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What is Computer Vision?

Computer Graphics

Images
Model

Generate images from a 3D
model.

Computer Vision

Images
Model

The inverse problem: Generate
3D model from images.
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Multiview Reconstruction

Given Images

4 images out of a sequence with 435
images.

Compute 3D Model
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Reconstruction Pipeline

Point Detection and Matching

Carl Olsson Introduction to Computer Vision 2019-10-10 4 / 36



Reconstruction Pipeline

Point Detection and Matching

Detect interesting (descriptive) points in all images.
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Reconstruction Pipeline

Point Detection and Matching

Match points between images.
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Reconstruction Pipeline

Geometric Computations (main part of the Computer Vison course!)

Compute 3D-positions of the matched points, position and orientation of
the cameras.
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Video
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Camera Model

The Pinhole Camera

Reinerus Gemma-Frisus
camera obscura from 1544.
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Camera Model

The Pinhole Camera
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Pinhole Projection
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Ex 1

Compute the image of the cube with corners in (±1,±1, 2) and
(±1,±1, 4).
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Homogeneous Coordinates & Moving Cameras

Projections with homogeneous coord:

λx =
[
I 0

]
X, where x =

x1
x2
1

 ,X =


X1

X2

X3

1

 ,

Camera motion can be modeled using

λx =
[
R t

]
X

Extrinsic parameters: R-rotation matrix, t-translation vector.
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Ex 2

Compute the projection of X = (0, 0, 1) in

P1 =
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2
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The Inner Parameters -K

 fx + x0
fy + y0

1

 =

 f 0 x0
0 f y0
0 0 1

 x
y
1


f -focal length, (x0, y0) principal point. Re-centers and scales (e.g. meters
→ pixels) the image. Typically transforms the point (0, 0, 1) to the middle
of the image.
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The Inner Parameters -K

The most general version of K is the upper triangular matrix:

K =

 γf sf x0
0 f y0
0 0 1

 .
f - focal length

γ - aspect ratio

s - skew

(x0, y0) - principal points

Camera equations:
λx = K

[
R t

]
X = PX

RQ factorization: Any 3× 4 matrix P can be written K
[
R t

]
,

with K triangular and R orthogonal.
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Relative Orientation: Problem Formulation

Given

Two images and corresponding
points.

Compute

The structure (3D-points) and the
motion (camera matrices).
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Relative Orientation

Problem Formulation

Given corresponding points xi and x̄i , i = 1, ..., n find cameras P1 and P2

and 3D points Xi such that

λixi = P1Xi

and
λ̄i x̄i = P2Xi .

Ambiguities (uncalibrated case)

Can always apply a projective transformation H to archive a different
solution

λixi = P1HH
−1Xi = P̃1X̃i

and
λ̄i x̄i = P2HH

−1Xi = P̃2X̃i .
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Relative Orientation: Problem Formulation

Simplification

If P1 =
[
A1 t1

]
and P2 =

[
A2 t2

]
, apply the transformation

H =

[
A−11 −A−11 t1

0 1

]
.

Then

P1H =
[
A1 t1

] [A−11 −A−11 t1
0 1

]
=
[
I 0

]
.

Hence, we may assume that the cameras are

P1 =
[
I 0

]
and P2 =

[
A t

]
Still hard to solve since P2 and Xi are unknown!
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Epipolar Geometry

C
1

C
2

Consider a single point x in the first image. Any point on the line projects
to this point.
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Epipolar Geometry

C
1

C
2

Any point on the projection of the 3D line can correspond to x.
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Epipolar Geometry
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Epipolar Geometry

The projected lines should all meet in a point. The so called epipole is the
projection of the camera center of the other camera.
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Epipolar Geometry

C
1

e
1

e
2

C
2

The epipole e1 is the projection of the C2 in P1.
The epipole e2 is the projection of the C1 in P2.
e1, e2 usually outside field of view.
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The Fundamental Matrix

If x and x̄ are projections of X in P1 =
[
I 0

]
and P2 =

[
A t

]
then

x̄TFx = 0,

where F = [t]×A.

F - Fundamental matrix.

x̄TFx = 0 - epipolar constraint,

eT2 Fx = 0 ∀x̄ ⇒ eT2 F = 0⇒ det(FT ) = det(F ) = 0.

Search for the fundamental matrix song on youtube!
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Ex 3

If P1 =
[
I 0

]
and P2 =

[
I t

]
, where t =

1
1
1

, which of x̄ =

1
2
1

 and

ȳ =

3
2
1

 (in image 2) can correspond to x =

 1
−1
1

 (in image 1)?
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The Fundamental Matrix

The epipolar constraints only contain camera information. The 3D-points
have been eliminated.

Estimating F

If xi and x̄i corresponding points

x̄Ti Fxi = 0.

If xi = (xi , yi , zi ) and x̄i = (x̄i , ȳi , z̄i ) then

x̄Ti Fxi = F11x̄ixi + F12x̄iyi + F13x̄izi
+F21ȳixi + F22ȳiyi + F23ȳizi
+F31z̄ixi + F32z̄iyi + F33z̄izi
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The Fundamental Matrix

Estimating F

In matrix form (one row for each correspondence):


x̄1x1 x̄1y1 x̄1z1 . . . z̄1z1
x̄2x2 x̄2y2 x̄2z2 . . . z̄2z2

...
...

...
. . .

...
x̄nxn x̄nyn x̄nzn . . . z̄nzn


︸ ︷︷ ︸

M


F11
F12
F13

...
F33

 =


0
0
0
...
0


Solve using homogeneous least squares (svd).
F has 9 entries (but the scale is arbitrary). Need at least 8 equations
(point correspondences).
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The Fundamental Matrix

Issues

Resulting F may not have det(F ) = 0.
Pick the closest matrix A with det(A) = 0.

Can be solved using svd, in matlab:

[U,S ,V ] = svd(F );
S(3, 3) = 0;
A = U ∗ S ∗ V ′;
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The Fundamental Matrix

Issues

Normalization needed (see DLT).
If x1 and x̄1 ≈ 1000 pixels, the coefficients z1z̄1 = 1, x1z̄1 = 1000 and
x1x̄1 = 1000000. May give poor numerics.

Not normalized: Normalized:

Carl Olsson Introduction to Computer Vision 2019-10-10 30 / 36



Extracting cameras from F

A family of solutions:
P1 =

[
I 0

]
P2 =

[
[e2]×F + e2v

T λe2
]
,

e2 ∈ Null(F ), v ∈ R3, λ ∈ R.
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Calibrated Relative Orientation: Problem Formulation

Simplification

If P1 =
[
R1 t1

]
and P2 =

[
R2 t2

]
, apply the transformation

H =

[
RT
1 −RT

1 t1
0 1

]
.

Then

P1H =
[
R1 t1

] [RT
1 −RT

1 t1
0 1

]
=
[
I 0

]
.

Hence, we may assume that the cameras are

P1 =
[
I 0

]
and P2 =

[
R t

]
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The Essential Matrix

The Essential Matrix

The camera pair P1 =
[
I 0

]
and P2 =

[
R t

]
has the fundamental

matrix
E = [t]×R.

E is called the essential matrix.

R has 3 dof, t 3 dof, but the scale is arbitrary, therefore E has 5 dof.

E has det(E ) = 0

E has two nonzero equal singular values.

Solve using the (non-linear) 5-point solver. (Gives 10 solutions.)
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Computing the cameras

Want to find P2 = [R t] such that E = [t]×R.
Outline:

Ensure that E has the SVD

E = USV T

where det(UV T ) = 1.

Compute a factorization E = SR where S is skew symmetric and R a
rotation.

Compute a t such that [t]× = S .

Form the camera P2 = [R t].
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The Twisted Pair
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4 Solutions
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