1
hhat =
     0     1     0
     1     4     1
     2     1     0

Calculate the error r for each possible cutout

r = conv2(f.^2,e,'same') - 2*conv2(f,hhat,'same') + hnorm2

r =
   31.0000   48.0000   40.0000   26.0000   25.0000
   24.0000   54.0000   55.0000   48.0000   66.0000
   52.0000   51.0000   52.0000   -0.0000   27.0000
   42.0000   40.0000   88.0000   60.0000   54.0000
   29.0000   38.0000   47.0000   22.0000   21.0000

Notice that the error is zero at position (3,4)

r

r =
   31.0000   48.0000   40.0000   26.0000   25.0000
   24.0000   54.0000   55.0000   48.0000   66.0000
   52.0000   51.0000   52.0000   -0.0000   27.0000
   42.0000   40.0000   88.0000   60.0000   54.0000
   29.0000   38.0000   47.0000   22.0000   21.0000
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Where’s Waldo?

Detected 
template

Correlation map



Template matching

Scene
Template

What if the template is not identical to some 
subimage in the scene?



Practice with linear filters

000
010
000

Original

?

Source: D. Lowe



Practice with linear filters

000
010
000

Original Filtered 
(no change)

Source: D. Lowe



Practice with linear filters

000
100
000

Original

?

Source: D. Lowe



Practice with linear filters

000
100
000

Original Shifted left
by 1 pixel with 

correlation

Source: D. Lowe



Practice with linear filters

Original

?
111
111
111

Source: D. Lowe



Practice with linear filters

Original

111
111
111

Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
020
000 - ?

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences with 

local average

Source: D. Lowe



Filtering examples: sharpening



Convolutions and the Fourier
Transform
• What to do near the edge of the image?

• Understanding the Fourier Transform

• The convolution Theorem

• Understanding Convolutions using the Fourier
Transform



What to do near the edge of
the image?Edge effects

In practice we do not have infinite images.
How should we treat the edges of the image? What values
should one assume ’outside’ the image.
Some common choices are

1. Only calculate the result where we can be certain. The
result is a smaller image.

2. Assume that there are zeros outside the image. This often
means that we introduce artificial sharp edges at the
border.

3. Make a periodic expansion of the image, i.e. assume that
the image is periodic. This fits well with the theory for
discrete fourier transform.

Kalle Åström Image Analysis - Lecture 3



What to do near the edge of
the image?

Example: Convolution of finite images

Assume that one would like to convolute the image

f =

2

4
1 2 3 5
1 3 2 1
2 2 2 2

3

5

with the smoothing filter

h =


1 1
1 1

�

Kalle Åström Image Analysis - Lecture 3



What to do near the edge of
the image?Example: Convolution of finite images (ctd.)

(1) Don’t let h extend outside f


7 10 11
8 9 7

�

(2) Extend with zeros ) equal or larger resulting h ⇤ f -image
2

664

1 3 5 8 5
2 7 10 11 6
3 8 9 7 3
2 4 4 4 2

3

775

Kalle Åström Image Analysis - Lecture 3



What to do near the edge of
the image?

(3) Extend f and h to periodic functions with the same period:
fp, hp ) periodic hp ⇤ fp result with same period

2

4
10 7 9 12
8 7 10 11
6 8 9 7

3

5

Here we have also made a periodic function of h:

h =

2

4
1 1 0 0
1 1 0 0
0 0 0 0

3

5 .

Kalle Åström Image Analysis - Lecture 3



Discrete Fourier Transform - 2D

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�, ).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .
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2
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Using FFT for convolutions
Computational aspects

1. f ! FFT ! F

2. h ! FFT ! H

3. H,F ! ⇥ ! H · F

4. H · F ! IFFT ! h ⇤ f

Kalle Åström Image Analysis - Lecture 3

Computational complexity

The computational complexity of using FFT for a convolution is:

2
N log N

2
+ N +

N log N

2
⇠ 3

2
N log N

Calculation based on the definition gives complexity N2

Kalle Åström Image Analysis - Lecture 3



Frequency function
The frequency function of a filter

g(x) = h ⇤ f =

Z
h(x � y)f (y)dy

Fg = G, Fh = H, F f = F

G(u, v) = H(u, v)F (u, v) .

Definition
H = F(h) is called the frequency function of h.

Kalle Åström Image Analysis - Lecture 3



Different filters

Filter for image enhancement

signal plane frequency plane
smoothing low pass
sharpening high pass

For discrete functions: DFT (h ⇤ f )(u, v) = H(u, v)F (u, v).

Kalle Åström Image Analysis - Lecture 3



Window operator
Let the output, g be give by the convolution

g(x) = S(f )(x) =

Z
h(x � y)f (y)dy ,

where f represents the input and h the impulse response
If g(x) only depends on f :s values in a surrounding (=a small
window) of x then S is called a window operator.
The window is given by { x | h(x) 6= 0 }.

Kalle Åström Image Analysis - Lecture 3



Mean value operator
Assume that f (x , y) represents a continuous image. Let

h(x , y) = rect(x) rect(y) .

Then
S(f ) = h ⇤ f =

Z

K (x ,y)
f (s, t)dsdt ,

where the region of integration K (x , y) is a unit square with
centre at (x , y).

S is called a mean value operator.Kalle Åström Image Analysis - Lecture 3



Mean value filter

S is called a mean value operator.
The fourier transform gives

H(u) = 4 sinc(2⇡u) sinc(2⇡v) .

The scaling rule (page 148 in Forsythe-Ponce)

f (�x) ! 1
�

F (
u

�
) .

Kalle Åström Image Analysis - Lecture 3



Illustration

Kalle Åström Image Analysis - Lecture 3



Filter example: small mean value filter

signal space: image, filter, result

frequency space: image, filter result

Kalle Åström Image Analysis - Lecture 3



Filter example: medium mean value filter

signal space: image, filter, result

frequency space: image, filter result

Kalle Åström Image Analysis - Lecture 3



Filter example: larger mean value filter

signal space: image, filter, result

frequency space: image, filter result

Kalle Åström Image Analysis - Lecture 3



Example: Gaussian Filters

Example
Notice that

�(x) =
1p

2�2⇡
e
�x2/(2�2) ! �(u) = e

�2(�⇡u)2
.

Kalle Åström Image Analysis - Lecture 3



Example: Effect of different �
Larger � gives

More smoothing ) more low-pass type.Kalle Åström Image Analysis - Lecture 3



Filter example: Gaussian filter

Kalle Åström Image Analysis - Lecture 3



Differentiation filter

Example
Differentiation

@f

@x
! 2⇡iuF (u)

H(u) = 2⇡iu

Kalle Åström Image Analysis - Lecture 3



High-pass properties of differentiation

High-pass filter

h =
@�

@x
since

f = � ⇤ f ) @f

@x
=

@�

@x
⇤ f

Sensitive to noise.
Combine with smoothing:

f ! � ⇤ f ! @

@x
� ⇤ f

@

@x
� = � xp

2�6⇡
e
�x2/(2�2)

Kalle Åström Image Analysis - Lecture 3



Filter example: differentiation in the y -direction

Kalle Åström Image Analysis - Lecture 3



Filter example: differentiation in the x-direction

Kalle Åström Image Analysis - Lecture 3



Filter example: Differentiation and Gaussian in
x-direction

Kalle Åström Image Analysis - Lecture 3



Filter example: Differentiation and Gaussian in
y -direction

Kalle Åström Image Analysis - Lecture 3



Filter example: Differentiation and Gaussian in a
general direction

Kalle Åström Image Analysis - Lecture 3



Filter example: Increasing �: Der in [11]-dir.

Kalle Åström Image Analysis - Lecture 3



Review
• Convolution (with flip) and cross-correlation (without flip)

• Properties

• Examples

• Convolution theorem

• Interpreting convolutions through the Fourier transform

• Read lecture notes

• Experiment with matlab demo scripts

• Finish assignment 1




