

Image Analysis - Motivation

Image Analysis - Motivation

Overview

- Image Analysis examples
- 2. Image Models (continuous vs discrete)
- 3. Sampling and interpolation
- 4. Discrete geometry

PrimaryText

(c) Richard Szeliski, Microsoft Research

Welcome to the repository for drafts of my computer vision textbook.

This book is largely based on the computer vision courses that I have co-taught at the University of Washington (2008, 2005, 2001) and Stanford (2003) with Steve Seitz and David Fleet

While I am working on the book, I would love to have people "test-drive" it in their computer vision courses (or their research) and send me feedback.

The PDFs should be enabled for commenting directly in your viewer. Also, hyper-links to sections, equations, and references are enabled. To get back to where you were, use Alt-Left-Arrow in Acrobat.

This Web site is also a placeholder for the site that will accompany my computer vision textbook once it is published. Once I get further along with the project, I hope to publish supplemental course material here, such as figures and images from the book, slides sets, pointers to software, and a bibliography.

Latest draft

June 19, 2009 (minor updates)

Mathematical Imaging Group

- Mathematical Imaging Group
 - 3 prof, 4 lecturers, 15-20 phd students
 - Mathematics and mathematical statistics
- Centre for Mathematical Sciences
 - Mathematics (appr. 80 employees)
 - Mathematical statistics(appr. 30 employees)
 - Numerical Analysis (appr. 10 employees)

Research

- Geometry (3D shape, camera calibration, camera motion, structure and motion, robotics)
- Medical Image Analysis (Shape variation, segmentation, tomography, decision support)
- Cognitive Vision (recognition, detection, scene interpretation, attention, segmentation, handwriting recognition)

The goal of Image analysis

To bridge the gap between pixels and "meaning"

The goal of Image analysis

To bridge the gap between pixels and "meaning"

The goal of Image analysis

Images are functions. Each pixel measures brightness

Why images?

- As image sources multiply, so do applications
 - Relieve humans of boring, easy tasks
 - Enhance human abilities: human-computer interaction, visualization
 - Perception for robotics / autonomous agents
 - Organize and give access to visual content

What kind of information can we extract from an image?

- Metric 3D information
- Semantic information
- Think about tasks that you solve with your own eyes!

Vision as measurement device

Vision as a source of semantic information

Object categorization

Scene and context categorization

Qualitative spatial information

Vision is useful: Images and video are everywhere!

Why is working with images challenging/difficult?

Challenges: viewpoint variation

Challenges: illumination

Challenges: scale

slide credit: Fei-Fei, Fergus & Torralba

Challenges: deformation

•Xu, Beihong 1943

Challenges: occlusion

Challenges: background clutter

Challenges: Motion

Challenges: object intra-class variation

•slide credit: Fei-Fei, Fergus & Torralba

Challenges: local ambiguity

•slide credit: Fei-Fei, Fergus & Torralba

Challenges: context

Challenges: context

In this course

- Tools:
 - Basics of image modelling
 - Linear Algebra, Linear System Theory
 - Filters
 - Mathematical Statistics
 - Machine Learning
 - Segmentation
- System development
 - Based on the tools
 - Ground truth, evaluation, benchmarking

After the course

- You should be able to develop and test your own image analysis system
- You should have tools for understanding and working with big data
- You should have improved your skills in programming and modelling.

Continuous Model

An image can be seen as a function

$$f:\Omega\mapsto\mathbb{R}_+$$
,

where $\Omega = \{(x,y) \mid a \le x \le b, c \le y \le d\} \subseteq \mathbb{R}^2$ and $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$. f(x,y) = intensity at point (x,y) = gray-level

(f does not have to be continuous)

$$0 \leq L_{min} \leq f \leq L_{max} \leq \infty$$

 $[L_{min}, L_{max}] = gray-scale$

Continuous Model

An image can be seen as a function

 $f:\Omega\mapsto\mathbb{R}_+$

Discrete Image Model

- Discretize x,y -> sampling M rows, N columns
- Discretize f -> quantization
 - (often in 2^m levels)
 - Color depth
 - "8 bit grayscale", 28 = 256 levels, 0-255

$$f: \Omega \mapsto \mathbf{Z}$$
 $\Omega \subset \mathbf{Z}^2$

$$\Omega \subset \mathbf{Z}^2$$

- Decreasing M and N
 - Chess patterns
- Decreasing m
 - False contours

- \cdot Discrete image f $f:\mathbb{Z}^2 o \mathbb{R}$
- \cdot Continuous image F $F:\mathbb{R}^2 o \mathbb{R}$
- Going from F to f (sampling)

$$f(i,j) = D(F)(i,j) = F(i,j)$$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i,y-j)f(i,j)$$

- \cdot Discrete image f $f:\mathbb{Z}^2 o\mathbb{R}$
- \cdot Continuous image F $F:\mathbb{R}^2 o \mathbb{R}$
- Going from F to f (sampling)

$$f(i,j) = D(F)(i,j) = F(i,j)$$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i,y-j)f(i,j)$$

Interpretation:

Place a hump h at each pixel Scale the hump by f(i,j) Add together

- Discrete image f $f:\mathbb{Z}^2 o \mathbb{R}$
- \cdot Continuous image F $F:\mathbb{R}^2 o \mathbb{R}$
- Going from F to f (sampling)

$$f(i,j) = D(F)(i,j) = F(i,j)$$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i,y-j)f(i,j)$$

Different choices of h (different humps)

-> different types of interpolation

Interpolation – what is h?

How can you find h from method?

$$F_h(x,y) = I_h(f)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(x-i,y-j)f(i,j)$$

$$f: \mathbb{Z}^2 \to \mathbb{R}$$
 $F: \mathbb{R}^2 \to \mathbb{R}$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} h(x-i,y-j)f(i,j)$$

Example 1 – Pixel Replication

In 2D

$$f: \mathbb{Z}^2 o \mathbb{R}$$
 $F: \mathbb{R}^2 o \mathbb{R}$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} h(x-i,y-j)f(i,j)$$

- Example 2 Linear interpolation
- (In two dimensions the corresponding function is bilinear)

$$f: \mathbb{Z}^2 \to \mathbb{R}$$
 $F: \mathbb{R}^2 \to \mathbb{R}$

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} h(x-i,y-j)f(i,j)$$

- Example 3 Cubic interpolation
- (In two dimensions the corresponding function is bicubic)

$$f: \mathbb{Z}^2 \to \mathbb{R}$$

$F:\mathbb{R}^2 \to \mathbb{R}$

Interpolation

Going from f to F (interpolation)

$$F_h(x,y) = I_h(f)(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} h(x-i,y-j)f(i,j)$$

Example 4 – Ideal Interpolation

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin \pi x}{\pi x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

$$F(x,y) = I(f)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \operatorname{sinc}(x-i)\operatorname{sinc}(y-j)f(i,j).$$

- \cdot Discrete image f $f:\mathbb{Z}^2 o \mathbb{R}$
- \cdot Continuous image F $F:\mathbb{R}^2 o \mathbb{R}$
- If the function F is square integrable, i.e.

$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} |F(x,y)|^2 dx dy$$

- Is bounded.
- If also the fourier transform is zero outside $[-\pi,\pi] \times [-\pi,\pi].$
- Then

$$I(D(F)) = F.$$

Digital Geometry

Let \mathbb{Z} be the set of integers $0, \pm 1, \pm 2, \ldots$

• • • •

Grid: \mathbb{Z}^2 , \vdots \vdots \vdots

Grid point: (x, y)

Definition

4-neigbourhood to (x, y):

$$N_4(x,y) = \begin{pmatrix} \cdot & \times & \cdot \\ \times & (x,y) & \times \\ \cdot & \times & \cdot \end{pmatrix}$$
.

Digital Geometry

Definition

p and q are 4-neighbours if $p \in N_4(q)$.

Definition

A 4-path from *p* to *q* is a sequence

$$p = r_0, r_1, r_2, \dots, r_n = q$$
,

such that r_i and r_{i+1} are 4-neighbours.

Definition

Let $S \subseteq \mathbb{Z}^2$. S is 4-connected if for every $p, q \in S$ there is a 4-path in S from p to q.

There are efficient algorithms for dividing sets $M \subseteq \mathbb{Z}^2$ in connected components. (For example, see MATLAB's bwlabel).

Digital Geometry

Similar definitions with other neighbourhood structures

Definition

D-neighbourhood to (x, y):

$$N_D(x,y) = \begin{pmatrix} \times & \cdot & \times \\ \cdot & (x,y) & \cdot \\ \times & \cdot & \times \end{pmatrix} .$$

Definition

8-neighbourhood to (x, y):

$$N_8(x,y) = N_4(x,y) \cup N_D(x,y) = \begin{pmatrix} \times & \times & \times \\ \times & (x,y) & \times \\ \times & \times & \times \end{pmatrix}.$$

Digital Geometry (bwlabel)

```
>> bild = [1 1 0 0 0;1 0 0 0 1;0 0 0 0 1;1 1 0 1 1]
bild =
>> segmentering = bwlabel(bild)
segmentering =
```


Gray level transformations Pixelwise operations

A simple method for image enhancement

Definition

Let f(x, y) be the intensity function of an image. A **gray-level transformation**, T, is a function (of one variable)

$$g(x,y) = T(f(x,y))$$

 $s = T(r)$,

that changes from gray-level f to gray-level g. T usually fulfils

- ▶ T(r) increasing in $L_{min} \le r \le L_{max}$,
- $ightharpoonup 0 \le T(r) \le L.$

In many examples we assume that $L_{min} = 0$ och $L_{max} = L = 1$. The requirements on T being increasing can be relaxed, e.g. with inversion.

Gray level transformations Pixelwise operations

Let

$$T(r) = \begin{cases} 0 & r \leq m \\ 1 & r > m, \end{cases}$$

for some 0 < m < 1.

Histograms

Histograms

- Let s = T(r) be a gray level transformation
- Let p_r be the histogram before the transformation
- Let p_s be the histogram after the transformation
- Assume that T is a monotonically increasing function.
- The pixels that were darker than level r before are darker than s after.

It follows that

$$\int_0^s p_s(t)dt = \int_0^r p_r(t)dt.$$

Histograms

$$\int_0^s p_s(t)dt = \int_0^r p_r(t)dt.$$

Take T so that $p_s(s) = 1$ (constant).

$$\int_0^r p_r(t)dt = \int_0^s 1dt = s \Rightarrow s = T(r) = \int_0^r p_r(t)dt$$

or

$$\frac{ds}{dr} = p_r(r)$$

Review

- What is image analysis
- Image models
- Sampling and Interpolation
- Discrete Geometry and 'bwlabel'
- Gray-level transformations, histograms and histogram equalization
- Read lecture notes
- Experiment with matlab demo scripts
- Start working on assignment 1

Master's Thesis Suggestion of the day

- Make a system that takes inventory of a bookshelf
- I want a drone that takes inventory every night and an app that can be used to search for the right book. The drone should fly and point at the right book, when I ask for it. Voice interface.
- Help the professor. Where is my book?

Collaborations

- Automatic control
- Robotics
- Traffic safety anlysis
- MR
- Orthopaedics
- Radiology
- Cancer research
- Computer Science
- EIT
- Architecture
- Food (Livsmedelsteknik)
- · SLU

- Sony
- Ericsson
- Axis
- Precise Biometrics
- Cellavision
- Anoto
- Exini
- Apple
- Google
- Danaher motion
- Cognimatics
- Decuma
- Polar Rose
- Spiideo
- Nocturnal Vision

• • • •

•

• Where was this image taken?

Stortorget

Lilla Fiskaregatan

Object recognition (in mobile phones)

- This is becoming real:
 - Lincoln Microsoft Research
 - Point & Find, Nokia
 - SnapTell.com (now amazon)

Earth viewers (3D modeling)

•Image from Microsoft's Virtual Earth

•(see also: Google Earth)

Face detection

- Many new digital cameras now detect faces
 - · Canon, Sony, Fuji, ...

Smile detection?

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Login without a password...

 Fingerprint scanners on many new laptops, other devices

 Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Special effects: shape capture

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic
 Click here for interactive demo

Sports

Sportvision first down lineNice <u>explanation</u> on www.howstuffworks.com

Smart cars

Mobileye

- Vision systems currently in high-end BMW, GM, Volvo models
- By 2010: 70% of car manufacturers.
- Video demo

Slide content courtesy of Amnon Shashua

Smart cars

•Slide content courtesy of Amnon Shashua

Vision-based interaction (and games)

 Nintendo Wii has camera-based IR tracking built in. See <u>Lee's work at</u> <u>CMU</u> on clever tricks on using it to create a <u>multi-touch display!</u>

•Digimask: put your face on a 3D avatar.

• "Game turns moviegoers into Human Joysticks", CNET

Camera tracking a crowd, based on this work.

Vision in space

• NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Robotics

NASA's Mars Spirit Rover

•http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical imaging

•3D imaging
•MRI, CT

- •Image guided surgery
 - Grimson et al., MIT