
Image Analysis (FMAN20)
Lecture 2, 2019
MAGNUS OSKARSSON

Image Analysis - Motivation

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this
mean?

2. Basis, coordinates

3. Scalar product

4. Projection onto a subspace

5. Projection onto an affine ‘subspace’

6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

But first, some notes on the home
assignments….

But first, some notes on the home
assignments….

The Rules
Each student should hand in his or her own individual solution
and should, upon request, be able to present the details in all
the steps of the used algorithm. You are, however, allowed to
discuss the assignment-problem with others. You may also ask
your teachers and the course assistants for advice, if needed.

But first, some notes on the home
assignments….

The report
Present your work in a report of approximately four A4-pages
written in English or Swedish. Make sure you answer all
questions in the grayed boxes and provide complete solutions
to the exercises. The teacher is going to judge your work
based on the report alone. Usually the teacher will check code
only in very special cases, for instance if very persistent
problems remain with your implementation. In these cases
you may send code directly to the teacher that is correcting
your assignment.

Examples of
Classification problems

Examples of
Classification problems

Optical character recognition (OCR)

•Digit recognition, AT&T labs
•http://www.research.att.com/~

yann/
•License plate readers

•http://en.wikipedia.org/wiki/Automatic_number_plate_re
cognition

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Examples of
Classification problems

Semantic Segmentation of Microscopic Images of
H&E Stained Prostatic Tissue using CNN

Johan Isaksson, Ida Arvidsson,
Kalle Åström and Anders Heyden

Lund University
Centre for Mathematical Sciences

Lund, Sweden
Email: ida.arvidsson@math.lth.se

Abstract—There is a need for an automatic Gleason scoring
system that can be used for prostate cancer diagnosis. Today
the diagnoses are determined by pathologists manually, which
is both a complex and a time-consuming task. To reduce the
pathologists’ workload, but also to reduce variations between
different pathologists, an automatic classification system would
be of great use. Some previous works have aimed for this, but
still more work needs to be done. It is probable that such a
tool would benefit from having access to individually segmented,
pathologically relevant objects from the images. Therefore, we
have developed an algorithm for semantic segmentation of the mi-
croscopic images of H&E stained prostate tissue into Background,
Stroma, Epithelial Cytoplasm and Nuclei. This algorithm is based
on deep learning, or more specifically a convolutional neural
network. The network design is inspired by architectures that
previously have been proved successful in different applications.
It consists of a contracting and an expanding part, which are
symmetrical. We have reached an accuracy of 80 %, as measured
by the mean of the intersection over union, for segmentation
into four classes. Previous works have only investigated nuclei
segmentation, and our network performed similar but for the
more challenging task of four class segmentation.

I. INTRODUCTION

Diagnosing prostate cancer is a time-consuming task per-
formed by pathologists, on whom there is a high pressure
of always being both efficient and meticulous. The diagnosis
is performed by manual microscopic inspection of prostate
biopsies. The pathologists do not only have to classify the
tissue as benign or malignant, but also into different classes,
Gleason scores, depending on the spread and seriousness of
the cancer. This procedure is required since different scores
require different treatments [1]. Previous studies have shown
that there are great variations between different pathologists,
something that can have considerable impact on which treat-
ment the patient gets [2].

To reduce these problems, some previous works, e.g. [3],
[4], [5], [6], have suggested methods for automation of the
classification. Even though they have presented great results,
more work is needed in order to get an algorithm with high
enough accuracy and that is general enough to classify images
from different labs. In [6] the authors highlight the problem
that an algorithm trained on images from a certain lab might
not be able to classify images from another, due to inevitable
stain variations.

To avoid the problem with stain variations, we think that
a preprocessing step of segmentation of the histopathological
images into pathologically relevant objects would be helpful.
Then the stain concentrations are not of importance, but the
final segmentation can instead be used to classify the tissue
according to Gleason score.

The prostate samples are typically stained with haema-
toxylin and eosin (H&E). Haematoxylin is a basic dye, which
colors the nuclei purple. The other parts of the tissue are
stained into different shades of pink, brighter for stroma and
darker for epithelial cytoplasm, by the acidic dye eosin [3].
The H&E staining is an old technique and also the most com-
mon used for Gleason grading, although immunohistochemical
staining sometimes is used to confirm the diagnosis. However,
the diagnosis will probably rely on H&E staining for at least
some more decades [7].

The system used for classification is titled Gleason scoring,
which is a final score for a whole slide. The Gleason score is
obtained by the two most dominant Gleason grades occurring
in the slide. Gleason grading is a well-established system for
classification depending on how serious the cancer is, and is
determined by the growth pattern of the glands. The more
aggressive cancer, the smaller and less well formed glands [1].
Examples of healthy tissue and the different Gleason grades
are shown in Fig. 1.

In this paper we present a neural network design suitable
for semantic segmentation of the H&E stained images into the
four components Background, Stroma, Epithelial Cytoplasm
and Nuclei. These components are the most relevant for
prostate diagnosis, since the malignant structures are given
by the glands, which are formed by epithelial cytoplasm and
nuclei. Thus if these structures are given, the Gleason grades
could more easily be determined either by pathologists or,
more probably, by an algorithm.

Deep learning has become immensely popular in recent
years in a wide variety of machine learning fields due to its
impressive performance. The increase in available computa-
tional power has made it possible to train more and more
advanced algorithms, which perform well on more complex
tasks than ever. The major difference between deep learning
and classical machine learning techniques is that relevant
features are devised by the learning algorithm itself in the

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 1252

Semantic Segmentation of Microscopic Images of
H&E Stained Prostatic Tissue using CNN

Johan Isaksson, Ida Arvidsson,
Kalle Åström and Anders Heyden

Lund University
Centre for Mathematical Sciences

Lund, Sweden
Email: ida.arvidsson@math.lth.se

Abstract—There is a need for an automatic Gleason scoring
system that can be used for prostate cancer diagnosis. Today
the diagnoses are determined by pathologists manually, which
is both a complex and a time-consuming task. To reduce the
pathologists’ workload, but also to reduce variations between
different pathologists, an automatic classification system would
be of great use. Some previous works have aimed for this, but
still more work needs to be done. It is probable that such a
tool would benefit from having access to individually segmented,
pathologically relevant objects from the images. Therefore, we
have developed an algorithm for semantic segmentation of the mi-
croscopic images of H&E stained prostate tissue into Background,
Stroma, Epithelial Cytoplasm and Nuclei. This algorithm is based
on deep learning, or more specifically a convolutional neural
network. The network design is inspired by architectures that
previously have been proved successful in different applications.
It consists of a contracting and an expanding part, which are
symmetrical. We have reached an accuracy of 80 %, as measured
by the mean of the intersection over union, for segmentation
into four classes. Previous works have only investigated nuclei
segmentation, and our network performed similar but for the
more challenging task of four class segmentation.

I. INTRODUCTION

Diagnosing prostate cancer is a time-consuming task per-
formed by pathologists, on whom there is a high pressure
of always being both efficient and meticulous. The diagnosis
is performed by manual microscopic inspection of prostate
biopsies. The pathologists do not only have to classify the
tissue as benign or malignant, but also into different classes,
Gleason scores, depending on the spread and seriousness of
the cancer. This procedure is required since different scores
require different treatments [1]. Previous studies have shown
that there are great variations between different pathologists,
something that can have considerable impact on which treat-
ment the patient gets [2].

To reduce these problems, some previous works, e.g. [3],
[4], [5], [6], have suggested methods for automation of the
classification. Even though they have presented great results,
more work is needed in order to get an algorithm with high
enough accuracy and that is general enough to classify images
from different labs. In [6] the authors highlight the problem
that an algorithm trained on images from a certain lab might
not be able to classify images from another, due to inevitable
stain variations.

To avoid the problem with stain variations, we think that
a preprocessing step of segmentation of the histopathological
images into pathologically relevant objects would be helpful.
Then the stain concentrations are not of importance, but the
final segmentation can instead be used to classify the tissue
according to Gleason score.

The prostate samples are typically stained with haema-
toxylin and eosin (H&E). Haematoxylin is a basic dye, which
colors the nuclei purple. The other parts of the tissue are
stained into different shades of pink, brighter for stroma and
darker for epithelial cytoplasm, by the acidic dye eosin [3].
The H&E staining is an old technique and also the most com-
mon used for Gleason grading, although immunohistochemical
staining sometimes is used to confirm the diagnosis. However,
the diagnosis will probably rely on H&E staining for at least
some more decades [7].

The system used for classification is titled Gleason scoring,
which is a final score for a whole slide. The Gleason score is
obtained by the two most dominant Gleason grades occurring
in the slide. Gleason grading is a well-established system for
classification depending on how serious the cancer is, and is
determined by the growth pattern of the glands. The more
aggressive cancer, the smaller and less well formed glands [1].
Examples of healthy tissue and the different Gleason grades
are shown in Fig. 1.

In this paper we present a neural network design suitable
for semantic segmentation of the H&E stained images into the
four components Background, Stroma, Epithelial Cytoplasm
and Nuclei. These components are the most relevant for
prostate diagnosis, since the malignant structures are given
by the glands, which are formed by epithelial cytoplasm and
nuclei. Thus if these structures are given, the Gleason grades
could more easily be determined either by pathologists or,
more probably, by an algorithm.

Deep learning has become immensely popular in recent
years in a wide variety of machine learning fields due to its
impressive performance. The increase in available computa-
tional power has made it possible to train more and more
advanced algorithms, which perform well on more complex
tasks than ever. The major difference between deep learning
and classical machine learning techniques is that relevant
features are devised by the learning algorithm itself in the

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 1252

Examples of
Classification problems

Deep High-Resolution Representation Learning for Human Pose Estimation

Ke Sun1,2⇤† Bin Xiao2⇤ Dong Liu1 Jingdong Wang2

1University of Science and Technology of China 2Microsoft Research Asia
{sunk,dongeliu}@ustc.edu.cn, {Bin.Xiao,jingdw}@microsoft.com

Abstract

In this paper, we are interested in the human pose es-
timation problem with a focus on learning reliable high-
resolution representations. Most existing methods recover
high-resolution representations from low-resolution repre-
sentations produced by a high-to-low resolution network.
Instead, our proposed network maintains high-resolution
representations through the whole process.

We start from a high-resolution subnetwork as the first
stage, gradually add high-to-low resolution subnetworks
one by one to form more stages, and connect the mutli-
resolution subnetworks in parallel. We conduct repeated
multi-scale fusions such that each of the high-to-low reso-
lution representations receives information from other par-
allel representations over and over, leading to rich high-
resolution representations. As a result, the predicted key-
point heatmap is potentially more accurate and spatially
more precise. We empirically demonstrate the effectiveness
of our network through the superior pose estimation results
over two benchmark datasets: the COCO keypoint detection
dataset and the MPII Human Pose dataset. In addition, we
show the superiority of our network in pose tracking on the
PoseTrack dataset. The code and models have been publicly
available at https://github.com/leoxiaobin/
deep-high-resolution-net.pytorch.

1. Introduction
2D human pose estimation has been a fundamental yet

challenging problem in computer vision. The goal is to lo-
calize human anatomical keypoints (e.g., elbow, wrist, etc.)
or parts. It has many applications, including human action
recognition, human-computer interaction, animation, etc.
This paper is interested in single-person pose estimation,
which is the basis of other related problems, such as multi-
person pose estimation [6, 27, 33, 39, 47, 57, 41, 46, 17, 71],
video pose estimation and tracking [49, 72], etc.

⇤Equal contribution.
†This work is done when Ke Sun was an intern at Microsoft Research,

Beijing, P.R. China

feature
maps

conv.
unit

down
samp.

up
samp.

depth

sc
al
e

1⇥

2⇥

4⇥

Figure 1. Illustrating the architecture of the proposed HRNet. It
consists of parallel high-to-low resolution subnetworks with re-
peated information exchange across multi-resolution subnetworks
(multi-scale fusion). The horizontal and vertical directions cor-
respond to the depth of the network and the scale of the feature
maps, respectively.

The recent developments show that deep convolutional
neural networks have achieved the state-of-the-art perfor-
mance. Most existing methods pass the input through a
network, typically consisting of high-to-low resolution sub-
networks that are connected in series, and then raise the
resolution. For instance, Hourglass [40] recovers the high
resolution through a symmetric low-to-high process. Sim-
pleBaseline [72] adopts a few transposed convolution layers
for generating high-resolution representations. In addition,
dilated convolutions are also used to blow up the later lay-
ers of a high-to-low resolution network (e.g., VGGNet or
ResNet) [27, 77].

We present a novel architecture, namely High-
Resolution Net (HRNet), which is able to maintain high-
resolution representations through the whole process. We
start from a high-resolution subnetwork as the first stage,
gradually add high-to-low resolution subnetworks one by
one to form more stages, and connect the multi-resolution
subnetworks in parallel. We conduct repeated multi-scale
fusions by exchanging the information across the paral-
lel multi-resolution subnetworks over and over through the
whole process. We estimate the keypoints over the high-
resolution representations output by our network. The re-
sulting network is illustrated in Figure 1.

Our network has two benefits in comparison to exist-

1

ar
X

iv
:1

90
2.

09
21

2v
1

 [c
s.C

V
]

25
 F

eb
 2

01
9

Examples of
Classification problems

dining table.96

person1.00

person1.00 person1.00 person1.00 person1.00
person1.00

person1.00 person.94

bottle.99

bottle.99
bottle.99

motorcycle1.00 motorcycle1.00

person1.00
person1.00

person.96person1.00person.83
person.96

person.98person.90 person.92person.99person.91

bus.99

person1.00

person1.00 person1.00

backpack.93

person1.00

person.99

person1.00

backpack.99

person.99

person.98person.89person.95

person1.00

person1.00

car1.00

traffic light.96

person.96

truck1.00 person.99
car.99

person.85

motorcycle.95
car.99car.92person.99person1.00

traffic light.92 traffic light.84

traffic light.95

car.93person.87

person1.00

person1.00

umbrella.98

umbrella.98

backpack1.00

handbag.96

elephant1.00

person1.00
person1.00person.99

sheep1.00

person1.00

sheep.99

sheep.91 sheep1.00

sheep.99

sheep.99

sheep.95

person.99

sheep1.00
sheep.96

sheep.99

sheep.99

sheep.96

sheep.96

sheep.96
sheep.86

sheep.82sheep.93

dining table.99

chair.99

chair.90

chair.99

chair.98

chair.96

chair.86

chair.99

bowl.81

chair.96

tv.99

bottle.99

wine glass.99wine glass1.00

bowl.85

knife.83

wine glass1.00wine glass.93

wine glass.97

fork.95

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

a seemingly minor change, RoIAlign has a large impact: it
improves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [28], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [28]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Mask R-CNN
surpasses the winner of the 2016 COCO keypoint compe-
tition, and at the same time runs at 5 fps. Mask R-CNN,
therefore, can be seen more broadly as a flexible framework
for instance-level recognition and can be readily extended
to more complex tasks.

We have released code to facilitate future research.

2. Related Work
R-CNN: The Region-based CNN (R-CNN) approach [13]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [42, 20] and evalu-
ate convolutional networks [25, 24] independently on each
RoI. R-CNN was extended [18, 12] to allow attending to
RoIs on feature maps using RoIPool, leading to fast speed
and better accuracy. Faster R-CNN [36] advanced this
stream by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and ro-
bust to many follow-up improvements (e.g., [38, 27, 21]),
and is the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [13, 15, 16, 9] re-
sorted to bottom-up segments [42, 2]. DeepMask [33] and
following works [34, 8] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [10] proposed a com-
plex multiple-stage cascade that predicts segment proposals
from bounding-box proposals, followed by classification.
Instead, our method is based on parallel prediction of masks
and class labels, which is simpler and more flexible.

Most recently, Li et al. [26] combined the segment pro-
posal system in [8] and object detection system in [11] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [8, 11, 26] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 6), showing that it is challenged by the fun-
damental difficulties of segmenting instances.

2

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general

framework for object instance segmentation. Our approach

efficiently detects objects in an image while simultaneously

generating a high-quality segmentation mask for each in-

stance. The method, called Mask R-CNN, extends Faster

R-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recogni-

tion. Mask R-CNN is simple to train and adds only a small

overhead to Faster R-CNN, running at 5 fps. Moreover,

Mask R-CNN is easy to generalize to other tasks, e.g., al-

lowing us to estimate human poses in the same framework.

We show top results in all three tracks of the COCO suite

of challenges, including instance segmentation, bounding-

box object detection, and person keypoint detection. With-

out bells and whistles, Mask R-CNN outperforms all ex-

isting, single-model entries on every task, including the

COCO 2016 challenge winners. We hope our simple and

effective approach will serve as a solid baseline and help

ease future research in instance-level recognition. Code

has been made available at: https://github.com/
facebookresearch/Detectron.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 36] and Fully Convolutional Network (FCN) [30]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-

ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic

Figure 1. The Mask R-CNN framework for instance segmentation.

segmentation, where the goal is to classify each pixel into
a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[36] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

1

ar
X

iv
:1

70
3.

06
87

0v
3

 [c
s.C

V
]

24
 Ja

n
20

18

Machine Learning – classify
Introduction Classification Other Reduction Statistical Probability K-NN

All of these classification problems have in common:
I data - x (after segmentation, extract features)
I A number of classes

One would like to determine a class for every possible feature
vector.
Here we will assume that the features are represented as a
column vector, i.e. x 2 Rn,

x =

0

B@
x1
...

xn

1

CA

One would like to compare the feature vector x with those that
one usually gets with a number of classes. Let y denote the
class index, i.e. the classes are y 2 !y = {1, . . . ,M} where M
denotes the number of classes.
Typical system: Image - filtering - segmentation - features -
classification

Kalle Åström Image Analysis - Lecture 5

Assignments: OCR project
Input: Image

Output: Text ’ZAFBD’

• Segmentation

• Features

• Classification

• Evaluation, benchmark

Vector spaces Rn and Cn

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Linear algebra: Linear spaces

The following linear spaces are well-known:

I Rn : all n ⇥ 1-matrices, x =

0

B@
x1

...

xn

1

CA , xi 2 R

I Cn : all n ⇥ 1-matrices, x =

0

B@
x1

...

xn

1

CA , xi 2 C

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Basis

Definition

e1, . . . en 2 Rn is a basis in Rn if

I they are linearly independent

I they span Rn.

Example (3D space)

e1, e2, e3 2 R3 is a basis in R3 if they are not located in the

same plane.

Kalle Åström Image Analysis - Lecture 2

Basis

Canonical basis (normal basis)
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Canonical Basis

Example (canonical basis)

e1 =

0

BBB@

1

0

...

0

1

CCCA
, e2 =

0

BBB@

0

1

...

0

1

CCCA
, . . . en =

0

BBB@

0

0

...

1

1

CCCA

is called the canonical basis in Rn.

x =

0

B@
x1

...

xn

1

CA = x1e1 . . .+ xnen .

Kalle Åström Image Analysis - Lecture 2

Coordinates
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Coordinates

Let e1, e2, . . . , en be a basis. Then for every x there is a unique

set of scalars ⇠i such that

x =
nX

i=1

⇠i ei .

These scalars are called the coordinates for x in the basis

e1, e2, . . . , en.

Kalle Åström Image Analysis - Lecture 2

Scalar product
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Scalar product

Definition

Let A be a (complex) matrix. Introduce

A
⇤ = (Ā)T .

Definition

Let x and y be two vectors in Rn (Cn). The scalar product of x

and y is defined as

x · y =
X

x̄i yi = x
⇤
y .

Kalle Åström Image Analysis - Lecture 2

General Vector Space
• A ’General’ Vector Space is a collection of objects

called vectors, which can be added together and also
be multiplied by ’numbers’ called scalars, where the
addition and multiplication with scalars fulfill a set of
rules.

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

In linear algebra courses, the idea of vectors are often first introduced using geometric vectors. We define how
to add two vectors ū and v̄ as well as how to multiply a scalar (number) with a vector ū. Then it is shown that
these operations fulfill a number of properties

Definition 3.2.6. Properties of Vector Arithmetic Assuming that ū, v̄, and w̄ are vectors of the same type,
and that k and l are scalars, then the following rules hold:

(i) ū+ v̄ = v̄ + ū (commutativity)
(ii) (ū+ v̄) + w̄ = ū+ (v̄ + w̄) (associativity)
(iii) v̄ + 0̄ = v̄ (zero existence)
(iv) v̄ + (�v̄) = 0̄ (negative vector existence)
(v) k(lv̄) = (kl)v̄ (associativity)
(vi) 1v̄ = v̄ (multiplicative one)
(vii) 0v̄ = 0̄ (multiplicative zero)
(viii) k0̄ = 0̄ (multiplicative zero vector)
(ix) k(ū+ v̄) = kū+ kv̄ (distributivity 1)
(x) (k + l)v̄ = kv̄ + lv̄ (distributivity 2)

(3.1)

After Introducing a set of basis vectors ē1, . . . , ēn every vector can be identified by its coordinates u1, . . . , un,
so that

ū =
nX

i=1

uiēi.

12

General Vector Space
• A ’General’ Vector Space is a collection of objects

called vectors, which can be added together and also
be multiplied by ’numbers’ called scalars, where the
addition and multiplication with scalars fulfill a set of
rules.

• There are many examples of such vectors spaces. The
vectors can for example be

• Geometrical vectors in three dimensions

• N-tuples of real numbers

• Functions

• Polynomials

• Matrices

• Tensors

Example - polynomials
• Vectors - Polynomials of degree 2
• Scalars – Real numbers

We often stack these coordinates in a column vector

u =

0

B@
u1
...
un

1

CA

and obtain the usual rules for calculating addition and multiplication with a scalar.
This idea is much more general and useful.

Definition 3.2.7. Vector space A vector space consists of a set V of objects (called vectors) and a field F ,
together with a definition of vector addition, ū+ v̄, and multiplication of a scalar with a vector, kū, in such a
way that the properties of 3.2.6 holds.

There are many interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.

Example 3.2.1. Polynomials in one variable of degree 2 is a vector space. One possible basis is

ē1(x) = 1, ē2(x) = x, ē3(x) = x
2
.

The polynomial ū(x) = 5x2 + 3x� 2 has coordinates u =

0

@
u1

u2

u3

1

A =

0

@
�2
3
5

1

A, since

ū = u1|{z}
�2

ē1|{z}
1

+ u2|{z}
3

ē2|{z}
x

+ u3|{z}
5

ē3|{z}
x2

= 5x2 + 3x� 2.

The dimension of the vector space is 3.

Example 3.2.2. Matrices of size 2⇥ 2 is a vector space. One possible basis is

ē1 =

✓
1 0
0 0

◆
, ē2 =

✓
0 0
1 0

◆
, ē3 =

✓
0 1
0 0

◆
, ē4 =

✓
0 0
0 1

◆
.

The matrix

ū =

✓
1 7
3 2

◆

has coordinates u =

0

BB@

u1

u2

u3

u4

1

CCA =

0

BB@

1
3
7
2

1

CCA, since

ū = u1|{z}
1

ē1|{z}0

@1 0
0 0

1

A

+ u2|{z}
3

ē2|{z}0

@0 0
1 0

1

A

+ u3|{z}
7

ē3|{z}0

@0 1
0 0

1

A

+ u4|{z}
2

ē4|{z}0

@0 0
0 1

1

A

=

✓
1 7
3 2

◆
.

The dimension of the vector space is 4.

Think of this as a world where matrices with real elements are the objects ū) and a world where column vectors
u with real numbers are the objects and that there are methods for going back and forth between these to worlds.
The conversion is made through a set of basis vectors, i.e.

ū =
nX

i=1

uiēi.

13

Example - matrices
• Vectors – Matrices of size 2x2

• Scalars – Real numbers

We often stack these coordinates in a column vector

u =

0

B@
u1
...
un

1

CA

and obtain the usual rules for calculating addition and multiplication with a scalar.
This idea is much more general and useful.

Definition 3.2.7. Vector space A vector space consists of a set V of objects (called vectors) and a field F ,
together with a definition of vector addition, ū+ v̄, and multiplication of a scalar with a vector, kū, in such a
way that the properties of 3.2.6 holds.

There are many interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.

Example 3.2.1. Polynomials in one variable of degree 2 is a vector space. One possible basis is

ē1(x) = 1, ē2(x) = x, ē3(x) = x
2
.

The polynomial ū(x) = 5x2 + 3x� 2 has coordinates u =

0

@
u1

u2

u3

1

A =

0

@
�2
3
5

1

A, since

ū = u1|{z}
�2

ē1|{z}
1

+ u2|{z}
3

ē2|{z}
x

+ u3|{z}
5

ē3|{z}
x2

= 5x2 + 3x� 2.

The dimension of the vector space is 3.

Example 3.2.2. Matrices of size 2⇥ 2 is a vector space. One possible basis is

ē1 =

✓
1 0
0 0

◆
, ē2 =

✓
0 0
1 0

◆
, ē3 =

✓
0 1
0 0

◆
, ē4 =

✓
0 0
0 1

◆
.

The matrix

ū =

✓
1 7
3 2

◆

has coordinates u =

0

BB@

u1

u2

u3

u4

1

CCA =

0

BB@

1
3
7
2

1

CCA, since

ū = u1|{z}
1

ē1|{z}0

@1 0
0 0

1

A

+ u2|{z}
3

ē2|{z}0

@0 0
1 0

1

A

+ u3|{z}
7

ē3|{z}0

@0 1
0 0

1

A

+ u4|{z}
2

ē4|{z}0

@0 0
0 1

1

A

=

✓
1 7
3 2

◆
.

The dimension of the vector space is 4.

Think of this as a world where matrices with real elements are the objects ū) and a world where column vectors
u with real numbers are the objects and that there are methods for going back and forth between these to worlds.
The conversion is made through a set of basis vectors, i.e.

ū =
nX

i=1

uiēi.

13

Image matrix

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
iu.

3.2.2 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

11

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
iu.

3.2.2 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

11

Column stackingIntroduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.

Lecture 2+3: Text in Swedish

For those who can read swedish, there is also a short text on linear algebra, convolution and Fourier transform,
that he wrote specifically for the image analysis course:
http://www.ctr.maths.lu.se/media/FMAN20/2016/dftmm.pdf

12

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.

Lecture 2+3: Text in Swedish

For those who can read swedish, there is also a short text on linear algebra, convolution and Fourier transform,
that he wrote specifically for the image analysis course:
http://www.ctr.maths.lu.se/media/FMAN20/2016/dftmm.pdf

12

Set of images is a vector space
• Images are a vector space (with scalar product)

• Addition
• Multiplication by scalar

• Two ways to think of ’images’ as vectors (both are the same)
• 1. Column stacking

• Use column stacking to convert to ’old school’ vector Rn

• Use linear algebra as usual
• Convert back to matrix form when needed

• 2. Image basis
• Choose a basis (any basis).
• Through the use of coordinates, obtain vector representation
• Use linear algebra as usual
• Convert back when needed

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this mean?

2. Basis, coordinates
3. Scalar product
4. Projection onto a subspace

5. Projection onto an affine ‘subspace’

6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

Canonical basis
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Canonical basis

�(i , j) =

0

B@
0 . . . 0 . . . 0

... 1
...

0 . . . 0 . . . 0

1

CA ,

with the 1 at position (i , j).
Using this canonical basis we can write

f =
X

i,j

f (i , j)�(i , j) .

Idea for image transform:

Choose another basis that is more suitable in some sense.

Image matrices can thus be seen as vectors in a linear space.

Kalle Åström Image Analysis - Lecture 2

Scalar product of images
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonality

Definition

The scalar product of two matrices (images) is defined as

f · g =
M�1X

i=0

N�1X

j=0

f̄ (i , j)g(i , j) .

x , y 2 R(C) are orthogonal if x · y = 0. This is often written

x?y , x · y = 0 .

The length or the norm of x is defined as

||x || =
qX

|xi |2 = (x⇤
x)1/2 .

Kalle Åström Image Analysis - Lecture 2

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.
So start getting used to calling matrices vectors (when you known what you’re doing). In a way we are finished
here. Everything that we can do with vectors (addition, scalar multiplication, scalar product, coordinates, basis,
orthogonal projection, ...) we can now do with images after first column-stacking them.
But for better understanding it might be useful to go through some of the material once more, specifically for
image matrices.
The natural (canonical) basis for M ⇥N -matrices consists of matrices

�ij =

2

66664

0 · · · 0 · · · 0
· · · · · · · · ·
0 · · · 1 · · · 0
· · · · · · · · ·
0 · · · 0 · · · 0

3

77775
,

which has zeros everywhere except at position i, j, where there is a single one. The coordinates of the matrix f

in this basis is the matrix elements (the pixel values)

f =
X

i,j

f(i, j)�ij .

It is sometimes useful to change coordinates. This can be useful for example in image compression or for better
understanding of a problem.
As usual the computations are substantially simpler when using an orthonormal basis.
The scalar product between two matrices is

f · g =
MX

i=1

NX

j=1

f̄(i, j)g(i, j)

Example 3.2.1. walsh22 One example of an orthonormal basis for 2 ⇥ 2-matrices are the four basis images
below

�11 =


1 1
1 1

�
/2 �12 =


1 �1
1 �1

�
/2

�21 =


1 1
�1 �1

�
/2 �22 =


1 �1
�1 1

�
/2

12

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.
So start getting used to calling matrices vectors (when you known what you’re doing). In a way we are finished
here. Everything that we can do with vectors (addition, scalar multiplication, scalar product, coordinates, basis,
orthogonal projection, ...) we can now do with images after first column-stacking them.
But for better understanding it might be useful to go through some of the material once more, specifically for
image matrices.
The natural (canonical) basis for M ⇥N -matrices consists of matrices

�ij =

2

66664

0 · · · 0 · · · 0
· · · · · · · · ·
0 · · · 1 · · · 0
· · · · · · · · ·
0 · · · 0 · · · 0

3

77775
,

which has zeros everywhere except at position i, j, where there is a single one. The coordinates of the matrix f

in this basis is the matrix elements (the pixel values)

f =
X

i,j

f(i, j)�ij .

It is sometimes useful to change coordinates. This can be useful for example in image compression or for better
understanding of a problem.
As usual the computations are substantially simpler when using an orthonormal basis.
The scalar product between two matrices is

f · g =
MX

i=1

NX

j=1

f̄(i, j)g(i, j).

The norm is defined using the scalar product, i.e.

||f || =
p
f · f =

vuut
MX

i=1

NX

j=1

f̄(i, j)f(i, j).

12

Scalar product and norm

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.
So start getting used to calling matrices vectors (when you known what you’re doing). In a way we are finished
here. Everything that we can do with vectors (addition, scalar multiplication, scalar product, coordinates, basis,
orthogonal projection, ...) we can now do with images after first column-stacking them.
But for better understanding it might be useful to go through some of the material once more, specifically for
image matrices.
The natural (canonical) basis for M ⇥N -matrices consists of matrices

�ij =

2

66664

0 · · · 0 · · · 0
· · · · · · · · ·
0 · · · 1 · · · 0
· · · · · · · · ·
0 · · · 0 · · · 0

3

77775
,

which has zeros everywhere except at position i, j, where there is a single one. The coordinates of the matrix f

in this basis is the matrix elements (the pixel values)

f =
X

i,j

f(i, j)�ij .

It is sometimes useful to change coordinates. This can be useful for example in image compression or for better
understanding of a problem.
As usual the computations are substantially simpler when using an orthonormal basis.
The scalar product between two matrices is

f · g =
MX

i=1

NX

j=1

f̄(i, j)g(i, j).

The norm is defined using the scalar product, i.e.

||f || =
p

f · f =

vuut
MX

i=1

NX

j=1

f̄(i, j)f(i, j).

12

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.
So start getting used to calling matrices vectors (when you known what you’re doing). In a way we are finished
here. Everything that we can do with vectors (addition, scalar multiplication, scalar product, coordinates, basis,
orthogonal projection, ...) we can now do with images after first column-stacking them.
But for better understanding it might be useful to go through some of the material once more, specifically for
image matrices.
The natural (canonical) basis for M ⇥N -matrices consists of matrices

�ij =

2

66664

0 · · · 0 · · · 0
· · · · · · · · ·
0 · · · 1 · · · 0
· · · · · · · · ·
0 · · · 0 · · · 0

3

77775
,

which has zeros everywhere except at position i, j, where there is a single one. The coordinates of the matrix f

in this basis is the matrix elements (the pixel values)

f =
X

i,j

f(i, j)�ij .

It is sometimes useful to change coordinates. This can be useful for example in image compression or for better
understanding of a problem.
As usual the computations are substantially simpler when using an orthonormal basis.
The scalar product between two matrices is

f · g =
MX

i=1

NX

j=1

f̄(i, j)g(i, j).

The norm is defined using the scalar product, i.e.

||f || =
p
f · f =

vuut
MX

i=1

NX

j=1

f̄(i, j)f(i, j).

12

Example 3.2.1 (Scalar product and norm). Let

f =

✓
1 0
�2 2

◆

and

g =

✓
4 2
�1 �3

◆
.

What is the scalar product f · g? What is the norm ||f ||?

Example 3.2.2. walsh22 One example of an orthonormal basis for 2 ⇥ 2-matrices are the four basis images
below

�11 =


1 1
1 1

�
/2 �12 =


1 �1
1 �1

�
/2

�21 =


1 1
�1 �1

�
/2 �22 =


1 �1
�1 1

�
/2

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = �2, x12 = 4, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 +�2


1 1
�1 �1

�
/2 + 4


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 4
�2 6

�
.

Example 3.2.3. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after

13

Orthonormal basis
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal basis (ON-basis)

Definition

{e1, . . . , en} is an orthonormal (ON-) basis in Rn (Cn) if

ei · ej =

(
0 i 6= j

1 i = j

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

Orthonormal basis
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Coordinates in ON-basis

Theorem

Assume that {e1, . . . , en} is orthonormal (ON) basis and

x =
nX

i=1

⇠i ei .

Then

⇠i = ei · x = e
⇤
i x , ||x ||2 =

nX

i=1

|⇠i |2

Kalle Åström Image Analysis - Lecture 2

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this mean?

2. Basis, coordinates

3. Scalar product

4. Projection onto a subspace
5. Projection onto an affine ‘subspace’

6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

Orthogonal projection
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal projection

Definition

Let {a1, . . . , ak} 2 Rn, k  n, span a linear subspace, ⇡, in Rn,

i.e.:

⇡ = {w |w =
kX

i=1

xiai , xi 2 R} .

The orthogonal projection of u 2 Rn on ⇡ is a linear mapping

P, such that u⇡ = Pu and defined by

min
w2⇡

||u � w || = ||u � u⇡|| .

Kalle Åström Image Analysis - Lecture 2

Orthogonal projectionReview of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal projection (ctd.)

The orthogonal projection is characterized by

1. u⇡ 2 ⇡
2. u � u⇡?w for every w 2 ⇡

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal projection (ctd.)

The orthogonal projection is characterized by

1. u⇡ 2 ⇡
2. u � u⇡?w for every w 2 ⇡

Kalle Åström Image Analysis - Lecture 2

Orthogonal projection

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal projection (ctd.)

The orthogonal projection is characterized by

1. u⇡ 2 ⇡
2. u � u⇡?w for every w 2 ⇡

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Uniqueness of the projection

Let a 2 ⇡ and b 2 ⇡ be two solutions to the minimisation

problem. Set

f (t) = ku � ta � (1 � t)bk2 = . . .

= ku � bk2 + t
2ka � bk2 � 2t(a � b) · (u � b), t 2 R .

This is a second degree polynomial with minimum in t = 0 and

t = 1) f (t) is a constant function and thus) a = b.

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Characterization of the projection

Let f (t) = ku � u⇡ + tak2, where a 2 ⇡. It follows that

f 0(0) = 2(u � u⇡) · a = 0, i.e. (u � u⇡) ? a.

Conversely: Assume w 2 ⇡. The property that (u � u⇡) ? a, for

every a 2 ⇡ gives that

ku � wk2 = ku � u⇡ + u⇡ � wk2 =

ku � u⇡k2 + ku⇡ � wk2 � ku � u⇡k2,

i.e. u⇡ solves the minimization problem.

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

An important result

Let A = [a1 . . . ak] be a n ⇥ k matrix and

⇡ = {w |w = Ax , xi 2 Rn}

Lemma

If {a1, . . . , ak} are linearly independent Rn then A⇤A is

invertible.

Proof: Do it on your own. (Use SVD if you are familiar with it.)

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Projection onto the subspace spanned by A

Theorem

if the columns of A are linearly independent, then the projection

of u on ⇡ is given by

u⇡ = x1a1 + . . .+ xkak , x = (A⇤
A)�1

A
⇤
u .

Proof: Use the characterization of the projection (above).

a
⇤
i (u � u⇡) = 0)

A
⇤(u � Ax) = 0)

A
⇤
u = A

⇤
Ax) x = (A⇤

A)�1
A
⇤
u

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

The pseudo-inverse

Definition

A+ = (A⇤A)�1A⇤ is called the pseudo-inverse of A.

Observe that if A is quadratic and invertible then A+ = A�1.

Theorem

If {a1, . . . , ak} are orthonormal, then the projection of u on ⇡ is

given by

u⇡ = y1a1 + . . .+ ykak , yi = a
⇤
i u .

Proof: This follows from A⇤A = I.

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

Orthogonal projection
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: Matrix-basis

What is the orthogonal projection of f

f =

0

@
1 2 3

4 5 6

7 7 7

1

A

onto the space spanned by (e1, e2, e3)

e1 =
1

3

0

@
1 1 1

1 1 1

1 1 1

1

A , e2 =
1p
6

0

@
1 1 1

0 0 0

�1 �1 �1

1

A , e3 =
1p
6

0

@
1 0 �1

1 0 �1

1 0 �1

1

A

Kalle Åström Image Analysis - Lecture 2

Orthogonal projectionReview of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: Matrix-basis (ctd.)

Since (e1, e2, e3) is orthonormal the coordinates are

x1 = f · e1 = 14, x2 = f · e2 = �15/
p

6, x3 = f · e3 = �4/
p

6.
The orthogonal projection is then

f̂ = 14e1 � 15/
p

6e2 � 4/
p

6e3

f =

0

@
1 2 3

4 5 6

7 7 7

1

A , f̂ =

0

@
1.5 2

1

6
2

5

6

4 4
2

3
5

1

3

6.5 7
1

6
7

5

6

1

A ,

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: Matrix-basis

What is the orthogonal projection of f

f =

0

@
1 2 3

4 5 6

7 7 7

1

A

onto the space spanned by (e1, e2, e3)

e1 =
1

3

0

@
1 1 1

1 1 1

1 1 1

1

A , e2 =
1p
6

0

@
1 1 1

0 0 0

�1 �1 �1

1

A , e3 =
1p
6

0

@
1 0 �1

1 0 �1

1 0 �1

1

A

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: Matrix-basis

What is the orthogonal projection of f

f =

0

@
1 2 3

4 5 6

7 7 7

1

A

onto the space spanned by (e1, e2, e3)

e1 =
1

3

0

@
1 1 1

1 1 1

1 1 1

1

A , e2 =
1p
6

0

@
1 1 1

0 0 0

�1 �1 �1

1

A , e3 =
1p
6

0

@
1 0 �1

1 0 �1

1 0 �1

1

A

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Orthogonal projection (ctd.)

The orthogonal projection is characterized by

1. u⇡ 2 ⇡
2. u � u⇡?w for every w 2 ⇡

Kalle Åström Image Analysis - Lecture 2

x
Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: ’Face’-basis

What is the orthogonal projection of f

onto the space spanned by (e1, e2, e3)

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Example: ’Face’-basis (ctd.)

Since (e1, e2, e3) is orthonormal, the coordinates are

x1 = f · e1 = �2457, x2 = f · e2 = 303, x3 = f · e3 = �603.
The orthogonal projection is then f̂ = �2457e1 +303e2 �603e3

Kalle Åström Image Analysis - Lecture 2

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this mean?

2. Basis, coordinates

3. Scalar product

4. Projection onto a subspace

5. Projection onto an affine ‘subspace’
6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

Projection onto affine subspace
• Previously projection onto linear subspace

• A linear subspace always contains the zero vector

• How about planes or ’subspaces’ that are shifted away from
the origin. Such sets are called affine spaces.

• An affine subspace is typically not a linear space

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Projection onto affine subspace
• An affine subspace, defined by

• Projection of u onto the affine subspace

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this mean?

2. Basis, coordinates

3. Scalar product

4. Projection onto a subspace

5. Projection onto an affine ‘subspace’

6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

PCA - Principal
Component Analysis
• Orthogonal projection – project an image u on

• subspace spanned by

• or affine subspace defined by

• How do we find a good subspace?

• Given lots of vectors x1, ..., xN. Find a suitable affine
subspace so that the orthogonal projections yi of xi are as
close to xi as possible

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

PCA - Principal
Component Analysis

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

3.2.3 Principal Component Analysis

In the previous two sections we talked about projection onto a subspace (defined by vectors a1, . . . , ak) or onto
an affine subspace (defined by vectors m, a1, . . . , ak. But how can we determine a suitable subspace from
examples.
The key idea here is that given many examples x1, . . . , xN 2 Cn or Rn find an subspace or affine subspace
⇡ so that the errors when projecting all of the examples are small in some sense. The calculations become
particularily easy if we choose a particular error.
Assume that an affine subspace

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

of dimension k is defined by vectors m, a1, . . . , ak. Assume that the orthogonal projection of example xi onto
the affine subspace ⇡ is denoted yi(⇡). Introduce the following error

e(⇡) =
NX

i=1

||yi(⇡)� xi||2.

The affine subspace ⇡ that minimizes e(⇡) can be found by the following method.

1. Calculate the mean m = 1
N

P
N

i=1 xi.

2. Subtract the mean from all examples zi = xi �m.

3. Place all of the resulting vectors as columns of a matrix, M =
�
z1 . . . zN

�
.

4. Factorize M using the singular value decomposition M = USV
T .

5. Use the first k columns of U as the basis of the subspace, i.e. ai = ui, with U =
�
u1 . . . um

�
.

3.2.4 Images as elements of a vector space

A digital grayscale image can be represented by a matrix

f =

2

6664

f(1, 1) f(1, 2) . . . f(1, N)
f(2, 1) f(2, 2) . . . f(2, N)

...
...

. . .
...

f(M, 1) f(M, 2) . . . f(M,N)

3

7775
.

Here we let the matrix elements f(i, j) be complex (or real) elements. We will use the following notation to
denote row j and column k.

f(j, ·) = [f(j, 1) f(j, 2) . . . f(j,N)] ,

f(·, k) =

2

6664

f(1, k)
f(2, k)

...
f(M,k)

3

7775
.

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

12

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

PCA –”Training”
Given examples, find subspaceReview of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

PCA - Principal
Component Analysis

Mean Emoji Eigen-Emoji a1 Eigen-Emoji a2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

PCA - Principal
Component Analysis

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Mean Emoji Eigen-Emoji a1 Eigen-Emoji a2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

PCA - Principal
Component Analysis

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Mean Emoji Eigen-Emoji a1 Eigen-Emoji a2

Review of Linear algebra

Fourier transform

Linear space, basis

Scalar product

Orthogonal projection

Illustration

Kalle Åström Image Analysis - Lecture 2

PCA - Principal
Component Analysis

Theorem 3.2.3. Assume that the columns of A are linearly independent. Then

(i) The projection of u onto ⇡ is given by

u⇡ = x1a1 + . . .+ xkak = Ax with x = (A⇤
A)�1

A
⇤
u

(ii) minw2⇡||u� w|| = ||u� u⇡||

Proof. (i)
u⇡ = Ax projection of u onto ⇡ ()
8
><

>:

a
⇤
1(u� u⇡) = 0

...
a
⇤
k
(u� u⇡) = 0

() A
⇤(u�Ax) = 0 ()

A
⇤
u = A

⇤
Ax () x = (A⇤

A)�1
A

⇤
u

(ii) Pythagoras theorem gives

u� w = u� u⇡| {z }
?⇡

+u⇡ � w| {z }
2⇡

=) ||u� w||2 = ||u� u⇡||2 + ||u⇡ � w||2 � ||u� u⇡||2

with equality if () w = u⇡.

Definition 3.2.5. A
+ = (A⇤

A)�1
A

⇤ is called the pseudo inverse of A.

According to theorem 3.2.3 the projection u⇡ of u onto ⇡ is obtained by u⇡ = A
+
u. The pseudo inverse can

also be defined if the columns of A are not linearly independent.
For the case of orthogonal columns, the projection is particularly simple.

Theorem 3.2.4. If {a1, . . . , ak} are orthogonal then

u⇡ = y1a1 + . . .+ ykak med yi = ai · u = a
⇤
iu, i = 1, . . . , k .

Proof. If {a1, . . . , ak} are orthonormal then A
⇤
A = I (Unit matrix of size k⇥k). Therefore u⇡ = A(A⇤

A)�1
A

⇤
u =

AA
⇤
u = Ay with yi = a

⇤
i
u.

3.2.2 Projection onto an affine subspace

Given vectors {a1, . . . , ak} ⇢ Cn or Rn
, k  n, the set

⇡ = {w | w =
nX

1

xiai = Ax where xi 2 C (orR)}

is a subspace and contains the zero vector by definition. In the previous section we discussed projection onto
such a subspace.
Sometimes it is of interest to study projection onto an affine subspace of type

⇡ = {w | w = m+
nX

1

xiai = Ax+m where xi 2 C (orR)}.

Notice that this is not necessarily a subspace since it might not contain the zero vector. Affine subspaces are
characterized by displacement vectors being a linear space.
An affine subspace can be defined by one point m of the space and a set of k vectors a1, . . . , ak.
The projection of u onto u⇡ on the affine subspace is similar to projection onto an ordinary subspace. The
difference is only that m is subtracted from u first and then added after the projection.

• Subtract m, i.e. form v = u�m.

• Project v onto the space spanned by a1, . . . , ak, i.e. v⇡ = A
+
v.

• Add m, i.e. form u⇡ = v⇡ +m.

11

Mean Emoji Eigen-Emoji a1 Eigen-Emoji a2

PCA - Principal
Component Analysis

New shape not in
database

using 10
coefficients

using 50
coefficients

using 100
coefficients

using 500
coefficients

Approximation of new shapes using PCA basis elements

Overview –
Linear Algebra and FFT

1. Linear Algebra

1. Vector space – ’A matrix is a vector’ What does this mean?

2. Basis, coordinates

3. Scalar product

4. Projection onto a subspace

5. Projection onto an affine ‘subspace’

6. (Principal Component Analysis – Recipe)

7. Change of basis

2. Fourier Transform

Fourier Transform

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�,).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .

F (u, v) = 1
MN

P
M

x=1

P
N

y=1 f(x, y) exp(�i2⇡((u� 1)(x� 1)/M + (v � 1)(y � 1)/N)),

x = 1, . . . ,M, y = 1, . . . , N .

This can be written

F (u, v) =
1

MN
[1 !(

M
u) !2u

M . . . !
(M�1)u
M

] f

2

666664

1
!
v

N

!
2v
N

...
!
(N�1)v
N

3

777775
,

which prooves the following theorem.

Theorem 3.3.3. The two-dimensional Discrete Fourier Transform (DFT) is given by

f �! F =
1

MN
FMfFN (3.3)

The inverse Fourier transform is
F �! FMfFN (3.4)

16

• Can be viewed as a change of basis
• Image f –> Fourier Transform F (and back)
• Has strong connections with convolutions
• (next lecture)
• Useful for image compression
• Useful for image understanding
• Basically a great tool

Fourier Transform
• Definition, is a change of basis, what does is mean

• Detour (for increased understanding

• Ordinary Fourier Transform (from previous courses)

• Examples

• Properties

• Discrete Fourier Transform – 1D

Image basis example (Walsh)
Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = 4, x12 = �2, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 + 4


1 1
�1 �1

�
/2� 1


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 �2
4 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

Introduce the following notation for columnstacking of a matrix.

ef =

2

6664

f(·, 1)
f(·, 2)

...
f(·, N) .

3

7775

(In matlab the column stacked vector v can be obtained from a matrix f using v=f(:).
Since

]f + g = ef + eg, f�f = � ef

we can identify complex (or real) M ⇥N -matrices with vectors of type CMN (or RMN).
This is a key idea: Images can be thought of a elements of a vector space. We can add two images, multiply
them with a scalar, calculate the scalar product between two images and project an image onto a subspace
spanned by a set of images.
It might be confusing to say that images are vectors. The word vector has several different meanings (i) a vector
can mean a matrix of size M ⇥ 1 or 1⇥N , (ii) a vector can denote a geometric vector in three dimensions (iii)
a vector can be an element of an linear vector space.
There are other interesting vector spaces, e.g. polynomials up to a fixed degree and functions R ! R.
So start getting used to calling matrices vectors (when you known what you’re doing). In a way we are finished
here. Everything that we can do with vectors (addition, scalar multiplication, scalar product, coordinates, basis,
orthogonal projection, ...) we can now do with images after first column-stacking them.
But for better understanding it might be useful to go through some of the material once more, specifically for
image matrices.
The natural (canonical) basis for M ⇥N -matrices consists of matrices

�ij =

2

66664

0 · · · 0 · · · 0
· · · · · · · · ·
0 · · · 1 · · · 0
· · · · · · · · ·
0 · · · 0 · · · 0

3

77775
,

which has zeros everywhere except at position i, j, where there is a single one. The coordinates of the matrix f

in this basis is the matrix elements (the pixel values)

f =
X

i,j

f(i, j)�ij .

It is sometimes useful to change coordinates. This can be useful for example in image compression or for better
understanding of a problem.
As usual the computations are substantially simpler when using an orthonormal basis.
The scalar product between two matrices is

f · g =
MX

i=1

NX

j=1

f(i, j)g(i, j)

Example 3.2.1. walsh22 One example of an orthonormal basis for 2 ⇥ 2-matrices are the four basis images
below

�11 =


1 1
1 1

�
/2 �12 =


1 �1
1 �1

�
/2

�21 =


1 1
�1 �1

�
/2 �22 =


1 �1
�1 1

�
/2

12

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = �2, x12 = 4, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 +�2


1 1
�1 �1

�
/2 + 4


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 4
�2 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

• Image f –> Fourier Transform x (and back)

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = 4, x12 = �2, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 + 4


1 1
�1 �1

�
/2� 1


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 �2
4 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = 4, x12 = �2, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 + 4


1 1
�1 �1

�
/2� 1


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 �2
4 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

Fourier transform as change of image basis

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�,).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .

F (u, v) = 1
MN

P
M

x=1

P
N

y=1 f(x, y) exp(�i2⇡((u� 1)(x� 1)/M + (v � 1)(y � 1)/N)),

x = 1, . . . ,M, y = 1, . . . , N .

This can be written

F (u, v) =
1

MN
[1 !(

M
u) !2u

M . . . !
(M�1)u
M

] f

2

666664

1
!
v

N

!
2v
N

...
!
(N�1)v
N

3

777775
,

which prooves the following theorem.

Theorem 3.3.3. The two-dimensional Discrete Fourier Transform (DFT) is given by

f �! F =
1

MN
FMfFN (3.3)

The inverse Fourier transform is
F �! FMfFN (3.4)

16

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�,).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .

F (u, v) = 1
MN

P
M

x=1

P
N

y=1 f(x, y) exp(�i2⇡((u� 1)(x� 1)/M + (v � 1)(y � 1)/N)),

x = 1, . . . ,M, y = 1, . . . , N .

This can be written

F (u, v) =
1

MN
[1 !(

M
u) !2u

M . . . !
(M�1)u
M

] f

2

666664

1
!
v

N

!
2v
N

...
!
(N�1)v
N

3

777775
,

which prooves the following theorem.

Theorem 3.3.3. The two-dimensional Discrete Fourier Transform (DFT) is given by

f �! F =
1

MN
FMfFN (3.3)

The inverse Fourier transform is
F �! FMfFN (3.4)

16

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = 4, x12 = �2, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 + 4


1 1
�1 �1

�
/2� 1


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 �2
4 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

Check that they are orthonormal! Study the image (the matrix)

f =


9 �1
5 7

�

What are the coordinates for f in the new basis? According to Theorem ?? the coordinates for f is given by
the scalar products

xij = f · �ij =
X

�,µ

f(�, µ)�ij(�, µ)

For the matrix f above we get

x11 = 10, x21 = 4, x12 = �2, x22 = 6.

In other words we have
f = x11�11 + x21�21 + x12�12 + x22�22.

or
fij = x · �ij =

X

�,µ

f(�, µ)�ij(�, µ).

Check that

9 �1
5 7

�
= 10


1 1
1 1

�
/2 + 4


1 1
�1 �1

�
/2� 1


1 �1
1 �1

�
/2 + 6


1 �1
�1 1

�
/2

Sometimes we collect the new coordinates in a matrix

x =


10 �2
4 6

�
.

Example 3.2.2. walsh One example of an orthonormal basis consists of the Walsh matrices �ij , named after
Joseph L. Walsh, who proposed such structures in 1923. For 4⇥ 4-matrices the first nine are given by

�11 =

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775 �12 =

2

664

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1
1 1 1 1

3

775 �21 =

2

664

1 1 �1 �1
1 1 �1 �1
1 1 �1 �1
1 1 �1 �1

3

775

�13 =

2

664

1 1 1 1
�1 �1 �1 �1
1 1 1 1
�1 �1 �1 �1

3

775 �22 =

2

664

�1 �1 1 1
�1 �1 1 1
1 1 �1 �1
1 1 �1 �1

3

775 �31 =

2

664

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

3

775

�14 =

2

664

1 1 1 1
�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

3

775 �23 =

2

664

�1 �1 1 1
1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

3

775 �32 =

2

664

�1 1 �1 1
�1 1 �1 1
1 �1 1 �1
1 �1 1 �1

3

775

Check that they are orthogonal! The norm of the matrices are 4. According to Theorem ?? the coordinates for
f in a Walsh basis is given by the scalar products

xij = f · �ij/16 =
1

16

X

�,µ

f(�, µ)�ij(�, µ)

If x00, x01 and x10 are calculated as above, according to theorem ?? the best approximation (in a least squares
sense) of an image f using images that are a linear combination of �00,�01 and �10 is given by

x00�00 + x01�01 + x10�10

13

Compare with ordinary Fourier Transform

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

Fourier transform

Definition

Let f be a function from R to R. The Fourier transformen of f is

defined as

(F f)(u) = F (u) =

Z +1

�1
e
�i2⇡xu

f (x)dx .

Theorem

Under the right assumptions on f , the following inversion

formula

f (x) =

Z +1

�1
e

i2⇡ux
F (u)du

holds.

Kalle Åström Image Analysis - Lecture 2

Examples

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

Examples

Example

�(x) 7! 1(u)

rect(x) 7! 2
sin(2⇡u)

2⇡u
= 2 sinc(2⇡u)

Kalle Åström Image Analysis - Lecture 2

Examples

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

Illustrations

Kalle Åström Image Analysis - Lecture 2

Examples

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

Properties

c1f1(x) + c2f2(x) 7! c1F1(u) + c2F2(u) (linearity)

f (�x) 7! 1

|�|F (
u

�
) (scaling)

f (x � a) 7! e
�i2⇡ua

F (u) (translation)

e
�i2⇡xa

f (x) 7! F (u + a) (modulation)

f (x) 7! F (�u) (conjugation)

df

dx
7! 2⇡iuF (u) (differentiation I)

�2⇡ixf (x) 7! dF

du
(differentiation II)

Example: �(x � 1) 7! e�i2⇡u

Kalle Åström Image Analysis - Lecture 2

Discrete Fourier Transform - 1D

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
1

N

N�X

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F =
1

N
FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
NX

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F = FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
NX

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F = FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
NX

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F = FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

Discrete Fourier Transform - 1D

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

DFT in matrix form

Let

f =

0

B@
f (0)

...

f (N � 1)

1

CA , F =

0

B@
F (0)

...

F (N � 1)

1

CA .

Definition

The Fourier Matrix FN is given by

FN =

0

BBBBBB@

1 1 1 . . . 1

1 !N !2

N
. . . !N�1

N

1 !2

N
!4

N
. . . !2(N�1)

N

...
...

...
. . .

...

1 !N�1

N
!2(N�1)

N
. . . !(N�1)(N�1)

N

1

CCCCCCA
.

Kalle Åström Image Analysis - Lecture 2

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
NX

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F = FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

Discrete Fourier Transform - 1D

3.3 Fourier transform

The second part of the lecture is on the Fourier transform.
The discrete fourier transform is also described in Chapter 3.4 in Szelisky.

The Discrete Fourier Transform (DFT) in one variable

Let

f =

2

64
f(1)

...
f(N)

3

75

be a vector in CN .

Definition 3.3.1. The Discrete Fourier Transform (DFT) of theCN -vector f is the CN -vector F , whose
components

F (u) =
NX

x=1

f(x) exp[�i2⇡(u� 1)(x� 1)/N], u = 1, . . . , N . (3.1)

The equation can be seen as a discretized version of the continuous version of the fouriertransform. For a
givenăN introduce the complex constant

!N = exp(�i2⇡/N) .

Note that !N lies on the complex unit circle, i.e. |!N | = 1. For example, we have !2 = �1, !4 = �i and
!8 = (1 � i)/

p
2 (!N is one of the N :th roots of unity, !N

N
= 1.) The discrete Fourier transform can then be

written

F (u) =
NX

x=1

f(x)!(x�1)(u�1)
N

, u = 1, . . . , N

The mapping from a vector f to its fourier transform F is linear and can be expressed by as F = Mf for some
matrix M . This matrix, the Fourier matrix is important.

Definition 3.3.2. Set !N = exp(�i2⇡/N). The Fourier matrix FN is defined as

FN =

0

BBBBBB@

1 1 1 . . . 1
1 !N !

2
N

. . . !
N�1
N

1 !
2
N

!
4
N

. . . !
2(N�1)
N

...
...

...
. . .

...
1 !

N�1
N

!
2(N�1)
N

. . . !
(N�1)(N�1)
N

1

CCCCCCA
= [!(i�1)(j�1)

N
]i,j=1,...,N .

The DFT can then be written as a matrix multiplication

f �! F = FNf.

The discrete Fourier transform is invertible. So it possible for each transform F to calculate f so that F =
1
N
Ff . This is captured in the following theorem.

Theorem 3.3.1. For the Fourier matrix the following holds,

FF = NI .

From this we obtain F�1 = 1
N
F The inverse Fourier transform is thus

f = FF () f(x) =
1

N

NX

u=1

F (u)!(x�1)(u�1)
N

, x = 1, . . . , N .

14

Discrete Fourier Transform - 1D
• Important: DFT assumes that signals are periodic!

• Think of the signal as wrapped periodically

• Fourier transform is complex.

• Plot absolute value and phase

• Low frequencies in the edges/corners.

• Ordinary images typically have large values for low
frequencies.

Discrete Fourier Transform - 2D

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�,).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .

F (u, v) = 1
MN

P
M

x=1

P
N

y=1 f(x, y) exp(�i2⇡((u� 1)(x� 1)/M + (v � 1)(y � 1)/N)),

x = 1, . . . ,M, y = 1, . . . , N .

This can be written

F (u, v) =
1

MN
[1 !(

M
u) !2u

M . . . !
(M�1)u
M

] f

2

666664

1
!
v

N

!
2v
N

...
!
(N�1)v
N

3

777775
,

which prooves the following theorem.

Theorem 3.3.3. The two-dimensional Discrete Fourier Transform (DFT) is given by

f �! F =
1

MN
FMfFN (3.3)

The inverse Fourier transform is
F �! FMfFN (3.4)

16

Using this theorem, the calculation of the DFT for order 2n+1 can be done by two calculations of the DFT of
order 2n, which in turn can be calucated by four DFT’s of order 2n�1 etc. If µn is the number of multiplications
needed for calculating DFT of order 2n then we have

µn = 2µn�1 + 2n�1
.

This is a recursion formula. Using µ1 = 0, we get

µn =
n2n

2
=

N log2N

2
om N = 2n .

If we study e.g. N = 1024, then the number of multiplications needed for the calculation of DFT according to
the definition is N2 ⇡ 106, whereas the number of multiplications for the FFT is N log2N/2 ⇡ 103 · 10/2 ⇡
104. For this case the FFT is a factor of 100 faster!

The DFT in two variables

As we discussed earlier in this lecture, the set of M ⇥ N matrices can be thought of as a linear vector space.
The DFT of an image is a linear mapping. After column stacking of an images f , the mapping can be written

eg = A ef

for some A.
Multiplication with the original matrix f might not be meaningful. There are, however, certain linear mappings
that can be written in terms of the original matrix f . A linear mapping f ! g is said to be separable if it can
be written as a product

g = �f ,

for a matrix pair (�,).
Here we will introduce the DFT for images and show that it is separable.
First we define the two-variable Discrete Fourier Transform (DFT). Analogous to (3.1) this is defined as

F (u, v) =
P

M

x=1

P
N

y=1 f(x, y) e
�i2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)

,

x = 1, . . . ,M, y = 1, . . . , N .

f(x, y) = 1
MN

P
M

u=1

P
N

v=1 F (u, v) ei2⇡((u�1)(x�1)/M+(v�1)(y�1)/N)
,

x = 1, . . . ,M, y = 1, . . . , N .

F (u, v) = 1
MN

P
M

x=1

P
N

y=1 f(x, y) exp(�i2⇡((u� 1)(x� 1)/M + (v � 1)(y � 1)/N)),

x = 1, . . . ,M, y = 1, . . . , N .

This can be written

F (u, v) =
1

MN
[1 !(

M
u) !2u

M . . . !
(M�1)u
M

] f

2

666664

1
!
v

N

!
2v
N

...
!
(N�1)v
N

3

777775
,

which prooves the following theorem.

Theorem 3.3.3. The two-dimensional Discrete Fourier Transform (DFT) is given by

f �! F =
1

MN
FMfFN (3.3)

The inverse Fourier transform is
F �! FMfFN (3.4)

16

Discrete Fourier Transform - 2D

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

DFT in Matrix form

Let the matrix F represent the Fourier transform of the image

f (x , y):
F = FMfFN

or

F = FM(FNf
T)T .

i.e. the DFT in two dimensions can be calculated by repeated

use of the one-dimensional DFT, first for the rows, then for the

columns.

Kalle Åström Image Analysis - Lecture 2

Discrete Fourier Transform - 2D
Example

Fourier transform is complex. Plot absolute value and phase

Discrete Fourier Transform - 2D
Example – Periodic expansion

Review of Linear algebra

Fourier transform

Continuous Fourier transform

Discrete Fourier Transform (DFT,FFT)

Two-dimensional Fourier Transform

Interpretation of the Fourier Transform

I Usually, the gray-levels of the Fourier Transform images

are scaled using c log(1 + |F (u, v)|).
I The middle of the Fourier image (after fftshift) corresponds

to low frequencies.

I Outside the middle high components in F corresponds to

higher frequencies and the direction corresponds to

"edges"in the images with opposite orientation.

Kalle Åström Image Analysis - Lecture 2

Fourier transform

•Image

Fourier transform

•Image •abs(fft2(I))

Fourier transform

•Image •log(abs(fft2(I)))

Edge effects

•Image •log(abs(fft2(I)))

Fourier transform

•Image

Fourier transform

•Image •Fourier transform

Fourier transform

•Image

Fourier transform

•Image •Fourier transform

Review
• Linear algebra

• The space of images is a linear vector space
• Images are ’vectors’ – in the sense that they are elements of a linear vectors

space
• Can be confusing. Can a matrix be a vector???

• Useful tools
• Change of basis
• Projection onto a subspace, onto affine subspace
• PCA

• Fourier Transform

• Read lecture notes
• Experiment with matlab demo scripts
• Continue with assignment 1

