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Gaussian smoothing - blurs edges! 
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Structure/Orientation Tensor



Structure Tensor

Detection
Edges

Different detectors

Orientation tensor
Corners
Ridges

Properties of the orientation tensor

The matrix M has the following properties:
(Flat) Two small eigenvalues in a region - flat intensity.
(Flow) One large and one small eigenvalue - edges and
flow regions.
(Texture) Two large eigenvalues - corners, interest points,
texture regions.

This can be used in algorithms for segmenting the image into
(flat, flow, texture).

Kalle Åström Image Analysis - Lecture 4



v2

v1

<2

<1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�3 �2.5 �2 �1.5 �1 �0.5
0%

2%

4%

6%

8%

log10 of Kullback-Leibler divergence

Figure 6: Gamma prod kldiv

�min �1 �2

�min

�2

�1

�max

Figure 7: sigma curve

5

Rotate Gaussian kernels using 
eigenvectors of the structure tensor 
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Low light enhancement
1. Amplify signal  

using eg scaling or histogram equalization 
Introduces noise 

2. Anisotropic filtering of noise







Low light video enhancement
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Block matching   
many structures are repeated at multiple locations in an 
image



Collaborative filtering  
Do hard filtering on each set of similar matched blocks



BM3D 
Uses two pass version of block-matching and filtering
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U-net



Segmentation using U-net
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Low light image 
enhancement using a U-net



Low light video enhancement 
using learning
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Abstract

Deep learning has recently been applied with impressive
results to extreme low-light imaging. Despite the success of
single-image processing, extreme low-light video process-
ing is still intractable due to the difficulty of collecting raw
video data with corresponding ground truth. Collecting
long-exposure ground truth, as was done for single-image
processing, is not feasible for dynamic scenes. In this pa-
per, we present deep processing of very dark raw videos: on
the order of one lux of illuminance. To support this line of
work, we collect a new dataset of raw low-light videos, in
which high-resolution raw data is captured at video rate.
At this level of darkness, the signal-to-noise ratio is ex-
tremely low (negative if measured in dB) and the traditional
image processing pipeline generally breaks down. A new
method is presented to address this challenging problem.
By carefully designing a learning-based pipeline and intro-
ducing a new loss function to encourage temporal stability,
we train a siamese network on static raw videos, for which
ground truth is available, such that the network generalizes
to videos of dynamic scenes at test time. Experimental re-
sults demonstrate that the presented approach outperforms
state-of-the-art models for burst processing, per-frame pro-
cessing, and blind temporal consistency.

1. Introduction

We are interested in capturing videos of dynamic scenes
in the dark: people dancing in the moonlight, an intimate
conversation by candlelight, a nocturnal animal foraging.
Can such scenes ever be captured effectively, in motion, by
widely accessible consumer-grade cameras?

Extreme low-light videography is challenging due to low
photon counts. Using high ISO can increase brightness but
also amplifies noise. Aperture size is limited in consumer-
grade cameras and mobile devices. Flash changes the char-
acter of the scene and is problematic for videography. And
long exposure times (seconds or tens of seconds) are not
feasible for videos of dynamic scenes. This leaves us with
computational techniques for low-light video processing.

Researchers have developed many techniques to reduce
noise for low-light imaging [40, 38, 13, 33, 16, 11, 20, 45,

46, 3, 8, 29, 22, 47]. These techniques generally assume
that images are captured in somewhat dim environments
with moderate levels of noise. In addition, these methods
are often trained and evaluated using synthetic noise mod-
els, which do not reflect the severe quantization, bias, and
clipping that arise in extreme low-light conditions.

Recent work proposed end-to-end learning for low-light
image processing [9, 41]. The idea is to train a deep net-
work on a dataset of short-exposure raw and long-exposure
reference images, such that the network learns the image
processing pipeline to maximize low-light imaging perfor-
mance. However, these datasets contain images of static
scenes and do not address video, and the trained networks
exhibit temporal instability that is not easily remedied with
post-hoc temporal consistency enhancement. Another ap-
proach to low-light photography that has seen significant re-
cent progress is burst processing [18, 28, 35, 15]. However,
these methods are generally not designed for video capture
(e.g., due to the use of ‘lucky imaging’) and require dense
correspondence estimation across the input frames, which
can fail due to the massive noise conditions we consider.

In this paper, we tackle deep processing of extreme low-
light video, from raw sensor data to sRGB output. This
brings challenges beyond those presented by individual
low-light images. For example, long-exposure videos of
dynamic scenes cannot be obtained, since videos must be
acquired at video rate. Thus ‘ground-truth’ long-exposure
video of dark dynamic scenes is not available. It is thus not
clear how to train models that produce temporally consis-
tent output in this regime.

To study this problem, we collect a new low-light video
dataset and present a systematic approach for this prob-
lem. We captured 202 static raw videos for training and
evaluation, each of which has corresponding long-exposure
ground truth. We also capture real-world low-light videos
with hand shake and subject motion. For these videos, long-
exposure ground truth is not available, and they are used for
perceptual experiments. Using the collected data, we de-
velop a new learning-based pipeline for extreme low-light
video processing. The proposed method involves train-
ing a deep siamese network [6] with a specially designed
loss that encourages temporal stability. We show that the
network can be trained on static videos but generalizes
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Figure 3. The entire training phase of our method on static videos with ground truth.

and global digital gain. The Bayer data is split into sepa-
rate RGB channels to form the raw RGB where the green
channel is obtained by averaging the two green pixels in
each two-by-two block. We trade off resolution for image
quality by applying 2 × 2 binning, which is a commonly
used strategy for low-light imaging and applies to all the
methods involved in the experiments. The pixel values are
linearly scaled based on the exposure value (EV) difference
and clipped to match the brightness and dynamic range of
the ground truth. In addition, temporal noise is reduced
by VBM4D [32] without the need of training data, which
works for both static and dynamic videos. Dense corre-
spondence is almost impossible to be estimated accurately
in extreme noisy conditions, which is required in some ex-
isting methods [27, 18, 15] but not in our system. The result
after these preprocessing stages is shown in Fig. 3 as “Raw
RGB video”. As the Bayer pattern has been destroyed dur-
ing preprocessing, no demosaicing is applied.

The preprocessed raw RGB frames are fed to a deep net-
work that is trained to perform all subsequent processing
needed to obtain the results demonstrated in the ground-
truth images. The network takes a single frame as input.
For training, two frames from a static sequence in DRV are
sampled at random and are fed to the network in siamese
mode. Let Ŷ 1 and Ŷ 2 denote these two frames and let the
ground truth for this sequence be denoted by Y ∗. The loss
for this training pair is defined as follows:

L(Ŷ 1, Ŷ 2, Y ∗) = Lr + Lc, (2)

where Lr is referred to as the the recovery loss and Lc is
called the self-consistency loss. They are defined as fol-
lows:

Lr =
∑

l

1

N l

∑

k=1,2

∥Φl(Y ∗)− Φl(Ŷ k)∥1 (3)

Lc =
∑

l

λ

N l
∥Φl(Ŷ 1)− Φl(Ŷ 2)∥1. (4)

Here Φl denotes the VGG [42] features at the l-th layer and
N l is the number of such features. λ is a regularization
parameter and was empirically set to 0.05 for the results.

The recovery loss Lr encourages the output to be close to
the ground truth. However, this alone is not sufficient for
temporal consistency. Two outputs may have the same ℓ1
distance to the ground truth in feature space, but may be far
from each other. This corresponds to temporal instability
(flickering). To alleviate temporal instability, we use the
self-consistency loss, which encourages the two outputs to
be close to each other.

The network produces output in sRGB space. We use
a ResUnet structure akin to [24] by adding 16 residual
blocks [19] to a Unet [39, 9].

Our method easily satisfies the first and second criteria
discussed earlier. Noise is reduced using spatial and tempo-
ral correlations in preprocessing by VBM4D. Other tempo-
ral filters may also work for this purpose although not tried.
The trained network can then adapt to the characteristics of
the preprocessed input and optimize for fidelity given this
input. The siamese network and self-consistency loss, used
during training, encourages the network to produce tempo-
rally stable output. (As we shall see in the experiments, this
temporal stability characteristic carries over into dynamic
videos at test time.) Since the network operates on a single
frame at test time, it generalizes to dynamic videos.

4.1. Implementation details

We implement our method using Tensorflow [1]. We
found that training on complete images rather than patches
is important to capture global statistics (e.g., for white bal-
ance). We train our model on an Nvidia Tesla V100 GPU
with 32 GB of memory. We use the Adam optimizer [23]
and the batch size is one. The initial learning rate is 10−4

and is reduced to 10−5 after 500 epochs. We train the
network for 1000 epochs. We use the input, “conv1 2”,
“conv2 2”, “conv3 2”, and “conv4 2” layers of the VGG
network as features in the loss.

4.2. Discussion of alternative options

Dense correspondence. Some existing methods rely on
pre-warping [28, 18, 15] or learning to align [35] to reduce
noise temporally. Almost all optical flow methods assume
that little to no noise is present in the input frames. How-
ever, this assumption breaks down in our setting. Even after
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and global digital gain. The Bayer data is split into sepa-
rate RGB channels to form the raw RGB where the green
channel is obtained by averaging the two green pixels in
each two-by-two block. We trade off resolution for image
quality by applying 2 × 2 binning, which is a commonly
used strategy for low-light imaging and applies to all the
methods involved in the experiments. The pixel values are
linearly scaled based on the exposure value (EV) difference
and clipped to match the brightness and dynamic range of
the ground truth. In addition, temporal noise is reduced
by VBM4D [32] without the need of training data, which
works for both static and dynamic videos. Dense corre-
spondence is almost impossible to be estimated accurately
in extreme noisy conditions, which is required in some ex-
isting methods [27, 18, 15] but not in our system. The result
after these preprocessing stages is shown in Fig. 3 as “Raw
RGB video”. As the Bayer pattern has been destroyed dur-
ing preprocessing, no demosaicing is applied.

The preprocessed raw RGB frames are fed to a deep net-
work that is trained to perform all subsequent processing
needed to obtain the results demonstrated in the ground-
truth images. The network takes a single frame as input.
For training, two frames from a static sequence in DRV are
sampled at random and are fed to the network in siamese
mode. Let Ŷ 1 and Ŷ 2 denote these two frames and let the
ground truth for this sequence be denoted by Y ∗. The loss
for this training pair is defined as follows:

L(Ŷ 1, Ŷ 2, Y ∗) = Lr + Lc, (2)

where Lr is referred to as the the recovery loss and Lc is
called the self-consistency loss. They are defined as fol-
lows:

Lr =
∑

l

1

N l

∑

k=1,2

∥Φl(Y ∗)− Φl(Ŷ k)∥1 (3)

Lc =
∑

l

λ

N l
∥Φl(Ŷ 1)− Φl(Ŷ 2)∥1. (4)

Here Φl denotes the VGG [42] features at the l-th layer and
N l is the number of such features. λ is a regularization
parameter and was empirically set to 0.05 for the results.

The recovery loss Lr encourages the output to be close to
the ground truth. However, this alone is not sufficient for
temporal consistency. Two outputs may have the same ℓ1
distance to the ground truth in feature space, but may be far
from each other. This corresponds to temporal instability
(flickering). To alleviate temporal instability, we use the
self-consistency loss, which encourages the two outputs to
be close to each other.

The network produces output in sRGB space. We use
a ResUnet structure akin to [24] by adding 16 residual
blocks [19] to a Unet [39, 9].

Our method easily satisfies the first and second criteria
discussed earlier. Noise is reduced using spatial and tempo-
ral correlations in preprocessing by VBM4D. Other tempo-
ral filters may also work for this purpose although not tried.
The trained network can then adapt to the characteristics of
the preprocessed input and optimize for fidelity given this
input. The siamese network and self-consistency loss, used
during training, encourages the network to produce tempo-
rally stable output. (As we shall see in the experiments, this
temporal stability characteristic carries over into dynamic
videos at test time.) Since the network operates on a single
frame at test time, it generalizes to dynamic videos.

4.1. Implementation details

We implement our method using Tensorflow [1]. We
found that training on complete images rather than patches
is important to capture global statistics (e.g., for white bal-
ance). We train our model on an Nvidia Tesla V100 GPU
with 32 GB of memory. We use the Adam optimizer [23]
and the batch size is one. The initial learning rate is 10−4

and is reduced to 10−5 after 500 epochs. We train the
network for 1000 epochs. We use the input, “conv1 2”,
“conv2 2”, “conv3 2”, and “conv4 2” layers of the VGG
network as features in the loss.

4.2. Discussion of alternative options

Dense correspondence. Some existing methods rely on
pre-warping [28, 18, 15] or learning to align [35] to reduce
noise temporally. Almost all optical flow methods assume
that little to no noise is present in the input frames. How-
ever, this assumption breaks down in our setting. Even after

Note that pre-processing includes traditional 
spatio-temporal filtering based on VBM4D 
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Figure 10. Perceptual experiment. Results of blind randomized
A/B tests on 10 dynamic videos. The figure shows preferred per-
centage for each video.

results. Overall, the workers rate videos produced by our
method as superior in quality in 84.12% of the comparisons.
The result is statistically significant with p < 10−3.

5.5. Extreme imaging

Finally, we demonstrate our method qualitatively in
Fig. 11. Videos from an iPhone X and the Sony RX100
VI camera video mode are used for reference. In this mock
birthday party video, illumination was provided by a single
candle. This is a sub-lux setting. The iPhone video was
captured using the auto mode. For the Sony video, we fixed
the exposure time to 1/30 seconds while keeping the maxi-
mum aperture and ISO. The raw image sequences for SID
and our method were captured with ISO 2000 in continuous
shooting mode.

Light intensity is inversely proportional to the square of
the distance from the source. We thus see in Fig. 11(a,b)
that in the iPhone and Sony sequences only the birthday
lady can be (dimly) made out in the image. Both SID and
our method reveal the entire scene. However, the SID re-
sult suffers from both spatial and temporal artifacts, while
our result is cleaner and more stable. This is video #10 in
the perceptual experiment (Fig. 10), for which 94.1% of the
comparisons are in favor of our result. Readers are encour-
aged to watch the supplementary video.

6. Conclusion

We presented a new dataset and a new method for learn-
ing extreme low-light video processing. We proposed a
siamese network that preserves color while significantly
suppressing spatial and temporal artifacts. The model was
trained on static videos only but was shown to general-
ize to dynamic videos. Quantitative and qualitative results
demonstrate that our method achieves superior performance
over a range of baselines, particularly in the more extreme
low-light scenarios. While the improvement is significant,
certain failure modes remain. For example, our method
(as well as the baselines) completely failed on moon-light
videos (approximately 0.01-0.03 lux) using the same cam-

(a) iPhone X video frame

(b) Sony camera video frame

(c) SID result

(d) Our result

Figure 11. Video of a dynamic scene lit with a single candle. The
illuminance is 0.73 lux at the birthday lady’s ear.

era. Furthermore, we did not preserve high dynamic range
due to the preprocessing to match the ground truth. The
area around the candles in Fig. 11 is over-exposed. Exciting
work remains in further pushing the boundaries in compu-
tational low-light imaging.




