

Image Analysis - Motivation

Image Analysis - Motivation

Overview

1. Image Analysis - examples
2. Image Models (continuous vs discrete)
3. Sampling and interpolation
4. Discrete geometry

PrimaryText

```
=Compuar Vaion_Alo-* = %
```


Computer Vision: Algorithms and Applications

(c) Richard Szeliski, Microsoft Research

Wekcone to the reposinory for dratts of my computer vision teutbosk.

 DroidEless

The PDFs should be enabled for commenting drecty in your vewer. Abo, hyper-leks to sections, equations, and referenoes are enabled. To get back to where you were, ase AL-Let-Arrow in Acrobat.

This Web sibe is also a placeholder for the she that will accompany uy coeepoter vision textbook once it is published. Once I get farther along with the project, I hope to pobüsh supplemestal coorse material here, sach as figures and mages froea the book, sldes sets, potiters to sothware, and a biblograply.

Latest draft

lane 19. 2009 (minor updates)

Mathematical Imaging Group

- Mathematical Imaging Group
- 3 prof, 4 lecturers, 15-20 phd students
- Mathematics and mathematical statistics
- Centre for Mathematical Sciences
- Mathematics (appr. 80 employees)
- Mathematical statistics(appr. 30 employees)
- Numerical Analysis (appr. 10 employees)

Research

- Geometry (3D shape, camera calibration, camera motion , structure and motion, robotics)
- Medical Image Analysis (Shape variation, segmentation, tomography, decision support)
- Cognitive Vision (recognition, detection, scene interpretation, attention, segmentation, handwriting recognition)

The goal of Image analysis

- To bridge the gap between pixels and "meaning"

The goal of Image analysis

- To bridge the gap between pixels and "meaning"

The goal of Image analysis

- Images are functions. Each pixel measures brightness
-What we see

Why images?

- As image sources multiply, so do applications
- Relieve humans of boring, easy tasks
- Enhance human abilities: human-computer interaction, visualization
- Perception for robotics / autonomous agents
- Organize and give access to visual content

What kind of information can we extract from an image?

- Metric 3D information
- Semantic information
- Think about tasks that you solve with your own eyes!

Vision as measurement device

-Vision as a source of semantic information

-Object categorization

-sky

-building

-Scene and context categorization

-Qualitative spatial information

-horizontal

- Vision is useful: Images and video are everywhere!

Google (1) Picasa.. flickr

Why is working with images challenging/difficult?

-Challenges: viewpoint variation

-Michelangelo 1475-1564

- slide credit: Fei-Fei, Fergus \& Torralba

-Challenges: illumination

-Challenges: scale

-Challenges: deformation

-Xu, Beihong 1943

-Challenges: occlusion

-Challenges: background clutter

-Challenges: Motion

Challenges: object intra-class variation

-slide credit: Fei-Fei, Fergus \& Torralba

Challenges: local ambiguity

-slide credit: Fei-Fei, Fergus \& Torralba

Challenges: context

Challenges: context

Challenges: context

In this course

- Tools:
- Basics of image modelling
- Linear Algebra, Linear System Theory
- Filters
- Mathematical Statistics
- Machine Learning
- Segmentation
- System development
- Based on the tools
- Ground truth, evaluation, benchmarking

After the course

- You should be able to develop and test your own image analysis system
- You should have tools for understanding and working with big data
- You should have improved your skills in programming and modelling.

Continuous Model

An image can be seen as a function

$$
f: \Omega \mapsto \mathbb{R}_{+},
$$

where $\Omega=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} \subseteq \mathbb{R}^{2}$ and $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\} . f(x, y)=$ intensity at point $(x, y)=$ gray-level
(f does not have to be continuous)
$0 \leq L_{\text {min }} \leq f \leq L_{\text {max }} \leq \infty$
[$\left.L_{\text {min }}, L_{\text {max }}\right]=$ gray-scale

Continuous Model

An image can be seen as a function

$$
f: \Omega \mapsto \mathbb{R}_{+}
$$

Discrete Image Model

- Discretize x, y-> sampling M rows, N columns
- Discretize f -> quantization
- (often in 2^{m} levels)
- Color depth
- " 8 bit grayscale", $2^{8}=256$ levels, $0-255$

$$
f: \Omega \mapsto \mathbf{Z} \quad \Omega \subset \mathbf{Z}^{2}
$$

- Decreasing M and N
- Chess patterns
- Decreasing m
- False contours

Sampling, decreasing \mathbf{M} and \mathbf{N}

Quantization, decreasing m

Quantization, decreasing m

Quantization, decreasing m

Quantization, decreasing m

Interpolation

- Discrete image $\mathrm{f} \quad f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$
- Continuous image $\mathrm{F} \quad F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Going from F to f (sampling)

$$
f(i, j)=D(F)(i, j)=F(i, j)
$$

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i, y-j) f(i, j)
$$

Interpolation

- Discrete image $\mathrm{f} \quad f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$
- Continuous image $\mathrm{F} \quad F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Going from F to f (sampling)

$$
f(i, j)=D(F)(i, j)=F(i, j)
$$

- Going from f to F (interpolation)

$$
\begin{aligned}
& F_{h}(x, y)=I_{h}(f)(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i, y-j) f(i, j) \\
& \quad \text { Interpretation: } \\
& \text { lace a hump h at each pixel } \\
& \text { Scale the hump by } f(\mathrm{i}, \mathrm{j}) \\
& \text { Add together }
\end{aligned}
$$

Interpolation

- Discrete image $\mathrm{f} \quad f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$
- Continuous image $\mathrm{F} \quad F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Going from F to f (sampling)

$$
f(i, j)=D(F)(i, j)=F(i, j)
$$

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i, y-j) f(i, j)
$$

Different choices of h (different humps)
-> different types of interpolation

Interpolation - what is h ?

- How can you find h from method?

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i, y-j) f(i, j)
$$

$$
f: \mathbb{Z}^{2} \rightarrow \mathbb{R}
$$
 Interpolation
 $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum^{\infty} \sum^{\infty} h(x-i, y-j) f(i, j)
$$

- Example 1 - Pixel Replication

$$
\begin{aligned}
& f: \mathbb{Z}^{2} \rightarrow \mathbb{R} \\
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{aligned}
$$

Interpolation

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum^{\infty} \sum^{\infty} h(x-i, y-j) f(i, j)
$$

- Example 2 - Linear interpolation
- (In two dimensions the corresponding function is bilinear)

$$
\begin{aligned}
& f: \mathbb{Z}^{2} \rightarrow \mathbb{R} \\
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{aligned}
$$

Interpolation

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum^{\infty} \sum^{\infty} h(x-i, y-j) f(i, j)
$$

- Example 3 - Cubic interpolation
- (In two dimensions the corresponding function is bicubic)

$$
\begin{aligned}
& f: \mathbb{Z}^{2} \rightarrow \mathbb{R} \\
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{aligned}
$$

Interpolation

- Going from f to F (interpolation)

$$
F_{h}(x, y)=I_{h}(f)(x, y)=\sum^{\infty} \sum^{\infty} h(x-i, y-j) f(i, j)
$$

- Example 4 - Ideal Interpolation

$$
\begin{aligned}
& \operatorname{sinc}(x)= \begin{cases}\frac{\sin \pi x}{\pi x}, & x \neq 0 \\
1, & x=0\end{cases} \\
& F(x, y)=I(f)(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \operatorname{sinc}(x-i) \operatorname{sinc}(y-j) f(i, j)
\end{aligned}
$$

Interpolation

- Discrete image $\mathrm{f} \quad f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$
- Continuous image $F \quad F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- If the function F is square integrable, i.e.

$$
\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty}|F(x, y)|^{2} d x d y
$$

- Is bounded.
- If also the fourier transform is zero outside $[-\pi, \pi] \times[-\pi, \pi]$.
- Then

$$
I(D(F))=F
$$

Digital Geometry

Let \mathbb{Z} be the set of integers $0, \pm 1, \pm 2, \ldots$

Grid: \mathbb{Z}^{2},

Grid point: (x, y)
Definition
4-neigbourhood to (x, y) :

$$
N_{4}(x, y)=\left(\begin{array}{ccc}
\cdot & \times & \cdot \\
\times & (x, y) & \times \\
\cdot & \times & \cdot
\end{array}\right)
$$

Digital Geometry

Definition
p and q are 4-neighbours if $p \in N_{4}(q)$.
Definition
A 4-path from p to q is a sequence

$$
p=r_{0}, r_{1}, r_{2}, \ldots, r_{n}=q
$$

such that r_{i} and r_{i+1} are 4-neighbours.

Definition

Let $S \subseteq \mathbb{Z}^{2}$. S is 4-connected if for every $p, q \in S$ there is a 4-path in S from p to q.
There are efficient algorithms for dividing sets $M \subseteq \mathbb{Z}^{2}$ in connected components. (For example, see MATLAB's bwlabel).

Digital Geometry

Similar definitions with other neighbourhood structures
Definition
D-neighbourhood to (x, y) :

$$
N_{D}(x, y)=\left(\begin{array}{ccc}
\times & \cdot & \times \\
\cdot & (x, y) & \cdot \\
\times & \cdot & \times
\end{array}\right)
$$

Definition
8-neighbourhood to (x, y) :

$$
N_{8}(x, y)=N_{4}(x, y) \cup N_{D}(x, y)=\left(\begin{array}{ccc}
\times & \times & \times \\
\times & (x, y) & \times \\
\times & \times & \times
\end{array}\right) .
$$

```
Digital Geometry (bwlabel)
```



```
bild =
\begin{tabular}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{tabular}
>> segmentering = bwlabel(bild)
segmentering =
\begin{tabular}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 3 \\
2 & 2 & 0 & 3 & 3
\end{tabular}
```


Gray level transformations Pixelwise operations

A simple method for image enhancement

Definition

Let $f(x, y)$ be the intensity function of an image. A gray-level transformation, T, is a function (of one variable)

$$
\begin{aligned}
g(x, y) & =T(f(x, y)) \\
s & =T(r),
\end{aligned}
$$

that changes from gray-level f to gray-level g. T usually fulfils

- $T(r)$ increasing in $L_{\text {min }} \leq r \leq L_{\text {max }}$,
- $0 \leq T(r) \leq L$.

In many examples we assume that $L_{\min }=0$ och $L_{\text {max }}=L=1$. The requirements on T being increasing can be relaxed, e.g. with inversion.

Gray level transformations

Pixelwise operations
Let

$$
T(r)= \begin{cases}0 & r \leq m \\ 1 & r>m\end{cases}
$$

for some $0<m<1$.

Histograms

Histograms

- Let $\mathrm{s}=\mathrm{T}(\mathrm{r})$ be a gray level transformation
- Let p_{r} be the histogram before the transformation
- Let p_{s} be the histogram after the transformation
- Assume that T is a monotonically increasing function.
- The pixels that were darker than level r before are darker than s after.

It follows that

$$
\int_{0}^{s} p_{s}(t) d t=\int_{0}^{r} p_{r}(t) d t .
$$

Histograms

$$
\int_{0}^{s} p_{s}(t) d t=\int_{0}^{r} p_{r}(t) d t .
$$

Take T so that $p_{s}(s)=1$ (constant).

$$
\int_{0}^{r} p_{r}(t) d t=\int_{0}^{s} 1 d t=s \Rightarrow s=T(r)=\int_{0}^{r} p_{r}(t) d t
$$

or

$$
\frac{d s}{d r}=p_{r}(r)
$$

Histogram equalization

Histogram equalization

Histogram equalization

Histogram equalization

Histogram equalization

Review

- What is image analysis
- Image models
- Sampling and Interpolation
- Discrete Geometry and 'bwlabel'
- Gray-level transformations, histograms and histogram equalization
- Read lecture notes
- Experiment with matlab demo scripts
- Start working on assignment 1

Master's Thesis Suggestion of the day

- Make a system that takes inventory of a bookshelf
- I want a drone that takes inventory every night and an app that can be used to search for the right book. The drone should fly and point at the right book, when I ask for it. Voice interface.
- Help the professor. Where is my book?

Other uses of Image Analysis in Applications

Collaborations

- Automatic control
- Robotics
- Traffic safety anlysis
- MR
- Orthopaedics
- Radiology
- Cancer research
- Computer Science
- EIT
- Architecture
- Food (Livsmedelsteknik)
- SLU
- Sony
- Ericsson
- Axis
- Precise Biometrics
- Cellavision
- Anoto
- Exini
- Apple
- Google
- Danaher motion
- Cognimatics
- Decuma
- Polar Rose
- Spiideo
- Nocturnal Vision

Where was this image taken?

-Where was this image taken?

- Stortorget

-Lilla Fiskaregatan

Object recognition (in mobile phones)

- This is becoming real:
. Lincoln Microsoft Research
- Point \& Find, Nokia
- SnapTell.com (now amazon)

Earth viewers (3D modeling)

- Image from Microsoft's Virtual Earth
-(see also: Google Earth)

Face detection

- Many new digital cameras now detect faces
- Canon, Sony, Fuji, ...

Smila datontinn?

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot ${ }^{\star}$ camera can automatically trip the shutter at just the right instant to catch the perfect expression.

-Sony Cyber-shot ${ }^{\circledR}$ T70 Digital Still Camera

Login without a password...

- Fingerprint scanners on many new laptops, other devices

-Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Special effects: shape capture

-The Matrix movies, ESC Entertainment, XYZRGB, NRC

Special effects: motion capture

-Pirates of the Carribean, Industrial Light and Magic
-Click here for interactive demo

Sports

- Sportvision first down line
-Nice explanation on www.howstuffworks.com

Smart cars

- Mobileye
- Vision systems currently in high-end BMW, GM, Volvo models
- By 2010: 70\% of car manufacturers.
- Video demo
-Slide content courtesy of Amnon Shashua

Smart cars

- Mobileye
- Vision systems currently in high-end BMW,
- By 2010: 70\% of car manufacturers.
- Video demo

Events
\rightarrow Hoblcre at Esum Auto
Beth frace
$>$ Hobloneat Stha las
$1999-2082$

Vision-based interaction (and games)

-Nintendo Wii has camera-based IR tracking built in. See Lee's work at CMU on clever tricks on using it to create a multi-touch display!

-Digimask: put your face on a 3D avatar.

- "Game turns moviegoers into Human Joysticks", CNET -Camera tracking a crowd, based on this work.

Vision in space

- NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.
- Vision systems (JPL) used for several tasks
- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Robotics

- NASA's Mars Spirit Rover
-http://en.wikipedia.org/wiki/Spirit_rover

-http://www.robocup.org/

Medical imaging

-3D imaging
-MRI, CT

- Image guided surgery
- Grimson et al., MIT

