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Image Analysis - Motivation




Overview —
Linear Algebra and FFT

1. Linear Algebra

1. Vector space — 'A matrix is a vector’ What does this
mean?

2. Basis, coordinates

3. Scalar product

4.  Projection onto a subspace

5.  Projection onto an affine ‘subspace’

6. (Principal Component Analysis — Recipe)
7. Change of basis

2. Fourier Transform



But first, some notes on the home
assignments. ...



But first, some notes on the home
assignments. ...

The Rules

Each student should hand in his or her own individual solution
and should, upon request, be able to present the details in all

the steps of the used algorithm. You are, however, allowed to
discuss the assignment-problem with others. You may also ask
your teachers and the course assistants for advice, if needed.



But first, some notes on the home
assignments. ...

The report

Present your work in a report of approximately four A4-pages
written in English or Swedish. Make sure you answer all
guestions in the grayed boxes and provide complete solutions
to the exercises. The teacher is going to judge your work
based on the report alone. Usually the teacher will check code
only in very special cases, for instance if very persistent
problems remain with your implementation. In these cases

you may send code directly to the teacher that is correcting
your assignment.
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Examples of
Classification problems

Optical character recognition (OCR)

%ml LeNet 5 | gesearcu

answer: 0

LYCHL?8

License plate readers

*Digit recognition, AT&T labs

http://www.research.att.com/~ e wikined N or o
*http://en.wikipedia.org/wiki/Automatic number plate re
m/ cognition



http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Examples of
Classification problems

Semantic Segmentation of Microscopic Images of
H&E Stained Prostatic Tissue using CNN

Johan Isaksson, Ida Arvidsson,
Kalle Astrom and Anders Heyden
Lund University



Examples of
Classification problems

Deep High-Resolution Representation Learning for Human Pose Estimation

Ke Sun®?*  Bin Xiao?* Dong Liu' Jingdong Wang?
'University of Science and Technology of China 2Microsoft Research Asia

{sunk,dongeliu}@ustc.edu.cn, {Bin.Xiao, jingdw}@microsoft.com



Examples of
Classification problems

Mask R-CNN

Kaiming He  Georgia Gkioxari Piotr Dollar  Ross Girshick
Facebook AI Research (FAIR)



Machine Learning — classify

All of these classification problems have in common:
» data - x (after segmentation, extract features)
» A number of classes

One would like to determine a class for every possible feature
vector.

Here we will assume that the features are represented as a
column vector, i.e. x € R",

One would like to compare the feature vector x with those that
one usually gets with a number of classes. Let y denote the
class index, i.e. the classes are y € wy, = {1,..., M} where M
denotes the number of classes.

Typical system: Image - filtering - segmentation - features -
classification



Assignments: OCR project

0

Input: Image oo | Z A F B D

0 50 100 150 200

Output: Text 'ZAFBD’

. Segmentation
- Features
- Classification

- Evaluation, benchmark



Vector spaces R" and C®

The following linear spaces are well-known:

X1

» R7:allnx 1-matrices, x=1| : |, XxeR
Xn
X1

» C":allnx1-matrices, x=1| : |, x;€C

UNIVERSITY



Basis

Definition

e1,...ep € R"is a basis in R" if
» they are linearly independent
» they span R".

Example (3D space)

e1, e, e3 € R3 js abasis in R? if they are not located in the
same plane. n

UNIVERSITY



Canonical basis (normal basis)

Example (canonical basis)

(1) (0 (0
0 1 0
e = | € = S ERERER en = :
\0/ \0/ \1/
is called the canonical basis in R".
(X1
X = = X1€1 ...+ Xn€n .
\Xn/




Coordinates

Let e, €0,..., €, be abasis. Then for every x there is a unique
set of scalars &; such that

n
X = Zf,-e,- :
=1

These scalars are called the coordinates for x in the basis
61,62,...,en.

UNIVERSITY



Scalar product

Definition
Let A be a (complex) matrix. Introduce

A= (AT .

Definition
Let x and y be two vectors in R” (C"). The scalar product of x
and y is defined as

X-y=>Y Xyi=xy .

UNIVERSITY



General Vector Space

* A ’'General’ Vector Space is a collection of objects

called vectors, which can be added together and also
be multiplied by 'numbers’ called scalars, where the
addition and multiplication with scalars fulfill a set of

rules.
ut+v=v+u (commutativity)
(u+v)+w=u+ (vV+w) (associativity)
v+0=v (zero existence)
v+ (—v)=0 (negative vector existence)
k(Iv) = (kl)v (associativity)
lv=v (multiplicative one)
ov=0 (multiplicative zero)
kO =0 (multiplicative zero vector)
k(+v)=ku+ kv (distributivity 1)
(k+1)v=Fkv+1Iv (distributivity 2)

QIR ==
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General Vector Space

* A ’'General’ Vector Space is a collection of objects
called vectors, which can be added together and also
be multiplied by 'numbers’ called scalars, where the
addition and multiplication with scalars fulfill a set of
rules.

* There are many examples of such vectors spaces. The
vectors can for example be

 (Geometrical vectors in three dimensions
* N-tuples of real numbers

* Functions

* Polynomials

« Matrices

e Tensors

UNIVERSITY



Example - polynomials

- Vectors - Polynomials of degree 2

- Scalars — Real numbers

Example 3.2.1. Polynomials in one variable of degree 2 is a vector space. One possible basis is

ei(z) =1, eyz)==x, e3(z)=2a>

Ui —2
The polynomial u(x) = 5z + 3z — 2 has coordinates u = | us | = | 3 |, since
us 5)
u = e + ug €es + us es — Hr? + 3x — 2.
v\/ "~~~ \/\/
—2 1 3 5 22

The dimension of the vector space is 3.



- Vectors — Matrices of size 2x2

Example - matrices . Scalars — Real numbers

Example 3.2.2. Matrices of size 2 X 2 is a vector space. One possible basis is

(10 (0 0 (01 . _ (00
=10 o) 27\1 0) B \o o) %" \o 1)

The matrix
_— 1 7
(5 )
(ur) (1
. U9 3 .
has coordinates u = = , since
us 7
\u4/ \2/
_ _ _ _ 1 7
u—= el + ug € + U3 €3 + U4 e, =
NGIENC NG INCINGC NG EING NG 3 2

B0 A B

The dimension of the vector space is 4.



Image matrix

FLL) f(L2) F(1,N)
| ey re) F(2, V)
CF(M1) f(M2) ... f(M,N)




Column stacking




Set of 1mages 1s a vector space

- Images are a vector space (with scalar product)
- Addition
- Multiplication by scalar
- Two ways to think of 'images’ as vectors (both are the same)
- 1. Column stacking
- Use column stacking to convert to 'old school’ vector R"
- Use linear algebra as usual
- Convert back to matrix form when needed
- 2. Image basis
- Choose a basis (any basis).
- Through the use of coordinates, obtain vector representation
- Use linear algebra as usual
- Convert back when needed



Overview —
Linear Algebra and FFT

1. Linear Algebra
1. Vector space — 'A matrix is a vector What does this mean?
2. Basis, coordinates
3. Scalar product
4.  Projection onto a subspace
5.  Projection onto an affine ‘subspace’
6. (Principal Component Analysis — Recipe)
7. Change of basis

2. Fourier Transform



Canonical basis

/0 ... 0 ... 0)

x(1,]) = R ,

\0 ... 0 ... 0/
with the 1 at position (/, f).
Using this canonical basis we can write

f=> fi,/)x(i,)) -
,J

ldea for image transform:
Choose another basis that is more suitable in some sense.
Image matrices can thus be seen as vectors in a linear space.

UNIVERSITY



Scalar product of 1images

Definition
The scalar product of two matrices (images) is defined as

M N -
i=1 j=1
x,y € R(C) are orthogonal if x - y = 0. This is often written
xly & x-y=0.

The length or the norm of x is defined as

1fll=VFf f= \ ZZf<i,j>f<z',j>-

LUND

UNIVERSITY



_ >‘>‘f(7;,j)g(z‘,j). 1fll=Vf-f= \:

Scalar product and norm

Example 3.2.1 (Scalar product and norm). Let

and

(4
9=\

What is the scalar product f - g? What is the norm || f||?

UNIVERSITY



Orthonormal basis

Definition
{eq,...,en} is an orthonormal (ON-) basis in R" (C") if
(0 i)
€ € = 1 , #'/
1 =]

UNIVERSITY



Orthonormal basis a4 --—--_;

Theorem
Assume that {e1, ..., en} is orthonormal (ON) basis and
n
X = Z §,-e,- :
=1
Then

n

G=e-x=ex |X[E=Y|&P

=1

UNIVERSITY



Overview —
Linear Algebra and FFT

1. Linear Algebra
1. Vector space — 'A matrix is a vector What does this mean?
2. Basis, coordinates
3. Scalar product
4. Projection onto a subspace
5.  Projection onto an affine ‘subspace’
6. (Principal Component Analysis — Recipe)
7. Change of basis

2. Fourier Transform



Orthogonal projection

Definition
Let {as,...,ax} € R", k < n, span a linear subspace, x, in R",
l.e.:

k
= {W|W = ZX,’&,’, Xj € R} :
i=1

The orthogonal projection of u € R" on 7 is a linear mapping
P, such that u, = Pu and defined by

min||lu — w|| = ||lu — uxl|| .
wem

UNIVERSITY



Orthogonal projection

The orthogonal projection is characterized by

1. U €
2. U— U, Lwforevery w e

UNIVERSITY



Orthogonal projection

[LLUND

UNIVERSITY



Let a € 7 and b € 7 be two solutions to the minimisation
problem. Set

f(H=|lu—ta—(1—=1b|]*=...

— |lu—b|? +t?|la—b|>—2t(a—b) - (u—b), teR.

This is a second degree polynomial with minimum in t = 0 and
t =1 = f(t) is a constant function and thus = a = b.

oD
NT6 66 7
0neni<}
).s11

UNIVERSITY



Let f(t) = ||u — u, + ta||?, where a € «. It follows that
f(0)=2(u—uy)-a=0,ie. (u—u;) L a

Conversely: Assume w € «. The property that (v — u;) L a, for
every a € w gives that

lu—w|® = |lu—u;+ U, — w|* =

Ju— ur|® + [lur = wi* > fJlu— ux%,

l.e. U, solves the minimization problem.

oD
NCT6 667
COWTIED
>-511
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Let A=[a;...ax] be a nx k matrix and

T = {w|w = Ax, x; € R"}

Lemma
If{ay,...,ax} are linearly independent R" then A*A is
invertible.

Proof: Do it on your own. (Use SVD if you are familiar with it.)
m

UNIVERSITY



Theorem

if the columns of A are linearly independent, then the projection
of u on w is given by

Ur = X181 + ... + Xkak, X = (A*A)TA*u .

Proof: Use the characterization of the projection (above).
au—u;)=0 =

A(u—Ax)=0 =
A'u=A"Ax = x=(AA)TAu

UNIVERSITY



Definition
At = (A*A)~1A* is called the pseudo-inverse of A. n
Observe that if A is quadratic and invertible then A+ = A~1.

Theorem
If{ay,...,ax} are orthonormal, then the projection of u on r is

given by
Ur = Yy181 + ...+ Y@k, Yi=aju .

Proof: This follows from A*A = I. u

U



Orthogonal projection

What is the orthogonal projection of f

1 1 1 1 1 1 1
e—l‘ 1 e—L O O O e—i‘
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w

f =

N B
~N O
e

Orthogonal projection

: 1 1 1 1 : 0 —
e = = eo=— 0 0 0 ],e3=— 0 —
1 3 ° \/6_1 1 -1 > \/6 0 —

Since (eq, e, e3) is orthonormal the coordinates are
xi=Ff-e1 =14 s Xo =f.- e = —15/\/6,X3 — f-e3 = —4/\/6
The orthogonal projection is then

f=14e; —15/V6e, — 4/v/66e3

1 2 3y /15 2
7 7 7 6.5 74

~N O O
O UKW = O O

o
ZooT6se A\°
Ong1V
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X

What is the orthogonal projection of f

|

onto the space spanned by (eq, e, €3)

7 /<
AR 5
%

() ———
G666 &
O5g11vs
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Since (eq, e», e3) is orthonormal, the coordinates are
Xy =1Ff-e4 = —2457, Xo = f-eo :A303,X3 —f. es; = —603.
The orthogonal projection is then f = —2457¢ey + 303e, — 603 e

AN T = /<

C i )

G e/
b —

) -
’/, 1666 AN
O5 gy
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1. Vector space — 'A matrix is a vector What does this mean?
2. Basis, coordinates
3. Scalar product
4.  Projection onto a subspace
5. Projection onto an affine ‘subspace’
6. (Principal Component Analysis — Recipe)
7. Change of basis

2. Fourier Transform



Projection onto affine subspace

- Previously projection onto linear subspace
T=A{w|w= ZZU@&@ = Ax where x; € C (orR)}
1

- A linear subspace always contains the zero vector

- How about planes or 'subspaces’ that are shifted away from
the origin. Such sets are called affine spaces.

w:{w|w:m+2x7gai:z4£€—l—m where x; € C (orR)}.
1

- An affine subspace is typically not a linear space

izl



Projection onto affine subspace

- An affine subspace, defined by 11, 1, ..., dL.

T={w|w= m—|—2xiai = Ax +m where x; € C (orR)}.
1
- Projection of u onto the affine subspace

e Subtract m, 1.e. form v = u — m.

e Project v onto the space spanned by a1, ..., a, i.e. v = AT 0.

izl

o Add m,1.e. formu, = v, + m.



Overview —
Linear Algebra and FFT

1. Linear Algebra
1. Vector space — 'A matrix is a vector What does this mean?
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PCA - Principal

Component Analysis M

- Orthogonal projection — project an image u on

- subspace spanned by ;. ... a.

- or affine subspace defined by m,ay,...,ag.

- How do we find a good subspace?

- Given lots of vectors x4, ..., Xy. Find a suitable affine
subspace so that the orthogonal projections y; of x; are as

close to x; as possible

N
e(m) = 3 llyi(m) — il



PCA - Principal

Component Analysis M

. Calculate the mean m = + Z,‘Z\i | T

. Subtract the mean from all examples z; = x; — m.

. Place all of the resulting vectors as columns of a matrix, M = (zl e 2 N).
. Factorize M using the singular value decomposition M = USV?’.

. Use the first k£ columns of U as the basis of the subspace, 1.e. a; = u;, with U = (u1 e um).

w:{wlw:m+zxiai=z‘1x+m where x; € C (orR)}.
1

N
e(m) = 3 () — il



PCA . ’Traininga ’

Given examples, find subspace

&
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1

PCA - Principa
Component Analysis

DOPDDIDIDDID
DODIDIFADOB®
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Eigen-Emoji a,

Eigen-Emoji a;

Mean Emoji



PCA - Principal

Component Analysis M

n

..—’7 > PN
-y w="m -+ T;Q;
Mean Emoji Eigen-Emoji a; 1




PCA - Principal

Component Analysis M

n

. - w:m—kg T;0;
- b — 1
Mean Emoji Eigen-Emoji a; Eigen-Emoji a,
(x1,x2) in R2 w=m+Xx, a, +Xx,a,in R332




PCA - Principal

Component Analysis M
@

w=m —+ E T;a;
Mean Emoji Eigen-Emoji a; Eigen-Emoji as

1

(x1,x2)inR2 w=m+Xx, a, +X,a,in




PCA - Principal
Component Analysis

Approximation of new shapes using PCA basis elements

New shape not in using 10 using 50 using 100 using 500
database coefficients  coefficients coefficients  coefficients
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2. Basis, coordinates
3. Scalar product
4.  Projection onto a subspace
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Fourier Transtform

v

Fluv) = XM SN | f(a,y) e 2r (D) @=)/M -1 =1)/N)

» (Can be viewed as a change of basis

* |mage f —> Fourier Transform F  (and back)
* Has strong connections with convolutions

* (next lecture)

» Useful for image compression

» Useful for image understanding

« Basically a great tool

UNIVERSITY



Fourier Transtform

- Definition, is a change of basis, what does is mean
- Detour (for increased understanding
. Ordinary Fourier Transform (from previous courses)
- Examples
- Properties

. Discrete Fourier Transform — 1D



Image basis example (Walsh)

9 —1]  eu=|y |2 eu=|; L
A T O N R T

Tij = [ - Pij = Zf(%/i)q’z’j()\aﬂ)
A1

f = 211 P11 + 221 P21 + T12P12 + T22P22

10 4
__2 6_

* |mage f —> Fourier Transform x (and back)

UNIVERSITY



Fourier transform as change of 1mage basis

A1

f = 211P11 + 221 P21 + 12P12 + 222P22

Flu,v) = SN SN f,y) e 2n(@-De=1/M o= 1)(y-1)/N)

F(2.9) = 57 Sonly o0 F(u,v) e2r (D e=1)/M+(o=1)(y=1)/N)

UNIVERSITY



Compare with ordinary Fourier Transform

Definition
Let f be a function from R to R. The Fourier transform  of f is
defined as
+00 _
(FH(u) = F(u) = / e~ P™XUf(x)dx |

— OO

heorem
Under the right assumptions on f, the following inversion
formula N

f(x) = / e>™ X F(u)du

holds.



Examples

6(x) — 1(u)
sin(2ru)

rect(x) — 2 oy

= 2sinc(27u)



Examples
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Examples

c1 1 (X) + CQfQ(X) —> C1 F1( ) + CQFQ(U) (Iinearity)
1

f(AX) — X —F(— ) (scaling)
f(x —a)— e ’27”’3F (u) (translation)
e "2™af(x) — F(u + a) (modulation)
f(x) — F(—u) (conjugation)
g; — 2miuF(u) (differentiation 1)
dF . -
—2mixf(X) — — a9 (differentiation Il)

Example: §(x — 1) — e~/?7¢



Discrete Fourier Transtorm - 1D

Flu) =3 f(x) expl—i2m(u—1)(x — 1)/N]

r=1

N

Flu) =Y flaywy "

r=1

wy = exp(—i27/N)



Discrete Fourier Transform - 1D

Definition
The Fourier Matrix F) is given by

2 N—1
1 wp Wiy cg(,\/v |
2 4 —
FN = 1T wy W W
N—1 2(N—1) (N-1)(N-1)
1 W W Cee Wy




Discrete Fourier Transform - 1D

Theorem 3.3.1. For the Fourier matrix the following holds,
FF=NI.

From this we obtain F~' = +F ~ 7 The inverse Fourier transform is thus

f=FF < f(x ZF (Ve =1 N



Discrete Fourier Transform - 1D

- Important: DFT assumes that signals are periodic!

- Think of the signal as wrapped periodically

- Fourier transform is complex.

- Plot absolute value and phase

- Low frequencies in the edges/corners.

- Ordinary images typically have large values for low
frequencies.



Discrete Fourier Transtorm - 2D

Fu,v) =Y ot Y00 fla,y) e #r(umD@=h/M+{v=1)(y=1)/N)

flx,y) = ﬁ Zﬁil Zi\f:l F(u,v) e?m((u=D)(@=1)/M+(=1)(y=1)/N)




Discrete Fourier Transform - 2D

Let the matrix F represent the Fourier transform of the image

f(x,y):
F = FyfFn

or
F=Fu(FnfHT .

l.e. the DFT In two dimensions can be calculated by repeated
use of the one-dimensional DFT, first for the rows, then for the

columns.



Discrete Fourier Transform - 2D
Example

Fourier transform is complex. Plot absolute value and phase



Discrete Fourier Transtorm - 2D
Example — Periodic expansion




» Usually, the gray-levels of the Fourier Transform images
are scaled using clog(1 + |F(u, v)]).

» The middle of the Fourier image (after fftshift) corresponds
to low frequencies.

» Qutside the middle high components in F corresponds to

higher frequencies and the direction corresponds to
"edges"in the images with opposite orientation.

oA N,
oD
Il 6667
20—}
2.511N

UNIVERSITY






Fourier transform

7

°Image eabs(fft2(l))



Fourier transform




Edge effects

e|log(abs(fft2(l)))



Fourier transform

*Image



Fourier transform

*lmage *Fourier transform



Fourier transform

2 “‘

*Image



Fourier transform

- \

\

*lmage *Fourier transform



Review

- Linear algebra
- The space of images is a linear vector space

- Images are 'vectors’ — in the sense that they are elements of a linear vectors
space

- Can be confusing. Can a matrix be a vector???
- Useful tools
- Change of basis
- Projection onto a subspace, onto affine subspace
- PCA

- Fourier Transform

- Read lecture notes
- Experiment with matlab demo scripts

. Continue with assignment 1
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