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After the course

» You should be able to develop and test your own image
analysis system

- You should have tools for understanding and working with big
data

* You should have improved your skills in programming and
modelling.



In this course

- Tools:

- Basics of image analysis, sampling, interpolation, histogram
equalisation, thresholding, connected components

- Linear Algebra, Projections, PCA, Linear System Theory,
Convolution, FFT

- Mathematical Statistics, Distributions, Parametric models

- Machine Learning, clustering, k-means, classification, bayes
theorem, SVM, LR, Deep Learning

- Segmentation, Graph-based methods, fitting, RANSAC, Hough
- System development

- Based on the tools

+ Ground truth, evaluation, benchmarking



Fitting

We want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.
We use a model to produce compact representations that capture

the relevant image structures we seek.



Hough Transform

- Goal: Finding linear structures in images

- Used on edge data

lap: ax+ by=1 (AssumeO & /)
(Xk, Yk) € lap & axx+ byx =1

- Study the set

Ne=A{(a b))l (Xk, k) € lap}

+ This forms a line in the ab-plane.
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The least squares method

Line fitting
Assume that the points (x;, y;) are measured. Then

Vi = kX,'+/

for line parameters (k, /).
Assume that:

» that the errors are only in the y-direction.

» the line is not vertical (since we are counting only vertical
offsets from the line as errors, near vertical lines lead to
quite large values of the error)



Line Fitting

Then Y1 X1 '
y=\|:1=1: : (l) +n=Ap+n
yn xn 1

If the errors n are independent and Gaussian distributed, then it

IS reasonable to solve y = Ap in least squares sense, i.e.
minimizing ly — Apl.



Line fitting

This least squares problem was studied in Lecture 2 (and in
other courses).
The solution is

p= ATA) ATy
Write this out to obtain



Least squares 1n Matlab

In matlab the least squares solution can be obtained using the
slash function

p = A\y

Read the help text 'help slash’ for more information about how
the 'slash’-operator works.



Total least squares

» One problem with the idea above lies in the two
assumptions.

» |t cannot handle vertical lines.

» For lines that are close to vertical the assumption that the
errors are only in the y-direction gives sub-optimal
estimates of the line.

» |t is better to minimize the distance between the point and
the line.



Solution

X2 = LXX XY — uXY (a) _ <a)
Xy - nXy y2-qyyy) \b b
IS an eigenvalue problem.
There are two solutions, up to scale. Can be obtained in closed
form.
The two solutions are orthogonal. One maximizes the

likelihood, the other minimizes it.

It is straightforward to test which one of the two minimize
f(a, b,c).



Curve fitting

Similar ideas can be used to fit conics to points
ax®+ bxy+ cy’+ dx+ ey + f=0

or even higher order algebraic curves.



Outliers: M-estimators

A common method is to use an error function which is quadratic
for small errors, but large for larger errors.

Then large errors (outliers) will not affect the fitting as much.
Instead of minimizing

Z(ax,- + by + ¢)?
i

we minimize
> plax; + by + c,0)
i
where e.g. one could use
2

(U,0) =—s
REO) =5y 2




Outliers: RANSAC

Another popular method to deal with outliers is RANSAC. |t is
an alternative to M-estimators (where we modified the
underlying noise model to have heavier tails):

1. Randomly choose a minimal set of points needed for fitting.

2. Study how many points that now lie close to the line.

3. If there are sufficiently many, stop

4. lterate 1-3 until stop, but at most k times.



Gray level transformations
Pixelwise operations

A simple method for image enhancement

Definition

Let f(x, y) be the intensity function of an image. A gray-level
transformation, 7, is a function (of one variable)

g(x.y) = T(f(x.y))
s=T(r) .

that changes from gray-level f to gray-level g. T usually fulfils
» T(r)increasing in Lyin < r < Lpax,
» 0 < T(r) <L

In many examples we assume that L,;,;;, = 00och Lpaxy = L = 1.
The requirements on T being increasing can be relaxed, e.g. s
W'th lnverS'on. UNIVERSITY




Gray level transformations
Pixelwise operations

Let
T(r) =4 _

forsome 0 <« m< 1.
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Histograms

- Let s = T(r) be a gray level transformation

- Let p, be the histogram before the transformation
- Let p be the histogram after the transformation

- Assume that T is a monotonically increasing function.

- The pixels that were darker than level r before are darker than
s after.

It follows that

/ ps(t)d / pr(t)d



Histograms

/ ps(t)d / pr(t)d

Take T so that ps(s) = 1 (constant).

/O,Or(t)dt:/O 1dt=s=s5=T(r) =

or
ds

ar = pr(r)

frequency funct. transformation

Ap, (1) AT (r)

/\ -
- -

[ r

/O pr(t)at

hp(1)




/ ps(t)d / pr(t)d
Histograms T - Orw

The original gray-scales gives this image and this cumulative histogram
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Mathematical Morphology

Definition
The opening of A with B is defined by

AoB=(AcB)® B .

Opening = first erosion, then dilation.

» Gives smoother contours.
» Removes narrow passages.
» Eliminates thin parts.



Mathematical Morphology

Definition
The Closing of A with B is defined by

A-B=(AeB)sB .

Closing = first dilation, then erosion.

» Gives smoother contours.
» Fills up small parts.
» Fills up holes.



Image dilation




Image erosion




Image close
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Image open













- Machine Learning typically has two phases
- Phase 1 — Training

- A training dataset is used to estimate model parameters. Store
these parameters. Code usually assumes that input are vectors

- Phase 2 — Prediction

- Once the parameters have been estimated, we can use the
model to classify future data

Input Label




Machine Learning — classity

All of these classification problems have in common:
» data - x (after segmentation, extract features)
» A number of classes

One would like to determine a class for every possible feature
vector.

Here we will assume that the features are represented as a
column vector, i.e. x € R,

One would like to compare the feature vector x with those that
one usually gets with a number of classes. Let y denote the
class index, i.e. the classes are y € wy = {1,..., M} where M
denotes the number of classes.

Typical system: Image - filtering - segmentation - features -
classification



Machine Learning — Bayes rule

Assume that one feature vector x and class y are drawn from a
joint probability distribution. If one can calculate the probability
that the class is y = j given the measurements X, i.e. the so
called posterior probability.

P(y = Jjlx)
The maximum a posteriori classifier is obtained as selecting
the class j that maximizes the posterior probability, i.e.
J = argmax, P(y = k|x).

It is often easier to model and estimate the likelihood
P(x y = j) and to model the prior p(y = j). The a posteriori
probabilites can then be calculated using the Bayes rule,

(Xly = j)ply = J)
p(x)

p(y = j|x) = &



False Positives, False Negatives

ROC - Curve

- For two class problems - Negatives and Positives

- Negatives that are classified as negatives — True Negatives (TN)
- Positives that are classified as positives — True Positives (TP)

- Negatives that are classified as positives — False Positives (FP)

- Positives that are classified as negatives — False Negatives (FN)

- False Positive Rate TPR = FP/(FP+TN) -> x-axis
+ True Positive Rate TPR = TP/(TP+FN) -> y-axis

TPR or sen

Pefect Classification

ROC Space
1

0.3 0.4 0.5 0.6 0.
FPR or (1 - specificity)




Nearest Neighbour Classification
NN and K-NN

- Classify using training data (x,,y;)
- NN: Use the label of the nearest neighbour

- KNN: Use the label of the majority of the k nearest
neigbhours

- Regression: Use the average of the value of the k nearest
neighbours

- Easy to implement and understand
- Can use arbitrary distance functions between images
- Converges to the optimum

- Slow when using lots of data, need to store all training data,
not smooth regression



Nearest Neighbour Classification
(discussion)

4
3

2




Standard

LOgiStiC regression logistic function

1
5(2) = 14+e*

- Linear logistic regression

- Estimate the posterior

- As linear function followed by standard
logistic function

- Convex optimization problem
1 . :
n'n‘i’n Ew’ w + Z log(l +e ¥ w ; ).
= ]

- Then classify according to

PY =yl X =2) = s(wlz+b)



Single Layer Neural Networks
Several Neurons

- Several parallell neurons

r € R ye R Be RLW — k x dmatrix
y=s(Wzx + B)

- Elementwise smooth
thresholding — s




Artificial Neural Networks
One hidden layer

- Idea: Apply a new set of neurons on
the output of the first set of neurons.

- Two layers

- Multi-class classification

- One hidden layer

- Not a convex optimization problem

- Can get stuck in local minima

- Trained by back-propagation

- Popular since the 1990ies




Deep Neural Networks
Many layers

- Deeper networks. Apply a third
layer on the output of the first
two.

give to many parameters

- Example

- 1M pixel image

- 1M hidden layers

- 1012 parameters between each
pairs of layers



Convolutional Neural Networks
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CNN-Blocks - Convolutional
layer

Convolution of an image as a filter-operation.

Original
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CNN-Blocks - Convolutional
layer

. < |
- Input: Data block x of si7§1 \ \\;

M X 7 X

- Qutput: Data block y of size
m X n X ko

- Filter: Filter kernal block w of size \
My X Ny X k1 X ko .
- Offsets: Vector w, of length k2

o
&

y(ia.]a _wo —|_> > >1 Z—UJ—UZ) (U,U,l,k)




CNN-Blocks - Max-pooling
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CNN-Blocks - RELU

f(x) = max(0, )
y(i, 3, k) = max(x(i, j, k), 0)

N N

N .
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28




CNN-Blocks — Softmax
(convert from ’log probabilites’ dj to
‘probabilites’ that sum to 1)

& > k1 6%



Testing your system

- Image analysis systems
- Often complex and varying data
- Often a system of systems
- Important to test your system
» Questions
- Obtain data
- Obtain 'ground truth’ (Gold Standard’)
-+ Construct benchmark scripts
- Visualize the results

- Adress these questions early in a project



| ocal Features

Goal: Find a low-dimensional
description of image content
Edges
Corners
Other features




Structure Tensor

The matrix M has the following properties:
» (Flat) Two small eigenvalues in a region - flat intensity.

» (Flow) One large and one small eigenvalue - edges and
flow regions.

» (Texture) Two large eigenvalues - corners, interest points,
texture regions.

This can be used in algorithms for segmenting the image into
(flat, flow, texture).



Corner Detector

 Compute x- and y-derivatives with a Gaussian filter
* Form the orientation tensor M for every pixel

« Compute the product of eigenvalues, i.e. the
determinant of M

* If both eigenvalues large (product is a local
maximum), then it is a corner!



Harris Corner Detector

Eigenvalue two of
the orientation tensor



Harris Corner Detector

Eigenvalue two of Two large Eigenvalues
the orientation tensor Gives a corner



Building a three-dimensional model.
Start with two images.
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Convolutions and linear systems

Any linear and translation invariant system
can be represented as a convolution.

AN = <
CANIL By
p (>

0 -
oa2ss

UNIVERSITY



Convolution - repetition

- Convolution:
- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

- Produces scalar product of flipped filter at every position!

-




Where’s Waldo?

Template

Scene



Where’s Waldo?

Detected Correlation map
template



Clustering

Clustering: group together similar points and represent them
with a single token

Key Challenges:

1) What makes two points/images/patches
similar?

2) How do we compute an overall grouping
from pairwise similarities?



K-means algorithm

o
1. Randomly c =
select K centers s o
D
2. Assign each 3
point to nearest o :
center IR =
o [
l..l
D

3.Compute new
center (mean) for j

each cluster .\\&.\ {/

lllustration: http://en.wikipedia.org/wiki/K-means_clustering



K-means algorithm

(@]
1. Randomly : =
select K centers o g’
.

2. Assign each
point to nearest
center

Back to 2
3. Compute new d
center (mean) for j

each cluster ka\ o/

lllustration: http://en.wikipedia.org/wiki/K-means clustering




Structure Tensor

The matrix M has the following properties:
» (Flat) Two small eigenvalues in a region - flat intensity.

» (Flow) One large and one small eigenvalue - edges and
flow regions.

» (Texture) Two large eigenvalues - corners, interest points,
texture regions.

This can be used in algorithms for segmenting the image into
(flat, flow, texture).



Rotate Gaussian kernels using
eigenvectors of the structure tensor




Scale Gaussian kernels using a function
of the eigenvalues of the structure tensor

01

02




Block matching

many structures are repeated at multiple locations 1n an
1mage




Collaborative filtering

Do hard filtering on each set of similar matched blocks







Example enhancement and filtering

Home Exam 2017, exercise 2: Enhance moon 1mage




Amplity

Home Exam 2017, exercise 2: Enhance moon 1mage




Anisotropic smoothing

Home Exam 2017, exercise 2: Enhance moon 1mage




Visualize using color

Home Exam 2017, exercise 2: Enhance moon 1mage




Segmentation




Pixels, clustering, segmentation

- At each pixel one could define a feature vector
- Intensity 1(i,))
- RGB colour channel (r,g,b)
- Multispectral channel (Guest lecture)
- Position (i,))
- Response from a filter bank

- Use machine learning to define a mapping from pixel feature
vector to segment

- Either supervised (using lots of old examples) ...

- ... unsupervised (k-means, other clustering methods)



Mumford-Shah functional

» Let g differentiable on UR; and allowed to be
discontinuous across I.

E(,T) = 1 / (g — f)dady + / Vgl[2dady + v|T|
R R—-T

 The smaller E, the better (g, I'N) segments f
1. g approximates f
2. g (hence f) does not vary much on Rs
3. The boundary I be as short as possible

* Dropping any term would cause inf E=0.



Cartoon Image example




Graph Cuts

Definition: A cut (or s-t cut)
in a graph G=(V,E) is a
subset of edges E_ such that

there is no path from sto ¢
when E_ is removed.

Definition: The cost of
a cut is the sum of all
edge weights for the

edges in the cut.




Results of Two-Class
Segmentatlon

‘_:f" |

P. Strandmark, F. Kahl, Optimizing Parametric Total Variation Models,
International Conference on Computer Vision, Sep., Kyoto, Japan 2009.



http://www.maths.lth.se/matematiklth/vision/publications/publications/view_paper.php?paper_id=442

Slide by L. Ladlicky
Going to Object-class Segmentation Directly? |-

Pairwise CRF over pixels

CRF
construction
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Input 1mage

Training of
sky . Potentials
sign

MAP

building <: E(x)=) vi(z)+ D vi(wiz;)

=% ieV,jEN,-

tree

Final segmentation Shotton et al. ECCV06



CPMC: Constrained Parametric Min-Cuts
for Automatic Object Segmentation

First step: create segment pool

Parametric
Min-Cuts




Generating a segment pool:
constrained min-cut

E,(x)=3.D(x,, )+ .V, (x,,x,)

(u,v)ek

hard j>‘ r_{'f—:

background



Generating a segment pool:
constrained parametric min-cuts

E,(x)=Y.D(x,, )+ IV, (x,.x,)

(u,v)ek

!
j =
hard (e !
. Y
constraint e al O

background



Generating a segment pool:
constrained parametric min-cuts

o

) 1= —\

hard '\_.—.\.’ \, )
constraint e e

background
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