
LINEAR SYSTEMS Final Exam
Department of Automatic Control LTH, Sweden. Due: 12th April, 2022 at 18:00 CET
Instructor: Venkatraman Renganathan Email: venkat@control.lth.se

Rules for Final Exam

• Please write your name here with date:

• The final exam will be a take-home 36 hours exam worth 100 points. There will
be 5 questions in total. Students should present the entire work leading to their
solution. You will be assessed only by your approach to solve the problem.

• The students are allowed to use computer, internet, any books, lecture notes, etc...,
but should strictly do the work individually without collaborating with
each other and the instructor shall be available via email throughout to aide them
with any doubts and questions. Plagiarism (copying solutions from others) will
never be tolerated at any cost.

• The exam will be due by the evening 18:00 on Tuesday, April 12, 2022. The
deadline for submitting the final exam will be strict and no extensions shall be
awarded unless otherwise for unavoidable circumstances.

• Students are strongly encouraged to submit their work in a neatly typed LATEX
document with all supporting code attached to the same document. If typing is
not possible, hand-written submissions will be considered as long as they are legibly
written with neat presentation. In both the cases, neither multiple submissions nor
a submission with multiple files shall be tolerated.

• Students should submit their attempted exam through email to the instructor’s
email venkat@control.lth.se as one pdf document and their corresponding sub-
mission file should be named as ”FirstnameLastnameFinalExam.pdf”. For
instance, my full name is Venkatraman Renganathan and I would submit my pdf
named as VenkatramanRenganathanFinalExam.pdf

Grading & Assessment (To be filled by the instructor)

Question Score out of 20

1 /10

2 /20

3 /30

4 /20

5 /20

Total /100

Weight: 60% of Total

Student Name:

Assessment Criteria Weight in %

Hand-ins

Participation

Final Exam

Total

Course Final Grade

Instructor Signature:
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Problem 1: Modelling Interconnected Linear Systems (10 Points)

Consider two linear subsystems S and T interconnected as follows

The subsystems are modelled as follows

S : ẋ = Ax+B1u+B2w1, w2 = Cx+D1u+D2w1 (1)

T : ż = Fz +G1v +G2w2, w1 = H1z, y = H2z + Jw2. (2)

Assume that all matrices are of appropriate dimensions. Express the overall system as a
single linear dynamical system with input, state, and output given by[

u
v

]
,

[
x
z

]
, y (3)

respectively. Explicitly give the state space model of the overall system.
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Problem 2: Internal Stability & Gain Margin of LQR (20 points)

1. (ε, δ) Condition for Uniform Stability: Prove that the following CT-LTV linear
system

ẋ(t) = A(t)x(t), x(t0) = x0 (4)

is uniformly stable iff ∀ε > 0,∃δ > 0, such that

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ ε,∀t ≥ t0, (5)

and the choice of t0 is regardless (arbitrary). It is enough to prove just one direction
for full points. If you are smart, you will prove the direction that is easy. If you are
enthusiastic, you can prove both directions.

2. Gain Margin of LQR: The intent of this problem is to study the robustness of
LQR systems. Consider the CT LTI system

ẋ(t) = Ax+Bu, (6)

and a quadratic cost with penalty matrices Q � 0 and R � 0 respectively. Assume
that (A,B) is controllable and (A,Q) is observable. Now, consider the closed loop
system under full state feedback u = αKx, where K denotes the optimal state
feedback gain matrix for the system given by (6) and α > 0. Remember that for
certain values of α, your control input will not be LQR optimal and in fact the
closed loop system ẋ(t) = (A+ αBK)x can even be unstable.

(a) Explain how can you recover the LQR optimal input from the given setting
(report the value of α).

(b) For what values of α, is the closed loop system stable? Remember that your
solution of α is going to be the gain margin of LQR systems. Hint: Use
quadratic Lyapunov function to infer the range of α values.
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Problem 3: Kalman Filter for Gauss-Markov System (30 points)

1. Generate a random Gauss-Markov System with n = 10. That is,

xk+1 = Axk + wk, (7)

where A ∈ Rn×n should be random and Schur stable. Scale A matrix so that its
spectral radius is 0.95. The noise wk ∈ R10 should be IID and draw the process
noise from wk ∼ N (0,Σw). For the above A matrix, generate a random Σw � 0
such that the pair (A,W ) is controllable and use it. The initial state is uncertain
as well and draw them as x0 ∼ N (0,Σx0). Generate a random Σx0 � 0 and use it.
After fixing the covariances, create N = 50 state trajectories of each starting from
x0 ∼ N (0,Σx0) and plot only (xk)1 for T = 100 time steps (first component of state
at all 100 time steps) for all the 50 trajectories. Denote the mean and covariance
of state xk at any time instant k as E[xk] = x̄k and E[(xk − x̄k)(xk − x̄k)>] = Σxk

respectively. Solve and report the asymptotic state covariance Σx. Submit all your
code and plots with discussion.

2. Now additionally generate a random output matrix C ∈ Rp×n with p = 3 and ensure
that (A,C) is observable. That is, with the same A matrix obtained above, obtain
a C matrix such that (A,C) is observable. This leads us to an output equation

yk = Cxk + vk, (8)

with vk ∈ Rp and draw the sensor noise from vk ∼ N (0,Σv). Generate a random
Σv � 0 and use it. Design a Kalman filter for the above system and simulate the
system with the filter for T = 100 time steps. Plot the following quantities for

all k = 1, 2, . . . , T (all in the same figure) E
[
‖xk‖2

]
, E
[
‖xk − x̂k‖2

]
,
√

E
[
‖xk‖2

]
,√

E
[
‖xk − x̂k‖2

]
. Submit all your code and plots with discussion.

3. Let us call the above Gauss-Markov system and its output equation as nominal
system. Let L denote the steady-state Kalman filter gain for the nominal system.
Recall that L exists as nominal system is both controllable and observable. Let us
denote the steady state error covariance matrix of the nominal system as Σ̂ where Σ̂
is obtained using the Kalman filter that you designed for the nominal system. Now
consider the perturbed system

xk+1 = (A+ ∆A)xk + wk, yk = Cxk + vk, (9)

where ∆A ∈ Rn×n is a random perturbation of the system matrix. For simplicity,
generate a random but sparse ∆A with exactly just n non-zero elements and use
it for simulation. The intention of this part is to examine what happens when you
design a Kalman filter for the nominal system (which you have already done in part
2), and use it for the perturbed system (9).

(a) Find steady state values of E
[
‖xk‖2

]
both for nominal & the perturbed system.

(b) Find
√

E
[
‖xk − x̂k‖2

]
, where xk is the state of the perturbed system, and x̂k

is the state estimate of the nominal system from the Kalman filter. Compare

this to Tr[Σ̂] which gives the steady state value of
√
E
[
‖xk − x̂k‖2

]
when xk is

the state of the nominal system.
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Problem 4: Riccati Equation ⇔ Lyapunov Equation (20 points)

1. Matrix Identities Using Sherman-Morrison Woodbury Matrix Inversion
Lemma

(A+ UΣV >)−1 = A−1 − A−1U(Σ−1 + V >A−1U)−1V >A−1 (10)

A simple and reduced matrix inversion lemma is given by taking A = Σ = I.

(I + UV >)−1 = I − U(I + V >U)−1V > (11)

Prove the following

(a) Inverse of a Sum of Two Matrices:

(I + A)−1 = I − (I + A)−1A = I − A(I + A)−1 (12)

(b) Inverse of a Sum of matrix inverse and another matrix:

(A−1 +B)−1 = A(I +BA)−1 = (I + AB)−1A (13)

(c) Difference of Matrix Inverses: Assume A,B ∈ Rn×n to be invertible

A−1 −B−1 = B−1(B − A)A−1 (14)

(d) Push-Pop Identity:

P (I +KP )−1 = (I + PK)−1P (15)

(e) Riccati Aide:

G−G(P−1 +G)−1G = (P +G−1)−1 (16)

2. Equivalence between Riccati & Lyapunov Equations
The solution to the infinite horizon DT LQ optimal control problem with quadratic
cost J =

∑∞
k=0

(
x>kQxk + u>k Ruk

)
and linear dynamics xk+1 = Axk + Buk is given

by uk = Kxk,∀k ∈ N where

K = −(R +B>PB)−1B>PA (17)

and P solves the following discrete-time algebraic Riccati equation (DARE)

P = Q+ A>PA− A>PB(R +B>PB)−1B>PA. (18)

Prove the following:

(a) Show that with G = BR−1B> and above matrix identities that the DARE given
by (18) can be expressed equivalently as the following Lyapunov equations

P = Q+ A>P (I +GP )−1A, (19)

P = Q+ A>(P−1 +G)−1A. (20)

(b) Show that with Y = P−1,W = Q−1, V = R−1, the above DARE equation can
be expressed equivalently in the “inverse form” as

Y = W −WA>(Y + AWA> +BV B>)−1AW. (21)
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Problem 5: Observability & Detectability (20 Points)

Consider the following CT LTI system

ẋ(t) =

[
−1 1
0 1

]
x(t), (22)

y(t) =
[
0 1

]
x(t). (23)

1. Infer the observability of the above system using all four tests of observability.

2. Find the unobservable subspace UO[t0, tf ].

3. Check and report if the system is detectable.

4. Design a Luenberger observer to place the eigenvalues of the closed loop estimation
error dynamics at −1,−1 and find lim

t→∞
e(t).

5. Suppose that the A matrix is changed to Ā =

[
−0.9 1

0 1

]
. Will the observer designed

in the previous part yield a converging and an asymptotically stable estimation error
dynamics with this Ā matrix?
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