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This two-volume book is based on a first-year graduate course on

dynamic programming and optimal control that I have taught for over
twenty years at Stanford University, the University of Illinois, and HIe Mas
sachusetts Institute of Technology. The course has been typically attended
by students from engineering, operations research, economics, and applied
mathematics. Accordingly, a principal objective of the book has been to
provide a unified treatment of the subject, suitable for a broad audience.
In particular, problems with a continuous character, such as stochastic con
trol problems, popular in modern control theory, are simultaneously treated
with problems with a discrete character, such as Markovian decision prob
lems, popular in operations research. F\lrthermore, many applications and
examples, drawn from a broad variety of fields, are discussed.

The book may be viewed as a greatly expanded and pedagogically
improved version of my 1987 book "Dynamic Programming: Deterministic
and Stochastic Models," published by Prentice-Hall. I have included much
new material on deterministic and stochastic shortest path problems, as
well as a new chapter on continuous-time optimal control problems and the
Pontryagin Minimum Principle, developed from a dynamic programming
viewpoint. I have also added a fairly extensive exposition of simulation
based approximation techniques for dynamic programming. These tech
niques, which are often referred to as "neuro-dynamic programming" or
"reinforcement learning," represent a breakthrough in the practical ap
plication of dynamic programming to complex problems that involve the
dual curse of large dimension and lack of an accurate mathematical model.
Other material was also augmented, substantially modified, and updated.

With the new material, however, the book grew so much in size that
it became necessary to divide it into two volumes: one on finite horizon,
and the other on infinite horizon problems. This division was not only·
natural in terms of size, but also in terms of style and orientation. The
first volume is more oriented towards modeling, and the second is more
oriented towards mathematical analysis and computation. I have included
in the first volume a final chapter that provides an introductory treatment
of infinite horizon problems. The purpose is to make the first volume self-
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conta,ined for instructors who wish to cover a modest amount of infinite
horizon material in a course that is primarily oriented towards modeling,
conceptualization, and finite horizon problems,

Many topics in the book are relatively independent of the others. For
example Chapter 2 of Vol. I on shortest path problems can be skipped
without loss of continuity, and the same is true for Chapter 3 of Vol. I,
which deals with continuous-time optimal control. As a result, the book
can be used to teach several different types of courses.

(a) A two-semester course that covers both volumes.

(b) A one-semester course primarily focused on finite horizon problems
that covers most of the first volume.

(c) A one-semester course focused on stochastic optimal control that cov
ers Chapters 1, 4, 5, and 6 of Vol. I, and Chapters 1, 2, and 4 of Vol.
II.

(d) A one-semester course that covers Chapter 1, about 50% of Chapters
2 through 6 of Vol. I, and about 70% of Chapters 1, 2, and 4 of Vol.
II. This is the course I usually teach at MIT.

(e) A one-quarter engineering course that covers the first three chapters
and parts of Chapters 4 through 6 of Vol. I.

(f) A one-quarter mathematically oriented course focused on infinite hori
zon problems that covers Vol. II.

The mathematical prerequisite for the text is knowledge of advanced
calculus, introductory probability theory, and matrix-vector algebra. A
summary of this material is provided in the appendixes. Naturally, prior
exposure to dynamic system theory, control, optimization, or operations
research will be helpful to the reader, but based on my experience, the
material given here is reasonably self-contained.

The book contains a large number of exercises, and the serious reader
will benefit greatly by going through them. Solutions to all exercises are
compiled in a manual that is available to instructors from the author. Many
thanks are due to the several people who spent long hours contributing
to this manual, particularly Steven Shreve, Eric Loiederman, Lakis Poly
rnenakos, and Cynara Wu.

Dynamic programming is a conceptually simple technique that can
be adequately explained using elementary analysis. Yet a mathematically
rigorous treatment of general dynamic programming requires the compli
cated machinery of measure-theoretic probability. My choice has been to
bypass the complicated mathematics by developing the subject in general
ity, while claiming rigor only when the underlying probability spaces are
countable. A mathematically rigorous treatment of the subject is carried
out in my monograph "Stochastic Optimal Control: The Discrete Time

Case," Academic Press, 1978,t coauthored by Steven Shreve. This mono
graph complements the present text and provides a solid foundation for the
subjects developed somewhat informally here.

Finally, I am thankful to a number of individuals and institutions
for their contributions to the book. My understanding of the subject was
sharpened while I worked with Steven Shreve on our 1978 monograph.
My interaction and collaboration with John Tsitsildis on stochastic short
est paths and approximate dynamic programming have been most valu
able. Michael Caramanis, Emmanuel Fernandez-Gaucherand, Pierre Hum
blet, Lennart Ljung, and John Tsitsiklis taught from versions of the book,
and contributed several substantive comments and homework problems. A
number of colleagues offered valuable insights and information, particularly
David Castanon, Eugene Feinberg, and Krishna Pattipati. NSF provided
research support. Prentice-Hall graciously allowed the use of material from
my 1987 book. Teaching and interacting with the students at MIT have
kept up my interest and excitement for the subject.

Dimitri P. Bertsekas
Spring, 1995

t Note added in the 3rd edition: This monograph was republished by Athena
Scientific in 1996, and can also be freely downloaded from the author's www site:

http://web.mit.edu/dimitrib/www/home.html.
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Preface to the Second Edition Preface to the Third dition

T'his second edition has expanded by nearly 30% the coverage of the origi
nal. Most of the new material is concentrated in four areas:

(a) In Chapter 4, a section was added on estimation and control of sys
tems with a non-probabilistic (set membership) description of uncer
tainty. This subject, a personal favorite of the author since it was
the subject of his 1971 Ph.D. thesis, has become popular, as minimax
and H00 control methods have gained increased prominence.

(b) Chapter 6 was doubled in size, to reflect the popularity of subopti
mal control and neuro-dynamic programming methods. In particular,
the coverage of certainty equivalent, and limited lookahead methods
has been substantially expanded. Furthermore, a new section was
added on neuro-dynamic programming and rollout algorithms, and
their applications in combinatorial optimization and stochastic opti
mal control.

(c) In Chapter 7, an introduction to continuous-time, semi-Markov deci
sieHl problems was added in a separate last section.

(d) A new appendix was included, which deals with various formulations
of problems of decision under uncertainty. The foundations of the
minimax and expected utility approaches are framed within a broader
context, and some of the aspects of utility theory are discussed.

There are also miscellaneous additions and improvements scattered through
out the text, and a more detailed coverage of deterministic problems is
given in Chapter 1. Finally, a new internet-based feature was added to
the book, which extends its scope and coverage. Many of the theoretical
exercises have been solved in detail and their solutions have been posted
in the book's www page

http://www.athenasc.com/dpbook.html

These exercises have been marked with the symbol (www)

I would like to express my thanks to the many colleagues who con
tributed suggestions for improvement of the second edition.

Dimitri P. Bertsekas
Fall, 2000

The third edition contains a substantial amount of new material, particu
larly on approximate dynamic programming, which has now become one
of the principal focal points of the book. In particular:

(a) The subject of minimax control was developed in greater detail, in
cluding a new section in Chapter 1, which connects with new material
in Chapter 6.

(b) The section on auction algorithms for shortest paths in Chapter 2 was
eliminated. These methods are not currently used in dynamic pro
gramming, and a detailed discussion has been provided in a chapter
from the author's Network Optimization book. This chapter can be
freely downloaded from

http://web.mit.edu/dimitrib/www/net.html

(c) A section was added in Chapter 2 on dynamic programming and
shortest path algorithms for constrained and multiobjective problems.

(d) The material on sufficient statistics and partially observable Markov
decision problems in Section 5.4 was restructured and expanded.

(e) Considerable new material was added in Chapter 6:

(1) An expanded discussion of one-step lookahead policies and as
sociated performance bounds in Section 6.3.1.

(2) A discussion of aggregation methods and discretization of conti
nuous-state problems (see Subsection 6.3.4).

(3) A discussion of model predictive control and its relation to other
suboptimal control methods (see Subsection 6.5.2).

(4) An expanded treatment of open-loop feedback control and re
lated methods based on a restricted structure (see Subsection
6.5.3).

I have also added a few exercises, and revised a few sections while
preserving their essential content. Thanks are due to Haixia Lin, who
worked out several exercises, and to Janey Yu, who reviewed some of the·
new sections and gave me valuable feedback.

Dimitri P. Bertsekas
http://web.mit.edu/dimitrib /www/home.html
Summer 2005
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Life can only be understood going backwards,
but it lllust be lived going forwards.

Kierkegaard

N is the horizon or number of times control is applied,

and fk is a function that describes the system and in particular the mech
anism by which the state is updated.

The cost function is additive in the sense that the cost incurred at
time k, denoted by gk(Xk, Uk, 'Wk), accumulates over time. The total cost
is

2 ,]'11e Dynamic Programming Algmithm Chap. 1 Sec. 1.1 Introduction 3

1.1 INTRODUCTION

This book deals with situations where decisions are made in stages. The
outcome of each decision may not be fully predictable but can be antici
pated to some extent before the next decision is made. The objective is to
minimize a certain cost a mathematical expression of what is considered
an undesirable outcome.

A key aspect of such situations is that decisions cannot be viewed in
isolation since one must balance the desire for low present cost with the
undesirability of high future costs. The dynamic programming technique
captures this tradeoff. At each stage, it ranks decisions based on the sum
of the present cost and the expected future cost, assuming optimal decision
making for subsequent stages.

There is a very broad variety of practical problems that can be treated
by dynamic programming. In this book, we try to keep the main ideas
uncluttered by irrelevant assumptions on problem structure. To this end,
we formulate in this section a broadly applicable model of optimal control
of a dynamic system over a finite number of stages (a finite horizon). This
model will occupy us for the first six chapters; its infinite horizon version
will be the subject of the last chapter as well as Vol. II.

Our basic model has two principal features: (1) an underlying discrete
time dynamic system, and (2) a cost function that is additive over time.
The dynamic system expresses the evolution of some variables, the system's
"state" , under the influence of decisions made at discrete instances of time.
T'he system has the form

k = 0,1, ... ,N - 1,

where

k indexes discrete time,

:1; k is the state of the system and summarizes past information that is
relevant for future optimization,

'Ilk is the control or decision variable to be selected at time k,

'Wh: is a random parameter (also called disturbance or noise depending on
the context),

N-1

gN(XN) + L gk(Xk, Uk, 'Wk),

k=O

where gN(XN) is a terminal cost incurred at the end of the process. How
ever, because of the presence of 'Wk, the cost is generally a random variable
and cannot be meaningfully optimized. We therefore formulate the problem
as an optimization of the expected cost

where the expectation is with respect to the joint distribution of the random
variables involved. The optimization is over the controls 'lLo, 'Ill, ... , UN -1,

but some qualification is needed here; each control Uk is selected with some
knowledge of the current state Xk (either its exact value or some other
related information).

A more precise definition of the terminology just used will be given
shortly. Vile first provide some orientation by means of examples.

Example 1.1.1 (Inventory Control)

Consider a problem of ordering a quantity of a certain item at each of N
periods so as to (roughly) meet a stochastic demand, while minimizing the
incurred expected cost. Let us denote

Xk stock available at the beginning of the kth period,

Uk stock ordered (and immediately delivered) at the beginning of the kth
period,

'Wk demand during the kth period with given probability distribution.

We assume that 'Wo, 'WI, ... , 'WN-l are independent random variables,
and that excess demand is backlogged and filled as soon as additional inven
tory becomes available. Thus, stock evolves according to the discrete-time
equation

where negative stock corresponds to backlogged demand (see Fig. 1.1.1).
The cost incurred in period k consists of two components:

(a) A cost r(xk) representing a penalty for either positive stock Xk (holding
cost for excess inventory) or negative stock Xk (shortage cost for unfilled
demand).



Figure 1.1.1 Inventory control example. At period k, the current stock
(state) x k, the stock ordered (control) Uk, and the demand (random distur
bance) 'Wk determine the cost r(xk)+cUk and the stock Xk+1 = Xk +Uk 'Wk

at the next period.

1-.........--- Uk

5

if Xk < Eh,
otherwise,

Introduction

/tk(Xk) = amount that should be ordered at time k if the stock is Xk.

and we want to minimize J1t"(xo) for a given Xo over all 'if that satisfy the
constraints of the problem. This is a typical dynamic programming problem.
We will analyze this problem in various forms in subsequent sections. For
example, we will show in Section 4.2 that for a reasonable choice of the cost
function, the optimal ordering policy is of the form

The sequence 'if {{to, ... , jlN - I} will be referred to as a policy or
contr-ol law. For each 'if, the corresponding cost for a fixed initial stock :ro is

so as to minimize the expected cost. The meaning of jlk is that, for each k
and each possible value of Xk,

Sec. 1.1Chap. 1

dk+1

The Dynamic Programming Algorithm

Wk IDemand at Period k

eriod I< Stocl< at Perio
Inventory System

Xk+ 1 = Xk +

Stock ordered at
Period I<

Stocl< at P

xk

Cost of Penod k

r(xk) + CUI<

(b) The purchasing cost C'Uk, where c is cost per unit ordered.

There is also a terminal cost R(XN) for being left with inventory XN at the
end of N periods. Thus, the total cost over N periods is

where Sk is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold Sk, order just enough to
bring stock up to Sk.

We want to minimize this cost by proper choice of the orders Uo, ... , UN-I,

subject to the natural constraint Uk 2:: 0 for all k.
At this point we need to distinguish between closed-loop and open

loop minimization of the cost. In open-loop minimization we select all orders
Uo, ... , UN-I at once at time 0, without waiting to see the subsequent demand
levels. In closed-loop minimization we postpone placing the order Uk until the
last possible moment (time k) when the current stock Xk will be known. The
idea is that since there is no penalty for delaying the order Uk up to time k,
we can take advantage of information that becomes available between times
o and k (the demand and stock level in past periods).

Closed-loop optimization is of central importance in dynamic program
ming and is the type of optimization that we will consider almost exclusively
in this book. Thus, in our basic formulation, decisions are made in stages
while gathering information between stages that will be used to enhance the
quality of the decisions. The effect of this on the structure of the resulting
optimization problem is quite profound. In particular, in closed-loop inven
tory optimization we are not interested in finding optimal numerical values
of the orders but rather we want to find an optimal rule for selecting at each
pe'f'iod k an o'f'der Uk for each possible value of stock Xk that can conceivably
occur-. This is an "action versus strategy" distinction.

Mathematically, in closed-loop inventory optimization, we want to find
a sequence of functions Itk, k = 0, ... ,N - 1, mapping stock Xk into order Uk

The preceding example illustrates the main ingredients of the basic
problem formulation:

(a) A discrete-time system of the form

where !k is some function; for example in the inventory case, we have
fk(Xk, Uk, 'Wk) = Xli: -I- 'ILk - 'Wk·

(b) Independent random parame"ters 'Wk. This will be generalized by al
lowing the probability distribution of 'Wk to depend on Xk and Uk;

in the context of the inventory example, we can think of a situation
where the level of demand 'Wk is influenced by the current stock level
Xk·

(c) A control constraint; in the example, we have 'Uk ~ O. In general,
the constraint set will depend on Xk and the time index k, that is,
'Uk E Uk(Xk). To see how constraints dependent on Xk can arise in the
inventory context, think of a situation where there is an upper bound
B on the level of stock that can be accommodated, so Uk ~ B Xk.'

(d) An addit'lve cost of the form



Introduction

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation B has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation 'IT/, to any
other operation n is given. There is also an initial startup cost SA or Sc for
starting with operation A or C, respectively. The cost of a sequence is the
sum of the setup costs associated with it; for example, the operation sequence
ACDB has cost

Example 1.1.2 (A Deterministic Scheduling Problem)

Thus a discrete-state system can equivalently be described in terms
of a difference equation or in terms of transition probabilities. Depend
ing on the given problem, it may be notationally or mathematically more
convenient to use one description over the other.

The following examples illustrate discrete-state problems. The first
example involves a deterministic problem, that is, a problem where there
is no stochastic uncertainty. In such a problem, when a control is chosen
at a given state, the next state is fully determined; that is, for any state i,
control u, and time k, the transition probability Pij (u, k) is equal to 1 for a
single state j, and it is 0 for all other candidate next states. The other three
examples involve stochastic problems, where the next state resulting from
a given choice of control at a given state cannot be determined a priori.

where wet, u,"j) is the set
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where gk are some functions; in the inventory example, we have

(e) Optimization over (closed-loop) policies, that is, rules for choosing Uk

for each k and each possible value of Xk.

This type of state transition can alternatively be described in terms of the
discrete-time system equation

In the preceding example, the state Xk was a continuous real variable, and
it is easy to think. of multidimensional generalizations where the state is
an n-dimensional vector of real variables. It is also possible, however, that
the state takes values from a discrete set, such as the integers.

A version of the inventory problem where a discrete viewpoint is more
natural arises when stock is measured in whole units (such as cars), each
of which is a significant fraction of xk, Uk, or Wk. It is more appropriate
then to take as state space the set of all integers rather than the set of real
numbers. The form of the system equation and the cost per period will, of
course, stay the same.

Generally, there are many situations where the state is naturally dis
crete and there is no continuous counterpart of the problem. Such sit
uations are often conveniently specified in terms of the probabilities of
transition between the states. What we need to know is Pij (u, k), which
is the probability at time k that the next state will be j, given that the
current state is 'i, and the control selected is u, Le.,

Discrete-State and Finite-State Problems

where the probability distribution of the random parameter Wk is

Conversely, given a discrete-state system in the form

together with the probability distribution Pk(Wk I Xk, Uk) of Wk, we can
provide an equivalent transition probability description. The corresponding
transition probabilities are given by

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem is shown in Fig. 1.1.2. Here the problem is deterministic, Le., at
a given state, each choice of control leads to a uniquely determined state.
For example, at state AC the decision to perform operation D leads to state
ACD with certainty, and has cost CCD. Deterministic problems with a finite
number of states can be conveniently represented in terms of transition graphs'
such as the one of Fig. 1.1.2. The optimal solution corresponds to the path
that starts at the initial state and ends at some state at the terminal time
and has minimum sum of arc costs plus the terminal cost. We will study
systematically problems of this type in Chapter 2.



RepairDo not repair

In troeIuction

(a) Let the machine operate one more period in the state it currently is.

(b) Repair the machine and bring it to the best state 1 at a cost R.

We assume that the machine, once repaired, is guaranteed to stay in state
1 for one period. In subsequent periods, it may deteriorate to states j > 1
according to the transition probabilities Plj.

Thus the objective here is to decide on the level of deterioration (state)
at which it is worth paying the cost of machine repair, thereby obtaining the
benefit of smaller future operating costs. Note that the decision should also
be affected by the period we are in. For example, we would be less inclined
to repair the machine when there are few periods left.

The system evolution for this problem can be described by the graphs
of Fig. 1.1.3. These graphs depict the transition probabilities between vari
ous pairs of states for each value of the control and are known as transit'ion
pr'Obabil'ity graphs or simply transition graphs. Note that there is a different
graph for each control; in the present case there are two controls (repair or
not repair).

Sec. 1.1Chap. 1
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Initial
State

Pij = P{next state will be j I current state is i}

Figure 1.1.2 The transition graph of the deterministic scheduling problem
of Exarnple 1.1.2. Each arc of the graph corresponds to a decision leading
from some state (the start node of the arc) to some other state (the end node
of the arc). The corresponding cost is shown next to the arc. The cost of the
last operation is shown as a terminal cost next to the terminal nodes of the
graph.

g(l) ::; g(2) ::; ... ::; g(n).

The implication here is that state i is better than state i + 1, and state 1
corresponds to a machine in best condition.

During a period of operation, the state of the machine can become worse
or it may stay unchanged. We thus assume that the transition probabilities

Consider a problem of operating efficiently over N time periods a machine
that can be in anyone of n states, denoted 1,2, ... , n. We denote by g(i) the
operating cost per period when the machine is in state i, and we assume that

Exarnple 1.1.3 (Machine Replacement)

We assume that at the start of each period we know the state of the
machine and we must choose one of the following two options:

satisfy

Pij = 0 if j < i.
Figure 1.1.3 Machine replacement example. Transition probability graphs for
each of the two possible controls (repair or not repair). At each stage and state i,
the cost of repairing is R+g(l), and the cost of not repairing is g(i). The terminal
cost is O.



11

'rn=n-i

00
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Introduction

A player is about to playa two-game chess match with an opponent, and
wants to maximize his winning chances. Each game can have one of two
outcomes:

(a) A win by one of the players (1 point for the winner and 0 for the loser).

(b) A draw (1/2 point for each of the two players).

If the score is tied at 1-1 at the end of the two games, the match goes into
sudden-death mode, whereby the players continue to play until the first time
one of them wins a game (and the match). The player has two playing styles
and he can choose one of the two at will in each game, independently of the
style he chose in previous games.

(1) Timid play with which he draws with probability Pel > 0, and he loses
with probability (1 - Pel).

(2) Bold play with which he wins with probability 'Pw, and he loses with
probability (1 - Pw).

Thus, in a given game, timid play never wins, while bold play never draws.
The player wants to find a style selection strategy that maximizes his proba
bility of winning the match. Note that once the match gets into sudden death,
the player should play bold, since with timid play he can at best prolong the
sudden death play, while running the risk of losing. T'herefore, there are only
two decisions for the player to make, the selection of the playing strategy in
the first two games. Thus, we can model the problem as one with two stages,
and with states the possible scores at the start of each of the first two stages
(games), as shown in Fig. 1.1.4. The initial state is the initial score 0-0. The
transition probabilities for each of the two different controls (playing styles)
are also shown in Fig. 1.1.4. There is a cost at the terminal states: a cost of
-1 at the winning scores 2-0 and 1.5-0.5, a cost of 0 at the losing scores 0-2
and 0.5-1.5, and a cost of -'Pw at the tied score 1-1 (since the probability of
winning in sudden death is Pw). Note that to maximize the probability P of
winning the match, we must minimize -Po

This problem has an interesting feature. One would think that if 'Pw <
1/2, the player would have a less than 50-50 chance of winning the match,
even with optimal play, since his probability of losing is greater than his
probability of winning anyone game, regardless of his playing style. This is
not so, however, because the player can adapt his playing style to the current
score, but his opponent does not have that option. In other words, the player
can use a closed-loop strategy, and it will be seen later that with optimal play,
as determined by the dynamic programming algorithm, he has a better than

Example 1.1.5 (Optimizing a Chess l\1atch Strategy)

The transition probabilities when slow service is provided are also given by
these formulas with lLf and qf replaced by 'Us and qs, respectively.

8ec. 1.1Chap. 1

j = 0, 1, ... , n - 1,

if j = i 1,

if j < i-I,

'The Dynamic Programming Algorithm

'Pi.i(Uj) = P{j i + 1 arrivals, service completed}

+ P{j - i arrivals, service not completed}

= qfP.i-iH + (1 - qf )P.i-i, if i 1 < j < n - 1,

ExanJlple 1.1.4 (Control of a Queue)

and it equals the probability of n or more customer arrivals when j = n,

rn=n-i

When there is at least one customer in the system (i > 0), we have

'lTt=n

Consider a queueing systern with room for n customers ~perating over N
time periods. We assume that service of a customer can start (end) only
at the beginning (end) of the period and that the system can serve only
one customer at a time. The probability Pm of m customer arrivals during
a period is given, and the numbers of arrivals in two different periods are
independent. Customers finding the system full depart without attempting
(;0 enter later. The system offers two kinds of service, fast and slow, with cost
per period Cf and Cs , respectively. Service can be switched between fast and
slow at the beginning of each period. With fast (slow) service, a customer in
service at the beginning of a period will terminate service at the end of the
period with probability qf (respectively, qs) independently of the number of
periods the customer has been in service and the number of customers in the
system (qf > qs). There is a cost rei) for each period for which there are i
customers in the system. There is also a terminal cost R(i) for i customers
left in the system at the end of the last period.

The problem is to choose, at each period, the type of service as a func
tion of the number of customers in the system so as to minimize the expected
total cost over N periods. One expects that when there is a large number of
customers i in queue, it is better to use the fast service, and the question is
to find the values of i for which this is true.

Here it is appropriate to take as state the number i of customers in the
system at the start of a period and as control the type of service provided.
Then, the cost per period is rei) plus Cf or Cs depending on whether fast or
slow service is provided. We derive the transition probabilities of the system.

When the system is empty at the start of the period, the probability
that the next state is j is independent of the type of service provided. It
equals the given probability of .j customer arrivals when j < n,

10
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(1.1)k = 0, 1, ... ,N 1.

k = 0, 1, ... ,N - 1,

The Basic Problem

Thus, for given functions gk, k = 0,1, ... ,N, the expected cost of Jr starting
at Xo is

where ILk maps states Xk into controls 'Uk; = ILk; (:r:k;) and is such that
ILk;(Xk) E Uk(Xk:) for all ;£k E Sk. Such policies will be called adm'iss'ible.

Given an initial state ;£0 and an admissible policy Jr {p,o, ... , liN --I},

the states Xk and disturbances Wk are random variables with distributions
defined through the system equation

Jr = {fLO, . .. ,ILN-d,

We are given a discrete-time dynamic system

Basic Problem

where the state Xk is an element of a space Sk, the control tik is an element
of a space Ok:, and the random "disturbance" Wk is an element of a space

Dk·
The control 'Uk is constrained to take values in a given nonempty

subset U(Xk) C Ok, which depends on the current state :l:k; that is, 'ILk E

Uk(:r;k) for all Xk E Sk and k.
The random disturbance Wk is characterized by a probability distri

bution Pk(' I Xk, tik) that may depend explicitly on Xk and 'Ilk but not on
values of prior disturbances Wk-l,· . . ,Wo·

We consider the class of policies (also called control laws) that consist
of a sequence of functions

based on dynamic programming in the first six chapters, and we will ex-

t -lour analysis to versions of this problem involving an infinite number,en<.
of stages in the last chapter and in Vol. II of this work.

The basic problem is very general. In particular, we will not require
that the state, control, or random parameter take a finite number of val
ues or belong to a space of n-dimensional vectors. A surprising aspect of
dynamic programming is that its applicability depends very little on the
nature of the state, control, and random parameter spaces. For this reason
Ie is convenient to proceed without any assumptions on the structure of
these spaces; indeed such assumptions would become a serious impediment

later.
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Figure 1.1.4 Chess match example. Thansition probability graphs for each of
the two possible controls (timid or bold play). Note here that the state space is
not the same at each stage. The terminal cost is -1 at the winning final scores 2-0
and 1.5-0.5, 0 at the losing final scores 0-2 and 0.5-1.5, and -Pw at the tied score
1-1.

50-50 chance of winning the match provided pw is higher than a threshold
value 15, which, depending on the value of Pd, may satisfy 15 < 1/2.

We now formulate a general problem of decision under stochastic uncer
tainty over a finite number of stages. This problem, which we call basic,
is central in this book. We will discuss solution methods for this problem

12

]1.2 THE BASIC PROBLEM



where the expectation is taken over the random variables Wk and Xk. An
optimal policy n* is one that minimizes this cost; that is,

where II is the set of all admissible policies.
Note that the optimal policy n* is associated with a fixed initial state

:1:0. However, em interesting aspect of the basic problem and of dynamic
programming is that it is typically possible to find a policy n* that is
simultaneously optimal for all initial states.

The optimal cost depends on Xo and is denoted by J*(xo); that is,

15

!Wk

Uk =!!k(Xk) System Xk

Xk + 1 =fk(Xk,Uk'Wk)

!tk

The Basic ProblemSec. 1.2Chap. 1The Dynamic Programming Algorithm14

It is useful to view J* as a function that assigns to each initial state Xo the
optimal cost J*(x;o) and call it the optimal cost function or optimal value
fu:nct'ion·t

The Role and Value of Information

We noted earlier the distinction between open-loop minimization, where
we select all controls 11,0, .. . , UN-l at once at time 0, and closed-loop mini
mization, where we select a policy {po, .. . ,p'N-d that applies the control
jI,k(J.;k) at time k with knowledge of the current state Xk (see Fig. 1.2.1).
With closed-loop policies, it is possible to achieve lower cost, essentially by
taking advantage of the extra information (the value of the current state).
The reduction in cost may be called the value of the information and can
be significant indeed. If the information is not available, the controller can
not adapt appropriately to unexpected values of the state, and as a result
the cost can be adversely affected. For example, in the inventory control
example of the preceding section, the information that becomes available
at the beginning of each period k is the inventory stock Xk. Clearly, this
information is very important to the inventory manager, who will want to
adjust the amount Uk to be purchased depending on whether the current
stock x: k is running high or low.

t For the benefit of the mathematically oriented reader we note that in the

preceding equation, "min" denotes the greatest lower bound (or infimum) of

the set of numbers {J71- (xo) I 7r E II}. A notation more in line with normal

mathematical usage would be to write J*(:1:o) = inCTEll J7f (xo). However (as
discussed in Appendix B), we find it convenient to use "min" in place of "inf"

even when the infimum is not attained. It is less distracting, and it will not lead
to any confusion.

Figure 1.2.1 Information gathering in the basic problem. At each time k the
controller observes the current state Xk and applies a control Uk = J--tdXk) that
depends on that state.

Example 1.2.1

To illustrate the benefits of the proper use of information, let us consider
the chess match example of the preceding section. There, a player can select
timid play (probabilities Pd and 1 - Pd for a draw and a loss, respectively)
or bold play (probabilities pw and 1 pw for a win and a loss, respectively)
in each of the two games of the match. Suppose the player chooses a policy
of playing timid if and only if he is ahead in the score, as illustrated in Fig.
1.2.2; we will see in the next section that this policy is optimal, assuming
Pd > Pw. Then after the first game (in which he plays bold), the score is 1-0
with probability pw and 0-1 with probability 1 Pw. In the second game, he
plays timid in the former case and bold in the latter case. Thus after two
games, the probability of a match win is pwPd, the probability of a match loss
is (1- Pw)2, and the probability of a tied score is Pw(1- Pd) + (1- Pw)Pw, in
which case he has a probability pw of winning the subsequent sudden-death
game. Thus the probability of winning the match with the given strategy is

which, with some rearrangement, gives

Probability of a match win = p~)(2 - Pw) + Pw(l Pw)Pd. (1.2)

Suppose now that pw < 1/2. Then the player has a greater probability
of losing than winning anyone game, regardless of the type of play he uses.
From this we can infer that no open-loop strategy can give the player a greater
than 50-50 chance of winning the match. Yet from Eq. (1.2) it can be seen
that with the closed-loop strategy of playing timid if and only if the player
is ahead in the score, the chance of a match win can be greater than 50-50,
provided that pw is close enough to 1/2 and Pd is close enough to 1. As an
example, for Pw = 0.45 and Pd = 0.9, Eq. (1.2) gives a match win probability
of roughly 0.53.



Figure 1.2.2 Illustration of the policy used in Example 1.2.1 to obtain a
greater than 50-50 chance of winning the chess match and associated transition
probabilities. The player chooses a policy of playing timid if and only if he is
ahead in the score.
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Value of information = P;v (2 - Pw) + Pw (1 Pw)Pet

- P;v - Pw(l- Pw) max(2pw,pet)

= Pw(l- Pw) min(pw,pd - Pw).

The Basic Problem

More generally, by subtracting Eqs. (1.2) and (1.:3), we see that

As mentioned above, an important characteristic of stochastic problems
is the possibility of using information with advantage. Another distin
guishing characteristic is the need to take into account T'isk in the problem
formulation. For example, in a typical investment problem one is not only
interested in the expected profit of the investment decision, but also in its
variance: given a choice between two investments with nearly equal ex
pected profit and markedly different variance, most investors would prefer
the investment with smaller variance. This indicates that expected value
of cost or reward need not be the most appropriate yardstick for expressing
a decision maker's preference between decisions.

As a more dramatic example of the need to take risk into account
when formulating optimization problems under uncertainty, consider the
so-called St. Petersburg paradox. Here, a person is offered the opportunity
of paying x dollars in exchange for participation in the following game: a
fair coin is flipped sequentially and the person is paid 2k dollars, where k
is the number of times heads have come up before tails come up for the
first time. The decision that the person must make is whether to accept
or reject participation in the game. Now if he accepts, his expected profit

Encoding Risk in the Cost :Function

It should be noted, however, that whereas availability of the state
information cannot hurt, it may not result in an advantage either. For
instance, in deterministic problems, where no random disturbances are
present, one can predict the future states given the initial state and the se
quence of controls. Thus, optimization over all sequences {lto, 'ttl, ... , ltN -1}
of controls leads to the same optimal cost as optimization over all admis
sible policies. The same can be true even in some stochastic probleuls (see
for example Exercise 1.13). This brings up a related issue. Assuming no
information is forgotten, the controller actually knows the prior states and
controls ::CO,lto, ... ,Xk-1,'ttk-1 as well as the current state :r;k. Therefore,
the question arises whether policies that use the entire system history can
be superior to policies that use just the current state. The answer turns out
to be negative although the proof is technically complicated (see [BeS78]).
The intuitive reason is that, for a given time k and state Xk, all future
expected costs depend explicitly just on Xk and not on prior history.

Sec. 1.2
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Thus if Pet > 2pw, we see that the optimal open-loop policy is to play timid in
one of the two games and play bold in the other, and otherwise it is optimal
to play bold in both games. For Pw = 0.45 and Pet = 0.9, Eq. (1.3) gives an
optimal open-loop match win probability of roughly 0.425. Thus, the value of
the information (the outcome of the first game) is the difference of the optimal
closed-loop and open-loop values, which is approximately 0.53-0.425 = 0.105.

(2) Play bold in both games; this has a probability P~ + 2p~(l - Pw) =
p;j)(3 2pw) of winning the match.

(3) Play bold in the firs~ game and timid in the second game; this has a
probability PwPd + p~(1 - Pd) of winning the match.

(4) Play timid in the first game and bold in the second game; this also has
a probability PwPd + p~} (l Pd) of winning the match.

The first policy is always dominated by the others, and the optimal
open-loop probability of winning the match is

To calculate the value of information, let us consider the four open-loop
policies, whereby we decide on the type of play to be used without waiting to
see the result of the first game. These are:

(1) Play timid in both games; this has a probability P~Pw of winning the
match.

Open-loop probability of win = max(p~(3 - 2pw), PwPd +P~v(l- Pd))

= P~ + Pw(l- Pw) max(2pw,pd).

16
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from the game is
00 1
v - .. - .2k - X = 00
~ 2k +1 '
k=O

so if his aeceptanee eriterion is based on maximization of expected profit,
he is willing to pay any amount x to enter the game. This, however, is in
strong disagreement with observed behavior, due to the risk element in
volved in entering the game, and shows that a different formulation of the
problem is needed. The formulation of problems of deeision under uncer
tainty so that risk is properly taken into aeeount is a deep subject with an
interesting theory. An introduction to this theory is given in Appendix G.
It is shown in particular that minimization of expected cost is appropriate
under reasonable assumptions, provided the cost function is suitably chosen
so that it properly eneodes the risk preferences of the deeision maker.

1.3 THE DYNAMIC PROGRAMMING ALGORITHM

The dynamie programming (DP) technique rests on a very simple idea,
the principle of optimality. The name is due to Bellman, who contributed
a great deal to the popularization of DP and to its transformation into a
systematic tool. H.oughly, the principle of optimality states the following
rather obvious fact.

P.r~ .~ .. 1 of Optirnality

Let 1f* {ILo,11i ,... , ILN-I} be an optimal policy for the basic prob
lem, and assume that when using 1f*, a given state Xi occurs at time
i with positive probability. Consider the subproblem whereby we are
at Xi at time i and wish to minimize the "cost-to-go" from time i to
time N

Then the truncated poliey {J/i, fLi+1l ... , /1N-I} is optimal for this sub
problem.

The intuitive justification of the prineiple of optimality is very simple.
If the truncated policy {ILl' J-l i+1' ... ,fLN-I} were not optimal as stated, we
would be able to reduce the cost further by switching to an optimal policy
for the subproblem once we reach Xi. For an auto travel analogy, suppose
that the fastest route from Los Angeles to Boston passes through Chicago.
The principle of optimality translates to the obvious fact that the Chicago
to Boston portion of the route is also the fastest route for a trip that starts
from Chicago and ends in Boston.

The principle of optimality suggests that an optimal policy can be
constructed in piecemeal fashion, first constructing an optimal policy for
the "tail subproblem" involving the last stage, then extending the optimal
policy to the "tail subproblem" involving the last two stages, and continuing
in this manner until an optimal policy for the entire problem is constructed.
The DP algorithm is based on this idea: it proceeds sequentially, by solving
all the tail subproblems of a given time length, using the solution of the
tail subproblems of shorter time length. We introduce the algorithm with
two examples, one deterministic and one stochastic.

The DP Algorithm for a Deterministic ~chelr1uung -lL........<....... ·<nJ ..·~

Let us consider the scheduling example of the preceding section, and let us
apply the principle of optimality to calculate the optimal schedule. We ~l~ve

to schedule optimally the four operations A, B, C, and D. The tranSItIon
and setup costs are shown in Fig. 1.3.1 next to the corresponding arcs.

According to the principle of optimality, the "tail" portion of an op
timal schedule must be optimal. For example, suppose that the optimal
schedule is CABD. Then, having scheduled first C and then A, it must
be optimal to complete the schedule with BD rather than with DB. With
this in mind, we solve all possible tail subproblems of length two, then all
tail subproblems of length three, and finally the original problem that has
length four (the subproblems of length one are of course trivial because
there is only one operation that is as yet unscheduled). As we will see
shortly, the tail subproblems of length k + 1 are easily solved once we have
solved the tail subproblems of lengt.h k, and this is the essence of the DP

technique.

Tail Subproblems of Length 2: These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, anel

CD (see Fig. 1.3.1)

State AB: Here it is only possible to schedule operation C as the next
operation, so the optimal cost of this subproblem is 9 (the cost of
scheduling C after B, which is 3, plus the cost of scheduling Dafter

C, which is 6).

State AC: Here the possibilities are to (a) schedule operation 13 and
then D, which has cost 5, or (b) schedule operation D anel then B,
which has cost 9. The first possibility is optimal, and the correspond
ing cost of the tail subproblem is 5, as shown next to node AC in Fig.

1.3.l.

State CA: Here the possibilities are to (a) schedule operation 13 and
then D, which has cost 3, or (b) schedule operation D and then 13,
which has cost 7. The first possibility is optimal, and the correspond-



ing cost of the tail subproblem is 3, as shown next to node CA in Fig.
1.3.1.

Figure 1.3.1 '[\'ansition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (ef. the
principle of optimality). The optimal cost for the original problem is equal to
10, as shown next to the initial state. The optimal schedule corresponds to the
thick-line arcs.

21The Dynamic Programming Algorithm

IN-l(XN-r) = r(xN-l)

+ min fCUN _ 1 + E {R(XN-l + 'ILN-l - 'WN-1)}J .
UN-l;::::O l WN-l

Adding the holding/shortage cost of period N 1, we see that the optimal
cost for the last period (plus the terminal cost) is given by

CUN-l + E {R(XN-l + UN-l - 'WN-r)}.
'WN-l

Naturally, IN-l is a function of the stock XN-l· It is calcula,ted either
analytically or numerically (in which case a table is used for computer

Consider the inventory control example of the previous section. Similar to
the solution of the preceding deterministic scheduling problem, we calcu
late sequentially the optimal costs of all the tail subproblems, going from
shorter to longer problems. The only difference is that the optimal costs
are computed as expected values, since the problem here is stochastic.

Ta'il Subproblems of Length 1: As~ume that at the beginning of period
N - 1 the stock is XN-l. Clearly, ~o matter what happened in the past,
the inventory manager should order the amount of inventory that mini
mizes over UN-l ~ °the sum of the ordering cost and the expected tenni
nal holding/shortage cost. Thus, he should minimize over UN-l the sum
CUN-l + E{R(XN)}, which can be written as

The DP Algorithm for the Inventory Control ~x:an'lplle

subproblem of length 2 (cost 5, as computed earlier), a total cost of
11. The first possibility is optimal, and the corresponding cost of the
tail subproblem is 7, as shown next to node A in Fig. 1.~1.1.

Original Problem of Length 4: The possibilities here are (a) start with op
eration A (cost 5) and then solve optimally the corresponding subproblem
of length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start
with operation C (cost 3) and then solve optimally the corresponding sub
problem of length 3 (cost 7, as computed earlier), a total cost of 10. The
second possibility is optimal, and the corresponding optimal cost is 10, as
shown next to the initial state node in Fig. 1.:3.1.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the opti
mal schedule by starting at the initial node and proceeding forward, each
time choosing the operation that starts the optimal schedule for the cor
responding tail subproblem. In this way, by inspection of the graph and
the computational results of Fig. 1.3.1, we determine that CABD is the
optimal schedule.

Sec. 1.3Chap. 1The Dynamic Programming Algorithm

10

State CD: Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Ta'il Subpmblems of Length 3: These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B
(cost 2) and then solve optimally the corresponding subproblem of
length 2 (cost 9, as computed earlier), a total cost of 11, or (b) sched
ule next operation C (cost 3) and then solve optimally the correspond
ing subproblem of length 2 (cost 5, as computed earlier), a total cost
of 8. The second possibility is optimal, and the corresponding cost of
the tail subproblem is 8, as shown next to node A in Fig. 1.3.1.

State C: Here the possibilities are to (a) schedule next operation A
(cost 4) and then solve optimally the corresponding subproblem of
length 2 (cost 3, as computed earlier), a total cost of 7, or (b) schedule
next operation D (cost 6) and then solve optimally the corresponding
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(1.5)
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t Our proof is somewhat informal and assumes that the functions Jk are
well-defined and finite. For a strictly rigorous proof, some technical mathemat
ical issues must be addressed; see Section 1.5. These issues do not arise if the
disturbance 'Wk takes a finite or countable number of values and the expected
values of all terms in the expression of the cost function (1.1) are well-defined

and finite for every admissible policy 7f.

Proof: t For any admissible policy 7f = {}LO, Ill, ... , IlN-d and each k =
0,1, ... , N -1, denote 1fk = {Ilk, P'k+l, ... , }LN-d. For k 0,1, ... ,N -1,
let J;;(Xk) be the optimal cost for the (N - k)-stage problem that starts at
state Xk and time k, and ends at time N,

Proposition 1.3.1: For every initial state Xo, the optimal cost J*(xo)
of the basic problem is equal to Jo(xo), given by the last step of the
following algorithm, which proceeds backward in time from period
N - 1 to period 0:

We now state the DP algorithm for the basic problem and show its opti
mality by translating into mathematical terms the heuristic argument given
above for the inventory example.

Jk(Xk) = min E {9k(Xk"Uk,Wk) + Jk+l(fk(;r;k"uk, lLJk))},
UkEUk(Xk) Wk

k = 0,1, ... ,N - 1,
(1.6)

where the expectation is taken with respect to the probability distribu
tion of 10k, which depends on Xk and Uk. :Furthermore, if uk = /lk(xk)
minimizes the right side of Eq. '(1.6) for each Xk and k, the policy
7f* = {{lO' ... , }LN-I} is optimal.

The DP Algorithm
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policy is simultaneously computed from the minimization in the right-hand
side of Eq. (1.4).

The example illustrates the main advantage offered by DP. While
the original inventory problem requires an optimization over the set of
policies, the DP algorithm of Eq. (1.4) decomposes this problem into a
sequence of minimizations carried out over the set of controls. Each of
these minimizations is much simpler than the original problem.

(1.4)
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Again IN-2(;r;N-2) is caleulated for every XN-2. At the same time, the
optimal policy ILN_2 (;r;N-2) is also computed.

Tail Subproblems of Length N - k: Similarly, we have that at period k:,
when the stock is;[;k, the inventory manager should order Uk to minimize

(expected cost of period k) + (expected cost of periods k + 1, ... ,N - 1,

given that an optimal policy will be used for these periods).

By denoting by Jk(Xk) the optimal cost, we have

= T(XN-2)

+. min [CllN-2 + E {IN-l(XN-2 + 'UN-2 - WN-2)}]
uN-2?'0 WN-2

which is equal to

(expected cost of period N - 2) + (expected cost of period N - 1,

given that an optimal policy will be used at period N - 1),

Using the system equation ;I;N-1 = XN-2 + UN-2 - WN-2, the last term is
also written as IN-1(XN-2 + UN-2 WN-2).

Thus the optimal cost for the last two periods given that we are at
state '.1;N-2, denoted IN-2(XN-2), is given by

which is actually the dynamic programming equation for this problem.

The functions Jk(:Ck) denote the optimal expected cost for the tail
subproblem that starts at period k with initial inventory Xk. These func
tions are computed recursively backward in time, starting at period N - 1
and ending at period O. The value Jo (;[;0) is the optimal expected cost
when the initial stock at time 0 is :ro. During the caleulations, the optiInal

22

storage ofthe function IN-1). In the process of caleulating IN-1, we obtain
the optimal inventory policy P'N-l (XN-I) for the last period: }LN-1 (xN-d
is the value of 'UN -1 that minimizes the right-hand side of the preceding
equation for a given value of XN-1.

TaU S'ubproblems of Length 2: Assume that at the beginning of period
N 2 the stock is ;I:N-2. It is clear that the inventory manager should
order the amount of inventory that minimizes not just the expected cost
of period N - 2 but rather the .
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k 0,1,
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where a is a known scalar from the interval (0,1). The objective is to get
the final temperature X2 close to a given target T, while expending relatively
little energy. This is expressed by a cost function of the form

Example 1.3.1

A certain material is passed through a sequence of two ovens (see Fig. 1.3.2).
Denote

Xo: initial temperature of the material,

Xk, k = 1,2: temperature of the material at the exit of oven k,

Uk-I, k = 1,2: prevailing temperature in oven k.

We assume a model of the form

Sec. 1.3

Ideally, we would like to use the DP algorithm to obtain closed-form
expressions for Jk or an optimal policy. In this book, we will discuss a
large number of models that admit analytical solution by DP. Even if such
models rely on oversimplified assumptions, they are often very useful. They
may provide valuable insights about the structure of the optimal solution of
more complex models, and they may form the basis for suboptimal control
schemes. It'urthermore, the broad collection of analytically solvable models
provides helpful guidelines for modeling: when faced with a new problem it
is worth trying to pattern its model after one of the principal analytically
tractable models.

Unfortunately, in many practical cases an analytical solution is not
possible, and one has to resort to numerical execution of the DP algorithm.
This may be quite time-consuming since the minimization in the DP Eq.
(1.6) must be carried out for each value of Xk. The state space must be
discretized in some way if it is not already a finite set. The computa
tional requirements are proportional to the number of possible values of
Xk, so for complex problems the computational burden may be excessive.
Nonetheless, DP is the only general approach for sequential optimization
under uncertainty, and even when it is computationally prohibitive, it can
serve as the basis for more practical suboptimal approaches, which will be
discussed in Chapter 6.

The following examples illustrate some of the analytical and compu
tational aspects of DP.

Chap. 1The Dynamic Programming Algorithm

= min E {9k (Xk' J-lk(;r:k), 'Wk)
ftk 'I1Jk

+ ~~l} [, E {9N(XN) + ~ gi (Xi, J-li(Xi) , 'Wi)}] }
7f f· wk+I, ... ,'I1JN-I .

t=k+l

= min E {9k (Xk' p.k(Xk), 'Wk) + Jk+1Uk (Xk' J-lk(Xk), Wk))}
ILk 'I1Jk

= min E {9k(Xk,/ldxk),'Wk) + Jk+1(fk(Xk,J-lk(Xk),'Wk))}
ILk 'I1Jk

= min E {9k(Xk,'Uk,'Wk) + Jk+l(fk(Xk,Uk,'Wk))}
'ItkEUk(~(;k) 'I1Jk

= Jk(Xk),

min F(x, fl(X)) = min F(;!:, u),
ftEM UEU(x)

where M is the set of all functions fl(X) such that fleX) E U(x) for all x.

cOInpleting the induction. In the second equation above, we moved the
minimum over Jrk+l inside the braced expression, using a principle of opti
malityargument: "the tail portion of an optimal policy is optimal for the
tail subproblem" (a more rigorous justification of this step is given in Sec
tion 1.5). In the third equation, we used the definition of Jk+1

, and in the
fourth equation we used the induction hypothesis. In the fifth equation, we
converted the minimization over Ilk to a minimization over Uk, using the
fact that for any function F of x and u, we have

For k lV, we define Jjy(XN) = gN(XN). We will show by induction
that the functions J'k are equal to the functions Jk generated by the DP
algorithm, so that for k = 0, we will obtain the desired result.

Indeed, we have by definition Jjy = JN = gN. Assume that for
some k and all Xk+l, we have Jk+1(Xk+I) = Jk+1(Xk+l). Then, since
Jrk (ILk, Jrk+1), we have for all xk

The argument of the preceding proof provides an interpretation of
Jk(Xk) as the optimal cost for an (N - k)-stage problem starting at state
;X:k and time k, and ending at time N. We consequently call Jk(Xk) the
cost-to-go at state Xk and time k, and refer to Jk as the cost-to-go function
at time k.

where 7' > °is a given scalar. We assume no constraints on Uk. (In reality,
there are constraints, but if we can solve the unconstrained problem and
verify that the solution satisfies the constraints, everything will be fine. ) The
problem is deterministic; that is, there is no stochastic uncertainty. However,
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We n~w go back one stage. We have [ef. Eq. (1.6)]

Sec. 1.8Chap. 1

,-- --, Final

Oven 2 Temperature x2

Temperature
u1

Oven 1
Temperature

Uo

Initial
Temperature Xo
----.....,t;;>
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and by substituting the expression already obtained for J l , we have

k = 0,1,

where wo, WI are independent random variables with given distribution,
zero mean

E{wo} = E{Wl} = 0,

. [2 r((1- a)2~r;0 + (1 - a)auo - T)2]
Jo(xo) = mm Uo + 1 ') .

'Uo + ra-

We minimize with respect to Uo by setting the corresponding derivative to
zero. We obtain

The optimal cost is obtained by substituting this expression in the formula
for Jo. This leads to a straightforward but lengthy calculation, which in the
end yields the rather simple formula

2r(1 - a)a( (1 - a)2 xo + (1 - a)auo - T)
0= 2uo + 1 2 .+ra

This completes the solution of the ·problem.

One noteworthy feature in the preceding example is the facility with
which we obtained an analytical solution. A little thought while tracing
the steps of the algorithm will convince the reader that what simplifies the
solution is the quadratic nature of the cost and the linearity of the system
equation. In Section 4.1 we will see that, generally, when the system is
linear and the cost is quadratic, the optimal policy and cost-to-go function
are given by closed-form expressions, regardless of the number of sta.ges N.

Another noteworthy feature of the example is that the optimal policy
remains unaffected when a zero-mean stochastic disturbance is added in
the system equation. To see this, assume that the material's temperature
evolves according to

* r(l- a)a(T - (1- a)2 xo )
IJ,o(Xo)= 1+ra2(1+(1-a)2) .

This yields, after some calculation, the optimal temperature of the first oven:

(1.7)

o 2n1+2ra((1-a)xl+aul-T),

,h(Xl) = min[ui + J2(X2)]
'UI

= ~~n [ui + J2 ((1 - a)xl + aUI) ].

For the next-to-Iast stage, we have ref. Eq. (1.6)]

Figure 1.3.2 Problem of Example 1.3.1. The temperature of the material
evolves according to Xk+l = (1 a)xk + aUk, where a is some scalar with
O<a<1.

* ra(T - (1- a)xl)
{I,1(Xl) = 1 2 .

+ra

Note that this is not a single control but rather a control function, a rule that
tells us the optimal oven temperature Ul = jLi (xI) for each possible state Xl.

By substituting the optimalnl in the expression (1. 7) for J l , we obtain

and by collecting terms and solving for Ul, we obtain the optimal temperature
for the last oven:

This minimization will be done by setting to zero the derivative with respect
to 11,1. This yields

Substituting the previous form of J2 , we obtain

such problems can be placed within the basic framework by introducing a
fictitious disturbance taking a unique value with probability one.

We have N = 2 and a terminal cost 92(X2) = r(x2 - T)2, so the initial
condition for the DP algorithm is [ef. Eq. (1.5)]



p(Wk = 2) = 0.2.P(Wk = 1) = 0.7,
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p(Wk = 0) = 0.1,

We calculate the expectation of the right side for each of the three possible
values of U2:

U2 = 0 : E{-} = 0.7·1 + 0.2·4 1.5,

U2 = 1 : E{-} = 1 + 0.1·1 + 0.2·1 = 1.3,

U2 = 2 : E { .} = 2 + 0.1 . 4 + 0.7 . 1 3.1.

where k = 0,1,2, and Xk, 'Uk, Wk can take the values 0,1, and 2.

Period 2: We compute J 2 (X2) for each of the three possible states. We have

Jk(Xk) = min WEk {'Uk + (Xk +Uk -Wk)2 +Jk+1 (max(O, Xk +'Uk -Wk))},
o:::;'uk:::;'2- x k

uk=O,I,2

Hence we have, by selecting the minimizing U2,

since the terminal state cost is 0 [ef. Eq. (1.5)]. The algorithm takes the form
[cf. Eq. (1.6)]

The system can also be represented in terms of the transition probabilities
Pij (u) between the three possible states, for the different values of the control
(see Fig. 1.3.3).

The starting equation for the DP algorithm is

The terminal cost is assumed to be 0,

The planning horizon N is 3 periods, and the initial stock Xo is O. The demand
Wk has the same probability distribution for all periods, given by

Sec. 1.8Chap. 1The Dynamic Programming A.lgorithm

+ 2rE{wI} ((1 a)xl + aUl - T) + rE{wi}].

J1(xI) min E {ut + r((l - a)xl + aUl + WI - T)2}
til wI

= min [ut + r((l a)xl + aUl - T)2
tq

We also assume that there is an upper bound of 2 units on the stock that can
be stored, i.e. there is a constraint Xk + Uk ::; 2. The holding/storage cost for
the kth period is given by

l'..;x;ample 1.3.2

To illustrate the computational aspects of DP, consider an inventory control
problem that is slightly different from the one of Sections 1.1 and 1.2. In
particular, we assume that inventory Uk and the demand Wk are nonnegative
integers, and that the excess demand (Wk - Xk - Uk) is lost. As a result, the
stock equation takes the form

Comparing this equation with Eq. (1.7), we see that the presence of WI

has resulted in an additional inconsequential term, TE{wi}. Therefore,
the optimal policy for the last stage remains unaffected by the presence
of WI, while JI(XI) is increased by the constant term TE{wi}. It can be
seen that a similar situation also holds for the first stage. In particular,
the optimal cost is given by the same expression as before except for an
additive constant that depends on E{w6} and E{wi}.

If the optimal policy is unaffected when the disturbances are replaced'
by their means, we say that certainty equivalence holds. We will derive
certainty equivalence results for several types of problems involving a linear
system and a quadratic cost (see Sections 4.1, 5.2, and 5.3).

Since E{Wl} = 0, we obtain

and finite variance. Then the equation for Jl ref. Eq. (1.6)] becomes

28

Ij,~ (0) 1.

implying a penalty both for excess inventory and for unmet demand at the
end of the kth period. The ordering cost is 1 per unit stock ordered. Thus
the cost per period is

For X2 = 1, we have

h (1) = min E { U2 + (1 + '1l2 - W2) 2 }
u2=O,1 'w2

= min [U2 + 0.1(1 + U2)2 + 0.7('U2)2 -I- 0.2('1l2 1)2].
u2=O,1
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j1,~(2) O.

j1,;(2) = O.

J l (2) 1.68,

J2(2) = E {(2 W2)2} = 0.1 ·4 + 0.7·1 = 1.1,
lU2

The Dynamic Programming Algorithm

For X2 2, the only admissible control is 'Lt2 = 0, so we have

For Xl = 1, we have

Period 0: Here we need to compute only Jo(O) since the initial state is known

to be O. We have

J l (2) = ,E{ { (2 - W1)2 + h (max(O, 2 tut))}

= 0.1 (4 + J2 (2)) + 0.7(1 -\- J2 (1)) + 0.2· J2 (0)

= 1.G8,

For Xl = 2, the only admissible control is 'Ltl = 0, so we have

Jo(O) = min E {'llO + ('LtO WO)2 -\- h(max(O,'Uo wo))},
uO=O,1,2 Wo

'Lto 0 : E { .} = 0.1 . J 1 (0) + 0.7 (1 + J 1 (0)) + 0.2 (4 + ,It (0)) = 4.0,

110 = 1: E {-}= 1 + 0.1 (1 + J1 (1)) + 0.7 . J 1 (0) + 0.2 (1 + J1 (0)) = 3.7,

110 = 2: E{-} = 2 + 0.1(4 + J1(2)) + 0.7(1 + J1(1)) + 0.2· h(O) = 4.818,

111 = 0: E{·} = 0.1(1 + ,h(l)) + 0.7· J2 (0) + 0.2(1 + h(O)) = 1.5,

1ll 1: E{-} = 1 + 0.1(4 + J2 (2)) + 0.7(1 + J2 (1)) + 0.2· h(O) 2.68,

J 1 (1) 1.5, jti (1) = O.

'Ltl = 0 : E{·} = 0.1 . J2(0) + 0.7(1 + J2(0)) + 0.2(4 -\- J2(0)) 2.8,

'Ltl = 1 : E{-} = 1 + 0.1(1 + J 2 (1)) + 0.7· h(O) + 0.2(1 + J 2 (0)) = 2.5,

1ll = 2: E{·} = 2 + 0.1(4 + J2(2)) + 0.7(1 + J2(1)) -+- 0.2· h(O) = 3.68,

J l (0) = 2.5, jL~ (0) = 1.

Period 1: Again we compute Jl (Xl) for each of the three possible states
Xl = 0,1,2, using the values J2(0), J2(1), ,h(2) obtained in the previous
period. For Xl 0, we have

Sec. 1.3Chap. 1

Stock::; 1

Stock::; 2

0.1

Stock purchased::; 1

Stock::; 1

Stock =2

Stock =0 Stock::; O·

Stock::; 1

Stock::; 2 0

Stock purchased::; 2

\------0 Stock::; 0

Stock::; 2
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Stock::; 0

Stock::;1 0

Stock=2 0

Stock purchased::; 0

Figure 1.3.3 System and DP results for Example 1.3.2. The transition proba
bility diagrams for the different values of stock purchased (control) are shown.
The numbers next to the arcs are the transition probabilities. The control
'It = 1 is not available at state 2 because of the limitation Xk -\- Uk ~ 2. Simi
larly, the control u = 2 is not available at states 1 and 2. The results of the
D P algorithm are given in the table.

'U2 = 0: E{-} = 0.1 . 1 + 0.2·1 = 0.3,

'Lt2 = 1 : E{·} = 1 + 0.1· 4 + 0.7·1 = 2.1.

Hence

The expected value in the right side is

Stage 0 Stage 0 Stage 1 Stage 1 Stage 2 Stage 2

Stock Cost-to-go Optimal Cost-to-go Optimal Cost-to-go Optimal
stock to stock to stock to
purchase purchase purchase

----

0 ~3. 7 1 2.5 1 1.3 1

l 2.7 0 1.5 0 0.3 0

2 2.818 0 1.68 0 1.1 0

Stocl< = 0 0 1.0 Stock::; 0

Stock::; 1

Stock::; 2

80
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(1.10)

optirnal play: either

if XN > 0,
if XN = 0,
if XN < O.

The Dynamic Programming Algorithm

IN-2(0) = max [PdPW + (1 - Pd)P:, pw (Pd + (1 - Pd)Pw) + (1- Pw)p~)}

= pw (Pw + (Pw + Pd)(l Pw))

Also, given IN-l(XN-1), and Eqs. (1.8) and (1.9) we obtain

IN-1(1) = max[pd + (1 - Pd)Pw, P111 + (1 Pw)Pw]

Pd + (1 - Pd)Pw; optimal play: timid

IN-1(0) = pw; optimal play: bold

J N -1 ( -1) = P;v; optimal play: bold

IN-l(XN-1) = 0 for XN-1 < -1; optimal play: either.

Example 1.3.4 (Finite-State Systems)

We mentioned earlier (d. the examples in Section 1.1) that systems with
a finite number of states can be represented either in terms of a discrete
time system equation or in terms of the probabilities of transition between
the states. Let us work out the DP algorithm corresponding to the latter
caSe. We assume for the sake of the following discussion that the problem
is stationary (i.e., the transition probabilities, the cost per stage, and the
control constraint sets do not change from one stage to the next). Then, if

and, as noted in the preceding section, it includes points where pw < 1/2.

and that if the score is even with 2 games remaining, it is optirnal to play
bold. Thus for a 2-game match, the optimal policy for both periods is to
play timid if and only if the player is ahead in the score. The region of pairs
(Pw,Pd) for which the player has a better than 50-50 chance to win a 2-game
match is

In this equation, we have IN(O) = pw because when the score is even after N
games (XN = 0), it is optimal to play bold in the first game of sudden death.

By executing the DP algorithm (1.8) starting with the terminal condi
tion (1.10), and using the criterion (1.9) for optimality of bold play, we find
the following, assuming that Pd > pw:

The dynamic programming recursion is started with

Sec. 1.8

(1.9)

(1.8)
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fL~(2) = O.

fL~(l) 0,

fL~(O) = 1.

Jk+1 (Xk) - Jk+1 (Xk - 1)
Jk+1(Xk + 1) Jk+1(Xk - 1)·

The Dynamic Programming Algorithm

Jo(l) = 2.7,

Jo(O) = 3.7,

Jo(2) = 2.818,

Pw "
-/

Pd

JdXk) = max [PdJk+1 (Xk) + (1 - Pd)Jk+1(Xk - 1),

PwJk+1(Xk + 1) + (1 - Pw)Jk+I(Xk -1)].

or equivalently, if

The maximum above is taken over the two possible decisions:

(a) Timid play, which keeps the score at Xk with probability Pd, and changes
;r;k to ;r;k 1 with probability 1 Pd.

(b) Bold play, which changes Xk to Xk + 1 or to Xk - 1 with probabilities
Pw or (1- Pw), respectively.

It is optimal to play bold when

Consider the chess match example of Section 1.1. There, a player can select
timid play (probabilities Pd and 1 - Pd for a draw or loss, respectively) or
bold play (probabilities pw and 1 - Pw for a win or loss, respectively) in each
game of the match. We want to formulate a DP algorithm for finding the
policy that maximizes the player's probability of winning the match. Note
that here we are dealing with a maximization problem. We can convert the
problem to a minimization problem by changing the sign of the cost function,
but a simpler alternative, which we will generally adopt, is to replace the
minimization in the DP algorithm with maximization.

Let us consider the general case of an N-game match, and let the state
be the net score, that is, the difference between the points of the player
minus the points of the opponent (so a state of 0 corresponds to an even
score). The optimal cost-to-go function at the start of the kth game is given
by the dynamic programming recursion

Example 1.3.3 (Optimizing a Chess Match Strategy)

Thus the optimal ordering policy for each period is to order one unit if the
current stock is zero and order nothing otherwise. The results of the DP
algorithm are given in tabular form in Fig. 1.3.3.

If the initial state were not known a priori, we would have to compute
in a similar manner J o(l) and J o(2), as well as the minimizing Uo. The reader
may verify (Exercise 1.2) that these calculations yield
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where the probability distribution of the disturbance Wk is

35State Augmentation and Other Reformulations

We now discuss how to deal with situations where some of the assumptions
of the basic problem are violated. Generally, in such cases the problem can
be reformulated into the basic problem format. This process is called state
augmental'ion because it typically involves the enlargement of the state
space. The general guideline in state augmentation is to incrude 'in the
enlarged state at time k all the information that 'is known to the controller
at time k and can be used 'With advantage in selecting Uk. Unfortunately,
state augmentation often comes at a price: the reformulated problem may
have very complex state and/or control spaces. We provide some examples.

In many applications the system state ::Ck+l depends not only on the pre
ceding state :I:k and control Uk but also on earlier states and controls. In
other words, states and controls influence future states with some time
lag. Such situations can be handled by state augmentation; the state is
expanded to include an appropriate number of earlier states and controls.

For simplicity, assume that there is at most a single period time lag
in the state and control; that is, the system equation has the form

Time Lags
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P{Wk = j I Xk = i, Uk = U} = Pij(U).

JkCi) = min [9(i'U) + "'" Pij(U)Jk+lU)] .
1LEU('t) L...t

j

As an illustration, in the machine replacement example of Section 1.1,
this algorithm takes the form

or equivalently (in view of the distribution of Wk given previously)

Using this system equation and denoting by g(i, u) the expected cost per stage
at state 'i when control U is applied, the DP algorithm can be rewritten as

are the transition probabilities, we can alternatively represent the system by
the system equation (cf. the discussion of the previous section)

form
(1.12)

(1.11)k = 1,2, ... ,lV - 1,

(

fk(Xk, Yk, :Uk, Sk, Wk))
:X,k .

Uk
(

Xk+l )
Yk+l

Sk+l

By defining Xk (Xk,Yk,Sk) as the new state, we have

;:(;1 = fo(xo, Uo, wo).

Time lags of more than one period .~an be handled similarly.
If we introduce additional state variables Yk and Sk, and we make the

identifications Yk = Xk-l> Sk = Uk-I, the system equation (1.11) yields

i = 1, ... ,n,

The two expressions in the above minimization correspond to the two available
decisions (replace or not replace the machine).

In the queueing example of Section 1.1, the DP algorithm takes the

IN('i) = R(i), 'i = 0,1, ... , n,

.Jk(i) = min [rei) + cf + ~Pij(1tf ).Jk+l(j), rei) + c, + ~Pij(1t').Jk+l (j)] .

The two expressions in the above minimization correspond to the two possible
decisions (fast and slow service).

Note that if there are n states at each stage, and U (i) contains as many
as m controls, the minimization in the right-hand side of the DP algorithm
requires, for each (i, k), as many as a constant multiple of mn operations.
Since there are nN state-time pairs, the total number of operations for the
DP algorithm is as large as a constant multiple of mn2 N operations. By
contrast, the nmnber of all policies is exponential in nN (it is as large as
m nN

), so a brute force approach which enumerates all policies and compares
their cost, requires an exponential number of operations in nN.

where the system function Ais defined from Eq. (1.12). By using the pre
ceding equation as the system equation and by expressing the cost function
in terms of the new state, the problem is reduced to the basic problem
without time lags. Naturally, the control Uk should now depend on the
new state Xk, or equivalently a policy should consist of functions fI'k of the
current state Xk, as well as the preceding state Xk-l and the preceding
control Uk-I-
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k 0, ... ,N -1,
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Ak , Ok are known matrices of appropriate dimension, and ~k are indepen
dent random vectors with given distribution (see Fig. 1.4.1). By viewing
Yk as an additional state variable, we obtain the new system equation

where the new state is the pair fik = (Xk, Yk) and the new disturbance is
the vector ~k.

More generally, suppose that 'Wk can be modeled by

where

Figure 1.4.1 Representing correlated disturbances as the output of a linear sys
tem driven by independent random vectors.

where .A is a given scalar and {~k} is a sequence of independent random
vectors with given distribution. Then we can introduce an additional state
variable

and obtain a new system equation

Yk = 'Wk-r

Correlated Disturbances

We turn now to the case where the disturbances 'Wk are correlated over time.
A common situation that can be handled efficiently by state augrnentation
arises when the process 'Wo, . .. ,WN-I can be represented as the output of
a linear system driven by independent random variables. As an example,
suppose that by using statistical methods, we determine that the evolution
of Wk can be modeled by an equation of the form

Sec. 1,4Chap. 1The Dynamic Programming Algorithm

min E {90(XO,Uo,wo) + JI(!O(XO,uo,wo),xo,uo)}.
'UoEUo(xo) wo

Jo(::r;o)

I N- 1(::CN-l, XN-2, UN-2)

min E {9N-I(XN-I, UN-I, WN-r)
'UN-l EUN-l(XN-l) wN-l

+ IN(JN-l(XN-I, XN-2, UN-I, UN-2, 'WN-l)) },

,h(::r;k, Xk-l, Uk-I) = min E {9k(::Dk' Uk, Wk)
'UkEUk(xk) Wk

+ Jk+1 (fk(Xk, ::rk-I, Uk, Uk-I, Wk), Xk, Uk)}, k = 1, ... , N - 2,

and E{9N(;Y;N)} as reformulated cost. Policies consist of functions ILk of the
present and past states Xk, . .. , Xo, the past controls 'Uk-I, ... ,uo, and the
past disturbances Wk-I, ... ,Wo. Naturally, we must assume that the past
disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller. Such
problems are known as problems with imperfect state information and will
be discussed in Chapter 5.

Then, the problem can be reduced to the basic problem format, by taking
as augmented state

The extreme case of time lags in the cost arises in the nonadditive form

Similar reformulations are possible when time lags appear in the cost; ,
for example, in the case where the cost has the form

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form



Forecasts

Yk+l = ~k,
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When augmenting the state of a given system one often ends up with
composite states, consisting of several components. It turns out that if
some of these components cannot be affected by the choice of control, the
DP algorithm can be simplified considerably, as we will now describe.

Let the state of the system be a composite (Xk, ]lk) of two components
Xk and Yk. The evolution of the main component, Xk, is affected by the
control Uk according to the equation

Xk+l = fk(xk, Yk, '{lk, 'Wk),

IN(XN,YN) = 9N(XN),

min E {9k(;r;k' 'Uk, 'Wk)
ukEUk(xk) 'Wk

Simplification for Uncontrollable State l;(HDlp()n43Jt1'ts

m (1.13)
+~ Pi Jk+1(ik(X:k,'Uk, 'Wk), i) I Yk },

i=l

where Yk may take the values 1,.:-., 'm, and the expectation over 'Wk is
taken with respect to the distribution QYk'

It should be clear that the preceding formulation admits several ex
tensions. One example is the case where forecasts can be influenced by
the control action and involve several future disturbances. However, the
price for these extensions is increased complexity of the corresponding DP
algorithm.

Xk = (Xk' Yk)'

and because the forecast Yk is known at time k, perfect state information
prevails. The new disturbance is

'{11k = ('Wk, ~k),

and its probability distribution is determined by the distributions Qi and
the probabilities Pi, and depends explicitly on Xk (via Yk) but not on the
prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
into the basic problem format. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

The new state is

Sec. 1.4

p'i. The interpretation here is that when ~k takes the value 'i, then 'Wk-1-1
will occur according to the distribution Qi.

By combining the system equation with the forecast equation Yk+l =
~k, we obtain an augmented system given by

(
Xk-I-l) = (fdxk,uk,wd).
Yk+l ~k

Chap. 1The Dynamic Programming Algorithm

IN(XN, YN) = 9N(X:N),

,h(:Dk,Yk)= min E{9k(Xk,Uk,Ck(AkYk+~k))
UkEUdxk) f;,k

+ Jk+l (fk (Xk' Uk, Ck(AkYk + ~k)), AkYk + ~k) }.

where YI;;-t-l can take the values 1, ... , 'm, corresponding to the 'm possible
forecasts, and ~k is a random variable taking the value i with probability

Finally, consider the case where at time k the controller has access to a
forecast Yk that results in a reassessment of the probability distribution of
Wk and possibly of future disturbances. For example, Yk may be an exact
prediction of 'Wk or an exact prediction that the probability distribution of
'Wk is a specific one out of a finite collection of distributions. Forecasts of
interest in practice are, for example, probabilistic predictions on the state
of the weather, the interest rate for money, and the demand for inventory.

Generally, forecasts can be handled by state augmentation although
the reformulation into the basic problem format may be quite complex. We
will treat here only a simple special case.

Assume that at the beginning of each period k, the controller re
ceives an accurate prediction that the next disturbance 'Wk will be selected
according to a particular probability distribution out of a given collection
of distributions {Q1, ... , Qm}; that is, if the forecast is i, then 'Wk is se
lected according to Q,;. The a priori probability that the forecast will be i
is denoted by Pi and is given.

For instance, suppose that in our earlier inventory example the de
mand 'Wk is determined according to one of three distributions Ql, Q2, and
Qcl, corresponding to "srnall," "medium," and "large" demand. Each of the
three types of demand occurs with a given probability at each time period,
independently of the values of demand at previous time periods. However,
the inventory manager, prior to ordering Uk, gets to know through a fore
cast the type of demand that will occur. (Note that it is the probability
distribution of demand that becomes known through the forecast, not the
demand itself.)

The forecasting process can be represented by means of the equation

Note that in order to have perfect state information, the controller
must be able to observe Yk. Unfortunately, this is true only in the minority
of practical cases; for example when Ck is the identity matrix and Wk-l is
observed before 'Uk is applied. In the case of perfect state information, the
DP algorithm takes the form
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Indeed, we have

4:1

k = 0,1, ... ,N - 1,
Tn

J k (xk) = ~ p,dd X k, 'i),
i=l

State A ugmentation and Other Reformulations

Tetris is a popular video game play~d on a two-dimensional grid. Each square
in the grid can be full or empty, m~ldng up a "wall of bricks" with "holes"
and a "jagged top". The squares fill up as blocks of different shapes fall from
the top of the grid and are added to the top of the wall. As a given block
falls, the player can move horizontally and rotate the block in all possible
ways, subject to the constraints imposed by the sides of the grid and the
top of the wall. The falling blocks are generated independently according to
some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player's
objective is to maximize the score attained (total number of rows removed)
within N steps or up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a stochastic DP problem. The control, denoted by u, is the horizontal
positioning and rotation applied to the falling block. The state consists of
two components:

(1) The board position, I.e., a binary description of the full/empty status
of each square, denoted by x.

Exanlple 1.4.1: (Tetris)

m

Jk(xk) =~ Pi min E {9k(xk, Uk, Wk)
'i=l 1LkEUk(Xk) wk

+Jk+1 (fk(Xk,Uk,Wk)) I 'Uk = 'i},
which is executed over the space of Xk rather than Xk and 'Uk.

Uncontrolled state components often occur in arrival systems, such as
queueing, where action must be taken in response to a random event (such
as a customer arrival) that cannot be influenced by the choice of control.
Then the state of the arrival system must be augmented to include the
random event, but the DP algorithm can be executed over a smaller space,
as per Eq. (1.14). Here is another example of similar type.

we have, using Eq. (1.13),

and
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an uncontrolled state component, so that the DP algorithm can be simpli
fied as in Eq. (1.14). In particular, by defining

(1.14)

CIlap.l

E {9k(Xk' Vk, 'Uk, Wk)
Wk

+ Jk +1 (fk(Xk,Yk,Uk,Wk))}1 :I;k}'

Tlw Dynamic Programming Algorithm

and finally

We will derive a DP algorithm that generates Jk(Xk).

,h(:rk) = E Yk {Jk(Xk, Yk) I Xk}

= EYk { min E Wk ,Xk+l,Yk+l {9k(Xk, Yk, Uk, Wk)
1LkE[h(xk,YI,J

+ Jk+1 (Xk+I,Yk+d I Xk'Yk,Uk} I Xk}

EYk { min EWk,Xk-H {9k(Xk' Vk, Uk, Wk)
1LkEUk(xk,Yk)

+ EYk+l {,hl-l(Xk+1, Yk+1) IXk+d IXk, Yk, Uk} I xk },

The advantage of this equivalent DP algorithm is that it is executed
over a significantly reduced state space. For example, if Xk takes n possible
values and Yk takes m possible values, then DP is executed over n states
instead of nm states. Note, however, that the minimization in the right
hand side of the preceding equation yields an optimal control law as a
function of the full state (Xk' Yk).

As an example, consider the augmented state resulting from the incor
poration of forecasts, as described earlier. Then, the forecast 'Uk represents

We will formulate a DP algorithm that is executed over the control
lable component of the state, with the dependence on the uncontrollable
component being "averaged out." In particular, let Jk(Xk, Yk) denote the
optimal cost-to-go at stage k and state (Xk, Yk), and define
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where the probability distribution Pk(Wk I Xk, Yk, Uk) is given. The evolu
tion of the other component, Yk, is governed by a given conditional distri
bution Pk(Yk I Xk) and cannot be affected by the control, except indirectly
through Xk. One is tempted to view Yk as a disturbance, but there is a
difference: Yk is observed by the controller before applying Uk, while 'Wk

occurs after Uk is applied, and indeed Wk may probabilistically depend on
Uk·



(1.15)

Some Mathematical Issues

with the preceding expectation taken with respect to the distributionPk (. I
Xk, 11dxk)) defined on the countable set Dk. Then one may take as the ba

sic probability space the Cartesian product of the spaces Sk, k 1, ... , N,
given for all k by

where

view the cost as a well-defined random variable with well-defined expected
value. The framework of probability theory requires that for each policy
we define an underlying probability space, that is, a set 0, a collection of
events in 0, and a probability measure on these events. In addition, the
cost must be a well-defined random variable on this space in the sense of
Appendix C (a measurable function from the probability space into the real
line in the terminology of measure-theoretic probability theory). For this
to be true, additional (measurability) assumptions on the functions fk, 9k,
and 11k may be required, and it may be necessary to introduce a.clditional
structure on the spaces Sk, Ok, and D k . Furthermore, these assumptions
may restrict the class of admissible policies, since the functions ILk may be
constrained to satisfy additional (measurability) requiremen'ts.

Thus, unless these additional assumptions and structure are specified,
the basic problem is formulated inadequately from a mathematical point
of view. Unfortunately, a rigorous formulation for general state, control,
and disturbance spaces is well beyond the mathematical framework of this
introductory book and will not be undertaken here. Nonetheless, it turns
out that these difficulties are mainly technical and do not substantially
affect the basic results to be obtained. For this reason, we find it convenient
to proceed with informal derivations and arguments; this is consistent with
rnost of the literature on the subject.

We would like to stress, however, that under at least one frequently
satisfied assumption, the mathematical difficulties mentioned above disap
pear. In particular, let us assume that the disturbance spaces D k are all
countable and the expected values of all terms in the cost are finite for
every admissible policy (this is true in particular if the spaces D k are finite
sets). Then, for every admissible policy, the expected values of all the cost
terms can be written as (possibly infinite)sums involving the probabilities
of the elements of the spaces Dk.

Alternatively, one may write the cost as

Sec. 1.5Chap. 1

for all x,
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j k(x;) I::p(y) m1~x [g(x, y, u) + Jk+l (f(x, y, u))J,
y

where g(x, y, u) and f(x, y, u) are the number of points scored (rows removed),
and the board position (or termination state) when the state is (x, y) and con
trol u is applied, respectively. Note, however, that despite the simplification
in the DP algorithm achieved by eliminating the uncontrollable portion of
the state, the number of states x is enormous, and the problem can only be
addressed by suboptimal methods, which will be discussed in Chapter 6 and
in Vol. II.

(2) The shape of the current falling block, denoted by y.

There is also an additional termination state which is cost-free. Once the
state reaches the termination state, it stays there with no change in cost.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.14) is executed over the space of x and has
the intuitive form

If this is the last stage (k = N - 1), the terminal cost 9N(xN) is
added to previous costs and the process terminates. Otherwise, k is
incremented, and the same sequence of events is repeated at the next
stage.

For each stage, the above process is well-defined and is couched in pre
cise probabilistic terms. Matters are, however, complicated by the need to

Let us now discuss some technical issues relating to the basic problem
formulation and the validity of the DP algorithm. The reader who is not
mathematically inclined need not be concerned about these issues and can
skip this section without loss of continuity.

Once an admissible policy {fLO, .. . ,11N-d is adopted, the following
sequence of events is envisioned at the typical stage k:

1. The controller observes Xk and applies 'U,k = j1'k(Xk)'

2. The disturbance Wk is generated according to the given distribution
Pk(-I Xk,11k(Xk))'

~). The cost 9k(Xk,Jlk(X:k),Wk) is incurred and added to previous costs.

it The next state X;k+l is generated according to the system equation

SOME l\!lATHEl\;1ATICAL ISSUES
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Some Mathematical Issues

where the first inequality holds by the induction hypothesis, and the sec
ond inequality holds by Eq. (1.17). Taking the minimum over 'irk in the
preceding relation, we obtain for all Xk

Jk(Xk) = E {gk (Xk' JLk(1;k) ,Wk) + Jk+1 (fk (Xk,jLk(~r;k),Wk))}
Wk

::; E {gk (Xk' Pk(Xk), 'Wk) + Jk+1 (fk (~r;k, ILk(Xk), Wk))} + (N k - I)E
'Wk

Jk(Xk) = E {gk (Xk' ILk(Xk), Wk) + Jk+1 (fk (Xk' lLk(Xk) ,Wk))}
Wk

2:: E{9k(Xk,JLk(Xk),Wk) + Jk+l(fk(xk,jLk(1;k),wk))}
'Wk

where the first inequality holds by the induction hypothesis. Combining
the preceding two relations, we see that Eq. (1.18) holds for index k:.

For every policy 'ir VLo, PI,. >., ILN-d, we have

::; JdXk) + E+ (N - k l)E

= JdXk) + (N - k)E,

::; min E {9k(Xk' Uk, Wk) +- Jk+l (fk (Xk' Uk, Wk))} + (N - k)E
'UkEU(Xk) Wk

::; min E {gk(Xk' 'Uk, 'Wk) -+ Jk+1 (fk(1;k,'llk, Wk))} + (N - k)E
'UkEU(xk) Wk

::; E {gk (Xk' llk(Xk), Wk) + J7fk+l (fk (Xk' ILk (~l;k), Wk)) } + (N - k)E
wk

Jk(Xk) = E{gk(Xk,Pk(Xk),Wk) + Jk+1(fk(xk,Pk(Xk),Wk))}
'Wk

::; E {gk (Xk' Pk(Xk), Wk) +- Jk+1 (fk (Xk' ILk(Xk), 11)k)) } + (N - k - I)E
wk

where the first equation holds by the definition of J::, the first inequality
holds by the induction hypothesis, and the second inequality holds Eq.
(1.17). We also have

Sec. 1.5

It is seen using Eq. (1.17) that the inequalities (1.18) and (1.19) hold for
k = N - 1. By taking E -7 0 in Eqs. (1.18) and (1.19), it is also seen that
IN-l = I N- 1 · Assume that Eqs. (1.18)-(1.20) hold for index k -+ 1. We
will show that they also hold for index k.

Indeed, we have

(1.18)

(1.19)

(1.20)

Chap. 1The Dynamic Programming Algorithm

Jk(Xk) ::; Jk(Xk) ::; Jk(Xk) + (N k)E,

Jie (Xk) ::; Jk(Xk) ::; Jie (Xk) + (N - k )E,

Jk(Xk) = Jk(Xk).

E{gk(~r;k,IL1JXk),Wk) + Jk+l(fk(xk,Pk(xk),wk))}::; Jk(Xk) +E. (1.17)
'Wk

where So = {xo}. The set Sk is the subset of all states that can be reached
at tirne k when the policy {/Lo, ... ,ji'N-d is used. Because the disturbance
spaces Dk are countable, the sets Sk are also countable (this is true since the
union of any countable collection of countable sets is a countable set). The
system equation Xk+l = fk (Xk' Pk(Xk), 'Wk), the probability distributions
Pk (- I Xk, jLk(Xk)), the initial state Xo, and the policy VLo, ... ,PN-d define

a probability distribution on the countable set SI x .. , X SN, and the
expected value in the cost expression (1.15) is defined with respect to this
latter distribution.

Let us now give a more detailed proof of the validity of the DP al
gorithm (Prop. 1.3.1). We assume that the disturbance Wk takes a finite
or countable number of values and the expected values of all terms in the
expression of the cost function are finite for every admissible policy 1r. Fur
thermore, the functions Jk(Xk) generated by the DP algorithm are finite
for all states Xk and times k. We do not need to assume that the minimum
over 'Uk in the definition of Jk(Xk) is attained by some 'Uk E U(Xk)'

For any admissible policy 'ir = {PO,Pl, ... ,p'N-d and each k =
0,1, ... , N 1, denote 'irk = {Il'k, Pk+I, ... , p'N-d. }:inr k = 0,1, ... , N 1,
let Jk(1:k) be the optimal cost for the (N - k)-stage problem that starts at
state1:k and time k, and ends at time N; that is,

within E; that is, for all Xk and k, we have JL'kJXk) E Uk(Xk) and

,h(1:k) = min E {gk(Xk, Uk, Wk) + Jk+l (fk(xk, Uk, Wk))},
'UkEUk(Xk) Wk (1.16)

k O,I, ... ,N - 1,

Let J::(1:k) be the expected cost starting at state Xk at time k, and using
the policy {Pk,ILk-H"" ,jLN- 1 }. We will show that for all Xk and k, we
have

For k = N, we define JJ.r(XN) = 9N(XN). We will show by induction
that the functions Jk are equal to the functions Jk generated by the DP
algorithm, so that for k = 0, we will obtain the desired result.

For any E > 0, and for all k and Xk, let P"JXk) attain the minimum
in the equation



1.6 DYNAlVIIC PROGRAlVIMING AND MINIlVIAX CONTROL (1.21 )

Dynamic Programming and lVIinirnax Control

The DP algorithm for this problem takes the following form, which resem
bles the one corresponding to the stochastic basic problem (rnaximization
is used in place of expectation):

over all 7r E II.
It is possible to formulate a minimax counterpart to the basic prob

lem with perfect state information. This problem is a special case of the
abstract minimax problem above, as discussed more fully in Appendix G.
Generally, it is unusual for even the simplest special cases of this problem to
admit a closed-form solution. However, a computational solution using DP
is possible, and our purpose in this section is to describe the corresponding
algorithm.

In the framework of the basic problem, consider the case where the
disturbances Wo, WI , ... , W N -1 do not have a probabilistic description but
rather are known to belong to correEiponding given sets Wk (xk, '11k) c D k,
k = 0,1, ... ,N - 1, which may depend on the current state X:k and control
Uk· Consider the problem of finding a policy 7r {/.to, ... , IJ,N-.d with
!tk(Xk) E Uk(Xk) for all Xk and k, which minimizes the cost function

minimize max J (7r , w)
wEW

minimized. However, in many practical situations a stochastic description
of the uncertainty may not be available, and one may have information with
less detailed structure, such as bounds on the magnitude of the uncertain
quantities. In other words, one may know a set within which the uncertain
quantities are known to lie, but may not know the corresponding prob
ability distribution. Under these circumstances one may use a minimax
approach, whereby the worst possible values of the uncertain quantities
within the given set are assumed to occur.

The minimax approach for decision making under uncertainty is de
scribed in Appendix G and is contrasted with the expected cost approach,
which we have been following so far. In its simplest form, the corresponding
decision problem is described by a triplet (II, lIV, J), where II is the set of
policies under consideration, W is the set in which the uncertain quantities
are known to belong, and J: II x VII 1---7 [-00, +00] is a given cost function.
The objective is to
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We also have by the definition of J'k, for all Xk,

J'k(Xk) ~ Jk(Xk).

Combining the preceding two relations, we see that Eq. (1.19) holds for
index k. Finally, Eq. (1.20) follows from Eqs. (1.18) and (1.19), by taking
c -+ 0, and the induction is complete.

Note that by using c = 0 in the relation

J8(Xk) ~ Jo(Xk) + Nc,

[ef. Eq. (1.19)], we see that a policy that attains the minimum for all X:k

and k in Eq. (1.16) is optimal.
In conclusion, the basic problem has been formulated rigorously, and

the DP algorithm has been proved rigorously only when the disturbance
spaces Do, ... , D N -1 are countable sets, and the expected values of all
the cost expressions associated with the problem and the DP algorithm are
finite. In the absence of these assumptions, the reader should interpret sub
sequent results and conclusions as essentially correct but mathematically
imprecise statements. In fact, when discussing infinite horizon problems
(where the need for precision is greater), we will make the countability
assumption explicit.

We note, however, that the advanced reader will have little difficulty
in establishing most of our subsequent results concerning specific finite
horizon applications, even if the countability assumption is not satisfied.
This can be done by using the DP algorithm as a veEification theorem. In
particular, if one can find within a subset of policies II (such as those satis
fying certain measurability restrictions) a policy that attains the minimu~
in the DP algorithm, then this policy can be readily shown to be optI
mal within fr. This result is developed in Exercise 1.12, and can be used
by the mathematically oriented reader to establish rigorously many of our
subsequent results concerning specific applications. For example, in linear
quadratic problems (Section 4.1) one determines from the DP algorithm a
poliey in dosed form, which is linear in the current state. When 'Wk can
take uncountably many values, it is necessary that admissible policies con
sist of Borel measurable functions ILk. Since the linear policy obtained from
the DP algorithm belongs to this class, the result of Exercise 1.12 guaran
tees that this policy is optimal. For a rigorous mathematical treatment of
DP that resolves the associated measurability issues and supplements the
present text, see the book by Bertsekas and Shreve [BeS78].

'l'he problem of optimal control of uncertain systems has traditionally been
treated in a stochastic frarnework, whereby all uncertain quantities are de
scribed by probability distributions, and the expected value of the cost is



min max [GO(W)+Gl (f(w), J-L(f(w) ))] = max [Go(w)+rninGl (f(w), u)].
JtEM wE""V wEW ttEU

This algorithm can be explained by using a principle of optimality
type of argurnent. In particular, we consider the tail subproblem whereby
we are at state x k at time k, and we wish to minimize the "cost-to-go"
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min max [Go(w) + G 1 (f(w), 11,(f(W)))J 00.
itEM wEW

On the other hand,

max [Go(w) + min G1 (J(w), tt)] = " max [WI + min[w2 + tt]] = -00,
wEW ttEU 'WIErrc, W2Errc uErrc

since min'u Errc[w2 + tt] = -00 for all W2.
We now turn to proving the DP algorithm (1.21)-(1.22). The proof is

similar to the one for the DP algorithm for stochastic problems. The optimal
cost J* (xo) of the problem is given by

J*(xo) = min··· min max ... max
PO JtN-l 1VOEW[xO,Jlo(xo)] 1VN-IEW[xN-l,JtN_l(xN_I)]

[~9k(Xk'/'k(Xk)'Wk) + 9N(XN)]

min· .. min [min max . . . max
ItO ItN-2 JlN-l wOEW[xO'J'o(xo)] 'wN-2EW[xN-2,J'N_2(a;N_2)]

[
N-2 9k(Xk,/-lk(Xk),'ll)k) + max
k=O wN,-IEW[xN-I,JlN_l(xN_I)]

[9N-1 (XN-I, /IN-l(XN-I), WN-I) + IN(XN)] ]] .

To see how the conclusion of the lemma can fail without the condition
min'uEu G1 (.f(w), u) > -00 for all w, let u be a scalar, let w (WI, W2)

be a two-dimensional vector, and let there be no constraints on u and w
(U = ~, W = ~ x ~, where ~ is the real line). Let also

Oo(w) = WI, few) = W2, G1(f(w),u) = few) +'Il.
Then, for all /1, E M we have,

max [Go(w) + GI(f(w),/.L(f(w)))] = max [W I +W2+/-l(W2)] =00,
'WEW WI Errc, w2Errc

so that

min max [Oo(w) + G1(f(w), Il(f(w)))]
J-tEMwEW

::; max [Oo(w) + 0 1(f(w), j1,e(f(w)) )]
wEW

::; max [Go(w) + min 01 (f(w), 1l)] + E.
'wEW uEU

Since E > 0 can be taken arbitrarily small, we obtain the reverse to Eq.
(1.23), and the desired result follows. Q.E.D.

To show the reverse inequality, for any E > 0, let j1,e E lVl be such that

G1(.f(w),j1,e(.f(w))) ::; miun01(f(w),1l) + E, for all w E W.
uE

[Such a Itc exists because of the assumption minuEu 0 1 (f(w), 'u) > -00.]
Then
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for all W E W,
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minG l (f(w), u) > -00,
uEU

we have

Proof: We have for all j1, E l\![

max [Go(w) + G1(f(w), j1,(f(w)))] ~ max [Go(w) + minG1 (f(w), 'u)]
wEW wEW uEU

Lmnma 1.6.1: Let f : W -+ X be a function, and M be the set of
all functions IL : X -+ U, where W, X, and U are some sets. Then for
any functions Go : W -+ (-00,00] and G1 : X x U -+ (-00,00] such
that

and by taking the minimum over j1, E 1\1, we obtain

min max [Oo(w)+01(f(w),j1,(f(w)) )] ~ max [Go(w)+min01(f(w),u)].
ItEM wEW wEW uEU

(1.23)

and we argue that if 1r* = Luo, ILi, ... , J-LJV-I} is an optimal policy for
the rninimax problem, then the truncated policy {ILk' /1'k+1' ... , j1,JV-I} is
optimal for the tail subproblem. The optimal cost of this subproblem is
<h(;r;k), as given by the DP algorithm (1.21)-(1.22). The algorithm ex
presses the intuitively clear fact that when at state Xk at time k, then
regardless of what happened in the past, we should choose Uk that mini
mizes the worst/maximum value over Wk of the sum of the current stage
cost plus the optimal cost of the tail subproblem that starts from the next
state.

We will now give a mathematical proof that the DP algorithm (1.21)
(1.22) is valid, and that the optimal cost is equal to Jo(xo). For this it is
necessary to assume that Jk(Xk) > -00 for all Xk and k. This is analogous
to the assumption we made in the preceding section for the validity of the
DP algorithm under stochastic disturbances, i.e., that the values Jk(Xk)

generated by the DP algorithm are finite for all states Xk and stages k.
The following lemma provides the key argument.
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Apply the DP algorithm for the following three cases:

(a) The control constraint set Uk(Xk) is {u I 0 :S Xk 'It:S 5, U : integer} for
all Xk and k, and the disturbance 'Wk is equal to zero for all k.

(b) The control constraint and the disturbance Wk are as in part (a), but there
is in addition a constraint X4 = 5 on the final state. Hint: For this problem
you need to define a state space for X4 that consists of just the value
X4 = 5, and also to redefine U3 (X3)' Alternatively, you may use a terminal
cost 94(X4) equal to a very large number for X4 -# 5.

3

I)x~ + v.~).
k=O

with initial state Xo 5, and the cost function

1.1

EXERCISES

Consider the system

Dynamic programming is a simple mathematical technique that has been
used for many years by engineers, mathematicians, and social scientists in
a variety of contexts. It was Bellman, however, who realized in the early
fifties that DP could be developed (in conjunction with the then appearing
digital computer) into a systematic tool for optimization. In his influential
books [Be157], [BeD62]' Bellman demonstrated the broad scope of DP and
helped streamline its theory.

Following Bellman's works, there was much research on DP. In par
ticular, the mathematical and algorithmic aspects of infinite horizon prob
lems were extensively investigated, extensions to continuous-time problems
were formulated and analyzed, and the mathematical issues discussed in
Section 1.5, relating to the formulation of DP problems, were addressed.
In addition, DP was used in a very broad variety of applications, ranging
from many branches of engineering to statistics, economics, finance, and
some of the social sciences. Samples of these applications will be given in
subsequent chapters.

Sec. 1.7

1.7 NOTES, SOURCES, AND EXERCISES

(1.24)
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j(W) XN-l,

if 'It E UN -1 (J (W ) ) ,

otherwise,

ifwk E Wk(Xk'fLdxk)) for all k,
otherwise,

U = UN-I,

The Dynamic Programming Algorithm

TIlax max
'woEW[XO'fLO(XO)] 'W N _2EW[xN -2,fLN _2(xN -2)]

[~9k(Xk, !tk(Xk), Wk) + IN-l(XN-l)] .

W = (wo, WI, ... ,'WN-2),

J* (:x;o) = min··· min
fLO fLN-2

GO ('llJ)

Ch (J(w), 'IL) = max [9N-l (J(w), U, WN-l)

UlN-lEWN-l (f(UI),u)

+ IN (IN-l(f(W), U,WN-l))],

The required condition min'uEu G 1 (J(w), u) > -00 for all 'W (required for ap
plication of Lemma 1.6.1) is implied by the assumption IN-l(XN-l) > -00 for
all XN-l. Now, by working with the expression for J*(xo) in Eq. (1.24), and by
similarly continuing backwards, with N - 1 in place of N, etc., after N steps
we obtain J*(xo) = JO(:TO), which is the desired relation. The line of argument
just given also shows that an optimal policy for the minimax problem can be
constructed by minimizing in the right-hand side of the DP Eq. (1.22), similar
to the case of the DP algorithm for the stochastic basic problem.

Unfortunately, as mentioned earlier, there are hardly any interesting ex
amples of an analytical, closed-form solution of the DP algorithm (1.21)-(1.22).
A cornputational solution, requires roughly comparable effort to the one of the
stochastic DP algorithm. Instead of the expectation operation, one must carry
out a maximization operation for each Xk and k.

Minimax control problems will be revisited in Chapter 4 in the context of
reachability of target sets and target tubes (Section 4.6.2), and in Chapter 6 in
the context of competitive games and computer chess (Section 6.3), and model
predictive control (Section 6.5).

where

We can interchange the minimum over fLN-l and the maximum over Wo,.··, WN-2

by applying Lemma 1.6.1 with the identifications

50



52 The Dynamic Programming Algorithm Chap. 1 Sec. 1. 7 Notes, Sources, and Exercises

(c) The control constraint is as in part (a) and the disturbance Wk takes the
values -1 and 1 with equal probability 1/2 for all Xk and 'Uk, except if
:r:k + 'Uk is equal to 0 or 5, in which case 'U!k = 0 with probability 1.

1.2

Carry out the calculations needed to verify that Jo(l) = 2.67 and Jo(2) = 2.608
in Example 1.3.2.

1.3

Suppose we have a machine that is either running or is broken down. If it runs
throughout one week, it makes a gross profit of $100. If it fails during the week,
gross profit is zero. If it is running at the start of the week and we perform
preventive maintenance, the probability that it will fail during the week is 0.4. If
we do not perform such maintenance, the probability of failure is 0.7. However,
maintenance will cost $20. When the machine is broken down at the start of the
week, it may either be repaired at a cost of $40, in which case it will fail during
the week with a probability of 0.4, or it may be replaced at a cost of $150 by a
new machine that is guaranteed to run through its first week of operation. Find
the optimal repair, replacement, and maintenance policy that maximizes total
profit over four weeks, assuming a new machine at the start of the first week.

1.4

A game of the blackjack variety is played by two players as follows: Both players
throw a die. The first player, knowing his opponent's result, may stop or may
throw the die again and add the result to the result of his previous throw. He then
may stop or throw again and add the result of the new throw to the sum of his
previous throws. He may repeat this process as many times as he wishes. If his
sum exceeds seven (Le., he busts), he loses the game. If he stops before exceeding
seven, the second player takes over and throws the die successively until the sum
of his throws is four or higher. If the sum of the second player is over seven, he
loses the game. Otherwise the player with the larger sum wins, and in case of a
tie the second player wins. The problem is to determine a stopping strategy for
the first player that maximizes his probability of winning for each possible initial
throw of the second player. Formulate the problem in terms of DP and find an
optimal stopping strategy for the case where the second player's initial throw is
three. lIint: Take N = 6 and a state space consisting of the following 15 states:

Xl : busted

X
1+i

: already stopped at sum i (1 :::; i :::; 7),

:x;8-t-i : current sum is i but the player has not yet stopped (1 :::; i :::; 7).

The optimal strategy is to throw until the sum is four or higher.

1.5 (Compu.ter Assignment)

In the classical game of blackjack the player draws cards knowing only one card
of the dealer. The player loses upon reaching a sum of cards exceeding 21. If
the player stops before exceeding 21, the dealer draws cards until reaching 17 or
higher. The dealer loses upon reaching a sum exceeding 21 or stopping at a lower
sum than the player's. If player and dealer end up with an equal sum no one
wins. In all other cases the dealer wins. An ace for the player may be counted
as a 1 or an 11 as the player chooses. An ace for the dealer is counted as an 11
if this results in a sum from 17 to 21 and as a 1 otherwise. Jacks, queens, and
kings count as 10 for both dealer and player. We assume an infinite card deck so
the probability of a particular card showing up is independent of earlier cards.

(a) For every possible initial dealer card, calculate the probability that the
dealer will reach a sum of 17, 18, 19, 20, 21, or over 21.

(b) Calculate the optimal choice of the player (draw or stop) for each of the
possible combinations of dealer's card and player's sum of 12 to 20. Assume
that the player's cards do not include an ace.

(c) Repeat part (b) for the case where the player's cards include an ace.

1.6 (Discounted Cost per Stage)

In the framework of the basic problem, consider the case where the cost is of the
form

where a is a discount factor with 0 < a < 1. Show that an alternate form of the
DP algorithm is given by .

VN(XN) = 9N(XN),

Vk(Xk) = min E {9k(Xk, 'Uk, Wk) +aVk+l (fk(Xk, 'Uk, Wk))}.
ukEUk(xk) 'wk

1. '7 (Exponential Cost Function)

In the framework of the basic problem, consider the case where the cost is of the
form

(a) Show that the optimal cost and an optimal policy can be obtained from
the DP-like algorithm
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Jk(Xk) = E {9k(Xk'IL~(Xk),wk) + Jk+l(fk(Xk'JL~(Xk),Wk))}
'Wk

min E {9k(Xk,Uk,Wk) + ,h+l(fk(Xk,Uk,Wk:))}'
ukEUk(xk)'Wk

belongs to IT and attains the minimum in the DP algorithm; that is, for all
k 0,1, ... ,lV -1 and Xk E Sk,

subject to the cost constraint ~~=l cjmj :s; A, where A > a is given.

This problem is primarily of theoretical interest (see the end of Section 1.5).
Consider a variation of the basic problem whereby we seek

1.12 (Minimization over a Subset of

min JK(XO),
KEf:!

with IN(XN) = 9N(XN). Assume further that the functions Jk are real-valued
and that the preceding expectations are well-defined and finite. Show that 1T* is
optimal within IT and that the corresponding optimal cost is equal to Jo(xo).

where IT is some given subset of the set of sequences {ILO, ILl, ... , ILN - d of func
tions ILk : Sk ----7 Ck with ILk(Xk) E Uk(Xk) for all Xk E Sk. Assume that

Consider a device consisting of lV stages connected in series, where each stage
consists of a particular component. The components are subject to failure, and
to increase the reliability of the device duplicate components are provided. For
) = 1,2, .. , ,lV, let (1 + mj) be the number of components for the )th stage, let
Pj (mj) be the probability of successful operation of the )th stage when (1 + mj)
components are used, and let Cj denote the cost of a single component at the jth
stage. Formulate in terms of DP the problem of finding the number of cornponents
at each stage that maximize the reliability of the device expressed by

1.11

Assume that we have a vessel whose maximum weight capacity is z and whose
cargo is to consist of different quantities of lV different items. Let 'V'i denote
the value of the ith type of item, W'i the weight of ith type of itern, and Xi the
number of items of type i that are loaded in the vessel. The problem is to find
the most valuable cargo, i.e., to maximize ~:l ;J;i'U'i subject to the constraints

2::1 X.(Wi :s; z and Xi = 0,1,2, ... Formulate this problem in terms of DP.

Sec. 1.7
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E {9N(XN) . 9N-1(XN-1, UN-I, WN-1)'" 90(Xo, uo, wo)}.
'Wk

k=O,I, ... ,N-I

T +I: 9k(Xk, 'Uk, Wk),
k=O

Note: The exponential cost function is an example of a risk-sensitive
cost junction that can be used to encode a preference for policies with
a small variance of the cost 9N(XN) + ~~:Ol 9k(Xk, 'Uk, Wk). The associ
ated problems have a lot of interesting properties, which are discussed in
several sources, e.g., Whittle [Whi90], Fernandez-Gaucherand and Markus
[FeM94]' James, Baras, and Elliott [JBE94], Basar and Bernhard [BaB95].

(b) Define the functions Vk(Xk) = InJk(xk). Assume also that 9k is a function
of Xk and 'Uk only (and not of Wk). Show that the above algorithm can be
rewritten as

Develop a DP-like algorithm for this problem assuming that 9k(Xk, Uk, Wk) ~ °
for all Xk, 'Uk, Wk, and k.

In the framework of the basic problem, consider the case where the cost has the
multiplicative form

1.9 (Multiplicative Cost)

where T is a termination cost. If the process has not terminated up to the final
time lV, the resulting cost is 9N(XN) + ~~=~1 9k(Xk,'Uk,Wk). Reformulate the
problem into the framework of the basic problem. Hint: Augment the state space
with a special termination state.

In the framework of the basic problem, consider the case where the system evo
lution terminates at time i when a given value Wi of the disturbance at time i
occurs, or when a termination decision 'Ui is made by the controller. If termina
tion occurs at time i, the resulting cost is

1.8 (Terrninating Process)
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for all xk,Yk,and k,
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1.16

(b) Derive an optimal policy {/-l~, . .. , /-IN-d under the assumption

Given a sequence of matrix multiplications

and show that this optimal policy can consist of constant functions.

(c) Assume that the proportion of new scientists who become educators at
time k is Uk + tk (rather than Uk), where tk are identically distributed
independent random variables that are also independent of 1k, 6k and take
values in the interval [--a, 1-fJ]. Derive the form of the cost-to-go functions
and the optimal policy.

which maximizes E'Yk,(ik {YN} (Le., the expected final number ofresearch scientists
after N periods). The scalars a and fJ are given.

(a) Show that the cost-to-go functions A(Xk, Yk) are linear; that is, for some
scalars (k, (k,

with

Let Xk denote the number of educators in a certain country at time k and let Yk
denote the number of research scientists at time k. New scientists (potential edu
cators or research scientists) are produced during the kth period by educators at
a rate 1k per educator, while educators and research scientists leave the field due
to death, retirement, and transfer at a rate Sk. The scalars 1k, k = 0,1, ... ,N-1,
are independent identically distributed random variables taking values within a
closed and bounded interval of positive numbers. Similarly Ih, k O,l, ... ,N-1,
are independent identically distributed and take values in an interval [S,5'] with
o < S S; S' < 1. By means of incentives, a science policy maker can determine
the proportion Uk of new scientists produced at time k who become educators.
Thus, the number of research scientists and educators evolves according to the
equations

The initial numbers Xo, yo are known, and it is required to find a policy

Sec. 1.7
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k = 0, 1, ... , N - 1.

k~O~!}",'jV-l {C~XN + :~: (C~Xd 9' (,1. (Xk) )) } ,

where Ck are given vectors and gk are given functions. Show that if the optimal
cost for this problem is finite and the control constraint sets Uk(Xk) are indepen
dent of Xk, then the cost-to-go functions of the DP algorithm are affine (linear
plus constant). Assuming that there is at least one optimal policy, show that
there exists an optimal policy that consists of constant functions /-lk i that is,
ILHxk) = constant for all Xk E aln

.

A farmer annually producing Xk units of a certain crop stores (1 - Uk)Xk units
of his production, where 0 S; Uk S; 1, and invests the remaining UkXk units, thus
increasing the next year's production to a level Xk+l given by

{

N-l }

_ ,!fi XN + ~(1- Uk)Xk .
k-O,l,,,.,N-l k-O

The scalars 'Wk are independent random variables with identical probability dis
tributions that do not depend either on Xk or Uk. Furthermore, E{'Wk} = "ill > O.
The problem is to find the optimal investment policy that maximizes the total
expected product stored over N years

/-l~_k(XN_k)= .. , = /-IN-l(XN-l) = 0,

where k is such that 1/(k + 1) < ill S; 11k.

Show the optimality of the following policy that consists of constant functions:

(a) If ill> 1, /-l~(xo) = .. , = ILN-l (XN-l) = 1.

(b) If 0 < ill < liN, /-l~(xo) = ... = P'N_l(XN-l) = o.
(c) If liN S; ill S; 1,

1.14

where Xk E ~tn, fk are given functions, and Ak and 'Wk are random n X n matri
ces and n-vectors, respectively, with given probability distributions that do not
depend on Xk, Uk or prior values of Ak and 'Wk. Assume that the cost is of the
form

The Dynamic Programming Algorithm

Consider a problem involving the system

1.13 (Semilinear Systems)
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According to a famous theorem (attributed to the ancient Greek geometer Zen
odorus), of all N-side polygons inscribe'd in a given circle, those that are regular
(all sides are equal) have maximal area.

(a) Prove the theorem by applying DP to a suitable problem involving sequen
tial placement of N points in the circle.

(b) Use DP to solve the problem of placing a given number of points on a subarc
of the circle, so as to maximize the area of the polygon whose vertices are
these points, the endpoints of the subarc, and the center of the circle.

Consider the problem of inscribing an N -side polygon in a given circle, so that
the polygon has maximal perimeter.

(a) Formulate the problem as a DP problem involving sequential placernent of
N points in the circle.

(b) Use DP to show that the optimal polygon is regular (all sides are equal).

1.22 (Inscribed Polygon of lVIaximal Perhneter)

(a) Consider a smaller version of a popular puzzle game. Three square tiles
numbered 1, 2, and 3 are placed in a 2 x 2 grid with one space left empty.
The two tiles adjacent to the empty space can be moved into that space,
thereby creating new configurations. Use a DP argument to answer the
question whether it is possible to generate a given configuration starting
from any other configuration.

(b) From a pile of eleven matchsticks, two players take turns removing one or
four sticks. The player who removes the last stick wins. Use a DP argument
to show that there is a winning strategy for the player who plays first.

1.21 (Regular Polygon Theorem)

vVe are given six coins, one of which is counterfeit and is known to have different
weight than the rest. Construct a strategy to find the counterfeit coin using a
two-pan scale in a minimum average number of tries. Nint: There are two initial
decisions that make sense: (1) test two of the coins against two others, and (2)
test one of the coins against one other.

1.20 (The Counterfeit Coin Problem.)

Sec. 1.7
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A decision maker must continually choose between two activities over a time
interval [0, Tj. Choosing activity i at time t, where i = 1,2, earns reward at a
rate 9i (t), and every switch between the two activities costs c > O. Thus, for
example, the reward for starting with activity 1, switching to 2 at time tl, and
switching back to 1 at time t2 > tl earns total reward

We want to find a set of switching times that maximize the total reward. As
sume that the function 91(t) - 92(t) changes sign a finite number of times in the
interval [0, Tj. Formulate the problem as a finite horizon problem and write the
corresponding DP algorithm.

The paragraphing problem deals with breaking up a sequence of N words of given
lengths into lines of length A. Let WI, ... , W N be the words and let L 1 , ... , LN be
their lengths. In a simple version of the problem, words are separated by blanks
whose ideal width is b, but blanks can stretch or shrink if necessary, so that a
line 'Wi, 'WHl, ... , W'i+k has length exactly A. The cost associated with the line
is (k + l)lb' - bl, where l/ (A - L i - ... Li+k)/(k + 1) is the actual average
width of the blanks, except if we have the last line (N = i + k), in which case the
cost is zero when b' ~ b. Formulate a DP algorithm for finding the minimum cost
separation. Hint: Consider the subproblems of optimally separating Wi, . .. ,WN

for 'i = 1, ... ,N.

where each ]Vh is a matrix of dirnension nk X nk+l, the order in which multipli
cations are carried out can make a difference. For example, if nl = 1, n2 = 10,
'/13 = 1, and n4 = 10, the calculation ((M1 M2 )M3 ) requires 20 scalar multi-

plications, but the calculation (.AI1 (]\.12 M 3 )) requires 200 scalar multiplications
(multiplying an m x n matrix with an n x k matrix requires mnk scalar multi
plications) .

(a) Derive a DP algorithm for finding the optimal multiplication order [any
order is allowed, including orders that involve multiple partial products
each consisting of two or more adjacent matrices, e.g., ((l\!hM2)(M3M4))j.
Solve the problem for N = 3, nl = 2, n2 = 10, n3 = 5, and n4 = l.

(b) Derive a DP algorithm for finding the optimal multiplication order within
the class of orders where at each step, we maintain only one partial product
that consists only of adjacent matrices, e.g., ((l\!h(M2]\.13))M4).
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for all x and y.

for all x and y.

J(X,O) = J(O, y) = 0,

J(X,O) = .1(0, y) = 0,
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with initial conditions

for all x 2: 1 and y 2: 1, with initial conditions

is monotonically nonincreasing as a function of ;r;; that is, the expected profit
from a purchase is a nonincreasing function of the purchase price.

(a) Assume that the investor starts with N or more units of stock and an
unlimited amount of cash, so that a purchase or sale decision is possible
at each period regardless of the past decisions and the current price. For
every period k, let {fk be the largest value of x E {VI, ... , vn

} such that

Show also that for given x and y it is optimal to accept a customer's offer
if it is larger than some threshold rex, v). Hint: This part is related to DP
for uncontrollable state components (d. Section 1.4).

J(X, y) = l::Pi max[Ti + J(x 1, Y 1), J(x, y - l)J,
i=l

rn

Assuming that the product PiTi is monotonically nondecreasing with i,
and that Pi is monotonically nonincreasing with 'i, show that the innkeeper
should always charge the highest rate T·m ·

(b) Consider a variant of the problem where each arriving customer, with prob
ability P'i, offers a price Ti for a room, which the innkeeper may accept or
reject, in which case the customer departs, never to return during that day.
Show that an appropriate DP algorithm is

(a) Formulate this as a problem with y stages and show that the maximal
expected income, as a function of x and y, satisfies the recursion

An investor observes at the beginning of each period k the price Xk of a stock and
decides whether to buy 1 unit, sell 1 unit, or do nothing. There is a transaction
cost c for buying or selling. The stock price can take one of n different values
vI, ... , 'On and the transition probabilities pfj = P{Xk+l = 'OJ I Xk = vi} are
known. The investor wants to maximize the total worth of his stock at a fixed
final period N minus his investment costs from period 0 to period N - 1 (revenue
from a sale is viewed as negative cost). We assume that the function

1.26 (Investing in a Stock)

Sec. 1.7Chap. 1

for all xES and k.

for all xES and k.

The Dynamic Programming Algorithm

Similarly, if we have IN-l(X) 2: IN(X) for all XES, then

1.24 (Traveling Repairman Problem)

An unscrupulous innkeeper charges a different rate for a room as the day pro
gresses, depending on whether he has many or few vacancies. His objective is
to maximize his expected total income during the day. Let x be the number of
empty rooms at the start of the day, and let y be the number of customers that
will ask for a room in the course of the day. We assume (somewhat unrealisti
cally) that the innkeeper knows y with certainty, and upon arrival of a customer,
quotes one of rn prices Ti, 'i = 1, ... , rn, where 0 < T'l :s; T2 :s; ... :s; T m . A quote
of a rate T'i is accepted with probability Pi and is rejected with probability 1-pi,
in which case the customer departs, never to return during that day,

1.25

,~ {9k(Xk,lLk' Wk) + Jk+l (Jk(Xk,lLk' Wk)) }

:::; E {9k(Xk,lLk' Wk) + Jk+l (Jk(Xk, Uk, Wk) )}.
'Wk

A repairman must service n sites, which are located along a line and are sequen
tially numbered 1,2, ... , n. The repairman starts at a given site s with 1 < s < n,
and is constrained to service only sites that are adjacent to the ones serviced so
far, Le., if he has already serviced sites i, i + 1, ... ,j, then he may service next
only site 'i - 1 (assuming 1 < i) or site j + 1 (assuming j < n). There is a waiting
cost C'i for each time period that site i has remained unserviced and there is a
travel cost iij for servicing site j immediately after servicing site i. Formulate a
DP algorithm for finding a minimum cost service schedule.

Suppose now that in the basic problem the system and cost are time invariant;
that is, Sk == S, Ok == 0, D k == D, fk == f, Uk == U, Pk == P, and gk == 9
for some S, C, D, f, U, P, and g. Show that if in the DP algorithm we have
IN-l(X) :::; IN(X) for all xES, then

An evident, yet very important property of the DP algorithm is that if the termi
nal cost 9N is changed to a uniformly larger cost 9N [Le., 9N (xN) :::; 9N (x N ) for all
xN J, then the last stage cost-to-go JN -1 (xN - d will be uniformly increased. More
generally, given two functions Jk-/-l and J k +l with Jk+l(Xk+d :::; Jk+l(Xk+l) for
all Xk-I-l, we have, for all Xk and lLk E Uk(Xk),

1.23 (lVionotonicity Property of DP)
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Pk(X) > c, and let Xk be the smallest value of x E {VI, ... , v
n

} such that
Pk(:r) < -c. Show that it is optimal to buy if Xk :s; ;fk' sell ifxk :s; Xk, and
do nothing otherwise. Hint: Formulate the problem as one of maximizing
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where Uk E {-I, 0, I}.

(b) Formulate an efficient DP algorithm for the case where the investor starts
with less than N units of stock and an unlimited amount of cash. Show
that it is still optimal to buy if Xk :s; ;fk and it is still not optimal to sell if
:r:k < Xk· Could it be optimal to buy at any prices Xk greater than ;fk?

(c) Consider the situation where the investor initially has N or more units of
stock and there is a constraint that for any time k the number of purchase
decisions up to k should not exceed the number of sale decisions up to k by
more that a given fixed number m (this models approximately the situation
where the investor has a limited initial amount of cash). Formulate an
efficient DP algorithm for this case. Show that it is still optimal to sell if
?iSk :s; :r;k and it is still not optimal to buy if ;I.k < Xk.

(d) Consider the situation where there are restrictions on both the initial
amount of stock as in part (b), and the number of purchase decisions as in
part (c). Derive a DP algorithm for this problem.

(e) How would the analysis of (a)-(d) be affected if cash is invested at a given
fixed interest rate?
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Stage 0

Figure 2.1.1 Transition graph for a deterministic finite-state system. Nodes
correspond to states. An arc with start and end nodes Xk and xk+l, respectively,
corresponds to a transition of the form xk+ 1 1k (Xk, Uk). We view the cost
9k(Xk, Uk) of the transition as the length of this arc. The problem is equivalent
to finding a shortest path from the initial node s to the terminal node t.

transition from the state Xk to the state fk(xk, Uk), at a cost .9k(:rk, Uk).
Thus a finite-state deterministic problem can be equivalently represented
by a graph such as the one of Fig. 2.1.1, where the arcs correspond to
transitions between states at successive stages and each arc has an asso
ciated cost. To handle the final stage, an artificial terrninal node t has
been added. Each state x N at stage N is connected to the terminal node
t with an arc having cost gN(XN). Control sequences correspond to paths
originating at the initial state (node s at stage 0) and terminating at one of
the nodes corresponding to the final stage N. If we view the cost of an arc
as its length, we see that a determinist'ic finite-state problem is equivalent
to finding a minimum-length (or shortest) path from the initial node s of
the graph to the terminal node t. Here, by a path we mean a sequence of
arcs of the form (jl,h), (j2,j3), ... , (jk-l,Jk) , and by the length of a path
we mean the sum of the lengths of its arcs.

Sec. 2.1

Let us denote

a~j = Cost of transition at stage k from state i E to state j E Sk+l,

afI = Terminal cost of state i E SN [which is 9N(i)),

where we adopt the convention afj = 00 if there is no control that moves
the state from i to j at stage k. The DP algorithm takes the form

IN(i) = afI, 'i E SN, (2.1)

Jk(i) = .min [afj+Jk+1(j)], iESk, k=O,l, ... ,N-l. (2.2)
JESk+l

The optimal cost is Jo (s) and is equal to the length of the shortest path
from s to t.

Chap. 2Deterministic Systems and the Shortest Path Problem

and the corresponding controls are perfectly predictable through the equa
tion

Uk = J-lk(XkJ, k = 0,1, ... ,N - l.

Thus, the cost achieved by an admissible policy {JLO" .. , JIN-I} for a deter
ministic problem is also achieved by the control sequence {Uo, ... ,UN-I}
defined above. As a result, we may restrict attention to sequences of con
trols without loss of optimality.

The difference just discussed between deterministic and stochastic
problems often has important computational implications. In particular,
in a deterministic problem with a "continuous space" character (states and
controls are Euclidean vectors), optimal control sequences may be found by
deterministic variational techniques to be discussed in Chapter 3, and by
widely used iterative optimal control algorithms such as steepest descent,
conjugate gradient, and Newton's method (see e.g., nonlinear programming
texts such as Bertsekas [Ber99) or Luenberger [Lue84)). These algorithms,
when applicable, are usually more efficient than DP. On the other hand,
DP has a 'Wider scope of appl-icability s-ince it can handle d'iffiC'ult constraint
sets such as 'integer or discrete sets. Furthermore, DP leads to a globally
optimal sol'ution as opposed to variational techniques, for which this cannot
be guaranteed in general.

In this chapter, we consider deterministic problems with a discrete
character for which variational optimal control techniques are inapplicable,
so that specialized forms of DP are the principal solution methods.

Consider a deterministic problem where the state space Sk is a finite set
for each k. Then at any state Xk, a control Uk can be associated with a

In this chapter, we focus on deterministic problems, that is, problems where
each disturbance 'Wk can take only one value. Such problems arise in many
important contexts and they also arise in cases where the problem is really
stochastic but, as an approximation, the disturbance is fixed at some typical
value; see Chapter 6.

An important property of deterministic problems is that, in contrast
with stochastic problems, using feedback results in no advantage in terms
of cost reduct-ion. In other words, minimizing the cost over admissible
policies {jiO, . .. , J-iN-d results in the same optimal cost as minimizing over
sequences of control vectors {uo, ... ,UN-d. This is true because given a
policy {jiO,.'" ILN-d and the initial state Xo, the future states are perfectly
predictable through the equation

2.1 FINITE-STATE SYSTEMS AND SHORTEST PATHS
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'1'he optimal policy when at node i after k moves is to move to a node j* that
minimizes aij +Jk+l (j) over all} = 1, ... ,N. If the optimal path obtainecl
from the algorithm contains degenerate moves from a node to itself, this
simply means that the path involves in reality less than N moves.

Note that if for some k > 0, we have Jk ('i) = Jk-H U) for all i,
then subsequent DP iterations will not change the values of the cost-to-go

or

optimal cost from i to t in N k moves

= . min [aij + (optimal cost from j tot in N k - 1 moves)],
J=l, ... ,N

with

,h(i) = optimal cost of getting from i tot in N - k moves.

Let {I, 2, ... ,N, t} be the set of nodes of a graph, and let aij be the cost
of moving from node i to node j (also referred to as the length of the arc
joining i and j). Node t is a special node, which we call the dest'inat'ion.
We allow the possibility aij = 00 to account for the case where there is no
arc joining nodes 'i and j. We want to find a shortest path from each node
i to node t, i.e., a sequence of moves that minimizes total cost to get to t
from each of the nodes 1,2, ... ,N.

For the problem to have a solution, it is necessary to make an as
sumption relating to cycles, i.e., paths of the form U,.il), (j I, j2), ... , (jk, i)
that start and end at the same node. We must exclude the possibility that
a cycle has negative total length. Otherwise, it would be possible to de
crease the length of some paths to arbitrarily small values simply by adding
more and more negative-length cycles. We thus assume that all cycles have
nonnegative length. With this assumption, it is clear that an optimal path
need not take more than N moves, so we may limit the number of rnoves
to N. We formulate the problem as one where 'We TequiTe e:mctly N moves
but allow degenerate moves fTOm a node 'i to itself with cost aii = 0, We
denote for i = 1, ... , N, k = 0, ... , N - 1,

Then the cost of the optimal path from i to t is Jo ('i).
It is possible to formulate this problem within the framework of the

basic problem and subsequently apply the DP algorithm. For simplicity,
however, we write directly the DP 'equation, which takes the intuitively
clear form

Sec. 2.1

Converting a Shortest Path Problem to a Determ-iniistic Fiiniite
State Problem

(2.4)

(2.3)

Chap. 2

j E 8 N -k+l, k = 1,2, ... , N - 1.

DeterminisLic Systems and the Shortest Path Problem

r N k J- (')]. min laij - + k+ I 't ,
·tESN_k

Jo(s) = Jo(t),

and an optimal control sequence (or shortest path) obtained fr9m anyone
of the two is optimal for the original problem. We may view ,h(j) in Eq.
(2.4) as an opt'imal cost-to-ar'Tive to state j from the initial state s. This
should be contrasted with Jk(i) in Eq. (2.2), which represents the optimal
cost-to-go from state i to the terminal state t.

An important use of the forward DP algorithm arises in real-time
applications where the stage k problem data are unknown prior to stage k,
and are revealed to the controller just before stage k begins. An example
will be given in connection with the state estimation of Hidden Markov
Models in Section 2.2.2. Note that to derive the forward DP algorithm, we
used the shortest path formulation, which is available only for deterministic
problems. Indeed, for stochastic problems, there is no analog of the forward
DP algorithm.

In conclusion, a deteTm'in'ist'ic finite-state pTOblem is equivalent to a
special type of shoTtest path pTOblem and can be solved by eitheT the ordinary
(backwaTd) IJP algoTithrn OT by an alternat'ive fOT'WaTd DP algoTithm. It is
also interesting to note that any shortest path pTOblem can be posed as a
determ:inistic finite-state DP pTOblem, as we now show.

'I'he backward algorithm (2.1)-(2.2) and the forward algorithm (2.3)-(2.4)
yield the same result in the sense that

1'he optimal cost is

The preceding algorithm proceeds backward in time. It is possible to derive
an equivalent algorithm that proceeds forward in time by means of the
following simple observation. An optimal path from s to t is also an optimal
path from t to s in a "reverse" shortest path problem where the direction
of each aTC is reversed and its length is left unchanged. The DP algorithm
corresponding to this "reverse" problem starts from the states Xl E 81 of
stage 1, proceeds to states :D2 E 82 of stage 2, and continues all the way to
states :D N E 8 N of stage N. It is given by

A Forward DP Algorithrn

66
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D p = lIh + tith + ... + tjk'i.

]'hen the time Ti required to complete phase i is

Thus to find Ti, we should find the longest path from 1 to ,i. This problem
may also be viewed as a shortest path problem with the length of each
arc (i,j) being -tij. In particular, finding the duration of the project is
equivalent to finding the shortest path from 1 to N. This path is also
calleel a critical path. It can be seen that a delay by a given amount in
the completion of one of the activities on the critical path will delay the
completion of the overall project by the same amount. Note that because
the network is acyclic, there can be only a finite number of paths from 1 to
any 'i, so that at least one of these paths corresponds to the maximal path
duration Ti.

Ti = max Dp .
paths p

from 1 to 'i

An important characteristic of an activity network is that it is acyclic;
that is, it has no cycles. This is inherent in the problem formulation and
the interpretation of nodes as phase completions.

For any path p = {(1, j1), (jl, j~,), ... , (jk, i)} from node 1 to a node
i, let Dp be the duration of the path defined as the sum of durations of its
activities; that is,

Figure 2.2.1 Graph of an activity network. Arcs represent activities and are
labeled by the corresponding duration. Nodes represent completion of some phase
of the project. A phase is completed if all activities associated with incoming arcs
at the corresponding node are completed. The project is completed when all
phases are completed. The project duration time is the length of the longest path
from node 1 to node 5, which is shown with thick line.

phase of the project. An arc (i, j) represents an activity that starts once
phase i is completed and has known duration t'ij > O. A phase (node) j
is completed when all activities or arcs (i,j) that are incoming to j are
completed. The special nodes 1 and N represent the start and end of the
project. Node 1 has no incoming arcs, while node N has no outgoing arcs.
Furthermore, there is at least one path from node 1 to every other node.

Sec. 2.2Chap. 2
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1 ----t 5, 2 --+ 3 --+ 4 ----t 5, 3 --T 4 --+ 5, 4 --+ 5.

Consider the planning of a project involving several activities, some of
which must be completed before others can begin. The duration of each
activity is known in advance. We want to find the time required to complete
the project, as well as the cr'itical activities, those that even if slightly
delayed will result in a corresponding delay of completion of the overall
project.

The problem can be represented by a graph with nodes 1, ... , N such
as the one shown in Fig. 2.2.1. Here nodes represent completion of some

Figure 2.1.2 (a) Shortest path problem data. The destination is node 5. Arc
lengths are equal in both directions and are shown along the line segments con
necting nodes. (b) Costs-to-go generated by the DP algorithm. The number along
stage k; and state i is Jk(i). Arrows indicate the optimal moves at each stage and
node. The optimal paths are

2.2.1 Critical Path Analysis

The shortest path problem appears in many diverse contexts. We provide
some examples.

[,h-m(i) = Jd'i) for all m > 0 and 'i], so the algorithm can be terminated
with Jk(i) being the shortest distance from i to t, for all i.

To demonstrate the algorithm, consider the problem shown in Fig.
2.1.2(a) where the costs aij with i i- j are shown along the connecting line
segments (we assume a'ij = aj'i)' Figure 2.1.2(b) shows the cost-to-go Jk(i)
at each 'i and k together with the optimal paths.

2.2 SOlVIE SHORTEST PATH APPLICATIONS
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(2.5)
N

p(XN , ZN) = 1fxo nPXk_lXkr(Zk; :Dk-l, :rk).
k=l

Some Shortest ]")ath Applications

and continuing in the same manner, we obtain

We now show how the maximization of the above expression can be
viewed as a shortest path problem. In particular, we construct a graph of
state-time pairs, called the irems diagram, by concatenating N + 1 copies

p(XN , ZN) 1fXOPXOXI r(zl; x:o, X1)PXIX2r( Z2; :[;1, :[;2)

·p(:r:3, ... ,:r:N,Z3, ... ,ZN I :r:O,Xl,Zl,X2,Z2),

where for the last equation, we used the independence of the observations,
Le., p(Z2 I Xo, Xl, X2, zI) = T(Z2; Xl, :r:2). Combining the above two relations,

p(XN,ZN) = p(xo,Xl, ,XN,Zl,Z2,.·. ,ZN)

=1fxo p(:rl, ,XN,Zl,Z2, ,ZN I :ro)

=1fxo p(Xl,Zll :r:O)p(X2, ,XN,Z2, ... ,ZN I :ro,xl,zl)

= 1fXOPxOXIT(Zl;XO,:r:1)p(X2, ... ,:r:N,Z2, .. · ,ZN I :r:O,:Dl,Zl).

p(X2, ... , XN, Z2, ... , ZN IXo, X:l, Zl)

=p(X2,Z21 XO,X:l,zI)p(X3, ,X:N,Z3, ... ,ZN I :r:O,Xl,Zl,:D2,Z2)

= PXIX2T(Z2; :r:l, X2)p(X3, , XN, Z3,···, ZN I :ro, ::1':1, Zl, :C2, Z2),

Sec. 2.2

(X I Z ) = p(XN , ZN)
p N N p(ZN)'

where p(X N , Z N) and p( Z N) are the unconditional probabilities of occur
rence of (XN, ZN) and ZN, respectively. Since p(ZN) is a positive constant
once ZN is known, we can maximize p(XN , ZN) in place of P(XN I ZN).
The probability P(XN, ZN) can be written as

This calculation can be continued by writing

In Chapter 5 we will discuss the control of such Markov chains in the
context of stochastic optimal control problems with imperfect state infor
mation. In the present section, we will focus on the problem of estimating
the state sequence given a corresponding observation sequence. This is an
important problem that arises in a broad variety of practical contexts.

We use a "most likely state" estimation criterion, whereby given the
observation sequence ZN = {Zl, Z2, ... , ZN}, we adopt as our estimate the
state transition sequence XN = {Xo, Xl, ... , XN} that maximizes over all
XN = {xo, Xl,···, XN} the conditional probability p(XN I ZN). We will
show that XN can be found by solving a special type of shortest path
problem that involves an acyclic graph.

We have

Chap. 2

for all i E Sk with i 1:- Sk-l'

Deterministic Systems and the Shortest Path Problem

So {I}, Sl = {I, 2}, S2 {I, 2, 3},

2.2.2 Hidden Markov l\1odels and the Viterbi Algorithm

S3 = {1,2,3,4}, S4 = {1,2,3,4,5}.

Note that this is a forward algorithm; that is, it starts at the origin 1 and
proceeds towards the destination N. An alternative backward algorithm,
which starts at N and proceeds towards 1, is also possible, as discussed in
the preceding section.

As an example, for the activity network of Fig. 2.2.1, we have

Consider a Markov chain with a finite number of states and given state
transition probabilities P'ij. Suppose that when a transition occurs, the
states corresponding to the transition are unknown (or "hidden") to us, but
instead we obtain an observation that relates to that transition. Given a
sequence of observations, we want to estimate in some optimal sense the se
quence of corresponding transitions. We are given the probability r(z; i,j)
of an observation taking value z when the state transition is from i to j.
We assume independent observations; that is, an observation depends only
on its corresponding transition and not on other transitions. We are also
given the probability 1f'i that the initial state takes value i. The probabili
ties P'ij a,nd r(z; i, j) are assumed to be independent of time for notational
convenience. The methodology to be described admits a straightforward
extension to the case of time-varying system and observation probabilities.

Markov chains whose state transitions are imperfectly observed ac
cording to the probabilistic mechanism just described are called Hidden
l'Vlarkov lYlodels (Hl'VIl\!Is for short) or partially observable Markov chains.

A calculation using the preceding formula yields

'1'he critical path is 1 ~ 2 ~ 3 ~ 4 ~ 5.

Sk {'i I all paths from 1 to i have k arcs or less} ,

with So {1}. The sets Sk can be viewed as the state spaces for the
equivalent DP problem. Using maximization in place of minimization while
changing the sign of the arc lengths, the DP algorithm can be written as

Let us denote by Sl the set of phases that do not depend on comple
tion of a,ny other phase, and more generally, for k = 1,2, ... , let Sk be the
set

10
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Figure 2.2.3 Estimating a portion of the state sequence prior to receiving the
entire observation sequence. Suppose that the shortest paths from s to all states
Xk pass through a single node m. If an additional observation is received, the
shortest paths from s to all states xk+l will continue to pass through m. There
fore, the portion of the state sequence up to node m can be safely estimated
because additional observations will not change the initial portion of the shortest
paths from s up to m.

The shortest path-based estimation procedure just described is known
as the Viterbi algorithm, and finds numerous applications in a variety of
contexts. An example is speech recognition, where the basic goal is to tran
scribe a spoken word sequence in terms of elementary speech units called
phonemes. One possibility is to associate the states of the HHIVI with

The initial condition is Do(xo) = -In(1fxo )' The final estimated state
sequence .feN corresponds to the shortest path from s to the final state
:cN that minimizes DN(xN) over the finite set of possible states xN. An
advantage of this procedure is that it can be executed in real time, as soon
as each new observation is obtained.

There are a number of practical schemes for estimating a portion of
the state sequence without waiting to receive the entire observation se
quence ZN, and this is useful if ZN is a long sequence. For example, one
can check fairly easily whether for some k, all shortest paths from s to
states Xk pass through a single node in the subgraph of states xo, ... ,::Ck-l.

If so, it can be seen from Fig. 2.2.3 that the shortest path from s to that
node will not be affected by reception of additional observations, and there
fore the subsequence of state estimates up to that node can be determined
without waiting for the remaining observations.

:Ck+l can be computed by trw DP recursion

Sec. 2.2Chap. 2Dei;erministic Systems and tile Shortest Path Problem

Figure 2.2.2 State estimation of an HMM viewed as a problem of finding a
shortest path from s to t. Length of arcs from s to states Xo is In(1['xo), and
length of arcs from states XN to t is zero. Length of an arc from a state Xk-l to

Xk is -In(PXk_lXkT(Zk;Xk-l,Xk)), where Zk is the kth observation.

In practice, the shortest path is most conveniently constructed se
quentially by forward DP, that is, by first calculating the shortest distance
from s to each node Xl, then using these distances to calculate the shortest
distance from s to each node X2, etc. In particular, suppose that we have
computed the shortest distances Dk(Xk) from s to all states Xk on the basis
of the observation sequence Zk, and suppose that the new observation Zk+l
is obtained. Then the shortest distances Dk+l (Xk+l) from s to any state

N

minimize - In(1fxo ) 2: In(PXk_lXk r(zk; Xk-l, Xk))
k=l

over all possible sequences {Xo, Xl, .. ·, XN}.

By assigning to an arc (s, xo) the length - In(1fxQ), to an arc (x N , t) the
length 0, and to an arc (Xk-l, Xk) the length -In(PXk_lXk r(zk; Xk-l, Xk)),
we see that the above minimization problem is equivalent to the problem
of finding the shortest path from s to t in the trellis diagram. This shortest
path defines the estimated state sequence {Xo, Xl, ... , XN }.

of the state space, and by preceding and following them with dummy nodes
.'3 and t, respectively, as shown in Fig. 2.2.2. The nodes of the kth copy
correspond to the states Xk-l at time k - 1. An arc connects a node Xk-l
of the kth copy with a node Xk of the (k + l)st copy if the corresponding
transition probability PXk-lXk is positive. Since maximizing a positive cost
function is equivalent to maximizing its logarithm, we see from Eq. (2.5)
tl1at, given the observation sequence ZN = {Zl, Z2, ... ,ZN}, the problem of
maximizing p(XN, ZN) is equivalent to the problem
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(2.6)

(2.7):/;0: given,

k = 1,2, ... ,

k = 1,2, ... ,

11

Then the evolution of the system (2.6)-(2.7) can be representecl by the di
agram shown in Fig. 2.2.5. Given the initial Xo, this diagram can be used
to generate the codeword sequence {YI, Y2, ...} corresponding to a data se
quence {WI, W2, .. .}. For example, when the initial state is :/;o 00, the clata
sequence

where Xk is an m-dimensional vector with binary coordinates, which we view
as state, and C, d, A, and bare n x 'm, n x 1, m x Tn, and Tn x 1 matrices,
respectively, with binary coordinates. The products and the sums involved in
the expressions CXk-I + dWk and AI;k-I + bWk are calculated using modulo
2 arithmetic.

As an example, let m = 2, n = 3, and

{WI,W2,W3,W4} = {1,0,0,1}

generates the state sequence

{XO,XI,X2,X3,X4} = {00,01,11,10,00},

and the codeword sequence

The problem just discussed is central in information theory and can be
approached in several different ways. In a particularly popular and eflective
technique called convolutional coding, the vectors Yk are related to Wk via
equations of the form

k = 1,2, ... ,Wk E {O, 1},{WI, W2, .. .},

into a coded sequence {YI, Y2, ...}, where each Yk is an n-dimensional vector
with binary coordinates, called codewoTd,

........J'.~ ..... F .."J 2.2.1 (Convolutional Coding and Decoding)

phonemes, and given a sequence of recorded phonemes ZN = {Zl' ... ,ZN},
to find a phonemic sequence XN = {Xl, ... ,XN} that maximizes over all
X N {;r;l,' .. ,;r:N} the conditional probability p(XN I ZN). The probabil
ities T(Zk; ;r:k-l, ;r:k) and PXk-IXk can be experimentally obtained, if neces
sary by specialized "training" for each speaker that uses the speech recogni
tion system. The Viterbi algorithm can then be used to find the most likely
phonemic sequence. There are also other HMMs used for word and sentence
recognition, where only phonemic sequences that constitute words from a
given dictionary are considered. We refer the reader to Rabiner [Rab89]
and Picone [Pic90] for a general review of HMMs applied to speech recog
nition and for further references to related work. It is also possible to use
similar models for computerized recognition of handwriting.

The Viterbi algorithm was originally developed as a scheme for de
coding data after transmission over a noisy communication channel. The
following example describes this context in some detail.

When binary data are transmitted over a noisy communication channel, it
is often essential to use coding as a means of enhancing reliability of com
munication. A common type of coding method, called convolutional coding,
converts a source-generated binary data sequence

Figure 2.2.4 Encoder/decoder scheme.

11

10

01

New State xk

00

11

10

01

Old State xk _1

00

Figure 2.2.5 State transition diagram for convolutional coding. The binary
number pair on each arc is the data/codeword pair Wk/Vk for the correspond
ing transition. So for example, when Xk-l 01, a zero data bit (Wk = 0)
effects a transition to Xk = 11 and generates the codeword 001.

i = 1, ... ,n, k = 1,2, ....y1 E {0,1},

Codeword Received Decoded
Data (Oor 1) Sequence Sequence Sequence

Encoder Decoder

w1,w2"" Y\. Y2'''' zl,Z2"" " "W1.W2•· ..

The sequence {YI, Y2, ...} is then transmitted over a noisy channel and gets
transformed into a sequence {ZI, Z2, ... , }, which is then decoded to yield the
decoded data sequence {,a)I, 11)2, ...}; see Fig. 2.2.4. The objective is to design
the encoder/decoder scheme so that the decoded sequence is as close to the
original as possible.
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We have seen that shortest path problems and deterministic finite-state
optimal control problems are equivalent. The computational implications
of this are twofold.

(a) One can use DP to solve general shortest path problems. Note that
there are several other shortest path methods, some of which have
superior theoretical worst-case performance to DP. However, DP is
often preferred in practice, particularly for problems with an acyclic
graph structure and also when a parallel computer is available.

(b) One can use general shortest path methods (other than DP) for de
terministic finite-state optimal control problems. In most cases, DP
is preferable to other shortest path methods, because it is tailored to
the sequential nature of optimal control problems. However, there are
important cases where other shortest path methods are preferable.

In this section we discuss several alternative shortest path methods.
We motivate these methods by focusing on shortest path problems with a
very large number of nodes. Suppose that there is only one origin and only
one destination, as in shortest path problems arising from deterministic
optimal control (cf. Fig. 2.1.1). Then it is often true that most of the nodes
are not relevant to the shortest path problem in the sense that they are
unlikely candidates for inclusion in a shortest path between the given origin
and destination. Unfortunately, however, in the DP algorithm every node
and arc will participate in the computation, so there arises the possibility
of other more efficient methods.

A similar situation arises in some search problems that are common
in artificial intelligence and combiriatorial optimization. Generally, these
problems involve decisions that can be broken down into stages. With
proper reformulation, the decision stages can be made to correspond to arc
selections in a shortest path problem, or to the stages of a DP algorithm.
We provide some examples.

Example 2.3.1 (The Four Queens Problem)

Four queens must be placed on a 4 X 4 portion of a chessboard so that no
queen can attack another. In other words, the placement must be such that
every row, column, or diagonal of the 4 x 4 board contains at most one queen.
Equivalently, we can view the problem as a sequence of problems; first, placing
a queen in one of the first two squares in the top row, then placing another
queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first
two squares of the top row, since the other two squares lead to symmetric
positions.) We can associate positions with nodes of an acyclic graph where
the root node s corresponds to the position with no queens and the terminal
nodes correspond to the positions where no additional queens can be placed
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where Yk+l is the codeword corresponding to the arc (Xk' Xk+I). The final
state xN on the shortest path is the one that minimizes D N(xN) over xN .

miniInize
k=l

over all binary sequences {YI, Y2, ... , YN}.

This is equivalent to a problem of finding a shortest path in the trellis diagram
from s to t, where the length of the arc associated with the codeword Yk is
-In(p(zk I Yk)), and the lengths of each arc incident to a dummy node is
zero. From the shortest path and the trellis diagram, we can then obtain the
corresponding data sequence {'{VI, ... , fvN }, which is accepted as the decoded
data.

The maximum likelihood estimate YN can be found by solving the cor
responding shortest path problem using the Viterbi algorithm. In particular,
the shortest distances Dk-j-l (Xk+l) from s to any state Xk+l are computed by
the DP recursion

min fDk(Xk) -In(p(zk+l IYk+I))J,
all Xk such that

(xk,xk+l) is an arc

N

The constraint on YN is that it must be a feasible codeword sequence (Le., it
must correspond to some initial state and data sequence, or equivalently, to
a sequence of arcs of the trellis diagram).

Let us construct a trellis diagram by concatenating N state transi
tion diagrams and appending dummy nodes sand t on its left and right
sides, which are connected with zero-length arcs to the states XQ and XN,

respectively. By using Eq. (2.8), we see that, given the received sequence
ZN = {Zl' Z2, ... , ZN }, the problem of maximizing p(ZN I YN) is equivalent
to the problem

where ZN = {Zl, ... ,ZN} is the received sequence and YN = {YI, ... ,YN} is
the transmitted sequence. By associating the codewords Y with state transi
tions, we formulate a maximum likelihood estimation problem, whereby we
want to find a sequence YN = {:iiI, Y2, ... ,YN} such that

Assume now that the characteristics of the noisy transmission channel
are such that a codeword Y is actually received as z with known probability
p(z IV), where z is any n-bit binary number. We assume independent errors
so that

76



2.3.1 Label Correcting l\1ethods

We now discuss a general type of shortest path algorithm. The idea is to
progressively discover shorter paths from the origin to every other node i,
and to maintain the length of the shortest path found so far in a variable
di called the label of i. Each time di is reduced following the discovery of a
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Root Node s

Length == 00

Shortest Path Algorithms

Figure 2.3.1 Shortest path formulation of the four queens problern. Symmetric
positions resulting from placing a queen in one of the rightmost squares in the top
row have been ignored. Squares containing a queen have been darlmned. All arcs
have length zero except for those connecting dead-end positions to the artificial
terminal node.

shorter path to i, the algorithm checks to see if the labels dj of the children
} of 'j can be "corrected," that is, they can be reduced by setting them to

Sec. 2.3Chap. 2Deterrninistic Systems and the Shortest Path Problem

without some queen attacking another. Let us connect each terminal position
with an artificial node t by means of an arc. Let us also assign to all arcs
length zero except for the artificial arcs connecting terminal positions with
less than four queens with the artificial node t. These latter arcs are assigned
the length 00 (see Fig. 2.3.1) to express the fact that they correspond to dead
end positions that cannot lead to a solution. Then, the four queens problem
reduces to finding a shortest path from node s to node t.

Note that once the nodes ofthe graph are enumerated the problem is es
sentially solved. In this 4 x 4 problem the number of nodes is small. However,
we can think of similar problems with much larger memory requirements. For
example, there is an eight queens problem where the board is 8 x 8 instead
of 4 x 4.

Exarnple 2.3.2 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the mileage
between each pair of cities. We wish to find a minimum-mileage trip that
visits each of the cities exactly once and returns to the origin node. To
convert this problem to a shortest path problem, we associate a node with
every sequence of n distinct cities, where n ::S N. The construction and arc
lengths of the corresponding graph are explained by means of an example
in Fig. 2.~1.2. The origin node s consists of city A, taken as the start. A
sequence of n cities (n < N) yields a sequence of (n + 1) cities by adding a
new city. Two such sequences are connected by an arc with length equal to
the mileage between the last two of the n +1 cities. Each sequence of N cities
is connected to an artificial terminal node t with an arc having length equal
to the distance from the last city of the sequence to the starting city A. Note
that the number of nodes grows exponentially with the number of cities.

In the shortest path problem that we will consider in this section,
there is a special node s, called the origin, and a special node t, called the
destinat'lon. We will assume a single destination, but the methods to be
discussed admit extensions to the case of multiple destinations (see Exercise
2.6). A node} is called a child of node i if there is an arc (i,j) connecting
i with}. The length of arc (i,}) is denoted by aij and we assume that all
aTCS have nonnegative length. Exercise 2.7 deals with the case where all
cycle lengths (rather than arc lengths) are assumed nonnegative. We wish
to find a shortest path from origin to destination.

'7'8
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YES

is dj + aij < dj ?

(Is the path s --> i --> j
shorter than the current
s --> j path?)

Is di + aij < UPPER?

.._~_Y_E_S__----I (Does the path s --> i --> j
have a chance to be part
of a shorter s --> t path?)

Set dj =dj + aij

INSERT
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Figure 2.3.3 Diagrammatic illustration of the label correcting algorithm, with
an interpretation of the tests for insertion of a node into the OPEN list.

Label Correcting Algorithm

Step 1: Remove a node i from OPEN and for each child.7 of i, execute
step 2.

Step 2: If di + aij < min{dj, UPPER}, set d:i = di + aij and set ito
be the parent of j. In addition, if j i= t, place j in OPEN if it is not
already in OPEN, while if j = t, set UPPER to the new value di + ait

of dt .

Step 3: If OPEN is empty, terminate; else go to step 1.

It can be seen by induction that, throughout the algorithm, dj is
either 00 (if node j has not yet entered the OPEN list), or else it is the
length of some path from s to j consisting of nodes that have entered the
OPEN list at least once. In the latter case, the path can be constructed
by tracing backward the parent nodes starting with the parent of node j.
F\lfthermore, UPPER is either 00, or else it is the length of some path
from s to t, and consequently it is an upper bound of the shortest distance
from s to t. The idea in the algorithm is that when a path from s to j
is discovered, which is shorter than those considered earlier (eli + aij < dj

in step 2), the value of dj is accordingly reduced, and node j enters the
OPEN list so that paths passing through j and reaching the children of j
can be taken into account. It makes sense to do so, however, only when the
path considered has a chance of leading to a path from s to t with length
smaller than the upper bound UPPER of the shortest distance from s to t.

Sec. 2.3Cllap.2
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Figure 2.3.2 Example of a shortest path formulation of the traveling salesman
problem. The distance between the four cities A, B, C, and D are shown in the
table. The arc lengths are shown next to the arcs.

di + a'ij [the length of the shortest path to i found thus far followed by arc
(i,j)]. The label dt of the destination is maintained in a variable called
UPPER, which plays a special role in the algorithm. The label ds of the
origin is initialized at 0 and remains at 0 throughout the algorithm. The
labels of all other nodes are initialized at 00, i.e., di = 00 for all i i= s.

The algorithm also makes use of a list of nodes called OPEN (another
name frequently used is candidate list). The list OPEN contains nodes
that are currently active in the sense that they are candidates for further
examination by the algorithm and possible inclusion in the shortest path.
Initially, OPEN contains just the origin node s. Each node that has entered
OPEN at least once, except s, is assigned a "parent," which is some other
node. The parent nodes are not necessary for the computation of the
shortest distance; they are needed for tracing the shortest path to the
origin after the algorithm terminates. The steps of the algorithm are as
follows (see also Fig. 2.3.3):
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Figure 2.3.4 The algorithm applied to the traveling salesman problem of Fig.
2.3.2. The optimal solution ABDC is found after examining nodes 1 through 10
in the figure in that order. The table shows the successive contents of the OPEN
list.

--

Iter. No. Node Exiting OPEN OPEN at the End of Iteration UPPER

0 - 1 00

1 1 2,7,10 00

2 2 3, 5, 7, 10 00

3 3 4, 5, 7, 10 00

4 4 5,7,10 43

5 5 6, 7, 10 43

6 6 7,10 13

7 7 8,10 1~3

8 8 9,10 13

9 9 10 13

10 10 Empty 13
--

be a shortest path and let d* be the corresponding shortest distance. We
will show that the value of UPPER upon termination must be equal to
d*. Indeed, each subpath (8,j1, ... ,jm), m = 1, ... , k, of the shortest path
(8,j1,12,·.· ,jk, t) must be a shortest path from 8 to ,im. If the value of

Sec. 2.3Chap. 2Deterministic Systems and the Shortest Path Problem

Proposition 2.3.1: If there exists at least one path from the ori
gin to the destination, the label correcting algorithm terminates with
UPPER equal to the shortest distance from the origin to the destina
tion. Otherwise the algorithm terminates with UPPER = 00.

Proof: Vve first show that the algorithm will terminate. Indeed, each time
a node j enters the OPEN list, its label is decreased and becomes equal
to the length of some path from 8 to j. On the other hand, the number
of distinct lengths of paths from 8 to j that are smaller than any given
number is finite. The reason is that each path can be decomposed into
a path with no repeated nodes (there is a finite number of distinct such
paths), plus a (possibly empty) set of cycles, each having a nonnegative
length. 'I'herefore, there can be only a finite number of label reductions,
implying that the algorithm will terminate.

Suppose that there is no path from s to t. Then a node i such that
('i, t) is an arc cannot enter the OPEN list, because as argued earlier, this
would establish that there is a path from 8 to i, and therefore also a path
from 8 to t. Thus, based on the rules of the algorithm, UPPER can never
be reduced from its initial value of 00.

Suppose now that there is a path from 8 to t. Then, since there is a
finite number of distinct lengths of paths from 8 to t that are smaller than
any given number, there is also a shortest path. Let (8,j1,j2, ... ,jk, t)

In view of the nonnegativity of the arc lengths, this is possible only if the
path length d'i +- a'ij is smaller than UPPER. This provides the rationale for
entering j into OPEN in step 2 only if d'i +- aij < UPPER (see Fig. 2.3;3).

Tracing the steps of the algorithm, we see that it will first remove
node s from OPEN and sequentially examine its children. If t is not a
child of s, the algorithm will place all children j of s in OPEN after setting
d j asj. If t is a child of s, then the algorithm will place all children
j of s examined before t in OPEN and will set their labels to asj; .then
it will examine t and set UPPER to ast; finally, it will place each of the
remaining children j of s in OPEN only if asj is less than the current value
of UPPEIl, which is CLst. The algorithm will subsequently take a child i =J t
of s from OPEN, and sequentially place in OPEN those of its children j =J t
that satisfy the criterion of step 2, etc. Note that the origin 8 can never
reenter OPEN because ds cannot be reduced from its initial value of zero.
Also, by the rules of the algorithm, the destination can never enter OPEN.
When the algorithrn terminates, we will show shortly that a shortest path
can be obtained by tracing backwards the parent nodes starting from t and
going towards s. Figure 2.3.4 illustrates the use of the algorithm to solve
the traveling salesman problem of Fig. 2.3.2.

The following proposition establishes the validity of the algorithm.
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Figure 2.3.6 Memory requirements of depth
first search for the graph of Fig. 2.3.5. At the
time the node marked by the checkmark exits
the OPEN list, only the solicl-line portion of
the tree is needed in memory. The dotted-line
portion has been generated and purged from
memory based on the rule that for a graph
where there is only one path from the origin
to every node other than the destination, it is
unnecessary to store a node once all of its suc
cessors are out of the OPEN list. The broken
line portion of the tree has not yet been gen
erated.

Figure 2.3.5 Searching a tree in depth-first
fashion. The numbers next to the nodes indi
cate the order in which nodes exit the OPEN
list.
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bottom of OPEN. [Here and in the following methods except (c), we
assume that OPEN is structured as a queue.]

(b) Depth-first search, which adopts a last-in/fi.rst-out policy; that is,
the node is always removed from the top of OPEN and each node
entering OPEN is placed at the top of OPEN. One motivation for
this method is that it often requires relatively little memory. For
example, suppose that the graph has a tree-like structure whereby
there is a unique path from the origin node to every node other than
the destination as shown in Fig. 2.3.5. Then the nodes will enter
OPEN only once and in the order shown in Fig. 2.3.5. At anyone
time, it is only necessary to store a small portion of the graph as
shown in Fig. 2.3.6.

Bee. 2.3
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Specific Label Correcting Methods

There is considerable freedom in selecting the node to be removed from
OPEN at each iteration. This gives rise to several different methods. The
following are some of the most important (the author's textbooks on net
work optimization [Ber91a], [Ber98a] contain a fuller account of label cor
recting methods and their analysis; [Ber91a] contains several computer code
implementations) .

(a) 15r"eadth-fi:rst search, also known as the Bellman-Ford method, which
adopts a first-in/first-out policy; that is, the node is always removed
from the top of OPEN and each node entering OPEN is placed at the

From the preceding proof, it can also be seen that, upon termination
of the algorithm, the path constructed by tracing the parent nodes back
ward from t to 8 has length equal to UPPER, so it is a shortest path from
8 to t. Thus the algorithm yields not just the shortest distance but also a
shortest path, provided that we keep track of the parent of each node that
enters OPEN.

An important property of the algorithm is that nodes j for which di +
(L'ij ~ UPPER in step 2 will not enter OPEN in the current iteration, and
may possibly not enter in any subsequent iteration. As a result the number
of nodes that enter OPEN may be much smaller than the total number
of nodes. Furthermore, if a good lower bound to the shortest distance
from 8 to t (or the shortest distance itself) is known, the computation
can be terminated once UPPER reaches that bound within an acceptable
tolerance. This is useful, for example, in the four queens problem, where
the shortest distance is known to be zero or infinity. Then the algorithm
will terminate once UPPER= 0, when a solution is found for the first time.
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UPPER is larger than cl* at termination, the same must be true throughout
the algorithrn, and therefore UPPER will also be larger than the length of
all the paths (8,j1, .. ' ,jm), m = 1, ... , k, throughout the algorithm, in
view of the nonnegative arc length assumption. It follows that node jk will
never enter the OPEN list with djk equal to the shortest distance from 8

to jk, since in this case UPPER would be set to d* in step 2 immediately
following the next time node jk is examined by the algorithm in step 2.
Similarly, and using also the nonnegative length assumption, this means
that node jk-1 will never enter the OPEN list with djk_l equal to the
shortest distance from 8 to jk-1. Proceeding backward, we conclude that
]1 never enters the OPEN list with dj1 equal to the shortest distance from 8

to.71 [which is equal to the length of the arc (8,j1)]. This happens, however,
at the first iteration of the algorithm, obtaining a contradiction. It follows
that at termination, UPPER will be equal to the shortest distance from 8

to t. Q.E.D.



di = min dj.
j in OPEN

(c) Best-first search, which at each iteration removes from OPEN a node
with minimum value of label, Le., a node i with
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d,i = { ~ngth of portion of path IJ from s to 'l

from s to t. Then we can initialize the algorithm with

di + aij + hj < UPPER

with UPPER equal to dt, and with the OPEN list equal to {s, il, ... , ik}.
If P is a near-optimal path and consequently the initial value of UPPER is
near its final value, the test for future admissibility into the candidate list
will be relatively tight from the start of the algorithm and many unneces
sary entrances of nodes into OPEN may be saved. In particular, it can be
seen that all nodes whose shortest distances from the origin are greater or
equal to the length of P will never enter the candidate list.

Another possibility, known as the A * algorithm, is to strengthen the
test di +aij < UPPER that node j must pass before it can be placed in the
OPEN list in step 2. This can be done if a positive underestimate hj of the
shortest distance of node j to the destination is available. Such an estimate
can be obtained from special knowledge about the problem at hand. We
may then speed up the computation substantially by placing a node .i in
OPEN in step 2 only when

P=(s,i l , ... , t)

(instead of di +aij < UPPER). In this way, fewer nodes will potentially be
placed in OPEN before termination. Using the fact that hj is D,n underesti
mate of the true shortest distance from j to the destination, it can be seen

2.3.2 Label Correcting Variations - A*

The generic label correcting algorithm need not be started with the initial
conditions ds 0 and d'i 00 for i i- s in order to work correctly. It can
be shown, similar to Prop. 2.3.1, that one can use any set of initial labels
di such that for each node i, di is either 00 or else it is the length of some
path from s to i. The scalar UPPER may be taken to be equal to d t and
the initial OPEN list may be taken to be the set {i I d'i < oo}.

This kind of initialization is very useful if, by using heuristics or a
known solution of a similar shortest path problem, we can construct a
"good" path
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if dj :::; min'i in OPEN di, it is impossible that subsequent to the exit of j
from OPEN we will have di + a'ij < dj for some i in OPEN, since the arc
lengths a'ij are nonnegative. The SLF and other related but more sophis
ticated methods, often require a number of iterations, which is close to the
minimum (the one required by the best-first method). However, they can
be much faster than the best-first method, because they require much less
overhead for determining the node to be removed from OPEN.
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This method, also known as Dijkstm's method or label setting method,
has a particularly interesting property. It can be shown that in this
method, a node will enter the OPEN list at most once (see Exercise
2.4). The drawback of this method is the overhead required to find at
each iteration the node of OPEN that has minimum label. Several so
phisticated methods have been developed to carry out this operation
efficiently (see e.g., Bertsekas [Ber98a]).

(d) D 'Esopo-Pape method, which at each iteration removes the node that
is at the top of OPEN, but inserts a node at the top of OPEN if it has
already been in OPEN earlier, and inserts the node at the bottom of
OPEN otherwise.

(e) Small-Label-Pirst (SLF) method, which at each iteration removes the
node that is at the top of OPEN, but inserts a node i at the top of
OPEN if its label di is less than or equal to the label dj of the top
node j of OPEN; otherwise it inserts i at the bottom of OPEN. This
is a low-overhead approximation to the best-first search strategy. As
a complement to the SLF strategy, one may also try to avoid remov
ing nodes with relatively large labels from OPEN using the following
device, known as the Large-Label-Last (LLL) stmtegy: at the start
of an iteration, the top node of OPEN is compared with the average
of the labels of the nodes in OPEN and if it is larger, the top node
is placed at the bottom of OPEN and the new top node of OPEN
is similarly tested against the average of the labels. In this way the
removal of nodes with relatively large labels is postponed in favor of
nodes with relatively small labels. The extra overhead required in
this method is small: maintain the sum of the labels and the num
ber of nodes in OPEN. When starting a new iteration, the ratio of
these numbers gives the desired average. There are also several other
methods, which are based on the idea of examining nodes with small
labels first (see Bertsekas [Ber93], [Ber98a], and Bertsekas, Guerriero,
and Musmanno [BGM96] for detailed descriptions and computational
studies).

Generally, it appears that for nonnegative arc lengths, the number
of iterations is reduced as the method is more successful in removing from
OPEN nodes with a relatively small label. For a supporting heuristic ar
gument, note that for a node j to reenter OPEN, some node i such that
di + aij < elj must first exit OPEN. Thus, the smaller dj was at the previ
ous exit of.i from OPEN, the less likely it is that di +aij will subsequently
become less than dj for some node i in OPEN and arc (i, j). In particular,
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for all x E X.
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Figure 2.3.7 An acyclic graph corresponding to a branch-and-bound algorithm.
Each node (subset) except those consisting of a single solution is partitioned into
several other nodes (subsets).

The set Y is called the parent of Yl, ... , ¥;", and the sets Y1 , ... , Yn

are called the children of Y.

n

i=l

UYi=Y.

4. Each set in X other than X has at least one parent.

The collection of sets X defines an acyclic graph with root node the
set of all feasible solutions X and terminal nodes the singleton solutions
{a;}, x E X (see Fig. 2.3.7). The arcs of the graph are those that connect
parents Y and their children Yi, Suppose that for every nonterminal node
Y there is an algorithm that calculates upper and lower bounds ly and

1y for the minimum cost over Y:

f y ::; min f(x) ::; 1y.
- xEY

Assume further that the upper and lower bounds are exact for each single
ton solution node {x}:

an acyclic graph with nodes that correspond on a one-to-one basis with a
collection X of subsets of the feasible set X. We require the following:

1. X E X (i.e., the set of all solutions is a node).

2. For each solution x, we have {x} E X (i.e., each solution viewed as a
singleton set is anode).

3. Each set Y E X that contains more than one solution x E X is
partitioned into sets Y1 , ..• , Yn E X such that Yi I- Y for all i:

Sec. 2.3Chap. 2Del;erministic Systems and the Shortest Path Problem

Consider a problem of minimizing a cost function f(x) over a finite set
of feasible solutions X. We have in mind problems where the number of
feasible solutions is very large, so an enumeration and comparison of these
solutions is impractical, e.g., the traveling salesman problem of Example
2.3.2. The idea of the branch-and-bound method is to avoid a complete
enumeration by discarding solutions that, based on certain tests, have no
chance of being optimal. This is similar to label correcting methods, where
based on various tests that use the value of UPPER and other data, the
insertion in the OPEN list of some nodes is avoided. In fact, we will see that
the branch-and-bound method can be viewed as a form of label correcting
method.

The key idea of the branch-and-bound method is to partition the feasi
ble set into smaller subsets, and then use certain bounds on the attainable
cost within some of the subsets to eliminate from further consideration
other subsets. The rationale for this is captured in the following simple
observation.

Bounding PLJI'.l.rill1CJ·ip<lle

Given the problem of minimizing f(x) over x E X, and two subsets
Yl C X and Y2 eX, suppose that we have bounds

2.3.3 Branch-and-Bound

The branch-ancl-bouncl method calculates suitable upper and lower
bounds, and uses the bounding principle to eliminate from consideration
substantial portions of the feasible set. To describe the method, we use

f
1

::; min f(x),
- xEYl

that nodes j such that di + aij + h j ~ UPPER need not enter OPEN, and
the argument given in the proof of Prop. 2.3.1 shows that the algorithm
using the preceding test will terminate with a shortest path.

The A* algorithm is just one way to sharpen the test di + aij <
UPPER for admission of node j into the OPEN list. An alternative idea is
to try to reduce the value of UPPER by obtaining for the node j in step 2
an 'lLppe'r bound mj of the shortest distance from j to the destination t (for
example the length of some path from j to t). Then if dj + mj < UPPER
after step 2, we can reduce UPPER to dj +mj, thereby making the test for
future admissibility into OPEN more stringent. This idea is used in some
versions of the branch-and-bound algorithm, one of which we now describe.

Then, if 12 ::; the solutions in Yl may be disregarded since their
cost cannot be smaller than the cost of the best solution in Y2 •

88
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L a'ij·

('i,j)EP

(2.9)m=l, ... ,]Vl,

We represent path constraints in the generic form

We refer to this problem as the constra'ined shoTtest path problem,
and we note that it is closely related to the constnzint feasib'il'ity prob
len"1, where we simply want to find a path P that satisfies the constraints
(2.9). In particular, the constraint feasibility problem is the special case
of the constrained shortest path problem where a'ij 0 for all arcs (i, j).

where cij is the amount of Tnth resource required to traverse arc ('l,j), and
bm is the total amount of mth resource available. Thus the problem is to
find a path P that starts at the origin s, ends at the destination t, satisfies
the constraints (2.9), and minimizes

L In(p'ij) ~ 1n(j3).
(i,j)EP

where 'ij is the time required to traverse arc Ci,j). Similarly, there could
be a safety constraint, whereby the probability of being able to traverse
the path P safely should be no less than a given threshold. Here, we
assume that traversal of an arc (i, j) will be safe with a given probability
Pij. Assuming probabilistic independence of the safety of arc traversa.ls, the
probability that traversal of a path P will be safe is the product TICi,j) EP1Jij .

The requirement that this probability is no less than a given threshold 13
translates to a path length constraint of the form

I: Tij::; T,
(i,j)EP

In some shortest path contexts, there may be constraints on the resources
required to traverse the optimal path, such as limits on time, fuel, etc. For
example, there could be a restriction that the total time to travel through
the optimal path P should not exceed a given threshold T, Le.,

2.aA Const.rained and Multiobjective

be llsed as upper bounds. We refer to textbooks such as Nemhauser and
Wolsey [NeW88], Bertsimas and Tsitsiklis [BeT97], Bertsekas [Ber98a], and
Wolsey [WoI98] for fuller accounts.

An alternative termination step 2 for the preceding algorithm is to
set a tolerance E > 0, and check whether UPPER and the minimum lower
bound [Y over all sets Y in the OPEN list differ by less than Eo If so, the
algoritlun is terminated, and SOHle set in OPEN must contain a solution
that is within E of being optimal. There are a number of other variations
of the algorithm. For example, if the upper bound!Y at a node is actually
the cost f (x;) of some element x E Y, then this element can be taken as
the best solution found so far whenever !Y < UPPER in step 2. Other
variations relate to the method of selecting a node from OPEN in step l.
Ij'or example, two strategies of the best-first type are to select the node
with minimal lower or upper bound. Note that it is neither practical no'r
necessaTy to generate a prio'r't the acyclic graph of the branch-and-bound
method. Instead, one may adaptively decide on the order and the manner
in which the parent sets are partitioned into children sets based on the
progress of the algorithm.

We finally note that to apply branch-and-bound effectively, it is im
portant to have good algorithms for generating upper and lower bounds
at each node. These bounds should be as sharp as practically possible.
Then, fewer nodes will be admitted into OPEN, with attendant computa
tional savings. Typically, continuous optimization problems (usually linear
or network optimization problems) are used to obtain lower bounds to the
optimal costs of the restricted problems minxEY f(x), while various heuris
tics are used to construct corresponding feasible solutions whose costs can

Branch-and-Bound AIgoritluTI

Step 1: Remove a node Y from OPEN. For each child }j of Y, do the
following: If fv' < UPPER, then place }j in OPEN. If in addition

-1 J

!Yj < UPPER, then set UPPER = !Yj, and if}j consists of a single
solution, mark that solution as being the best solution found so far.

Step 2: Test) If OPEN is nonempty, go to step l.
Otherwise, tenninate; the best solution found so far is optimal.

Define now the length of an arc involving a parent Y and a child Yi,
to be the lower bound difference

[Yi [Y·
Then the length of any path from the origin node X to any node Y is
1y . Since [{~r;} = f(x) for all feasible solutions x E X, it is clear that

rninimizing f(x:) over x E X is equivalent to finding a shortest path from
the origin node to one of the singleton nodes {x}.

Consider now a variation of the label correcting method, where in
addition we use our knowledge of the upper bounds !Y to reduce the value
of UPPER. Initially, OPEN contains just X, and UPPER equals!x.
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and multiple cost functions of the form

We have seen that shortest path problems and deterministic finite-state
DP problems are equivalent, so it is not surprising that the rnethodology
for multiobjective and/or constrained shortest path problems is shared by
multiobjective and/or constrained deterministic finite-state DP problems.
A multiobjective version of such a problem involves a single controlled
deterministic finite-state system

lVlultiobjective DP Problems

Let us provide an extension of the DP algorithm that finds the set
of all noninferior solutions to the multiobjective deterministic DP problem
involving the above system and cost functions. This algorithm proceeds
backwards from the terminal time, and calculates for each stage k and state
Xk, the set of noninferior control sequences for the tail (multiobjective)
subproblem that starts at state Xk. The algorithm is based on a fairly
evident extension of the principle of optimality:

and with strict inequality for at least one m. Note that the constraint
feasibility problem has a solution if and only if the subset of IYmltiobjec
tive/noninferior solutions that satisfy the constraints (2.9) is nonempty. It
follows that the constraint feasibility problem can be easily solved once the
set of all noninferior paths is computed. Similarly, the constrained short
est path problem can be solved by casting it as a multiobjective shortest
path problem, where the multiple objectives correspond to the cost and
the constraints. Given the set of all noninferior solutions, one obtains an
optimal solution of the constrained shortest path problem (provided a fea
sible solution exists), by selecting a path from this set that satisfies the
constraints and minimizes the cost. Because of the connections outlined
above, the three problems, constrained shortest path, constraint feasibility,
and multiobjective, fundamentally share the same mathematical structure,
and can be addressed with similar methodology.

The multiobjective shortest path problem is to find a noninferior path
P, Le., one for which there is no other path pI satisfying
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m=l, ... ,M,

m = 1, ... ,1\11,

Figure 2.3.8 Illustration of the noninferior
vectors of a finite set.

Ym ::; X m ,

~ cij,
(i,j)EP
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Note that given a finite set of solutions, there is at least one noninfe
rior solution. Furthermore, one can extract the set of noninferior solutions
with a simple algorithm: sequentially test all solutions and discard those
that are dominated by some not yet discarded solution, until no more so
lutions can be discarded.

and with strict inequality for at least one m (see Fig. 2.3.8). More gen
erally, given a problem with multiple cost functions h(x), ... , fM(X) and
a constraint set X, we say that x is a noninferior solution if the vector
of costs of x, i.e., (h(x), ... , fM(X)), is a noninferior vector of the set of
attainable costs

.. "

'I\\' a" < L*6 2) - ,

(i,j)EP

"small," in a sense that we will now make precise. In particular, for any
set S C 3{M, let us call a vector x = (Xl, ... ,XM) E S noninferior if x is
not dominated by any vector Y = (Yl, ... , YM) E S, in the sense that

where L* is the optimal path length (which, however, is generally un
known).

Another, closely related problem is the multiobjective shortest path
problem, where we want to find a path P that simultaneously makes all
the lengths

Conversely, the constrained shortest path problem is equivalent to the con
straint feasibility problem involving the constraints (2.9) and the additional
constraint
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N-I

9iV(XN) + L 9'k1 (:Ck,'Uk) ~ bm ,

k=O

subject to the constraint that the state at the kth stage is Xk, and can be
calculated by the forward DP algorithm of Section 2.1. Consider now a
DP-like algorithm that generates for each state and stage, a subset of 1\1[
tuples. It starts at the terminal time N with the set FN(XN) that consists
of just the vector of terminal costs,

It proceeds backwards as follows: given the set Fk+1 (:I;k,+I) for each state
Xk+l, it generates for each state Xk the set of 1\II-tuples

We can solve this problem by finding the set of noninferior solutions/control
sequences of the multiobjective DP problem involving the costs (2.10),
by extracting from this set the subset of solutions/control sequences that
satisfy the constraints (2.12), and by selecting from this subset a solu
tion/control sequence that minimizes the cost (2.11).

However, we ean enhance this algorithm by discarding at tIle earliest
opportunity control sequences that cannot be part of a feasible control
sequence. The rationale for this is related to the ideas underlying label
eorrecting methods and the A* algorithm in partieular (d. Section 2.~~.2).

For m = 2, ... ,1\11, let Jrn(Xk) be the optimal eost to arrive to :X;k from the
given initial state Xo with cost per ~tage equal to dy'(:X;'i, 'lLi). This is the
minimal value of .

subject to the constraints

where we want to minimize the cost function

Let us now consider a related eonstrained DP problem with the same con
trolled system

constrained DP ProblmTIs
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such that

then it obtains Fk(Xk) by extracting the noninferior subset, Le., by dis
carding from this set the vectors that are dominated by other vectors.

After N steps, this algorithm yields Fo (xo), the set of all noninferior
At-tuples of costs-to-go starting at initial state xo. Note that the algo
rithm is similar to the ordinary DP algorithm: it just maintains a set of
noninferior 1\t-tuples of costs-to-go at each state Xk, rather than a single
cost-to-go. Note also that by a similar argument to the one of Section 2.1,
it is possible to eonstruct a forward version of this algorithm.

which correspond to feasible control sequences {'Uk, ... ,UN-I} that start
at :1; k and are noninferior in the following sense: There is no other fea
sible control sequence {'ILk', . .. ,UN-I'} with corresponding state sequence
{:Dk', . .. , :DN'} (where Xk' = ;rk) such that

N-1 N-I

giV(:CN') + L gin (x:'/, u/) ~ giV(XN) + gt(Xi, Ui), m = 1, ... , M,
i=k i=k

and with strict inequality for at least one m. Note that Fk(Xk) is a finite
set (since the control constraint set is finite, which implies that the set of
control sequences is finite). The sets Fk(Xk) are generated by an algorithm
that starts at the terminal time N with F N(XN) consisting of just the
vector of terminal costs,

and proceeds backwards according to the following process: Given the set
Fk-H (:1;k-I-I) for all states Xk+l, the algorithm generates for each state Xk
the set of vectors

If {Uk, 11k+1, ... , 'UN-I} is a noninferior control sequence for the tail
subproblem that starts at Xk, then {'Uk+I, ... ,'UN-I} is a noninferior
control sequence for the tail subproblem that starts at fk(Xk, 'Uk).

This allows the convenient calculation of the set of noninferior solutions of
tail subproblems using the sets of noninferior solutions of shorter subprob
lems.

More specifically, let Fk(Xk) be the set of all M-tuples of costs-to-go
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For this reason, there have been many efforts to develop approximate so
lution methods. These methods are outside our scope and we refer to the
literature on the subject.

The preceding DP algorithms for multiobjective and constrained prob
lems are easily adapted to shortest path problems. One possibility is to
use the transformation described in Section 2.1 to reformulate the shortest
path problem as a (multiobjective or constrained) deterministic finite-state
problem. The latter problem can in turn be solved using the DP-like algo
rithms just described. It is also possible to use versions of label correcting
algorithms, including the A* variant, for multiobjective and constrained
shortest path problems. A label of a node now is not just a single number,
but rather it is an M-dimensional vector with components that correspond
to the 1\11 cost functions; see the end-of-chapter references.

Work on the shortest path problem is very extensive. Literature surveys are
given by Dreyfus [Dre69], Deo and Pang [DeP84]' and Gallo and Pallottino
[GaP88]. For a detailed textbook treatment of shortest paths, see Bertsekas
[Ber98a] (the chapter on shortest paths of this book is www-accessible), and
also [Ber91a], which contains a variety of associated computer codes.

For a treatment of critical path analysis, see Elmaghraby [Elm78].
A tutorial survey of Hidden Markov Models is given by Rabiner [Rab89].
The Viterbi algorithm, first proposed in [Vit67], is also discussed by For
ney [For73]. For applications in comrhunication systems, see Proakis and
Salehi [PrS94]' and Sklar [8k188]. For applications in speech recognition,
see Rabiner [Rab89] and Picone [Pic9D]. For applications in data network
routing, see Bertsekas and Gallager [BeG92].

Label correcting methods draw their origin from the works of Bellman
[Be157] and Ford [For56]. The D'Esopo-Pape algorithm appeared in [Pap74]
and is based on an earlier suggestion of D'Esopo. For a discussion of
various implementations of Dijkstra's algorithm, see Bertsekas [Ber98a].
The 8LF method and some variations were proposed by the author in
[Ber93]; see also Bertsekas, Guerriero, and Musmanno [BGlVI:96], where the
LLL strategy as well as implementations on a parallel computer of various
label correcting methods are discussed. The A* method was proposed by
Hart, Nilsson, and Raphael [HNR68] (with corrections in [HNR72]). See
also the texts by Nilsson [Nil71], [Ni180], and Pearl [Pea84]' which provide a
broader discussion of the application of shortest path methods in artificial
intelligence.

The Dijkstra algorithm has been extended to continuous space short
est path problems by Tsitsildis [Tsi75]. The SLF/LLL methods have also
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which correspond to all the feasible solutions that are noninferior. The
first component of an M-tuple in Fo(xo) corresponds to the cost (2.11).
An element of Fo (xo) whose first component is minimal is an optimal so
lution of the constrained shortest path problem. The advantage of using
the criterion (2.14) is that it allows us to discard as early as possible infea
sible solutions, and accordingly reduce the size of the sets Fk(xk) and the
attendant computation.

Note also that if an upper bound, call it UPPER, is known for the
optimal path length, it can be used to introduce the additional constraint

Any lid-tuple (c1 , ... ,eM) that violates this condition corresponds to paths
that cannot be optimal, so it can be safely excluded from further considera
tion. This idea may be further enhanced by introducing schemes to reduce
UPPER as the algorithm progresses, similar to label correcting methods.

Clearly multiobjective and constrained DP algorithms require quite a
bit more computation and storage than ordinary DP for the same system.

N-l

g]v(XN) + ~ 9"k(Xk, Uk) :::; UPPER,
k=O

and to make the test (2.14) more effective by augmenting it with the addi
tional inequality

then it obtains Fk(:Dk) by extracting the noninferior subset, Le., by dis
carding from this set the elements that are dominated by other elements.

Note that 1\1-tuples of the form (2.13) that violate the condition (2.14)
correspond to paths that cannot be feasible, so they can be safely excluded
from further consideration [in fact J'kn(Xk) may be replaced by any con
veniently available underestimate in the condition (2.14); using Jrn(Xk)
rnakes this condition as sharp as possible]. The set Fo(xo) obtained by the
algorithm after N steps consists of M -tuples of the cost and the constraint
function values

and

such that
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Figure 2.4.1 Graph for Exercise 2.2.
The arc lengths are shown next to the
arcs.
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2.6 (Label Correcting with Multiple Destinations)

2.5 (Label Correcting for Acyclic Graphs)

Consider the problem of finding a shortest path from node s to each node in a
subset T, assuming that all arc lengths are nonnegative. Show that the following
modified version of the label correcting algorithm of Section 2.3.1 solves the
problem. Initially, UPPER = 00, ds = 0, and di = 00 for all i =I- s.

Consider a shortest path problem involving an acyclic graph. Let Sk be the set of
nodes i such that all paths from the origin to i have k arcs or less and at least one
such path has k arcs. Consider a label correcting algorithm that removes from
OPEN a node of Sk only if there are no nodes of 8 1 , ... , ~(h-l in OPEN. Show
that each node will enter OPEN at most once. How does this result relate to the
type of shortest path problem arising from deterministic DP (d. Fig. 2.1.1)?

Consider the best-first version of the label correcting algorithm of Section 2.3.1.
Here at each iteration we remove from OPEN a node that has minimum label
over all nodes in OPEN.

(a) Show that each node j will enter OPEN at most once, and show that at
the time it exits OPEN, its label d j is equal to the shortest distance from
s to j. Hint: Use the nonnegative arc length assumption to argue that in
the label correcting algorithm, in order for the node i that exits OPEN to
reenter, there must exist another node k in OPEN with d k + (Lki < cli.

(b) Show that the number of arithmetic operations required for termination is
bounded by cN2 where N is the number of nodes and c is some constant.

2,,4 (Dijkstra's Algorithm for Shortest Paths)

i and j is denoted by a·ij· We assume that a'ij = aji, and for notational conve
nience, we write aij = 00 if there is no direct flight between i and j. The problem
is to find the cheapest airfare for going between two cities perhaps through in
termediate stops. Let n = 6 and al2 = 30, al3 = 60, alA = 25, alS = a16 = 00,

a23 = 0,24 = 0,25 00, 0,26 = 50, 0,34 = 35, 0,35 0,36 = 00, 0,45 = 15, (L46 = 00,

0,156 = 15. Find the cheapest airfare from every city to every other city by using
the DP algorithm.
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2.2

Find a shortest path from each node to node 6 for the graph of Fig. 2.4.1 by
using the DP algorithm.

EXERCISES

2.3

Air transportation is available between TL cities, in some cases directly and in oth
ers through intermediate stops and change of carrier. The airfare between cities

Find a shortest path fronl node 1 to node 5 for the graph of Fig. 2.4.2 by using
the label correcting method of Section 2.3.1.

2.1

been sirnilarly extended by Bertsekas, Guerriero, and Musmanno [BGM95],
and by Polymenakos, Bertsekas, and Tsitsiklis [PBT98].

There is extensive literature on exact and approximate solution meth
ods for constrained and multiobjective shortest path and DP problems.
Analogs of label correcting and Dijkstra-like methods were proposed by
Vincke [Vin7Ll] and tlansen [Han80], respectively; see also JafFe [Jaf84] and
Martins [Mar84]. Recent work includes Guerriero and Musmanno [GuMOl],
who investigate analogs of the SLF/LLL methods, and give many references
and computational results. For a multiobjective version of the A * method,
see Stewart and White [StW91], who also survey earlier work.
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2.9 (Shortest Path Tour Problem [BeC04])

2.7 (Label Correcting with Negative Arc Lengths)
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2.12 (Doubling Algorithms)

Consider a deterministic finite-state problem that is time-invariant in the sense
that the state and control spaces, the cost per stage, and the system equation

Formulate a DP algorithm to solve the deterministic problern of Section 2.1 on a
parallel computer with two processors. One processor should execute a forward
algorithm and the other a backward algorithm.

2.11 (DP on Two Parallel Processors [Las85])

holds, even if the sets Wand 11 have no node in common.

. {dS dt) < dS . dtmm i -I- 'i f _ max 'i -I- max 'i
iEW iEW iEV

(b) Show that the conclusion of part (a) holds if the algorithm is terminated
once the condition

D st = min {eli -I- d~} = min {eli +, d~} = min {di -I- d,~} .
'iEW iEWUViEV

(b) Show that a solution can be obtained by solving a sequence of ordinary
shortest path problems, each involving a single origin and multiple desti
nations.

2.10 (Two-Sided Dijkstra Algorithm [Nic66])

Consider a problem of finding a shortest path from a given origin node s to a
given destination node t in a graph with nonnegative arc lengths. Consider an
algorithm that maintains two subsets of nodes, Wand 11, with the following
properties:

(1) sEW and t E 11.

(2) If'i E Wand j t}. W, then the shortest distance from s to 'i is less than or
equal to the shortest distance from s to j.

(3) If i E 11 and j t}. 11, then the shortest distance from i to t is less than or
equal to the shortest distance from j to t.

At each iteration the algorithm adds a new node to TV and a new node to 11 (the
Dijkstra algorithm can be used for this purpose), and terminates when Wand 11
have a node in common. Let df be the shortest distance from s to 'i using paths
all the nodes of which, with the possible exception of i, lie in W (df = 00 if no
such path exists), and let d~ be the shortest distance from i to t using paths all
the nodes of which, with the possible exception of i, lie in 11 (d~ 00 if no such
path exists).

(a) Show that upon termination, the shortest distance D st from s to t is given
by

Sec. 2.4Chap. 2Dei;erministic Systems and the Shortest Path Problem

We have a set of N objects, denoted 1,2, ... , N, which we want to group in
clusters that consist of consecutive objects. For each cluster i, i -I- 1, ... ,j, there
is an associated cost aij. We want to find a grouping of the objects in clusters
such that the total cost is minimum. Formulate the problem as a shortest path
problem, and write a DP algorithm for its solution. (Note: An example of this
problem arises in typesetting programs, such as TEXjLATEX, that break down
a paragraph into lines in a way that optimizes the paragraph's appearance.)

Consider a problem of finding a shortest path from a given ongm node s to
a given destination node t in a graph with nonnegative arc lengths. However,
there is the constraint that the path should successively pass through at least one
node from given node subsets T I , T2 , ••• , TN (Le., for all k, pass through some
node from the subset Tk after passing through at least one node of the subsets
T t , ... , Tk-I).

(a) Formulate this as a dynamic programming problem.

Consider the problem of finding a shortest path from node s to node t, and
assume that all cycle lengths are nonnegative (instead of all arc lengths being
nonnegative). Suppose that a scalar 'lLj is known for each node j, which is an
underestimate of the shortest distance from j to t ('lLj can be taken -00 if no
underestimate is known). Consider a modified version of the typical iteration of
the label correcting algorithm of Section 2.3.1, where step 2 is replaced by the
following:

IVfodified Step 2: If eli -I- aij < min{dj , UPPER - 'Uj}, set dj = d'i -I- aij and set
'i, to be the parent of j. In addition, if j =J. t, place j in OPEN if it is not already
in OPEN, while if j = t, set UPPER to the new value d i -I- ait of dt.

(a) Show that the algorithm terminates with a shortest path, assuming there
is at least one path from s to t (d. Prop. 2.3.1).

(b) Why is the algorithm of Section 2.3.1 a special case of the one of this
exercise?

Step 1: Remove a node i from OPEN and for each child j of i, execute step 2.

Step 2: If eli -I- aij < min{elj , UPPER}, set elj = eli -I- aij, set i to be the parent
of j, and place j in OPEN if it is not already in OPEN. In addition, if JET, set
UPPER = maXtET elt .

Step 3: If OPEN is empty, terminate; else go to step 1.

Prove a termination property such as the one of Prop. 2.3.1 for this algorithm.

100
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103Notes, Sources, and Exercises

A businessman operates out of a van that he sets up in one of two locations on
each day. If he operates in location i (where i = 1,2) on day k, he makes a
known and predictable profit, denoted r'1'. However, each time he moves from
one location to the other, he pays a setup cost c. The businessman wants to
maximize his total profit over N days.

(b) Write a corresponding DP algorithm that finds an optimal solution in n - 2
stages.

(c) Assume that Cm is the same for all m. Devise a rule for detecting that an
optimal solution has been found before iteration n - 2 of the DP algorithm.

2,,17

2.16

Consider the framework of the shortest path problem. For any path P, define the
bottleneck aTC of P as an arc that has maximum length over all arcs of P. Consider
the problem of finding a path whose length of bottleneck arc is minimum, among
the paths connecting an origin node and a destination node. Develop and justify
an analog of the label correcting method of Section 2.3.1. Hint: Replace d'i + aij

with max{di,a'ij}'

2 .. 15 (Path Bottleneck Problem)

Air transportation is available between all pairs of n cities, but because of a
perverse fare structure, it may be more economical to go from one city to another
through intermediate stops. A cost-minded traveler wants to find the minimum
cost fare to go from an origin city s to a destination city t. The airfare between
cities 'l and j is denoted by a'ij, and for the mth intermediate stop, there is a
stopover cost Cm (aij and Cm are assumed positive). Thus, for example, to go
from s to t directly it costs ast, while to go from s to t wi th intermediate stops
at cities i l and i 2 , it costs as'll + Cl + ail'i2 + C2 + a'i2t.

(a) Formulate the problem as a shortest path problem, and identify the nodes,
arcs, and arc costs.

Consider the shortest path problem of Section 2.~), except that the number of
nodes in the graph may be countably infinite (although the nurnber of outgoing
arcS from each node is finite). We assume that the length of each arc is a positive
integer. Furthermore, there is at least one path from the origin node s to the des
tination node t. Consider the label correcting algorithm as stated and initialized
in Section 2.3.1, except that UPPER is initially set to some integer that is an
upper bound to the shortest distance from s to t. Show that the algorithm will
terminate in a finite number of steps with UPPER equal to the shortest distance
from s tot. Hint: Show that there is a fmite l1lunber of nodes whose shortest
distance from s does not exceed the initial value of UPPER.

2,,14 (Shortest Paths for an Infinite Number of Nodes)

Sec.2A

(2.16)

(2.15)
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i = 1,2, ... , N,

d'i := min [a'ij + d j ]
J

tk + l • [ dk ]( 'i = mm a'ij + j ,
J

Det;erminisUc Systems and the Shortest Path Problem

is executed at node oj in parallel with the corresponding iteration for dj at
every other node j. However, the times of execution of this iteration at
the various nodes are not synchronized. Furthermore, each node i commu
nicates the results of its latest computation of d'i at arbitrary times with
potentially large communication delays. Therefore, there is the possibility
of a node executing iteration (2.16) several times before receiving a commu
nication from every other neighboring node. Assume that each node never
stops executing iteration (2.16) and transmitting the result to the other
nodes. Show that the values dT available at time T at the corresponding
nodes oj are equal to the shortest distances for all T greater than a finite

time T. Hint: Let (1; and 47 be generated by iteration (2.16) when start
ing from the first and the second initial conditions in part (a), respectively.
Show that for every k there exists a time Tk such that for all T ~ T k and

k, we have 47 :; dT :; (1~. Note: For a detailed analysis of asynchronous
iterations, including algorithms for shortest paths and DP, see Bertsekas
and Tsitsiklis [BeTS9], Ch. 6. Distributed asynchronous shortest path al
gorithms find extensive application in the problem of packet routing in
(lata communication networks. For a related discussion and analysis, see
13ertsekas and Gallager [13eG92], Ch. 5.

It was shown in Section 2.1 that if the initial condition is d? = 00 for
'i = 1, ... , N and d~ = 0, then the iteration (2.15) yields the shortest
distances in N steps. Show that if the initial condition is d? = 0, for all
oj = 1, ... ,N, t, then the iteration (2.15) yields the shortest distances in a
finite mnnber of steps.

(b) Assume that the iteration

(a)

Consider the problem of finding a shortest path from nodes 1,2, ... ,N to nodet,
and assume that all arc lengths are nonnegative and all cycle lengths are positive.
Consider the iteration

Discuss how this equation may be used with advantage to solve problems with a
large number of stages.

are the same for each stage. Let Jk(X, y) be the optimal cost to reach state y at
time k starting from state x at time 0. Show that for all k
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(a) Show that the problem can be formulated as a shortest path problem, and
write the corresponding DP algorithm.

(b) Suppose he is at location i on day k. Let

where zdenotes the location that is not equal to i. Show that if Rb ::::; 0 it
is optimal to stay at location i, while if R1 2: 2c, it is optimal to switch.

(c) Suppose that on each day there is a probability of rain Pi at location 'l
independently of rain in the other location, and independently of whether
it rained on other days. If he is at location i and it rains, his profit for the
day is reduced by a factor (J'i. Can the problem still be formulated as a
shortest path problem? Write a DP algorithm.

(d) Suppose there is a possibility of rain as in part (c), but the businessman
receives an accurate rain forecast just before making the decision to switch
or not switch locations. Can the problem still be formulated as a shortest
path problem? Write a DP algorithm.

p.106
p.109
p.115
p.115
p.125
p.129
p.131
p. 131
p.135
p.135
p. 1~38

p.139
p. 1.:12

Contents

ntrol

3.1. Continuous-Time Optimal Co"ntrol
3.2. The Hamilton-Jacobi-Bellman Equation
3.3. The Pontryagin Minimum Principle . .

3.3.1. An Informal Derivation Using the HJB Equation
3.3.2. A Derivation Based on Variational Ideas . . .
3.3.3. Minimum Principle for Discrete-Time Problems

3.4. Extensions of the Minimum Principle
3.4. L Fixed Terminal State
3.4.2. Free Initial State
3.4.3. Free Terminal Time .
3.4.4. Time-Varying System and Cost
3.4.5. Singular Problems

3.5. Notes, Sources, and Exercises

eterministi~c Continuous~Time

Optimal

3

Chap. 2Deterministic Systems and the Shortest Path Problem



3.1 CONTINUOU8-TIl\!IE OPTIMAL CONTROL

where the functions 9 and h a.re continuously differentiable with respect to
~r;, and 9 is continuous with respect to u.

107

:b(t) = u(t),

for all t E [0, T].

for alIt E [0, T].

o :S u(t) :S 1,

~b (t) = X2(t),

lu(t)1 ::; 1,

h(x(T)) = !:r:I(T) _XI!2 + IX2(T) _x21 2
,

g(x(t),u(t)) = 0, for all t E [0,1'].

Continuo llS-Time Optimal Control

subject to

x(t) = ju(t)x(t),

A producer with production rate x(t) at time t may allocate a portion u(t)
of his/her production rate to reinvestment and 1 - ?t(t) to production of a
storable good. Thus x(t) evolves according to

The initial production rate x(O) is a given positivenurnber.

There are many variations of the problem; for example, the final posi
tion and/or velocity may be fixed. These variations can be handled by various
reformulations of the general continuous-time optimal control problem, which
will be given later.

,f' (1 ~ n(t))x(t)dl

Example 3.1.2 (Resource Allocation)

where j > 0 is a given constant. The producer wants to maximize the total
amount of product stored

and the problem fits the general framework given earlier with cost functions
given by

The corresponding continuous-time system is

subject to the control constraint

A unit mass moves on a line under the influence of a force '/1,. Let Xl (t)
and X2(t) be the position and velocity of the mass at time t, respectively.
From a given (Xl (0), X2 (0)) we want to bring the mass "near" a given final
position-velocity pair (Xl, X2) at time T. In particular, we want to

Example 3.1.1 (lV!otion Control)

Sec. 3.1

(3.1)

Chap. 3

°::; t ::; T,x(t) = f(x(t),u(t)),

Deterministic Continuous-Time Optimal Control

x(o) : given,

where ~r;(t) E 3tn is the state vector at time t, j;(t) E 3tn is the vector of first
order time derivatives of the states at time t, u(t) E U c 3tm is the control
vector at time t, U is the control constraint set, and T is the terminal time.
The components of f, ::C, i~, and 'u will be denoted by fi, Xi, Xi, and Ui,
respectively. Thus, the system (3.1) represents the n first order differential
equations

h(x(T)) +[' g(x(t),1t(t))dt,

dXi(t). ( )
~ = Ii l:(t),U(t) , i = 1, ... ,no

We view j;(t), l;(t), and u(t) as column vectors. We assume that the system
function Ii is continuously differentiable with respect to X and is continuous
with respect to U. The admissible control functions, also called control
t'f'ajectoTies, are the piecewise continuous functions {u(t) I t E [0, Tn with
u(t) E U for all t E [0, T).

We should stress at the outset that the subject of this chapter is
highly sophisticated, and it is beyond our scope to develop it according
to high standards of mathematical rigor. In particular, we assume that,
for any admissible control trajectory {u( t) I t E [0, Tn, the system of
differential equations (3.1) has a unique solution, which is denoted {xu(t) I
f; E [0, T)} and is called the corresponding state tmjectory. In a more
rigorous treatment, the issue of existence and uniqueness of this solution
would have to be addressed more carefully.

We want to find an admissible control trajectory {v.(t) It E [0, Tn,
which, together with its corresponding state trajectory {x(t) I t E [0, Tn,
minimizes a cost function of the form

'Ve consider a continuous-time dynamic system

In this chapter, we provide an introduction to continuous-time determin
istic optimal control. We derive the analog of the DP algorithm, which is
the Hamilton-Jacobi-Bellman equation. Furthermore, we develop a cele
brated theorem of optimal control, the Pontryagin Minimum Principle and
its variations. We discuss two different derivations of this theorem, one of
which is based on DP. We also illustrate the theorem by means of examples.
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which is equal to

JW9

Figure 3.Ll Problem of finding a
curve of minimum length from a given
point to a given line, and its for
mulation as a calculus of variations
problem.

k = 0,1, ,N,

'. k = 0, 1, , N,

T
/5= N'

Xk x(k/5),

Uk = ll(k/5),

Length =: Iifi + (u(t»2dt

\ I
~

\(t) :'"
I Given
I Line
I

The Hamilton-Jacobi-BelIman Equation

)«t) =: u(t)

o

a
Given/
point

]*(t, x) : Optimal cost-to-go at time t and state::r

for the discrete-time approximation.

and the cost function by

N-]

h(;I.:N) + l:: g(Xk,Uk;)' I).
k=()

J*(t,:.r;) : Optima.l cost-ta-go a.t time t and state x

for the continuous-time problem,

We now apply DP to the discrete-time approximation. Let

and we approximate the continuous-time system by

Vlfe denote

We will now derive informally a partial differential equation, which is sat
isfied by the optimal cost-to-go function, under certain assumptions. This
equation is the continuous-time analog of the DP algorithm, and will be mo
tivated by applying DP to a discrete-time approximation of the continuous
time optimal control problem.

Let us divide the time horizon [0, T] into N pieces using the discretiza
tion interval

Sec. 3.2

3.2 THE HAMILTON-JACOBI-BELLMAN EQUATION

Chap. 3

x(O) = a.xCt) = 1l(t),

Detenninistic ConUnuous-Time Optimal Control

Our problem then becomes

minimize 1T
)1 + (X(i))2 dl

subject to x(O) = a.

To refonnulate the problem as a continuous-time optimal control problem,
we introduce a control'll and the system equation

)1 + (X(t))2 dt.

This is a problem that fits our continuous-time optimal control framework.

minimize 1" )1 + ("(i))2 dl,

T'he length of the entire curve is the integral over [0, T] of this expression, so
the problem is to

Caleulus of variations problems involve finding (possibly multidimensional)
curves x(t) with certain optimality properties. They are among the most
celebrated problems of applied mathematics and have been worked on by
many of the illustrious mathematicians of the past 300 years (Euler, Lagrange,
Bernoulli, Gauss, etc.). We will see that calculus of variations problems can
be reformulated as optimal control problems. We illustrate this reformulation
by a simple example.

Suppose that we want to find a minimum length curve that starts at
a given point and ends at a given line. The answer is of course evident, but
we want to derive it by using a continuous-time optimal control formulation.
Without loss of generality, we let (0, a) be the given point, and we let the
given line be the vertical line that passes through (T, 0), as shown in Fig. 3.1.1.
Let also (t, :r;(t)) be the points of the curve (0 :S t :S T). The portion of the

curve joining the points (t, x(t») and (t + dt, x(t + dt») can be approximated,
for small dt, by the hypotenuse of a right triangle with sides dt and x(t)dt.
Thus the length of this portion is

"'-J.".VLU".I!.n,'V 3.1.3 (Calculus of Variations Problems)
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we obtain the following equation for the cost-to-go function J*(t, x):

Assuming that }* has the required differentiability properties, we expand
it into a first order Taylor series around (ko, x), obtaining

}*((k + 1)· O,X + j(x,u). 0) = }*(ko,x) + "Vt}*(ko,x). 0

+ "VxJ*(k6, x)' j(x, u) . 0 + 0(0),

111

(3.2)
(3.3)

for all t, x,

for all t, x.

for all :r;.V(T, x) = h(x),

V(t,:1;) = J*(t,x),

The Hamilton-Jacobi-Bellman Equation

0= min[g(x,u) + "VtV(t,x) + "VxV(t,x)'j(:1;,u)],
'!LEU

I.e.,

g(x(t),ft(t)) + ~~(V(t,x(t))),

0<:: 1"'g(x(t), il(t))dt + V(1', x(1')) V(O,x(O)).

Furthermore, the control trajectory {u*(t) I t E [0, T]} is optimal.

o:s; g(x(t),ft(t)) + "VtV(t,x(t)) + "VxV(t,x(t))'j(:i;(t),u(t)).

V(O,x(O)) <:: h(x(1')) +,fg(x(t),l,(t))dt,

Suppose also that JL*(t, x) attains the minimum in Eq. (3.2) for all t
and x. Let {x*(t) It E [O,TJ} be the state trajectory obtained from
the given initial condition x(O) when the control trajectory 1L*(t) =
p*(t,x*(t)), t E [O,T] is used [that is, x*(O) = :c(O) and for all t E

[O,T], ;i;*(t) j(x*(t),p*(t,x*(t))); we assume that this differential
equation has a unique solution starting at any pair (t,:£) and that the
control trajectory {p,*(t,x*(t)) It E [O,TJ} is piecewise continuous as
a function of t]. Then V is equal to the optimal cost-to-go function,

Proposition 3.2.1: (Sufficiency Theorem) Suppose V(t, :1;) is a
solution to the HJB equation; that is, V is continuously differentiable
in t and :.c, and is such that

Proof: Let {{l(t) I t E [0, Tn be any admissible control trajectory and let
{x(t) I t E [0, Tn be the corresponding state trajectory. From Eq. (3.2) we
have for all t E [0, T]

where djdt(·) denotes total derivative with respect to t. Integrating this
expression over t E [0, T], and using the preceding inequality, we obtain

Thus by using the terminal condition V(T, x) = h(::c) of Eq. (3.3) and the
initial condition X(O) = :1;(0), we have

Using the system equation i: (t) = j (x(t), ft (t) ), the right-hand side of the
above inequality is equal to the expression

Sec. 3.2Chap. 3

for all t, x,

for all t, x,

Deterministic Continuous-Time Optimal Control

l~m J*(ko, x) = J*(t, x),
k-.oo, 0-.0, k8=t

o min[g(x;,u) + "VtJ*(t,x) + "VxJ*(t,x)'j(x,u)],'!LEU
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'rhe DP equations are

J*(No,x) = h(x),

}*(k6, :1;) = min [g(:1;, u)·o+}* ((k+1).0, x+ j(x, U)'6)], k = 0, ... , N-1.ltEU

}*(k6,:1;) = IYlin[g(x,u). 0 + }*(ko,x) + "Vt}*(ko,x). 0
ltEU

+ "Vx}*(ko, x)' j(x, u) . 0 + 0(0)].

where 0(0) represents second order terms satisfying lim8--+0 o(0) j 0 = 0,
"V t denotes partial derivative with respect to t, and "Vx denotes the n
dilnensional (column) vector of partial derivatives with respect to x. Sub
stituting in the DP equation, we obtain

with the boundary condition J*(T, x) = h(x).
This is the Hamilton-Jacobi-Bellman (HJB) equat'ion. It is a partial

clifferential equation, which should be satisfied for all time-state pairs (t, x)
by the cost-to-go function J*(t, x), based on the preceding informal deriva
tion, which assumed among other things, differentiability of J*(t, x:). In fact
we do not Imow a priori that J*(t, x) is differentiable, so we do not know
if J* (t,:.c) solves this equation. However, it turns out that if we can solve
the HJB equation analytically or computationally, then we can obtain an
optimal control policy by minimizing its right-hand-side. This is shown in
the following proposition, whose statement is reminiscent of a correspond
ing statement for discrete-time DP: if we can execute the DP algorithm,
which may not be possible due to excessive computational requirements,
we can find an optimal policy by minimization of the right-hand side.

Canceling J*(ko,x) from both sides, dividing by 0, and taking the limit as
() -+ 0, while assuming that the discrete-time cost-to-go function yields in
the limit its continuous-time counterpart,



For a given initial time t and initial state x, the cost associated with this
policy can be calculated to be

113

O. The

if x> T - i,

if x < -(T - i),

if Ixl :::; T - t,

Figure 3.2.1 Optimal cost-to-go func

tion J* Ct, x) for Example 3.2.1.

xT-t

J*(t,x)

o

h(x(T»),

" fh(x-(T-t»)

J (t,x) = l ~(x+ (T - t))

The Hamilton-Jacobi-Bellman Equation

-(T- t)

and can be similarly verified to be a solution of the HJB equation.

where h is a nonnegative differentiable convex function with h(O)
corresponding optimal cost-to-go function is

0= min [1 + sgn(x)· 'lL] max{O, 13::1- (T - t)},
l'ul9

\7 t J*(t,x) = max{ O,lxl- (T - t)},

\7 xJ* (t, x) = sgn(x) . max{ 0, lxl - crt - i)}.

which can be seen to hold as an identity for all (i,x). Purthermore, the min
imum is attained for'll = -sgn(x): We therefore conclude based on Prop.
3.2.1 that J*(t,x) as given by Eq. (3.7) is indeed the optimal cost-to-go func
tion, and that the policy defined by Eq. (3.6) is optimal. Note, however,
that the optimal policy is not unique. Based on Prop. 3.2.1, any policy for
which the minimum is attained in Eq. (3.8) is optimal. In particular, when
IX(i)1 :s; T - i, applying any control from the range [-1,1) is optimal.

The preceding derivation generalizes to the case of the cost

Substituting these expressions, the HJB Eq. (3.4) becomes

This function, which is illustrated in Fig. 3.2.1, satisfies the terrninal condition
(3.5), since J*(T,x) = (1/2)x 2

. Let us verify that this function also satisfies
the HJB Eq. (3.4), and that'll = -sgn(x) attains the minimum in the right
hand side ofthe equation for all t and x. Proposition 3.2.1 will then guarantee
that the state and control trajectories corresponding to the policy p* (l, x) are
optimal.

Indeed, we have

Sec. 3.2

(3.4)

(3.5)

(3.7)

(3.6)

ClJap.3

for all t, x,

for all t, x.V(t,x) = J*(t,x),

{

I if x < 0
p*(t,x) = -sgn(x) = 0 if x = 0,

-1 if x> O.

* 1( { )2J (t, x) = 2" max 0, Ixl- (T - t)} .

Deterministic Continuous-Time Optimal Control

0= min [\7 t Vet, x) + \7 x V(t, x)'lL]
lul:::;l '

Example 3.2.1

The HJB equation here is

with the terminal condition

v (0, x(O)) = h (x' (T)) + foT g(x"(tj, u' (t)) dt,

There is an evident candidate for optimality, namely moving the state
towards 0 as quickly as possible, and keeping it at 0 once it is at O. The
corresponding control policy is

To illustrate the HJB equation, let us consider a simple example involving
the scalar system

x(t) = 'lL(t),

with the constraint 1'lL(t) I :s; 1 for all t E [0, TJ. The cost is

112

Q.E.D.

!f we us: :ll* (t) and x* (t) in place of 11(t) and x( t), respectively, the preceding
mequaJlt18S becomes equalities, and we obtain

:11erefore the cost corresponding to {u*(t) It E [O,T]} is V(O,x(O)) and
IS no larger than the cost corresponding to any other admissible. control
trajectory {u(t) It E [0, Tn· It follows that {u*(t) It E [0, T]} is optimal
and that

V(O,x(O)) = J*(O,x(O)).

We now note that the preceding argument can be repeated with any initial
time t E [0, TJ and any initial state x. We thus obtain



or

2B
I
K(t)x + 2R'l.L = 0
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(3.15)

for all t, ;t.

for all :r;.J*(T,x) = hex),

J1*(t, x) = arg min F(t, x, u),
uEU

argmin [g(x*(t),u) + \lxJ*(t,:r:*(t))'j(:r*(t),'1L)].
uEU

The Pontryagin lVfinimum Principle

u*(t)

Then

Lernma 3.3.1: Let F(t, x, u) be a continuously differentiable function
of t E ai, x E ain , and 'It E aim, and let U be a convex subset of aim.
Assume that JL*(t, x) is a continuously differentiable function such that

Vife argued that the optimal cost-to-go function J* (t, :r;) satisfies this equa
tion under some conditions. Furthermore, the sufficiency theorem of the
preceding section suggests that if for a given initial state :r;(O), the control
trajectory {u*(t) It E [0, Tn is optimal with corresponding state trajectory
{:r;*(t) It E [O,T]}, then for all t E [O,T],

Note that to obtain the optimal control trajectory via this equation, we
do not need to know \lxJ* at all values of x and t; it is sufficient to know
\1xJ* at only one value of x for each ~~, that is, to know only \lxJ* (t, :r:* (t)).

The Minimum Principle is basically the preceding Eq. (3.16). Its ap
plication is facilitated by streamlining the computation of \l:D J* (t, ~x;* (t)) .
It turns out that we can often calculate \lxJ*(t,~r*(t)) along the optimal
state trajectory far more easily than we can solve the HJB equation. In
particular, \lxJ* (t, x* (t)) satisfies a certain differential equation, called the
adjo'int equation. We will derive this equation informally by differentiat
ing the HJB equation (3.14). We first need the following lemma, which
indicates how to differentiate functions involving minima.

0= min[g(x,'U) + \ltJ*(t,x) + \lxJ*(t,x)'j(x,u)], for all t,x, (3.14)
uEU -

Recall the HJB equation

3.3.1 An Informal Derivation Using the HJB

In this section we discuss the continuous-time and the discrete-time versions
of the Minimum Principle, starting with a DP-based informal argument.

Sec. 3.3
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K(T) = QT.

Deterministic Continuous-Time Optimal Control

Reversing the argument, we see that if K(t) is a solution of the Riccati
equation (3.12) with the boundary condition (3.13), then Vet, x) = Xl K(t)x
is a solution of the HJB equation. Thus, by using Prop. 3.2.1, we conclude
that the optimal cost-to-go function is

J*(t,x) = xIK(t)x.

F'urthermore, in view of the expression derived for the control that minimizes
in the right-hand side of the HJB equation [ef. Eq. (3.11)], an optimal policy
is

~L* (t, :x:) = _R- 1 B'K(t):r.

'It = _R- 1 B IK(t)x. (3.11)

Substituting the minimizing value of u in Eq. (3.10), we obtain

o :x:
1
(k(t) + K(t)A + AIK(t) - K(t)BR- 1 B IK(t) + Q)x, for all (t, x).

Therefore, in order for Vet, x) = Xl K(t)x to solve the HJB equation,
K (t) must satisfy the following matrix differential equation (known as the
contimunts-time Riccati equation)

k(t) = -K(t)A AI K(t) + K(t)BR- 1 B IK(t) Q (3.12)

with the terminal condition

Consider the n-dimensional linear system

x(t) = Ax(t) + Bu(t),

where A and B are given matrices, and the quadratic cost

x(T)'Ql'x(T) +l'(x(t)'Qx(t) + v(t)'Rv(t)) dt,

where the matrices QT and Q are symmetric positive semidefinite, and the
rnatrix R is symmetric positive definite (Appendix A defines positive definite
and semidefinite matrices). The HJB equation is

0= min [:r
I
Q:r+1L

I
R1L+'7tV(t,x)+'7 x V(t,x)/(Ax+Bu)], (3.9)

'ltE3c fn -

V(T,x) = :t:'QTX.

Let us try a solution of the form

Vet, x) = Xl K(t):x;, K(t) : n x n symmetric,

and see if we can solve the HJB equation. We have '7 x V (t, x) = 2K(t)x and
'7 LV(t, :c) = Xl k(t):x:, where k(t) is the matrix with elements the first order
derivatives of the elements of K(t) with respect to time. By substituting
these expressions in Eq. (3.9), we obtain

o= min [Xl Qx + '1/Ru + Xl i((t)x + 2x l K(t)Ax + 2x l K(t)Bu]. (3.10)
'It

The minimum is attained at a 'U for which the gradient with respect to u is
zero, that is,

!~:x:a:nllpj[e 3.2.2 (Linear-Quadratic Problelns)
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iInplying that

(3.19)
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(3.18)

(3.17)

BIn)BXl

Bin
aXn

5!.- (V tJ* (t, x*(t))).
elt

pet) = VxJ*(t,x*(t)),

The Pontryagin Minimum Principle

Thus, by denoting

Similarly, the term

in Eq. (3.18) is equal to the total derivative

0= VrtJ*(t,x) + V;t J*(t,x)'J(l;,IL*(t,X:)),

where V xf (x, ft* (t, x)) is the matrix

with the partial derivatives evaluated at the argument (x, 1),* (t, x) ) .
The above equations hold for all (t, :r;). Let us specialize them along

an optimal state and control trajectory {(x*(t),u*(t)) \ t E (O,Tn, where

u*(-t) = IL*(t,X*(t)) for all t E (O,Tl. We have for all t,

x*(t) = J(x* (t), u* (t)),

5!.- (VxJ* (t, x* (t))).
elt

V;t J* (t, x*(t)) + V~xJ* (t, x* (t)) f (x* (t), 'U*(t))

so that the term

in Eq. (3.17) is equal to the following total derivative with respect to t

and we rely on Lemma 3.3.1 to disregard the terms involving the derivatives
of jt*(t, x) with respect to t and x. We obtain for all (t, x),

0= Vxg(X,fL*(t,X)) + V;tJ*(t,x) + V~xJ*(t,:x;)f(:r,IL*(t,:I;))

+ Vxf(x, jt*(t, x))VxJ*(t, x),

We differentiate both sides of the fIJB equation with respect to x and
with respect to t. In particular, we set to zero the gradient with respect to

:1; and t of the function

g(x, fL*(t, x)) + VtJ*(t,x) + VxJ*(t,:c)' f(:1;,p,*(t,:r)),

Sec. 3.3Cl1ap. 3

for all Liy,

for all t, x,

for all u E U,

Deterministic Continuolls-Time Optimal Control

V t {~D F(-t, x, u)} = V tF(t, x, p,*(t, x)),

V x {min F(t, x, u)} = V xF(t, x, /-L*(t, .T)) , for all t, x.
uEU

[Note: On the left-hand side, V t {-} and Vx {-} denote the gradients
of the function G(t,x) = minuEuF(t,x,u) with respect to t and x,
respectively. On the right-hand side, V t and V x denote the vectors of
partial derivatives of F with respect to t and x, respectively, evaluated
at (t,x,fL*(t,X)).]

Consider the HJB equation (3.14), and for any (t, x), suppose that
p,*(t, :r;) is a control attaining the minimum in the right-hand side. We
~nake the restrictive assumptions that U is a convex set, and that f-t*(t,x)
IS continuously differentiable in (t,x), so that we can use Lemma 3.3.1.
(We note, however, that alternative derivations of the Minimum Principle
do not require these assumptions; see Section 3.3.2.)

Q.E.D.

Vrt*(y)VuF(y, Jt*(y)) = O.

V {minF(y,u)} = VyF(Y,fL*(Y)) + V;t*(y)VuF(y,/-t*(y)).
uEU

[see Eq. (B.2) in Appendix B]. Now by Taylor's Theorem, we have that
when y changes to y + 6y, the minimizing /-t*(y) changes from jt*(y) to
some vector p*(y + 6y) = f),*(Y) + Vp,*(y)'6y + o(1l6yl\) of U, so

We will prove the result by showing that the second term in the right
hand side above is zero. This is true when U = 3{m, because then jt*(y)
is an unconstrained minimum of F(y, u) and VuF(y, ft*(y)) = O. More
generally, for every fixed y, we have

Proof: For notational simplicity, denote y = (t,x), F(y,u) = F(t,x,u),
and fL*(Y) = IL*(t, x). Since minuEu F(y,u) = F(y,;L*(y)),
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We state the Minimum Principle in terms of the Hamiltonian function.

H(x, u,p) = g(:1:, u) +p' f(x, 'u).

Note that both the system and the adjoint equations can be compactly
written in terms of the Hamiltonian as

119

for all t E [0, T].

x* (0) = ':1;(0) : given.

H(x*(t),u*(t),p(t)) = 0,

x*(t) = f(x*(t),u*(t)),

The Pontryagin l\!Iinimum Principle

Proposition 3.3.1: (Minimum Principle) Let fa* (t) It E [0, TJ}
be an optimal control trajectory and let {':1;* (t) I t E [0, TJ} be the
corresponding state trajectory, i.e.,

with the boundary condition

p(T) = Vh(x*(T)),

u*(t) = argminH(x*(t),u,p(t)).
ttEU

where h(·) is the terminal cost function. Then, for all t E [0, T],

p(t) = -VxH(x*(t),'It*(t),p(t)),

Let also p(t) be the solution of the adjoint equation

Furthermore, there is a constant 0 such that

and poet) is constant by Eq. (3.22). We should note here that the Hamil
tonian function need not be constant along the optimal trajeetory if the
system and cost are not time-independent, contrary to our assumption thus
far (see Section 3.4.4).

It is important to note that the Minimum Principle provides Tu-;ces

SetTy optimality conditions, so all optimal control trajectories satisfy these
conditions, but if a control trajectory satisfies these conditions, it is not
necessarily optimal. Further analysis is needed to guarantee optimality.
One method that often works is to prove that an optirnal control trajec
tory exists, and to verify that there is only one control trajectory satisfying
the conditions of the Minimum Principle (or that all control trajectories
satisfying these conditions have equal cost). Another possibility to con
clude optimality arises when the system function f is linear in (':1;, 'It), the

All the assertions of the Minimum Principle have been (informally)
derived earlier except for the last assertion. To see why the Hamiltonian
fLmction is constant for t E [0, T] along the optimal state and control trajec
tories, note that by Eqs. (3.14), (3.19), and (3.20), we have for all t E [0, T]

H(x*(t),u*(t),p(t)) = -VtJ*(t,x*(t)) = -poet),

Sec. 3.3

(3.23)

(3.22)

(3.21 )

(3.20)

Chap. 3

for all t E [0, T].

(3.24)

for all x,

p(t) = -VxfI(x*(t),u*(t),p(t)).

for all t E [0, T].

p(T) = Vh(x*(T)).

Po (t) = V t J * (t, x *(t)) ,

J*(T,x) =h(x),

po(t) = constant,

Dei;erministic Continuous-Time Optimal Control

;i;*(t) VpH(x*(t),u*(t),p(t)),

'IL* (t) = arg min [g(x* (t), u) + p(t)' f(x*(t), u)],
'/lEU

Harniltonian Formulation

Motivated by the condition (3.24), we introduce the Hamiltonian function
mapping triplets (;r;, u, p) E ~n x ~m X ~n to real numbers and given by

Thus, we have a terminal boundary condition for the adjoint equation
(:3.21).

To summarize, along optimal state and control trajectories x* (t),
n*(t), t E [0, T], the adjoint equation (3.21) holds together with the bound
ary condition (3.23), while Eq. (3.16) and the definition of p(t) imply that
'11,* (t) satisfies

we have, by differentiation with respect to x, the relation VxJ*(T,x)
Vh(':1;), and by using the definition VxJ*(t,x*(t)) = p(t), we obtain

Equation (3.21) is a system of n first order differential equations
known as the adjo'int equation. From the boundary condition

po(t) = °

pet) = -Vxf(x*(t),u*(t))p(t) - Vxg(x*(t),u*(t))

or equivalently,

and Eq. (3.18) becomes

Eq. (3.17) becomes
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minimizes

Let us apply the preceding necessary conditions. The Hamiltonian is

JL21

for all t E [0, T].

for all t E [0, T]'

x(O) > 0 : given.

for all t E [0, TJ.x*(t) = a,

u*(t) = argmin~ = 0,
uE3"~

The Pontryagin l\!Iinimum Princ;iple

o :S u(t) :S 1,

xCt) = 'Y11.(t)x(t),

The Hamiltonian is

subject to

Consider the optimal production problem (Example ~!.1.2). We want to max-

pU) = -,u* (t)p(t) - 1 + 'u* (t),

peT) = 0.

Example 3.3.2 (Resource Allocation Continued)

Maximization of the Hamiltonian over u E [0, 1] yields

.f.T

(1 - ,,(t) )x(i)dt

* { 0 if p(t) < l,
u (t) = 1 if p(t) 2: ~.

The adjoint equation is

We thus obtain the (a priori obvious) optimal solution, which is the horizontal
line passing through (0, a). Note that since the Minimum Principle is only a
necessary condition for optimality, it does not guarantee that the horizontal
line solution is optimal. For such a guarantee, we should invoke the linearity
of the system function, and the convexity of the cost function. As rnentioned
(but not proved) earlier, under these conditions, the Minimum Principle is
both necessary and sufficient for optimality.

Since peT) = 0, for t close to T we will have pet) < 1/, and u* (t) = O.
Therefore, for t near T the adjoint equation has the form p(t) = -] and p(t)
has the form shown in Fig. 3.3.1.

imize

H(x, u,p) = (1 - 11.)x + p,'ax.

Therefore we have x* (t) = °for all t, which implies that x* (t) is constant.
Using the initial condition x* (0) = a, it follows that

so minimization of the Hamiltonian gives

Sec. 3.3Chap. 3

x(O) = a.

peT) = O.

for all t E [0, T],

peT) = Vh(x*(T)).

x(t) = 'aCt),

~x;* (0) = x(O),

Deterministic Continuous-Time Optimal Control

pet) = 0,

pet) = 0,

and the adjoint equation is

It follows that

subject to

to express u*(t) in terms of x*(t) and pet). We then substitute the result
into the system and the adjoint equations, to obtain a set of 2n first order
diflerential equations in the components of x*(t) and pet). These equations
can be solved using the split boundary conditions

E:x:anrlplle 3.3.1 (Calculus of Variations Continued)

Consider the problem of finding the curve of minimum length from a point
(0, a) to the line {(T, y) lyE ~}. In Section 3.1 , we formulated this problem
as the problem of finding an optimal control trajectory {u(t) I t E [0, Tn that

11* (t) = arg min H (x*(t), 11, p(t)),
1lEU

H(x, 11.,p) = VI + 11.2 + p11.,

The number of boundary conditions (which is 2n) is equal to the number
of differential equations, so that we generally expect to be able to solve
these differential equations numerically (although in practice this may not
be simple).

Using the Minimum Principle to obtain an analytical solution is pos
sible in many interesting problems, but typically requires considerable cre
ativity. We give some simple examples.

constraint set U is convex, and the cost functions hand g are convex.
Then it can be shown that the conditions of the Minimum Principle are
both necessary and sufficient for optimality.

The Minimum Principle can often be used as the basis of a numerical
solution. One possibility is the two-point boundary problem method. In
this method, we use the minimum condition
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(3.26)

(3.25)-bp(t).

for all t E [0, T]'

The Pontryagin l\!linimum Principle

where ~ = p(O) is an unknown parameter. The last two equations yield

This differential equation, together with the given initial condition 2;* (0)
x(O) and the terminal condition

1 2
H(x, u,p) = -'u + p(ax + bu),

2

x*(T) = e-aT~,
q

i;* (t) = ax* (t) - b2 p(t).

p(T) qx* (T).

Also, from the adjoint equation, we see that

We will extract the optimal solution from these conditions using two different
approaches.

In the first approach, we solve the two-point boundary value problem
discussed following Prop. 3.3.1. In particular, by eliminating the control from
the system equation using Eq. (3.25), we obtain

p(t) = -ap(t),

The optimal control is obtained by minimizing the Hamiltonian with respect
to u, yielding

with the terminal condition

and the adjoint equation is

where a and b are given scalars. We want to find an optirnal control over a
given interval [0, T] that minimizes the quadratic cost

where q is a given positive scalar. There are no constraints on the control, so
we have a special case of the linear-quadratic problem of Example ~1.2.2. We
will solve this problem via the Minimum Principle.

The Hamiltonian here is

Sec. 3.3Chap. 3

Figure 3.3.1 Form of the adjoint variable
p(t) for t near T in the resource allocation
example.

Figure 3.3.2 Form of the adjoint variable
p(t) and the optimal control in the resource
allocation example.

T

T

T

p(t)

/

u'(t}=o

/

T - 1/y

T- 1/y

T - 1/y

Deterministic ConUnuous-Time Optimal Control

,/
11 (t) =1

p(t)

u'(t)

o

o

o

x(t) = ax(t) + bu(t),

p(t) = -IP(t)

Thus, near t = T, p(t) decreases with slope -1. For t = T - ]/''1, p(t)
is equal to 1/1 , so u*(t) changes to u*(t) = 1. It follows that for t < T-l/I ,
the adjoint equation is

or

p(t) e--yt . constant.

Piecing together p(t) for t greater and less than T - ]/''1, we obtain the form
shown in Fig. 3.3.2 for p(t) and u*(t). Note that if T < 1/1 , the optimal
control is 7L * (t) = 0 for all t E [0, TJ; that is, for a short enough horizon, it
does not pay to reinvest at any time.

Exarnple 3.3.3 (A Linear-Quadratic Problem)

Consider the one-dimensional linear system

1/y
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which by substitution in the system equation, yields

By combining the last two relations, we have

125

(3.29)

(3.28)

(3.27)

h(x(T)) + y(T),

yet) = g(x(t), 11,(t)).

h(x(T)) +.r g(x(t), u(/) )dt

The Pontryagin Minimum Principle

The convexity assumption is satisfied if U is a convex set and f is
linear in 11, [and 9 is linear in 'lJ, in the case where there is an integral cost
of the form (3.27), which is reformulated as a terminal cost by using the
additional state variable y of Eq. (3.28)]. Thus the convexity assumption is
quite restrictive. However, the Minimum Principle typically holds without
the convexity assumption, because even when the set D = {f(x, u) 1'/1, E U}
is nonconvex, any vector in the convex hull of D can be generated by
quick alternation between vectors from D (for an example, see Exercise
3.10). This involves the complicated mathematieal concept of mndomized
or relaxed controls and will not be discussed further.

Convexity Assumption: For every state x the set

h(x(T)).

is convex.

D = {f(x,11,) 111, E U}

and the Minimum Principle corresponding to this terminal cost yields the
Minimum Principle for the general cost (3.27).

We introduce some assumptions:

The cost then becomes

can be reformulated as a terminal cost by introducing a new state variable
y and the additional differential equation

The more general cost

In this subsection we outline an alternative and more rigorous proof of the
Minimum Principle. This proof is primarily directed towards the advanced
reader, and is based on making small variations in the optimal trajectory
and comparing it with neighboring trajectories.

For convenience, we restrict attention to the case where the cost is

Bee. 3.3

3.3.2 A Derivation Based on Variational ]Ideas

Chap. 3

for all t E [0, T]'K(t)x*(t) = p(t),

Deterministic Continuol1s-Time Optimal Control

This is the Riccati equation of Example 3.2.2, specialized to the problem of
the present example. This equation can be solved using the terminal condition

from which we see that K(t) should satisfy

k(t)x* (t) -+ K(t):i;* (t) = Nt) = -ap(t) = -aK(t)x* (t).

k(t)x*(t) -+ K(t) (a - b2 K(t))x*(t) = -aK(t)x*(t),

K(T) = q,

By differentiating the equation K(t)x* (t) = p(t) and by also using the adjoint
equation, we obtain

±* (t) = (a b2 K(t) )x* (t).

which is implied by the terminal condition p(T) = qx* (T) for the adjoint
equation. Once K(t) is known, the optimal control is obtained in the closed
loop form u*(t) = -bK(t)x*(t). By reversing the preceding arguments, this
control can then be shown to satisfy all the conditions of the Minimum Prin
ciple.

*(t) - (0) at -+ b2~ (-at at)X -x e - e -e ,
2a

u* (t) = -bK(t)x* (t),

and we show that K(t) can be obtained by solving the Riccati equation.
Indeed, from Eq. (3.25) we have

and f;, can be obtained from the last two relations. Given~, we obtain p(t) =
e-atf;" and from p(t), we can then determine the optimal control tnijectory
as u* (t) = -bp(t), t E [0, T] [ef. Eq. (3.25)].

In the second approach, we basically derive the Riccati equation en
countered in Example 3.2.2. In particular, we hypothesize a linear relation
between x*(t) and p(t), that is,

(which is the terminal condition for the adjoint equation) can be solved for
the unknown variable 1;,. In particular, it can be verified that the solution of
the differential equation (3.26) is given by
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;y;* (0)

(3.35)

(3.36)

(~~.33)

f(;Y;*(T),U*(T)) )(IT,
(3.~34)

t E [0, T],

\7h(x*(T)),'~(T) 2 0.

((t) = A~(t) + B(u(t) - 'u*(t)),

;y;€(t) = x*(t) + c:~(t),

The Pontryagin l\!linimum Principle

~(1') = [ <p(T, t) (J (x' (t),u(t)) - I (x' (t), u' (t)) ) dt

Sec. 3.3

f(x€(t),u(t)) = (1- c:).f(xE(t),u*(t)) + c:f(x€(t),u(t)).

h(x*(T)) ~ h(x;(T))

h(x*(T) + c:~(T) +. o(c:))

= h(x*(T)) + E\7h(x*(T))'~('T) + o(c:),

respectively. Thus, taking into account the initial conditions :1;€(0)
and ~(O) = 0, we see that

Using a standard result in the theory of linear difFerential equations
(see e.g. [CoL65]), the solution of the linear differential system (::3.~32) can
be written in closed form as

and

where the square matrix ([} satisfies for all t and T,

which implies that

Thus, the state trajectory {x€(t) I t E [0, T]} of Eq. (3.30) corresponcls
to the admissible control trajectory {u( t) I t E [0, Tn. Hence, using the
optimality of {x*(t) It E [0, Tn and the regularity assumption, we have

iJ?(t, t) I.

Since ~(O) = 0, we have from Eq. (3.34),

so the regularity condition (3.31) is satisfied.
We now prove the Minimum Principle assuming the convexity and

regularity assumptions above. Suppose that {It*(t) I t E [0, Tn is an
optimal control trajectory, and let {x*(t) It E [0, Tn be the corresponding
state trajectory. Then for any other admissible control trajectory {u(t) I
t E [0, T]} and any c: E [0, 1], the convexity assumption guarantees that for
each t, there exists a control u(t) E U such that

Chap. 3

(3.30)

(3.31)

t E [0, T],

xE(t) = x*(t) + c:~(t) + o(c:) ,

~(t) = lim J;y;(t)/c:,
€-.O

Deterministic ConUnuolls-Time Optimal Control

with ;rE(O) = ;y;*(0), satisfies

126

Jx(t) = x€(t) - x*(t).

5;(t) = Ax(t) + Bu(t),

XI'(/;) - ;j;*(t) = f(xE(t),u*(t)) - f(x*(t),u*(t))

+ c:(f(xE(t),u(t)) f(;Y;E(t),U*(t))),

with initial condition ~(O) 0.

J;i:(t) = \7f(x*(t),u*(t))'Jx(t) + o(IIJx(t)ll)

+ c:(f(;Y;E(t),U(t)) - f(;y;€(t),u*(t))),

Assumption: Let u(t) and u*(t), t E [0, T], be any two
admissible control trajectories and let {x* (t) I t E [0, Tn be the state
trajectory corresponding to u*(t). For any c: E [0,1]' the solution
{;rE(t) It E [0, Tn of the system

x€(t) = Ax€(t) + Bu*(t) + c:B(u(t) u*(t)),

((t) \7xf(x*(t),u*(t))~(t)+f(x*(t),u(t)) - f(;y;*(t), 11,* (t)) , (3.32)

where {~(t) I t E [0, T]} is the solution of the linear differential system

The regularity assumption "typically" holds because from Eq. (3.30)
we have

Dividing by c: and taking the limit as c: ~ 0, we see that the function

so from a first order Taylor series expansion we obtain

where

should "typically" solve the linear system of differential equations (3.32),
while satisfying Eq. (3.31).

In fact, if the system is linear of the form

where A a,nd B are given matrices, it can be shown that the regularity
assumption is satisfied. To see this, note that Eqs. (3.30) and (3.32) take
the forms



with the terminal condition

peT) = \7h(x*(T)).
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xo: given,

k = 0, ... , N 1.

The Pontlyagin lVfinimllm Principle

We first develop an expression for the gradient \7 J(uo, . .. ,UN-I). We
have, using the chain rule,

\7UN -1 J(uo, ... ,'UN-I) = \71LN_1 (9N (fN -1 (l:N-l, 'llN -1))

+gN-] ,UN-I))

= \JUN_l]N-l . \JgN + \JUN_lgN--l,

In this subsection we briefly derive a version of the Minimum Principle for
discrete-time deterministic optimal control probleIns. Interestingly, it is
essential to make some convexity assumptions in order for the Minimum
Principle to hold. For continuous-time problems these convexity assump
tions are typically not needed, because, as mentioned earlier, the differential
system can generate any 5:(t) in the convex hull of the set of possible vec
tors f(x(t), u(t)) by quick alternation between different controls (see for
example Exercise 3.10).

Suppose that we want to find a control sequence ('uo, 'Ill,·.·, 'UN-I)

and a corresponding state sequence (xo, Xl, . .. , ;X:N), which minimize

N-l
J(u) = gN(;r:N) + L gk(;r;k, 'Ilk)'

k=O

3.3.3 l\t1inimum Principle for Discrete-Tinne Problmns

we would then obtain a contradiction of Eq. (3.38).
We have thus proved the Minimum Principle (3.39) under the con

vexity and regularity assumptions, and the assumption that there is only
a terminal cost h(x(T)). We have also seen that in the case where the
constraint set U is convex and the system is linear, the convexity and reg
ltlarity assumptions are satisfied. To prove the Minimum Principle for the
more general integral cost function (3.27), we can apply the preceding de
velopment to the system of differential equations i; = f(x;, u) augmented
by the additional Eq. (3.28) and the equivalent terminal cost (:i.29). The
corresponding convexity and regularity assumptions (\,re automatically sat
isfied if the constraint set U is convex and the system function f (x, 11,) as
well as the cost function g(x, u) are linear. This is necessary in order to
maintain the linearity of the augmented system, thereby maintaining the
validity of the regularity assumption.

and the control constraints

subject to the discrete-time system constraints

Sec. 3.3

(3.37)

(3.38)

(3.39)

Chap. 3

for all u E U.

for t E 1,
for t ¢: 1,

pet) = <p(T, t)'p(T), t E (0, T].

'(t) o<P(T, t),
p = ot peT).

{
fl

u(t) = u*(t)

p(t)'f(x*(t),u*(t)) > p(t)'f(x*(t),'L1),

Deterministic Contin llO llS-Time Optimal Control

peT) = \7h(x*(T)),

p(t)'f(~r*(t),u*(t)) ::; p(t)'f(x*(t),u),

°::; p(T)'~(T)
= p(T)' loT 1>(1', t) (f(x«t),-It(t)) - f(x«t), u«t)) )elt

= lr p(t)' (t (J;< (t), u(t)) - f (x'(t), u< (t)) ) elt,
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By differentiating with respect to t, we obtain

Define

~oml~ining this eq~lation :Vith Eq~. (3.35) and (3.37), we see that p(t) is
generated by the dIfferentIal equatIOn

pet) = -\7xf(x*(t),u*(t))p(t),

This is the adjoint. equatio~ :orresponding to {(x*(t), u*(t)) It E [0, Tn.
. Now, to obtam the Mmllnum Principle, we note that from Eqs. (3.33)

(3.36), and (3.37) we have '

Indeed, if for some 'l'i, E U and to E [0, T), we have

from which it can be shown that for all t at which u* (.) is contI'
1 nuous, welave

p(to)' f (;x;*(to), 'u*(to)) > p(to)'f(x*(to), 11),

while {'I1.*(t) I t E [0, Tn is continuous at to, we would also have

for all t in some nontrivial interval 1 containing to. By taking
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(3.43)

k = 1, ... ,N 1,

for all k 0, ... ,N 1. (3.44)

Extensions of the l\ifinimum PrincipleSec. 3."1

The partial derivatives above are evaluated along the optimal state and
control trajectories. If, in addition, the Hamiltonian fh is a convex
function of Uk for any fixed Xk and Pk+.l, we have

where the vectors PI, ... ,PN are obtained from the adjoint equation

Proposition 3.3.2: (Discrete-Time Minimllm Sup
pose that (uo,ui ... ,'uN-I) is an optimal control trajectory and that
(xo, x;i ,... ,xN) is the corresponding state trajectory. Assume also
that the constraint sets Uk are convex. Then for all k = 0, ... , N - 1,
we have

Proof: Equation (3.43) is a restatement of the necessary condition (3.42)
using the expression (3.41) for the gradient of J. If 11k is convex with
respect to Uk, Eq. (3.42) is a sufficient condition for the minimum condition
(3.44) to hold (see Appendix B). Q.E.D.

with the terminal condition

(3.40)

(3.41 )

Chap. 3

k = 1, ... ,N -1,

+ \l'Ukfk . V xk-Hgk+1

+ \ll£k9k,

DeterminisUc Continuolls-Time Optimal Control

\lUkJeuO, ... ,UN-I) = \lukfk' \lxk+lfk+l'" \lxN_ 1 fN-1' \l9N

+ \lukfk' \lxk+lfk+l'" \lxN_2 fN-2' \lxN_ 1 9N-1

where all gradients are evaluated along the control trajectory (uo, ... ,UN-1)
and the corresponding state trajectory. Similarly, for all k,

which can be written in the form

where 11k is the Hamiltonian function defined by

for an appropriate vector Pk+l, or

with terminal condition

It can be seen from Eq. (3.40) that the vectors Pk+l are generated back
wanls by the discrete-time adjoint equation

We will assume that the constraint sets Uk are convex, so that we can
apply the optimality condition

3.4 EXTENSIONS OF THE MINIlVfUM PRINCIPLE
N-I

\l'UkJ(UO"'" uN_I)'(uk u'J:J:2: 0,
k=O

We now consider some variations of the continuous-time optimal control
problem and derive corresponding variations of the Minimum Principle.

for all feasible (uo, ... ,'UN-I) (see Appendix B). This condition can be
decomposed into the N conditions

3.4.1 Fixed Terminal State

Suppose that in addition to the initial state x(O), the final state x;(T) is
given. Then the preceding informal derivations still hold except that the
terminal condition J*(T, x) = h(x) is not true anynlOre. In effect, here we
have

if x = x(T),
otherwise.

J*(T,X)={~

for all 'Uk E Uk, k = 0, ... ,N - 1.

(3.42)
We thus obtain:
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the Hamiltonian is

H(:I:, ll, p) = g(x, v,) + pll.

We minimize the Hamiltonian by setting to zero its derivative with respect
to 11,:

pet) = -Vug(x*(t),u*(t)).

j'T~0)i~ cit,
o V 2')'x(t)

VI + u 2

g(x, v,) = -J'FYX '
2')'x

where')' is the acceleration due to gravity. Here {(t,-:r(t)) It E [O,TJ}, is

the desired curve, the term)1 + (x(t)) 2 cit is the length of the curve from

x;(t) to x(t + dt), and the term J2')'x(t) is the velocity of the body upon
reaching the level x(t) [if m and v denote the mass and the velocity of the
body, the kinetic energy is mv2 /2, which at level :I:(t) must be equal to the

change in potential energy, which is m')'x(t); this yields vV2')':c(t) ].
We introduce the system x = u, and we obtain a fixed terminal state

problem [x(O) = 0 and x(T) = b]. Letting

In 1696 Johann Bernoulli challenged the mathematical world of his time with
a problem that played an instrumental role in the development of the calculus
of variations: Given two points A and B, find a curve connecting A and B
such that a body moving along the curve under the force of gravity reaches
B in minimum time (see Fig. 3.4.2). Let A he (0,0) and B be (T, -b) with
b> O. Then it can he seen that the problem is to find {:c(t) It E [0, T]} with
x(O) = 0 and x(T) = b, which minimizes

Example 3.4.2 (The Brachistochrone

Figure 3.4.1 Optimal solution of the problem of connecting the two points (0, n)
and (T, (3) with a minimum length curve (cf. Example 3.4.1).

8ee. 3.4Chap. 3

for all j tf- I,

for all i E I,

x(T) = {3,

for all t E [0, T].

.fVI + (U(t))2 dt.

x(O) = Ct,

xi(T) : given,

.( ) _ 8h(x*(T))
Pl T - 8 '

:I:j

Deterministic Continuous-Time Optimal Control

and the cost is

p(t) = constant,

Minimization of the Hamiltonian,

implying that

x(t) = u(t),

The adjoint equation is

jJ(t) = 0,

Consider the problem of finding the curve of minimum length connecting two
points (0, Ct) and (T, {3). This is a fixed endpoint variation of Example 3.3.1
in the preceding section. We have

x(T) : given,

min [Jl + u2 + p(t)u] ,
'UErrl

u* (t) = constant, for all t E [0, T].

'rhus the optimal trajectory {x* (t) I t E [0, Tn is a straight line. Since
this trajectory must pass through (0, Ct) and (T, {3), we obtain the (a priori
obvious) optimal solution shown in Fig. 3.4.1.

thus maintaining the balance between boundary conditions and unknowns.
If only some of the terminal states are fixed, that is,

Thus J*(T, ;r:) cannot be differentiated with respect to x, and the terminal
boundary condition p(T) = \7h (x* (T)) for the adjoint equation does not
hold. However, as compensation, we have the extra condition

where I is some index set, we have the partial boundary condition

for the adjoint equation.
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O.

for alIt E [0, T*],

o

for all :1; E 3'(n,

\7x{£(x) + J(O,x)}lx=x*co)

J*(O,x*(O)) ::; J*(O,x),

Extensions of the Minimum Principle

'u*(t) = argminH(;r;*(t),l£,p(t)),
uEU

p(O) -\7£(x* (0)).

where p(t) is the solution of the adjoint equation. What we lose with the
terminal time being free, we gain with an extra condition derived as follows.

We argue that if the terminal time were fixed at T* and the initial
state were fixed at the given x(O), but instead the initial time were subject
to optimization, it would be optimal to start at t = O. This mea,ns that
the first order variation of the optimal cost with respect to the initial time
must be zero;

p(O) = O.

'VtJ*(t,x*(t))lt=o = O.

Also if there is a cost £(:1;(0)) on the initial state, i.e., the cost is

3.4.3 Free Terminal Time

This follows by setting to zero the gradient with respect to ;y; of e(x) +
J(O, x), Le.,

Suppose the initial state and/or the terminal state are given, but the ter
minal time T is subject to optimization.

Let {(x* (t) , 1£* (t)) I t E (0, TJ) be an optimal state-control trajectory
pair and let T* be the optimal terminal time. Then if the terminal time
were fixed at T*, the pair {(l£*(t),x*(t)) It E [O,T*J} would satisfy the
conditions of the Minimum Principle. In particular,

the boundary condition becomes

Sec. 3.L1

and the extra boundary condition for the adjoint equation

yielding

3.4.2 Free Initial State

If the initial state x(O) is not fixed but is subject to optimization, we have

CJlap. .1

for all t E [0, T],

for allt E [0, T].

for all t E [0, T].

for all t E [0, T].

Distance A to"CB =Arc"CB to B

Distance A to"Cc = Arc"Cc to C

"Cc T is

C x*(t)
;[;* (t)

Deterministic ConUnuous-Time Optimal Control

i;* (t) =

1
~=====----- = constant,VI + (11,* (t))2 V2,x*(t)

g(x*(t),11,*(t)) - \7ug(x*(t),11,*(t))11,*(t) = constant,

Using the expression for g, this can be written as

x*(t)(1+x*(t)2)=C, for all tE[O,T],

We know from the Minimum Principle that the Hamiltonian is constant along
an optimal trajectory, Le.,

VI + (1L*(t))2

.J2,x*(t)

or equivalently

Using the relation x* (t) = 'LL * (t), this yields

for some constant C. Thus an optimal trajectory satisfies the differential
equation

The solution of this differential equation was known at Bernoulli's time to
be a cycloid; see Fig. 3.4.2. The unknown parameters of the cycloid are
determined by the boundary conditions x* (0) = °and x* (T) = b.

Figure 3.4.2 Formulation and optimal solution of the brachistochrone problem.
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if p2(t) < 0,
if P2(t) 2: O.
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P2(t) P2(1) P2(t) P2(1)

, ,
I ,, ,, ,

I, ,
I, , ,
II , , ,, , ,
I

T I
T: T' T:I ,

I , ,
~ !

u* (t) = { 1
-1

Figure 3.4.3 (a) Possible forms of the adjoint variable P2(t). (b) Correspond
ing forms of the optimal control trajectory.

To determine the precise form of the optimal control trajectory, we use
the given initial and final states. For li(t) == (, where ( = ±1, the system
evolves according to

The adjoint equation is

Therefore

where CI and C2 are constants. It follows that {p2(t) I t E [0, Tn has one of

the four forms shown in Fig. 3.4.3(a); that is, {p2(t) I t E [0, Tn switches
at most once in going from negative to positive or reversely. [Note that it
is not possible for P2(t) to be equal to 0 for all t because this implies that
Pl (t) is also equal to 0 for all t, so that the Hamiltonian is equal to 1 for
all t; the necessary conditions require that the Hamiltonian be 0 along the
optimal trajectory.] The corresponding control trajectories are shown in Fig.
3.4.3(b). The conclusion is that, for each t, u*(t) is either +1 or -1, and
{u*(t) It E [0, Tn has at most one switching point in the interval [0, T].

so

(a)

U'(l) u'(t) u'(t) u'(t)

"'"1,,
.....i ,

0 T I iT, t T
-1 !

-1 '--' -1

(b)

8ec. 3.4Chap. 3

for all t E [O,T*)

for all t E [0, T*).

for all t.

x2(T) = O.xI(T) = 0,

-1 :::; 1i ( t) :::; 1,

Deterministic Continuous-Time Optimal Control

H(J;*(t),u*(t),p(t)) = 0,

'VtJ*(t,x*(t)) = -H(X*(t),1t*(t),p(t)),

We want to accomplish this transfer in minimum time. Thus, we want to

where yet) is the position of the object at time t. Given the object's initial
position y(O) and initial velocity iJ(O), it is required to bring the object to
rest (zero velocity) at a given position, say zero, while using at most unit
magnitude force,

Xl (t) = yet),

y(t) = u(t),

Example 3.4,3 (lVIinimum-Time Problem)

minimize T = iT 1dt.

H(x*(O), u*(O),p(O)) = O.

A unit mass object moves horizontally under the influence of a force u(t), so
that

Note that the integral cost, g(x(t),u(t)) == 1, is unusual here; it does not
depend on the state or the control. However, the theory does not preclude
this possibility, and the problem is still meaningful because the terminal time
T is free and subject to optimization.

Let the state variables be

If {u*(t) It E [0, Tn is an optimal control trajectory, 1L*(t) must mini
mize the Hamiltonian for each t, Le.,

The initial state (XI(0),X2(0)) is given and the terminal state is also given

so the system equation is

The I-IJB equation can be written along the optimal trajectory as

[cf. Eqs. UL14) and (3.19)), so the preceding two equations yield

Since the Hamiltonian was shown earlier to be constant along the optimal
trajectory, we obtain for the case of a free terminal time
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(3.45)

Figure 3.4.5 Switching curve (shown
with a thick line) and closed-loop opti
mal control for the minimmn time ex
ample.

y(O) = 0,li(t) = 1,

u*(t) is -1
-~

u*(t) = arg min H (x*(t), 11" pet), t)
uEU

Extensions of the Minimum Principle

.------+-----;---.-
Xi

Sec. 3.4

~E(t) = f(x(t), 11,(t) , y(t)), ;r;(0) : given,

j
'T

cost = h(x(T)) + 0 g(;r;(t),11,(t),y(t))dt.

After working out the corresponding optimality conditions, we see
that they are the same as when the system and cost are time-independent.
The only difference is that the Hamiltonian need not be constant along the
optimal trajectory.

3;.4.5 Singular Problelms

In some cases, the minimum condition

we can convert the problem to one involving a time-independent system
and cost by introducing an extra state variable y(t) representing time:

T

cost = h(x(T)) +1 g(~r;(t), 'u(t), t)dt,

is insufficient to determine u*(t) for all t, because the values of :1;*(t) and
p(t) are such that H(x*(t), u,p(t), t) is independent of u over a nontrivial
interval of time. Such problems are called singulaT. Their optimal trajecto
ries consist of portions, called Teg'ular aTCS, where 11,* (t) can be determined
from the minimum condition (3.45), and other portions, called singv.lar
Q,TCS, which can be determined from the condition that the Hamiltonian is
independent of 'Lt.

Chap. 3

(b)(a)

Detenninistic Cont;inuous-Time Optimal Control

1 ()2 1 ( 2
Xl (t) - 2( X2(t) = Xl (0) - 2( X2(0)) .

Thus for intervals where 1L(t) == 1, the system moves along the curves where

Xl(t) - ~(X2(t))2 is constant, shown in Fig. 3.4.4(a). For intervals where

u( t) == -1, the system moves along the curves where Xl (t) + ~ (X2 (t) ) 2 is
constant, shown in Fig. 3.4.4(b).

13y eliminating the time t in these two equations, we see that for all t

Figure 3.4.4 State trajectories when the control is u(t) == 1 [Fig. (a)] and
when the control is 'u(t) -1 [Fig. (b)].

(c) If the initial state lies on the top (bottom) part of the switching curve,
use 1t*(t) == -1 [u*(t) == 1, respectively] until reaching the origin.

10 bring the system from the initial state (XI(0),X2(0)) to the origin
with at most one switch in the value of control, we must apply control ac
cording to the following rules involving the switching c'urve shown in Fig.
~3.4.5.

(a) If the initial state lies above the switching curve, use u*(t) == -1 until
the state hits the switching curve; then use u* (t) == 1 until reaching the
origin.

(b) If the initial state lies below the switching curve, use u *(t) == 1 until the
state hits the switching curve; then use u * (t) == -1 until reaching the
origin.

a.4.4 Thne-Varying System and Cost

If the system equation and the integral cost depend on the time t, Le.,

j;(t) = f(x(t), 11,(t) , t),
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0;

Extensions of the Minimum Principle

that is, the total fill-in should be equal to the total e:r:cavat'ion w'ithin (see
Fig. 3.4.6). Similarly, each sharply downhill interval I should be contained
within a larger maximum downhill slope interval ~ ::) L which is such that
p(t) > 0 within~, while the total fill-in should be equal to the total e:rcavation
within~, (see Fig. 3.4.6). Thus the regular arcs consist of the intervals 17
and ~ described above. Between the regular arcs there can be one or IllOre
singular arcs where x*(t) z(t). The optimal solution can be pieced together
starting at the endpoint t = l' [where we know that p(T) = 0], and proceeding
backwards.

at the endpoints tl and t2 of 17. In view of the fornl of the adjoint equation,
we see that the endpoints tl and t2 of 17 should be such that

Optimal solutions can be obtained by a graphical method using the
above observations. Consider the sharply uphill intervals 1 such that z(t) ~ a
for all t E 1, and the sharply downhill 'inte'tvals I such that z(t) S; -a for
alIt E L Clearly, within each sharply uphill interval I the optimal slope is
'll* (t) = a, but the optimal slope is also equal to a within a larger maximum
uphill slope interval 17 ::) 1, which is such that p(t) < 0 within 17 and

Figure 3.4.6 Graphical method for solving the road construction exarnp1e. The
sharply uphill (downhill) intervals I (respectively, D are first identified, and are
then embedded within maximum uphill (respectively, downhill) slope regular arcs
V (respectively, .E:) within which the total fill-in is equal to the total excavation.
The regular arcs are joined by singular arcs where there is no fill-in or excavation.
The graphical process is started at the endpoint t = T.

Sec. 3.4Chap. 3

t E [0,1'].

t E [0,1'],

p(t) -x*(t) + z(t),

x(t) = 1L(t),

j'll(t) I S; a,

Deterministic Continuous- Time Optimal Control

The adjoint equation here is

p(T) = o.

with the terminal condition

where

Minimization of the Hamiltonian

1 {T
2 Jo (x(t)

H(x*(t),u,p(t),t) = ~(x*(t) - Z(t))2 +p(t)'ll

z(t) = 'll* (t) E [-a, aJ.

for all t, and shows that optimal trajectories are obtained by concatenation
of three types of arcs:

(a) Regular arcs where p(t) > 0 and 'll*(t) = -a (maximum downhill slope
arcs).

(b) H.egular arcs where p(t) < 0 and 'll*(t) = a (maximum uphill slope arcs).

(c) Singular arcs where p(t) = 0 and 'll*(t) can take any value in [-a, a] that
maintains the condition p(t) = O. From the adjoint equation we see that
singular arcs are those along which p(t) = 0 and x* (t) = z(t), Le., the
road follows the ground elevation (no fill-in or excavation). Along such
arcs we must have

with respect to 'll yields

'll*(t) = arg min p(t)'ll,
lulS;a

Suppose that we want to construct a road over a one-dimensional terrain
whose ground elevation (altitude measured from some reference point) is
known and is given by z(t), t E [0, T]. The elevation of the road is de
noted by x(t), t E [0,1'], and the difference x(t) - z(t) must be made up by
fill-in or excavation. It is desired to minimize

J£xarnple 3.4.4 (Road Construction)

subject to the constraint that the gradient of the road x(t) lies between -a
and a, where a is a specified maximum allowed slope. Thus we have the
constraint

140
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0.5. Solve the

Figure 3.5.1 Reservoir system for Bx
ercise ~3.3.

Xi : Level of reservoir 1

x2 : Level of reservoir 2

u : Inflow to reservoir 1

Notes, Sources, and Exercises

Xl (0) = X2(0) = O.

liVe want to maximize X2(1) subject to the constraint :rl(l)
problem.

3.3

Here f3 is some positive scalar, which serves to discount future enjoyment. Find
the optimal {u(t) I t E [0, T)}.

and the control constraint is 0 :s; u(t) :s; 1 for all t. Initially

dx(t)-- = ax(t) - tl(t) ,
dt

~h(t) = -XI(t) + u(t),

X2(t) = Xl (t),

Consider the system of reservoirs shown in Fig. 3.5.1. The system equations are

where x(O) S is his initial capital, ex > 0 is a given interest rate, and 'n(t) 2: 0
is his rate of expenditure. The total enjoyment he will obtain is given by

A young investor has earned in the stock market a large amount of money Sand
lans to spend it so as to maximize his enjoyment through the rest of his life

~rithout working. He estimates that he will live exactly T more years and that
his capital x(t) should be reduced to zero at time T, i.e., x(T) = O. Also he
l1l0dels the evolution of his capital by the differential equation

Sec. 3.5

3.2

Chap. .3Deterministic Continuous-Time Optimal Control

SOURCES, AND EXERCISES

Solve the problem of Example 3.2.1 for the case where the cost function is

t In the 30s and 40s journal space was at a premium, and finite-dimensional
optimization research was thought to be a simple special case of the calculus
of variations, thus insufficiently challenging or novel for publication. Indeed the
modern optimality conditions of finite-dimensional optimization subject to equal
ity and inequality constraints were first developed in the 1939 Master's thesis by
Karush, but first appeared in a journal quite a few years later under the names
of other researchers.

(X(T)) 2 + rT

(a(t)) 2dt .
.10

Also, calculate the cost-to-go function J* (t, x) and verify that it satisfies the HJB
equation.

3.1

EXERCISES

The calculus of variations is a classical subject that originated with the
works of the great mathematicians of the 17th and 18th centuries. Its
rigorous developrnent (by modern mathematical standards) took place in
the 19~30s and 19/10s, with the work of a group of mathematicians that
originated mostly from the University of Chicago; Bliss, McShane, and
Hestenes are some of the most prominent members of this group.· Curi
ously, this development preceded the development of nonlinear program
ming by many years. t The modern theory of deterministic optimal control
has its roots primarily in the work of Pontryagin, Boltyanski, Gamkrelidze,
and Mishchenko in the 1950s [PBG65]. A highly personal but controversial
historical account of this work is given by Boltyanski in [BMS96]. The
theoretical and applications literature on the subject is very extensive. We
give three representative references: the book by Athans and Falb [AtF66]
(a classical extensive text that includes engineering applications), the book
by Hestenes [Hes66] (a rigorous mathematical treatment, containing im
portant work that predates the work of Pontryagin et a1.), and the book
by Luenberger [LlIe69) (which deals with optimal control within a broader
infinite dimensional context). The author's nonlinear programming book
[13er99] gives a detailed treatment of optimality conditions and computa
tional methods for discrete-time optimal control.
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Notes, Sources, and Exercises

A unit mass object moves on a straight line fronl a given initial position Xl (0)
and velocity X2(0). Find the force {u(t) I t E [O,IJ} that brings the object at
time 1 to rest [X2(1) = 0] at position x1(1) = 0, and minimizes

/,1 (U(t))2 dt .

where Xl (t) and X2(t) are the positions of the boat paraUel and perpendicular to
the stream velocity, respectively. Show that the optimal solution is to steer at a
constant angle.

A boat moves with constant unit velocity in a stream moving at constant velocity
s. The problem is to find the steering angle u(t), 0 ::::; t ::::; T, which minimizes the
time T required for the boat to move between the point (0,0) to a given point
(a, b). The equations of motion are

Xl (t) = s + cos u(t),

where d and D are some constants.

Let a, b, and T be positive scalars, and let A = (0, a) and 13 (T, b) be two points
in a medium within which the velocity of propagation of light is proportional to
the vertical coordinate. Thus the time it takes for light to propagate from A to
B along a curve {x(t) I t E [0, TJ} is

i T 'VI + (X(t))2

( )
dt,

o C:£ t,

where C is a given positive constant. Find the curve of minimum travel time of
light from A to 13, and show that it is an arc of a circle of the form

X(t)2 + (t d)2 = D,

3.7

3.6 (L'Hopital's Problern)

Sec. 8.5

where a, b, and L are given positive scalars. The last constraint is known as
an isoperimetric constraint; it requires that the length of the curve be L. Hint:
Introduce the system Xl = U, X2 JI + u 2 , and view the problem as a fixed
terminal state problem. Show that the sine of the optimalu" (t) depends linearly
on t. Under some assumptions on a, b, and L, the optimal curve is a circular arc.

subject to the constraints

Chap. 8
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3.Lj

y(t) = -ay(t) + u(t),

Figure 3.5.2 State trajectories of the system of Exercise 3.4 for u(t) == -1 and
u(t) == L

iT x(t)dt,

JJI (t) = 0,

P2(t) = -PI (t) + ap2(t),

Work out the minimum-time problem (Example 3.4.3) for the case where there
is friction and the object's position moves according to

where a > 0 is given. Hint: The solution of the system

is

PI (t) = PI (0),

P2(t) = !:.(l- eat)PI(O) + eatp2(0).
a

The trajectories of the system for ll(t) == -1 and u(t) == 1 are sketched in Fig.
~1.5.2.

3.5 (Isoperirnetric Problem)

Analyze the problem of finding a curve {x(t) I t E [0, Tn that maximizes the
area under :1:,
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k = 0, ... ,N -1,

Deterministic Continuous-Time Optimal Control

Consider the discrete-time optimal control problem of Section 3.3.3, where there
are no control constraints (U = ~m). Introduce a Lagrange multiplier vector
Pk+l for each of the constraints

Use the discrete-time Minimum Principle to solve Exercise 1.15 of Chapter 1,
assuming that Ik and Ih are fixed at known deterministic values.

(cL Appendix B). View both the state and the control vectors as the optimiza
tion variables of the problem, and show that by differentiation of the Lagrangian
function with respect to Xk and Uk, we obtain the discrete-time Minimum Prin
ciple.

Use the discrete-time Minimum Principle to solve Exercise 1.14 of Chapter 1,
assuming that each 'Wk is fixed at a known deterministic value.

and form the Lagrangian function

N-l

gN(XN) + 2: (9k(Xk, Uk) + P~+l (Jk(Xk' Uk) - Xk+l) )
k=O

3.13 (Lagrange Multipliers and the Minimum Principle)

Solve the continuous-time problem involving the system x(t) = u(t), the terminal

cost (x;(1')) 2, and the control constraint u(t) = -lor 1 for all t, and show that
the solution satisfies the Minimum Principle. Show that, depending on the initial
state Xo, this may not be true for the discrete-time version involving the system
Xk-H :r:k + Uk, the terminal cost x't, and the control constraint Uk = -lor 1
for all k.

3.10 (On the Need for Convexity Assumptions)

Use the Minimum Principle to solve the linear-quadratic problem of Example
i~.2.2. Hint: Follow the lines of Example 3.3.3 ..

14Q:$
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where by straightforward calculation, the matrix J(N -1 is verified to be

By substitution into the expression for IN-1, we have

The matrix multiplying UN -1 on the left is positive definite (and hence
invertible), since RN-l is positive definite and 13N_1QN13N-1 is positive
semidefinite. As a result, the minimizing control vector is given by

By differentiating with respect to UN-1 and by setting the derivative equal
to zero, we obtain .'

IN-1(XN-I) = X~_lQN-1XN-1 + min [UN _1RN-17.lN-1
UN-l

+ u~_lBN_1QN13N-1UN-1 + 2X~_lAN_lQN13N-1UN-1]

+ xN_IAN_1QNAN-1XN-1 + E{WN _1QN7.1JN-d·

IN-I(XN-I) = min E{:l;~_IQN-IXN-I+ u~_IRN-IUN-1
UN-l

+ (AN-1:l:N-1 + 13N-1'lJ,N-1 + WN-IYQN

. (AN-1XN-1 + 13N-1UN--1 +'WN-1)},

J(N-1 = A N - I (QN - QNBN-l(BN_1QNBN - I + RN-d-1BN_1QN )AN - 1

+ QN-I.

and we expand the last quadratic form in the right-hand side. We then use
the fact E{WN-d = 0 to eliminate the term E{'WN_1QN(AN-1XN-1 +
EN-1UN-I)}, and we obtain

It turns out that the cost-to-go functions Jk are quadratic and as a result
the optimal control law is a linear function of the state. These facts can be
verified by straightforward induction. We write Eq. (4.1) for k = N - 1,

matrices, rather than being known. This case is considered at the end of
this section.

Applying now the DP algorithm, we have

E;ec. 4.1Chap. 4

k = 0,1, ... ,N - 1,

Problems with Perfect State Information

which expresses a desire to keep the state of the system close to a given
trajectory (xo, xI, ... , XN) rather than close to the origin. Another gener
alized version of the problem arises when Ak' 13k are independent random

In these expressions, a;k and Uk are vectors of dimension nand m, respec
tively, and the matrices Ak , 13k, Qk, Rk are given and have appropriate
dimension. We assume that the matrices Qk are positive semidefinite sym
metric, and the matrices R k are positive definite symmetric. The controls
Uk are unconstrained. The disturbances Wk are independent random vec
tors with given probability distributions that do not depend on Xk and Uk.

Furthermore, each Wk has zero mean and finite second moment.
The problem described above is a popular formulation of a regulation

problem whereby we want to keep the state of the system close to the origin.
Such problems are common in the theory of automatic control of a motion
or a process. The quadratic cost function is often reasonable because it
induces a high penalty for large deviations of the state from the origin but
a relatively small penalty for small deviations. Also, the quadratic cost is
frequently used, even when it is not entirely justified, because it leads to a
nice analytical solution. A number of variations and generalizations have
similar solutions. For example, the disturbances Wk could have nonzero
means and the quadratic cost could have the form

and the quadratic cost

In this section we consider the special case of a linear system

In this chapter we consider a number of applications of discrete-time stochas
tic optimal control with perfect state information. These applications are
special cases of the basic problem of Section 1.2 and can be addressed via
the DP algorithm. In all these applications the stochastic nature of the
disturbances is significant. For this reason, in contrast with the determin
istic problems of the preceding two chapters, the use of closed-loop control
is essential to achieve optimal performance.
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(4.6)

(4.5)

15JL

k = 0,1, ... ,N 1,

Jl*(X) = Lx,

L = -(B'KB + R)-IB'KA,

K = A'(K - KB(B'KB + R)-IB'K)A +

Linear Systems and Quadratic Cost

Wk
~

Xl

)(k+ 1 =A!<)(k+ Bkuk+Wk
Uk

I I d

I I

Figure 4.1.1 Linear feedback structure of the optimal controller for the linear
quadratic problem.

and ]( solves the algebraic Riccati equation (4.5). This control law is
stationary; that is, it does not change over time.

We now turn to proving convergence of the sequence of matrices {Kk}
generated by the Riccati equation (4.4). We first introduce the notions
of controllability and observability, which are very important in control
theory.

and a large number of stages N, one can reasonably a,pproximate the control
law (4.2) by the control law {j1,*, Jl*, ... ,Jl*}, where

This property, to be proved shortly, indicates that for the system

Equation (4.4) is called the d,tscrete-t'tme R'iccati equat'ton. It plays an
important role in control theory. Its properties have been studied exten
sively and exhaustively. One interesting property of the Riccati equation
is that if the matrices A k, B k, Qk, Rk are constant and equal to A, B, Q,
R, respectively, then the solution K k converges as k -> -00 (under mild
assumptions) to a steady-state solution K satisfying the algebra'lc R,tccat'i
equation

The Riccati Equation and Its Asymptotic Behavior

Sec. i1.1

(4.3)

(4.2)

Chap. 4Problems with Perfect State Information

:e'K N- 1 x = min[x'QN-IX + V/RN-IU
u

+ (AN-IX + BN-IU)'QN(AN-IX + BN-IU)].

where the gain matrices Lk are given by the equation

and where the symmetric positive semidefinite matrices Kk are given re
cursively by the algorithm

The control law (4.2) is simple and attractive for implementation in
engineering applications: ·the current state Xk is being fed back as input
through the linear feedback gain matrix Lk as shown in Fig. 4.1.1. This
accounts in part for the popularity of the linear-quadratic formulation. As
we will see in Chapter 5, the linearity of the control law is still maintained
even for problems where the state Xk is not completely observable (imper
fect state information).

N-l

Jo(xo) = :x;SKoxo + L E{W~Kk+lWk}.
k=O

Just like DP, this algorithm starts at the terminal time N and proceeds
backwards. The optimal cost is given by

Since QN-l, R N- 1 , and QN are positive semidefinite, the expression within
brackets is nonnegative. Minimization over U preserves nonnegativity, so
it follows that :r'K N-1 X 2': 0 for all X E 3(n. Hence](N-1 is positive
semidefinite.

Since IN-l is a positive semidefinite quadratic function (plus an in
consequential constant term), we may proceed similarly and obtain from
the DP equation (4.1) the optimal control law for stage N - 2. As earlier,
we show that JN-2 is a positive semidefinite quadratic function, and by
proceeding sequentially, we obtain the optimal control law for every k. It
has the form

The matrix KN-l is clearly symmetric. It is also positive semidefinite. To
see this, note that from the preceding calculation we have for x E 3(n
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k = 0,1, ... ,
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(a) There exists a positive definite symmetric matrix P such that for
every positive semidefinite symmetric initial matrix Po we have

k = 0,1, ... ,
(4.8)

where the initial matrix Po is an arbitrary positive semidefinite sym
metric matrix. Assume that the pair (A, B) is controllable. Assume
also that Q may be written as C'G, where the pair (A, G) is observable.
Then:

Proposition 4.4.1: Let A be an n x n niatrix, B be an n x Tn matrix,
Q be an n x n positive semidefinite symmetric matrix, and R be an
m x m positive definite symmetric matrix. Consider the discrete-time
Riccati equation

lim Pk = P.
k->oo

tends to zero as k --t 00. Since Xk = (A + BL)k xo , it follows that the
closed-loop system is stable if and only if (A + BL)k --t 0, or equivalently
(see Appendix A), if and only if the eigenvalues of the matrix (A + BL)
are strictly within the unit circle.

The following proposition shows that for a stationary controllable
system and constant matrices Q and R, the solution of the Riccati equation
(4.4) converges to a positive definite symmetric matrix K for an arbitrary
positive semidefinite symmetric initial matrix. In addition, the proposition
shows that the corresponding closed-loop system is stable. The proposition
a1so requires an observability assumption, namely, that Q can be written
as C'G, where the pair (A, G) is observable. Note that if T is the rank of Q,
there exists an r x n matrix G of rank r such that Q = G'G (see Appendix
A). The implication of the observability assumption is that in the absence
of control, if the state cost per stage x~Q~r;k tends to zero or equivalently
CXk --t 0, then also Xk --t O.

To simplify notation, we reverse the time indexing of the Riccati
equation. Thus, Pk in the following proposition corresponds to J(N -k in
Eq. (4.4). A graphical proof of the proposition for the case of a scalar
system is given in Fig. 4.1.2.

,sec. 4.1

The notion of stability is of paramount importance in control theory.
In the context of our problem it is important. tha,t the stationary control
law (4.6) results in a stable closed-loop system; that is, in the absence of
input disturbance, the state of the system

Chap. 4Problems with Perfect State Information

[B,AB,A2B, ... ,An-IB]

(

Un_I)
Un -2

xn-Anxo=(B,AB, ... ,An-1B) ';0' (4.7)

If (A, B) is controllable, the matrix (B, AB, ... , An-IB) has full rank
and as a result the right-hand side of Eq. (4.7) can be made equal to any
vector in 3(n by appropriate selection of (uo, Ul, ... , Un-I). In particular,
one can choose (uo, Ul, ... , un-I) so that the right-hand side of Eq. (4.7) is
equal to - Anxo, which implies X n = O. This property explains the name
"controllable pair" and in fact is often used to define controllability.

The notion of observability has an analogous interpretation in the
context of estimation problems; that is, given measurements Zo, ZI,.··, Zn-l

of the form Zk = Gx k, it is possible to infer the initial state Xo of the system
:rk+l = AXk' in view of the relation

has full rank (Le., has linearly independent rows). A pair (A, 0), where
A is an n x n matrix and 0 an m x n matrix, is said to be observable if
the pair (AI, 0 /) is controllable, where A' and G' denote the transposes
of A and G, respectively.

Definition 4.1.1: A pair (A, B), where A is an n x n matrix and B
is an n x m matrix, is said to be controllable if the n x nm matrix

Alternatively, it can be seen that observability is equivalent to the property
that, in the absence of control, if OXk --t 0 then Xk --t O.

or equivalently

to be equal to zero at time n. Indeed, by successively applying the above
equation for k = n - 1, n 2, ... ,0, we obtain

X n = Anxo + BUn-1 + ABun-2 + ... + An-iBuo

One may show that if the pair (A, B) is controllable, then for any
initial state ::Vo, there exists a sequence of control vectors Un, UI,· .. , Un-I
that force the state X n of the system
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A 2 RP
PcP) = --+-R + Q.

where the function P is given by

which can be equivalently written as

Figure 4.1.2 Graphical proof of Prop. 4.4.1 for the case of a scalar stationary
system (one-dimensional state and control), assuming that A i= 0, B i= 0, Q> 0,
and R > O. The Riccati equation (4.8) is given by

Because P is concave and monotonically increasing in the interval (-R/B2 , 00),

as shown in the figure, the equation P = F(P) has one positive solutionP* and
one negative solution P. The Riccati iteration Pk +1 F(Pk ) converges to P*
starting anywhere in the interval (P,oo) as shown in the figure.

Sec. 4.1

where both minimizations are subject to the system equation constraint
:r:i-t-l = A1';i + BUi. Furthermore, for a fixed :r:o and for every k, ;E~Pk(O)1';O

is bounded from above by the cost corresponding to a control sequence fhat
forces Xo to the origin in n steps and applies zero control after that. Such
a sequence exists by the controllability assumption. Thus the sequence
{X~Pk (O)xo} is nonc1ecreasing with respect to k and bounded from above,
and therefore converges to some real number for every 1':0 E ~~n. It follows
that the sequence {Ph (O)} converges to some matrixP in the sense that
each of the sequences of the elements of Pk(O) converges to the corresponcl-

Chap. 4

(4.11)

(4.10)

Problems with Perfect State Information

D A+BL,

D= -(B'PB + R)-lB'PA,

are strictly within the unit circle.

where

P = A'(P - PB(B'PB + R)-lBIP)A + Q (4.9)

within the class of positive semidefinite symmetric matrices.

(b) The corresponding closed-loop system is stable; that is, the eigen
values of the matrix

k-1
X~Pk(O)1':O = 11?;in L(X~Qxi + U~RUi)

t

i=O, .. "k-l i=O

Furthermore, P is the unique solution of the algebraic matrix
equation

k

:S ~~n L(X~QXi + 1l~RUi)
i=O, ... ,k i=O

;[;i+1 = AXi + BU'i, i = 0,1, ... , k 1,

where ;[;0 is given. The optimal value of this problem, according to the
theory of this section, is X~)Pk(O)XO,

where Pk(O) is given by the Riccati equation (4.8) with Po = O. For
any control sequence (UO, 71,1, ... , Uk) we have

k-1 k
2~);I:~Q;Ei + l<R1li) :S L)X~Qxi + 1l~R1li)
i=O i=O

and hence

Proof: The proof proceeds in several steps. First we show convergence of
the sequence generated by Eq. (4.8) when the initial matrix Po is equal to
zero. Next we show that the corresponding matrix D of Eq. (4.10) satisfies
Dk ---7 O. Then we show the convergence of the sequence generated by Eq.
(4.8) when Po is any positive semidefinite symmetric matrix, and finally
we show uniqueness of the solution of Eq. (4.9).

Initial MatTix Po = O. Consider the optimal control problem of find-
ing 'uo, '11.1, ... ,Uk-1 that minimize

k-1
L(1';~QX'i + U~Rlld
i=O

subject to
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(4.1G)

k = 0,1, ...

k=O,l, ...

lim LXk = lim {l*(Xk) = 0.
k--+oo k--+oo

X~(Q+ L'RL)Xk = 0,

lim OXk = 0,
k--+oo

Linear Systems and Quadratic Cost

Since the matrix multiplying XQ above has full rank by the observability
assumption, we obtain XQ =: 0, which contradicts the hypothesis XQ -I 0
and proves that P is positive definite.

(
CA~_l )

0= xo.
OA
C

lim x~(Q + L'RL)Xk = 0.
k--+oo

Thus all the controls p* (Xk) = LXk of the closed-loop system are zero while
we have CXk = °for a11 k. Based on the observability assumption, we will
show that this implies XQ = 0, thereby reaching a contradiction. Indeed,
consider Eq. (4.17) for k = 0. By the preceding equalities, the left-ha,ncl
side is zero and hence

Positive Definiteness of P. Assume the contrary, i.e., there exists
some XQ -f. °such that x~PxQ = O. Since P is positive semidefinite, from
Eq. (4.15) we obtain

Since Xk --+ 0, we obtain X~QXk = X~O'OXk °and :.J:~L'RLxk = 0, or

C(Xk+l - BLxk)
OXk

Since LXk --+ °by Eq. (4.16), the left-hand side tends to zero and hence
the right-hand side tends to zero also. By the observability assumption,
however, the matrix multiplying Xk on the right side of (4.17) has full rank.
It follows that x k --+ 0.

The preceding relations imply that as the control asymptotically be
comes negligible, we have limk--+oo OXk = 0, and in view of the observability
assumption, this implies that Xk --+ 0. To express this argument more pre
cisely, let us use the relation Xk+l = (A + BL):£k [d. Eq. (4.14)], to write

C (:r:k+n- 1 - ~~::ll Ai-l BLXk+n-i-l)

C ( Xk+n-2 ~~::r2 Ai-l BLXk+n-i-2)

rrhe left-hand side of this equation is bounded below by zero, so it follows

that

Since R is positive definite and Q may be written as C'C, we obtain

Dec. L1.1

(4.15)

(4.14)

(4.12)

Chap. 4

X~(Q + L'RL)Xi'
k

i=Q

P D'PD + Q + L'RL,

Problems wit,h Perfect State Information

lim Pk(O) = P,
k--+oo

where Pk(O) are generated by Eq. (4.8) with PQ= 0. Furthermore, since
Pk(O) is positive semidefinite and symmetric, so is the limit matrix P. Now
by taking the limit in Eq. (4.8) it follows that P satisfies

Hence

where D and L are given by Eqs. (4.10) and (4.11). An alternative way to
derive this equality is to observe that from the DP algorithm corresponding
to a finite horizon N we have for all states x N-k

Equation (4.12) then follows by taking the limit as k --+ 00 in Eq. (4.13).

Stability of the Closed-Loop System. Consider the system

P = A'(P - PB(B'PB + R)-lB'P)A + Q.

:r~_kPk-H(O):r;N-k = 2:~_kQXN-k + flN_k(XN-k)'R{lN_k(XN-k)

+ x~-k+lPk(O)XN-k+l.

By using the optimal controller expression PN_k(XN-k) = LN-kXN-k and
the closed-loop systeIYl equation XN-k+l = (A + BLN-k)XN-k, we thus
obtain

In addition, by direct calculation we can verify the following useful equality

for an arbitrary initial state XQ. We will show that Xk --+ °as k --+ 00. We
have for all k, by using Eq. (4.12),

2:~+lPXk+l - X~PXk = x~(D'PD - P)Xk = -x~(Q + L'RL)Xk'

ing elements of P. To see this, take XQ = (1,0, ... ,0). Then X~Pk(O)XQ is
equal to the first diagonal element of Pk(O), so it follows that the sequence
offlrst diagonal elements of Pk(O) converges; the limit of this sequence is the
first diagonal element of P. Similarly, by taking XQ = (0, ... ,0,1,0, ... ,0)
with the 1 in the ith coordinate, for i = 2, ... ,n, it follows that all the di
agonal elements of Pk (0) converge to the corresponding diagonal elements
of P. Next take XQ = (1, 1, 0, ... , 0) to show that the second elements of
the first row converge. Continuing similarly, we obtain
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The assumptions of the preceding proposition can be relaxed some
what. Suppose that, instead of controllability of the pair B), we assume
that the system is stabilizable in the sense that there exists an m x n feed
back gain matrix G such that the closed-loop system ;Dk:+l (A + BG);X;k
is stable. Then the proof of convergence of Pk(O) to some positive semidef
inite P given previously carries through. [We use the stationary control
law fL(X) = Gx for which the closed-loop system is stable to ensure that
;X;~Pk(O)XO is bounded.] Suppose that, instead of observability of the pair
(A, 0), the system is assumed detectable in the sense that A is such that if
Uk -7 0 and OXk -7 0 then it follows that Xk -7 O. (This essentially means
that instability of the system can be detected by looking at the measure
ment sequence {zd with Zk = O;X;k.) Then Eq. (4.16) implies that Xk -70
and that the system ;X;k+l = (A + BL)Xk is stable. The other parts of
the proof of the proposition follow similarly, with the exception of positive
definiteness of P, which cannot be guaranteed anymore. (As an example,
take A = 0, B 0, 0 = 0, R > O. Then both the stabilizability and the
detectability assumptions are satisfied, but P = 0.)

To summarize, if the controllability and observability assumptions of
the proposition are replaced by the preceding stabilizability and detectabil
ity assumptions, the conclusions of the proposition hold with the exception
of positive definiteness of the limit matrix P, which can now only be guar
anteed to be positive semidefinite.

lim Pk(P) = P,
k:-->=

We consider now the case where {Ao, Bo}, ... , {AN-I, BN-d are not known
but rather are independent random matrices that are also independent of
'WO, 'WI, ... , 'WN -1. Their probability distributions are given, and they are
assumed to have finite second moments. This problem falls again within
the framework of the basic problem by considering as disturbance at each
time k the triplet (Ak , B k , 'Wk). The DP algorithm is written as

Random System Matrices

implying that P P. Q.E.D.

Sec. 4.1

for an arbitrary positive semidefinite symmetric initial matrix Po.

Uniqueness of Solution. If P is another positive semidefinite symmet
ric solution of the algebraic Riccati equation (4.9), we have Pk:(p) =P for
all k = 0,1, ... From the convergence result.just proved, we then obtain

(4.18)

(4.19)

Chap. 4Problems with Perfect State Information158

.ATbitmTy Indial Jl1atTix Po. Next we show that the sequence of
rna~nces {Pk~~O)}, de~ned by Eq. (4.8) when the starting matrix is an
c:rlntrary posItIve sermdefinite symmetric matrix Po, converges to P
Illnk:-->= Pk (0). Indeed, the optimal cost of the problem of minimizing

k-I

X~POXk + l::)x~Qxi + 1l~R7Li)
i=:O

subject to the system equation Xi+I = AX'i + BUi is equal to XbPk(PO)XO.
Hence we ha,ve for every Xo E 3'{n

XbPk(O)XO ~ XbPk(PO)XO.

Consider now the cost (4.18) corresponding to the controller P,(Xk) = Uk =
L:Dk' where L is defined by Eq. (4.11). This cost is

x'Pk(O)x <:: x'Pk (PO)1; <:: x' (Dk'PODk +~ Di'(Q + L'RL)Di) ;t.

We have proved that

lim Pk(Po) = P
k-->= '

and is greater or equal to XbPk(PO)XO, which is the optimal value of the
cost (4.18). Hence we have for all k and x E iJ(n

and we also have, using the fact limk-->= Dk f PoDk = 0, and the relation
Q + L'RL P - D'P D fcf. Eq. (4.12)),

k~~ {Dk'PODk + :EDi'(Q +L'RL)Di}
2=0

= kl~~ {:E Di'(Q + L'RL)Di}
2=0

= kl~~ {:E De(P -- D' PD)Di}
7=0

p.

Combining the preceding three equations, we obtain



Calculations very similar to those for the case where A k, Bk are not random
show that the optimal control law has the form
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F(P)

\
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where the gain matrices Lk are given by

and where the matrices Kk are given by the recursive equation

Kk = E{A~Kk+1Ak}

_ E{A~Kk+1Bk}(Rk + E{B~Kk+1Bk}) -1E{B~Kk+1Ak}+Qk.
(4.20)

In the case of a stationary system and constant matrices Qk and Rk it
is not necessarily true that the above equation converges to a steady-state
solution. This is demonstrated in Fig. 4.1.3 for a scalar system, where it is
shown that if the expression

exceeds a certain threshold, the matrices Kk diverge to 00 starting from
any nonnegative initial condition. A possible interpretation is that if there
is a lot of uncertainty about the system, as quantified by T, optimization
over a long horizon is meaningless. This phenomenon has been called the
uncertainty threshold principle; see Athans, Ku, and Gershwin [AGK77],
and Ku and Athans [KuA77].

On Certainty Equivalence

VVe close this section by making an observation about the simplifications
that arise when the cost is quadratic. Consider the minimization over u of

E{ (ax + bu +W)2},
w

where a and b are given scalars, x is known, and w is a random variable.
The optimum is attained for

u· = - mx- G) E{w}.

Thus u* depends on the probability distribution of w only through the
mean E {w }. In particular, the result of the optimization is the same as

P

Figure 4.1.3 Graphical illustration of the asymptotic behavior of the generalized
Riccati equation (4.20) in the case of a scalar stationary system (one-dimensional
state and control). Using Pk in p~<Lce of KN-k, this equation is written as

where the function P is given by

P P _ E{A2}RP Tp2

( ) - E{B2}P+R +Q+ E{B2}P+R'

T = E{A2}E{B2} ~ (E{A}) 2 (E{B}) 2.

If T = 0, as in the case where A and B are not random, the Riccati equation
becomes identical with the one of Fig. 4.1.2 and converges to a steady-state.
Convergence also occurs when T has a small positive value. However, as illustrated
in the figure, for T large enough, the graph of the function P and the 45-degree
line that passes through the origin do not intersect at a positive value of P, and
the Riccati equation diverges to infinity.

for the corresponding deterministic problem where w is replaced by E{w}.
This property is called the certainty equivalence principle and appears in
various forms in many (but not all) stochastic control problems involving
linear systems and quadratic cost. For the first problem of this section,
where A k , B k are known, certainty equivalence holds because the optimal
control law (4.2) is the same as the one that would be obtained from the
corresponding deterministic problem where Wk is not random but rather is
known and is equal to zero (its expected value). However, for the problem
where A k , B k are random, the certainty equivalence principle does not
hold, since if one replaces Ak, Bk with their expected values in Eq. (4.20)
the resulting control law need not be optimal.



We consider now the inventory control problem discussed in Sections 1.1
and 1.2. We assume that excess demand at each period is backlogged and
is filled when additional inventory becomes available. This is represented
by negative inventory in the system equation

4.2 INVENTORY CONTROL
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(4.23)

(4.22)

Inventory Control

By introducing the variable Yk = Xk + Uk, we can write the DP Eq.
(4.21) as

where

Sec. 4.2Chap. 4Problems with Perfect State Information162

k = 0, 1, ... , N - 1.

We assume that the demands Wk take values within some bounded inter
val and are independent. We will analyze the problem for the case of a
holding/shortage cost of the form

We will prove shortly that the function Gk is convex, but for the moment let
us assume this convexity. Suppose that Gk has an unconstrained minimum
with respect to y, denoted by Sk:

Thus, as shown above, an optimal policy at time N - 1 is given by

(4.24)

if XN-1 < SN--1,
if XN-·1 :? SN-l,

if XN-1 < SN-1,
if XN-1 2: SN-1.

Xk if Xk < Sk,
if Xk 2: Sk·

* ( ) _ { SN-1 - XN-1
f-LN-1 XN-1 - °

J ( ) _ {C(SN-1 - XN-1) + H(SN-1)
N-1 XN-1 - H( )XN-1

Furthermore, from the DP equation (4.21) we have

Thus, the optimality of the policy (4.24) will be proved if we can show
that the cost-to-go functions Jk [and hence also the functions Gk of Eq.
(4.23)] are convex, and furthermore l~:r.nIYI-tooGk(Y) = 00, so that the min
imizing scalars Sk exist. We proceed to show these properties inductively.

We have that J N is the zero function, so it is convex. Since c < p
and the derivative of H(y) tends to -p as y -+ -00, we see that GN-1(y)
[which is cy + H(y)] has a derivative that becomes negative as y -+ -00

and becomes positive as y -+ 00 (see Fig. 4.2.1). Therefore

lim GN--1 (y) = 00.
IYI-tOO

Then, in view of the constraint Yk 2: Xk, it is seen that a minimizing Yk
in Eq. (4.22) equals Sk if Xk < Sk, and equals Xk otherwise [since by
convexity, Gk(Y) cannot decrease as Y increases beyond Sk]. Using the
reverse transformation Uk = Yk - Xk, we see that the minimum in the DP
equation (4.21) is attained at Uk = Sk - Xk if Xk < Sk, and at Uk = °
otherwise. An optimal policy is determined by the sequence of scalars
{So, Sl, ... , SN-I} and has the form

We assume that the purchase cost per unit stock c is positive and that
p > c. The last assumption is necessary for the problem to be well posed;
if c, the purchase cost per unit, were greater than p, the depletion cost per
unit, it would never be optimal to buy new stock at the last period and
possibly in earlier periods. Much of the subsequent analysis generalizes to
the case where r is a convex function that grows to infinity with asymptotic
slopes p and h as its argument tends to -00 and 00, respectively.

By applying the DP algorithm, we have

Actually, H depends on k whenever the probability distribution of Wk de
pends on k. To simplify notation, we do not show this dependence and as
sume that all demands are identically distributed, but the following analysis
carries through even when the demand distribution is time-varying. The
function H can be seen to be convex, since r(y - Wk) is convex in y for
each fixed Wk, and taking expectation over Wk preserves convexity.

where the function H is defined by

where p and h are given nonnegative scalars. Thus the total expected cost

to be minimized is

H(y) = E{r(y - Wk)} = pE{max(O, Wk - y)} + hE{max(O, y - Wk)}.

r(x) = pmax(O, -x) + hmax(O, x),



ing inventory U ~ °is
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H(y) = E{r(y - w)} = pE{max(O, w - y)} + hE{max(O, y - w)}.

C (u) = {K
O

+ cu if U > 0,
if U = 0.

The DP algorithm takes the form

Consider again the functions

IN(XN) = 0,

Jk(Xk) = ~k~ [C(Uk) + H(Xk + Uk) + E { Jk+l (Xk + Uk - Wk)} ] '

with H defined as earlier by

Then Jk is written as

Jk(Xk) = min [Gk(Xk), ~~ [K + Gk(Xk + Uk)]] - c.Tk,

or equivalently, through the change of variable Yk = Xk + Uk,

y

--- ---
-cy

--- ---
-cy

--- ---

.- ---_.;;;...:=..+-::--:-- 1...- ......

. --

Figure 4.2.1 Structure of the cost-to-go functions when the fixed cost is zero.

(4.25)

for all z ~ 0, b > 0, y.

(4.26)

If, as in the case where K = 0, we could prove that the functions
Gk are convex, then it would not be -difficult to verify [see part (d) of the
following Lemma 4.2.1] that the policy

*( )_{8k-Xk ifxk<sk,Mk Xk - .° IfXk~Sk,

is optimal, where 8k is a value of Y that minimizes Gk(Y) and Sk is the
smallest value of Y for which Gk(y) = K + Gk(8k)' A policy of the form
(4.25) is known as a multiperiod (s, 8) policy.

Unfortunately, when K > 0 it is not necessarily true that the func
tions Gk are convex. This opens the possibility of Gk having the form
shown in Fig. 4.2.2, where the opti~al policy is to order (8 - x) in interval
I, zero in intervals II and IV, and (8 - x) in interval IlL However, we will
show that even though the functions G k may not be convex, they have the
property

if Xk < 8k,
if Xk ~ 8k,

We now turn to the more complicated case where there is a positive fixed
cost K associated with a positive inventory order. Thus the cost for order-

where 8k is an unconstrained minimum of Gk. Furthermore, Jk is convex,
limlYI-+oo Jk(Y) = 00, and limlYI-+oo Gk-l(Y) = 00. Thus, the optimality
proof of the policy (4.24) is completed.

Positive Fixed Cost and (s, 8) Policies

lim IN-l(y) = 00.
lyl-+=

This argument can be repeated to show that for all k N - 2, ... ,0,
if Jk+l is convex, limlyl-+oo Jk+1(y) = 00, and limlYI-+oo Gk(Y) = 00, then
we have

which is a convex function because H is convex and 8N-l minimizes cy +
H(y) (see Fig. 4.2.1). Thus, given the convexity of IN, we were able to
prove the convexity of IN-l. Furthermore,



Definition 4.2.1: We say that a real-valued function 9 is K-convex,
where K 2: 0, if

167Inventory ControlSec. 4.2

Some properties of K -convex functions are provided in the following
lemma. Part (d) of the lemma essentially proves the optimality of the (8, 8)
policy (4.25) when the functions Gk are K-convex.

Proof: Part (a) follows from elementary properties of convex functions,
and parts (b) and (c) follow from the definition of a K -convex function.
We will thus concentrate on proving .part (d).

Since 9 is continuous and g(y) --+ 00 as Iyl --+ 00, there exists a
minimizing point of g. Let 8 be such a point. Also let s be the smallest
scalar z for which z S; 8 and g(8) + K = g(z). For all y with y < s, we
have from the definition of K -convexity

B-s
K + g(8) 2: g(s) + --(g(s) - g(y)).

8-y

Since K + g(8) - g(8) = 0, we obtain g(8) g(y) S; O. Since y < 8 and 8 is
the smallest scalar for which g(8) + K = g(8), we must have g(8) < g(y)
and (ii) is proved. To prove (iii), note that for YI < Y2 < 8, we have

B-
K + g(8) 2: g(Y2) + (g(Y2) - g(yI)).

Y2 - Yl

Also from (ii),

Lemma 4.2.1:

(a) A real-valued convex function 9 is also O-convex and hence also
K-convex for all K 2: O.

(b) If gl(Y) and g2(y) are K-convex and L-convex (K 2: 0, L 2: 0),
respectively, then agI(Y) + pg2(y) is (aK + pL)-convex for all
a > 0 and p > O.

(c) If g(y) is K-convex and w is a random variable, then Ew{g(y
w)} is also K -convex, provided E w{Ig(y - w) I} < 00 for all y.

(d) If 9 is a continuous K-convex function and g(y) --+ 00 as Iy! --+ 00,

then there exist scalars 8 and 8 with 8 S; 8 such that

(i) g(8) S; g(y), for all scalars y;

(ii) g(8) + K = g(8) < g(y), for all y < 8;

(iii) g(y) is a decreasing function on (-00, s);

(iv) g(y) S; g(z) + K for all y, z with 8 S; Y S; z.

Chap. 4
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which contradicts the construction shown in Fig. 4.2.2. More generally, it
will be shown by using part (d) of the following Lemma 4.2.1 that if the
K-convexity Eq. (4.26) holds, then an optimal policy takes the (8, B) form
(4.25).

Figure 4.2.2 Potential form of the function Gk when the fixed cost is nonzero.
If G k had the form shown in the figure, the optimal policy would be to order
(8 - x) in interval I, zero in intervals II and IV, and (8 - x) in interval III. The
use of K -convexity allows us to show that the form of G k shown in the figure is
impossible.

Gk(yo) - Gk(YO - b) > 0
b - ,

and from Eq. (4.26) it follows that

This property is called K-convexity and was first used by Scarf [Sca60]
to show the optimality of multiperiod (8, B) policies. Now if K-convexity
holds, the situation shown in Fig. 4.2.2 is impossible; if yo is the local
maximum in the interval III, then we must have, for sufficiently small
b> 0,

166

K +g(z+y) 2: g(y)+z (g(y) 9(y-b))
b'

for all z 2: O,b > O,Y.
g(Y2) > g(8) +

and by adding these two inequalities we have

8-Y2o> -- (g(Y2) - g(Yl)),
Y2 - YI
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Figure 4.2.3 Structure of the cost-to-go function when fixed cost is nonzero.

Sec. 4.2

We distinguish three cases:

Case 1: y 2 SN-1· If Y - b 2 SN-1, then in this region of values of
z, b, and y, the function I N - 1 , by Eq. (4.27), is the sum of a K-convex
function and a linear function. Hence by part (b) of Lemma 4.2.1, it is
K-convex and Eq. (4.28) holds. If y - b < SN-1, then in view of Eq. (4.27)
we can write Eq. (4.28) as

K + GN-1(y + z) - e(y + z) ~ GN-1(y) - ey

+ z (GN-l (y) - cy - GNb-l (SN-l) + c(y - b))

or equivalently

K + GN-1(y + z) 2': GN-1(y) +~. (GN-l(Y) - :N-l(SN-,)). (4.29)

Now if y is such that GN-1(y) ~ GN- 1(SN-d, then by K-convexity of
GN-1 we have

K + GN- 1(y + z) ~ GN-1(y) + z (GN-1(y) - GN-1(SN-d)
y - SN-1

>G _ ()+z(GN-1(y)-GN-l(SN-d)
- N 1 Y b .

Thus Eq. (4.29) and hence also Eq. (4.28) hold. If y is such that GN -1 (y) <
GN-1(SN-d, then we have

K + GN-1(y + z) ~ K + GN-1(8N-d

= GN-1(SN-1)

> G N - 1 (y)

> G () (GN-1(y) - GN-1(SN-d)- N-1Y+Z b .(4.28)

(4.27)

Chap. 4

for x < SN-1,
for x ~ SN-1,
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and it can be seen that

IN-1(X) = min [GN-1(X), min[K +GN-1(y)J] - ex,
y>x

GN-1(y) = ey + H(y).

Consider now the function GN -1 :

Clearly, GN-1 is convex and hence by part (a) of Lemma 4.2.1, it is also
K-convex. We have

where 8N-1 minimizes GN-1(y) and SN-1 is the smallest value of y for
which GN-1(y) = K + GN-1(8N-1). Note that since K > 0, we have
SN-1 i= 8N-1 and furthermore the derivative of GN-1 at SN-1 is negative.
As a result the left derivative of JN -1 at sN -1 is greater than the right
derivative, as shown in Fig. 4.2.3, and JN -1 is not convex. However, we
will show that IN-1 is K-convex based on the fact that GN-1 is K-convex.
To this end we must verify that for all z 2 0, b > 0, and y, we have

z-y
K + g(z) ~ g(y) + --8 (g(y) - g(8)) 2 g(y),

y-

8-
g(s) = K + g(8) 2 g(y) + (g(y) - g(s)),

y s

g(z) + K ~ g(8) + K = g(s),

(
8-y) (8- y )1 +-- g(s) 2 1 +-- g(y),
Y s Y - s

and g(s) 2 g(y). Noting that

it follows that g(z) + K 2 g(y). Thus (iv) is proved for this case as well.
Q.E.D.

and (iv) is proved. If s < Y < 8, then by K-convexity

from which we obtain g(Yl) > g(Y2), thus proving (iii). To prove (iv), we
note that it holds for y = z as well as for either y = 8 or y = s. There
remain two other possibilities: 8 < Y < z and s < y < 8. If 8 < Y < z,
then by K -convexity

168
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(4.30)

(4.31)i = 1, ... ,n,

for all X,
U'(x)

- UII(X) = a + bx,

Dynamic Portfolio AnalysisSec. 4.3

J(xo) = maxE{U(xI)},
Ui

where U is a known function, referred to as the utility junction for the in
vestor (Appendix G contains a discussion of utility functions and their sig
nificance in the formulation of optimization problems under uncertainty).
We assume that U is concave and twice continuously differentiable, and
that the given expected value is well defined and finite for all Xo and Ui.
We will not impose constraints on UI, ... , Un. This is necessary in order to
obtain the results in convenient form. A few additional assumptions will
be made later.

Let us denote by ut = J.Li* (xo), i = 1, ... ,n, the optimal amounts to
be invested in the n risky assets when the initial wealth is Xo. We will show
that when the utility function satisfies

n

Xl = s(xo - UI ... - Un) + 2:= eiUi,
i=l

(xo UI - ... - Un) the amount invested in the riskless asset, the wealth
at the end of the first period is given by

n

Xl = SXO + 2:=(ei - S)Ui'
i=l

The objective is to maximize over UI, ... , Un,

or equivalently

where U' and U" denote the first and second derivatives of U, respectively,
and a and b are some scalars, then 'the optimal portfolio is given by the
linear policy

where a i are some constant scalars. Furthermore, if J(xo) is the optimal
value of the problem

then we have
J'(xo) a

- JII(XO) = -; + bxo, for all Xo· (4.32)

It can be verified that the following utility functions U (x) satisfy
condition (4.30):

exponential: e-xja, for b = 0, a> 0,

logarithmic: In(x + a), for b = 1,

power: (l/(b -l))(a + bx)l-(ljb) , for b =/:::. 0, b =/:::. 1.

Chap. 4Problems with Perfect State Information

K + GN-I(Y + z) ~ GN-I(SN-I),

which holds by the definition of SN-I.

We have thus proved that K-convexity and continuity of GN-I, to
gether with the fact that GN-1(y) -700 as IYI-7 00, imply K-convexity
of IN-I. In addition, IN-l can be seen to be continuous. Now using
Lemma 4.2.1, it follows from Eq. (4.23) that GN-2 is a K-convex function.
Furthermore, by using the boundedness of WN-2, it follows that GN-2 is
continuous and, in addition, GN-2(Y) -7 00 as lyl -7 00. Repeating the
preceding argument, we obtain that IN-2 is K-convex, and proceeding
similarly, we prove K-convexity and continuity of the functions Gk for all
k, as well as that Gk(y) -7 00 as Iyl -7 00. At the same time [by using part
(d) of Lemma 4.2.1] we prove optimality of the multiperiod (s, S) policy of
Eq. (4.25).

The optimality of policies of the (s, S) type can be proved for several
other inventory problems (see Exercises 4.3 to 4.10).

Portfolio theory deals with the question of how to invest a certain amount
of wealth among a collection of assets, perhaps over a long time interval.
One approach, to be discussed in this section, is to assume that an in
vestor makes a decision in each of several successive time periods with the
objective of maximizing final wealth. We will start with an analysis of a
single-period model and then extend the results to the multiperiod case.

Let Xo denote the initial wealth of the investor and assume that there
are n risky assets, with corresponding random rates of return el, ... , en
among which the investor can allocate his wealth. The investor can also
invest in a riskless asset offering a sure rate of return s. If we denote by
UI, ... ,Un the corresponding amounts invested in the n risky assets and by

or equivalently

So for this case, Eq. (4.29) holds, and hence also the desired K-convexity
Eq. (4.28) holds.

Case 2: Y:S y+z:S SN-l. In this region, by Eq. (4.27), the function
IN-I is linear and hence the K-convexity Eq. (4.28) holds.

Case 3: y < SN-I < y + z. For this case, in view of Eq. (4.28), we
can write the K-convexityEq. (4.28) as
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Only concave utility functions from this class are admissible for our prob
lem. Furthermore, if a utility function that is not defined over the whole
real line is used, the problem should be formulated in a way that ensures
that all possible values of the resulting final wealth are within the domain
of definition of the utility function.

To show the desired relations, let us hypothesize that an optimal
portfolio exists and is of the form

and a i (xo) = ai, where a i are some constants, thus proving the optimality
of the linear policy (4.31).

We now prove Eq. (4.32). We have

J(xo) = E{U(xI)}

= E { U (s (1 +t (ei - s)aib) Xo +t (ei - s )aia) }

and hence

(4.33)
Differentiating each of the n equations above with respect to Xo yields

(4.36)

(4.37)
E{Uf(Xl)S(1 + 2:~=1 (e~ - s)aib)}s

J" (xo) = - -"----------:---__----.::C-..

a + bsxo

Jf(XO) a
- J"(xo) = -; + bxo.

J'(xo) ~ E { U'(x,)s (1+ t(ei - S)aib) } ,

J"(xo) = E { U"(x,)s' (1 + t(ei _ s)aib) 2} .
The last relation after some calculation using Eq. (4.35) yields

By combining Eqs. (4.36) and (4.37), we obtain the desired result:

The Multiperiod Problem

We now extend the preceding one-period analysis to the multiperiod case.
We will assume that the current wealth can be reinvested at the beginning
of each of N consecutive time periods. We denote

Xk: the wealth of the investor at the start of the kth period,

u~: the amount invested at the start of the kth period in the ith risky
asset,

e~: the rate of return of the ith risky asset during the kth period,

Sk: the rate of return of the riskless asset during the kth period.

We have the system equation

(4.35)

(4.34)

U"(xI) = _ Uf(xI)
a + b(sxo + 2:~=1 (ei s)ai(xo)(a + bsxo))

Uf(xI)

Using relation (4.31), we have

Substituting in Eq. (4.34) and using Eq. (4.33), we have that the right-hand
side of Eq. (4.34) is the zero vector. The matrix on the left in Eq. (4.34),
except for degenerate cases, can be shown to be nonsingular. Assuming
that it is indeed nonsingular, we obtain

where ai(xo), i = 1, ... ,n, are some differentiable functions. We will prove
that dai(xo)jdxo = 0 for all Xo, implying that the functions a i must be
constant, so the optimal portfolio has the linear form (4.31).

We have for every Xo and i = 1, ... ,n, by the optimality of J.Li* (xo),

_dE~{U---.:(_Xl-::..-)} =E{Uf (sxo + 't(ej-s)aj(XO)(a+bsXO)) (ei-s)}
du~ j=l

=0.

dai(xo) = 0
dxo '

i = 1, ... ,n,
n

Xk+l = SkXk + 2::(e~ - Sk)U~,
i=l

k = O,l, ... ,N - 1.
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for b i= 0, b i= 1,

subject to
n

Xk+l = SkXk + I)ef - sk)uf·
i=l

In other words, the investor at period k should maximize the expected
utility of wealth that results if amounts u~ are invested in the risky assets in
period k and the resulting wealth Xk+l is subsequently invested exclusively
in the riskless asset during the remaining periods k + 1, ... ,N - 1. This
is known as a partially myopic policy. Such a policy can also be shown to
be optimal when forecasts on the probability distributions of the rates of
return of the risky assets become available during the investment process
(see Exercise 4.14).

Another interesting aspect of the case where a i= 0 is that if Sk > 1 for
all k, then as the horizon becomes increasingly long (N --+ 00), the policy
in the initial stages approaches a myopic policy [compare Eqs. (4.39) and
(4.40)]. Thus, for Sk > 1, a partially myopic policy becomes asymptotically
myopic as the horizon tends to infinity.

then it follows from Eq. (4.39) that the investor acts at each stage k as
if he were faced with a single-period investment characterized by the rates
of return Sk and ef, and the objective function E{U(Xk+l)}. This policy
whereby the investor can ignore the fact that he will have the opportunity
to reinvest his wealth is called a myopic policy.

Note that a myopic policy is also optimal when Sk = 1 for all k,
which means that wealth is discounted at the rate of return of the riskless
asset. Furthermore, it has been shown by Mossin [Mos68] that when a = 0
a myopic policy is optimal even in the more general case where the rates
of return Sk are independent random variables, and for the case where
forecasts on the probability distributions of the rates of return e~ of the
risky assets become available during the investment process (see Exercise
4.14).

It turns out that even in the more general case where a i= 0 only a
small amount of foresight is required on the part of the decision maker. It
can be seen [compare Eqs. (4.38)-(4.40)] that the optimal policy (4.39) at
period k is the one that the investor would use in a single-period problem
to maximize over uf, i 1, ... ,n,

Thus it is seen that the investor, when faced with the opportunity to
sequentially reinvest his wealth, uses a policy similar to that of the single
period case. Carrying the analysis one step further, it is seen that if the
utility function U is such that a = 0, that is, U has one of the forms

In x, for b 1,

(b ~ 1) (bx )1-(l/b),

(4.40)

(4.39)

for all x.

k = 0,1, ... , N - 1.

___a + bSkXk) ,
SN-l ... Sk+l

U/(X)
--U( ) =a+bx,

II x

a
----+bx,
SN-l ... Sk

J£(X)
-jf(x)

where aN-2 is again an appropriate n-dimensional vector.
Proceeding similarly, we have for the kth period

JIv_l(X) = _a_ + b
// () X.I N- 1 X SN-l

where ak is an n-dimensional vector that depends on the probability distri
butions of the rates of return ef of the risky assets and are determined by
maximization in the DP Eq. (4.38). The corresponding cost-to-go functions
satisfy

Applying the DP algorithm to this problem, we have

Hence, applying the one-period result in the DP Eq. (4.38) for the next to
the last period, we obtain the optimal policy

where aN-l is an appropriate n-dimensional vector. Furthermore, we have

Jk(Xk) uf,'~~ E {Jk+l (SkXk + ~(e? - Sk)U?) } . (4.38)

From the solution of the one-period problem, we have that the optimal
policy at period N - 1 has the form

We assume that the vectors ek = (e~, ... , e~), k = 0, ... , N - 1, are in
dependent with given probability distributions that yield finite expected
values throughout the following analysis. The objective is to maximize
E{U(XN)}, the expected utility of the terminal wealth XN, where we as
sume that U satisfies
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(4.42)

(4.41)

if Xk =I- T,

if Xk = T.

if XN =I- T,
otherwise,

Optimal Stopping Problems

JN (xN) = { OX N if xN =I- T,
if XN = T,

Jk(cI;k) = { ~a;x [(1 + r')N-kXk , E{Jk+! (Wk)}]

Sec. 4.4

accept the offer x k

where
E{ Jk+l(Wk)}

0'. k = ---c'::"'-_~---:--"'-

(l+r)N-k .

When Xk = O'.k, both acceptance and rejection are optimal. Thus the
optimal policy is determined by the scalar sequence {O'.k} (see Fig. 4.4.1).

Properties of the Optimal Policy

if Xk =I- T and Uk = u1 (sell),
otherwise.

Based on this formulation we can write the corresponding DP algo
rithm:

reject the offer Xk

Note that a sell decision at time k (Uk u 1 ) accepts the offer Wk-l, and
that no explicit sell decision is required to accept the last offer W N -1, as
it must be accepted by assumption if the asset has not yet been sold. The
corresponding reward function may be written as

where

In the above equation, (1 + r)N-k Xk is the revenue resulting from decision
u 1 (sell) when the offer is Xk, and E{ Jk+l(Wk)} represents the expected
revenue corresponding to the decision u 2 (do not sell). Thus, the optimal
policy is to accept an offer if it is greater than E {Jk+ 1 ( W k) } / (1 + r) N - k ,

which represents expected revenue discounted to the present time:

Chap. 4Problems with Perfect State Infor.mation

Asset Selling

As a first example, consider a person having an asset (say a piece of land)
for which he is offered an amount of money from period to period. We
assume that the offers, denoted wo, WI, ... , WN-l, are random and inde
pendent, and take values within some bounded interval of nonnegative
numbers (Wk = 0 could correspond to no offer received during the period).
If the person accepts an offer, he can invest the money at a fixed rate of
interest r > 0, and if he rejects the offer, he waits until the next period
to consider the next offer. Offers rejected are not renewed, and we assume
that the last offer W N -1 must be accepted if every prior offer has been
rejected. The objective is to find a policy for accepting and rejecting offers
that maximizes the revenue of the person at the Nth period.

The DP algorithm for this problem can be derived by elementary
reasoning. As a modeling exercise, however, we will embed the problem
in the framework of the basic problem by specifying the system and cost.
vVe define the state space to be the real line, augmented with an additional
state (call it T), which is a termination state. By writing that the system
is at state x k T at some time k :::; N - 1, we mean that the asset has
already been sold. By writing that the system is at a state x k =I- T at
some time k :::; N - 1, we mean that the asset has not been sold as yet
and the offer under consideration is equal to x k (and also equal to the kth
offer Wk-l). We take Xo = 0 (a fictitious "null" offer). The control space
consists of two elements u 1 and u 2 , corresponding to the decisions "sell"
and "do not sell," respectively. We view Wk as the disturbance at time k.

With these conventions, we may write a system equation of the form

Optimal stopping problems of the type that we will consider in this and
subsequent sections are characterized by the availability, at each state, of
a control that stops the evolution of the system. Thus at each stage the
decision maker observes the current state of the system and decides whether
to continue the process (perhaps at a certain cost) or stop the process and
incur a certain loss. If the decision is to continue, a control must be selected
from a given set of available choices. If there is only one choice other than
stopping, then each policy is characterized at each period by the stopping
set, that is, the set of states where the policy stops the system.
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where the function fk is defined via the relation

if Xk = T, or if Xk =I- T and Uk = u 1 (sell),
otherwise. for all k,

We will now derive some properties of the optimal policy with some further
analysis. Let us assume that the offers Wk are identically distributed, and
to simplify notation, let us drop the time index k and denote by E w {.} the
expected value of the corresponding expression over Wk, for all k. We will
then show that

k = 0,1, ... ,N - 1,
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(4.46)for all k,

for all k,

for all 0'- 2: 0,

if Xk > a,
if Xk < a.

for all x :2: 0 and k.

accept the offer x k

reject the offer x k

P(O'-) 1
0<--<--<1

-1+1'-1+1' '

1 1= E{w}0<-- wdP(w) < --,
- 1 + l' ak+l - 1 + l'

Optimal Stopping Problems

it can be seen, using the property O'-k 2: O'-k+l, that the sequence {O'-k}
generated (backward) by the difference equation (4.46) converges (as k -7

-(0) to a constant a satisfying

P(A) = Prob{w < A}.

with O'-N = O.
Now since we have

The optimality of this policy for the corresponding infinite horizon problem
will be shown in Section 7.3.

1
O'-k = {Vk+1 (W)}

1+1'

1 l ak

+
1

1 1== -1- O'-k+l dP(W) + -1- wdP(w),
+ l' 0 + l' ak+l

(1 + 1')a = P(a)a + l= wdP(w).

This equation is obtained from Eq. (4.46) by taking limits as k -7 -00 and
by using the fact that P is continuous from the left.

Thus, when the horizon N tends to become longer, the optimal policy
for every fixed k 2: 1 can be approximated by the stationary policy

where the function P is defined for all scalars A by

The difference equation for O'-k may also be written as

P(O'-k+l) 1 1=O'-k = O'-k+l +-- wdP(w),
1 + l' 1 + l' ak+l

Hence we obtain

Continuing in the same manner, we see that

Sec. 4.4

Since O'-k = Ew {Vk+l(W)}/(l +1'), we obtain O'-k:2: O'-k+l, as desired.
Let us now see what happens when the horizon N is very large. From

the algorithm (4.43) and (4.44) we have

Vk(Xk) = max(xk, Ctk)' (4.45)

(4.44)

(4.43)

Chap. 4

k

k = 0,1, ... ,N - 1,

Xk =I- T.

for all x :2: o.

Problems with Perfect State Information

VN(XN) = XN,

Vk(Xk) = max [X" (1 + r)-l1P{Vk+1(W)}] ,

Applying Eq. (4.44) for k = N'- 2 and k = N -1, and using the preceding
inequality, we obtain for all x :2: 0

Figure 4.4.1 Optimal policy for accepting offers in the asset selling problem.

VN-2(X) = max [x, (1 + r)-11P{VN-1(W)}]

;:: max [X, (1+ r) -1 1P{VN(W)}]

= VN-l(X).

and that
Ew {Vk+l (w)}

O'-k = .
1+1'

To prove that O'-k :2: O'-k+l, note that from Eqs. (4.43) and (4.44), we have

Jk(Xk)
Vk(Xk) = (1 + 1')N-k'

It can be seen from Eqs. (4.41) and (4.42) that

which expresses the intuitive fact that if an offer is good enough to be
acceptable at time k, it should also be acceptable at time k + 1 when there
will be one less chance for improvement. We will also obtain an equation
for the limit of O'-k as k -7 -00.

Let us introduce the functions

178
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"-Jl.Il'Cll.:::JJlJlJlF, with a Deadline

AxN -1 +;

Do not PurchasePurchase aN - 1
O .....----...,.,.,.--------------I\li>o-Xk+1 = Wk

the price prevailing at the beginning of period k + 1. vVe have similar to
the earlier problem the DP algorithm

Let us consider another stopping problem that has similar nature. Assume
that a certain quantity of raw material is required by a certain time. If
the price of this material fluctuates, there arises the problem of deciding
whether to purchase at the current price or wait a further period, during
which the price may go up or down. We thus want to minimize the expected
price of purchase. We assume that successive prices Wk are independent
and identically distributed with distribution P(Wk), and that the purchase
must be made within N time periods.

This problem and the earlier asset selling problem have obvious sim
ilarities. Let us denote by

k = 0,1, ... ,N 1,

The Case of Correlated Prices

Xo = 0,

where A is a scalar with °::::; A < 1 and ~o, 6, ... ,~N-1 are independent
identically distributed random variables taking positive values with given
probability distribution. As discussed in Section 1.4, the DP algorithm
under these circumstances takes the form

Figure 4.4.2 Structure of the cost-to-go function IN-l(XN-d when prices are
correlated.

with

Consider now a variation of the purchasing problem where we do not as
sume that the successive prices WO, ... , WN-1 are independent. Instead,
we assume that they are correlated and can be represented as the state of
a linear system driven by independent disturbances (cf. Section 1.4). In
particular, we have

O'.k E{ Jk+1(Wk)}.

Similar to the asset selling problem, the thresholds 0'.1,0'.2, ... , O'.N-1 can
be obtained from the discrete-time equation

where

do not purchase if Xk > O'.k,

purchase if Xk < O'.k,

IN(XN) = XN,

Jk(Xk) = min [Xk' E{ Jk+1(Wk)}].

Note that Jk(Xk) is the optimal cost-to-go when the current price is Xk and
the material has not been purchased yet. To be strictly formal, we should
introduce a termination state T, to which the system moves following a
purchasing decision and at which the system subsequently stays at no cost.
A nonzero cost is incurred only when moving from Xk to T; this cost is
equal to Xk. Thus the cost-to-go from the termination state T is 0, and for
this reason it was neglected in the preceding DP equation.

The optimal policy is given by

with the terminal condition

O'.N-1 faOO wdP(w) = E{w}.
where the cost associated with the purchasing decision is Xk and the cost
associated with the waiting decision is E{ Jk+1 (AXk + ~k)}.
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x
Do not PurchasePurchase lXJ<

Optimal Stopping Problems

o ....... ~..------------ .....

Figure 4.4.3 Determining the optimal policy when prices are correlated.

Sec. 4.4Chap. 4Problems with Perfect State Information

~
a N - I =l_A·

purchase if XN-I < OW-I,

do not purchase if XN-I > aN-I,

where aN-I is defined from the equation aN-I AaN-I +~:

where ~ = E{~N-I}' As shown in Fig. 4.4.2, an optimal policy at time
N - 1 is given by

We will show that in this case the optimal policy is of the same type
as the one for independent prices. Indeed, we have
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for all x,

(4.47)

and it is optimal to stop at time k for states x in the set

We now formulate a general type of N-stage problem where stopping is
mandatory at or before stage N. Consider the stationary version of the
basic problem of Chapter 1 (state, control, and disturbance spaces, distur
bance distribution, control constraint set, and cost per stage are the same
for all times). Assume that at each state Xk and at time k there is available,
in addition to the controls Uk E U(Xk), a stopping action that forces the
system to enter a termination state at a cost t(Xk) and subsequently remain
there at no cost. The terminal cost, assuming stopping has not occurred
by the last stage, is t(XN)' Thus, in effect, we assume that the termination
cost will always be incurred either at the end of the horizon or earlier.

The DP algorithm is given by

General Stopping Problems and the One-Step-Lookahead Rule

for all k.

for all x and k,

and that Jk is concave and increasing in x for all k. Furthermore, since
~ = E{~k} > 0 for all k, one can show that

These facts imply (as illustrated in Fig. 4.4.3) that the optimal policy for
every period k is of the form

purchase if Xk < ak,

do not purchase if Xk > ak,

where the scalar ak is the unique positive solution of the equation

and that IN-I is concave and increasing in x. Using this fact in the DP
algorithm, one may show (the monotonicity property of DP; Exercise 1.23
in Chapter 1) that

Note that the relation Jk(X) ::; Jk+I(X) for all x and k implies that Tk = {x , t(x)::; min E{g(x,u,w) + Jk+l(!(X,U,w))}}.
uEU(x)

for all k,
We have from Eqs. (4.47) and (4.48)

and hence (as one would expect) the threshold price to purchase increases
as the deadline gets closer. for all x,
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(4.51)

Rational Burglar [Whi82])

TN-l = {x I x 2: a},

(1 + r)a = P(a)a + loo wdP(w).

Optimal Stopping Problems

Example 4.4.2

A burglar may at any night k choose to retire with his accumulated earnings
Xk or enter a house and bring home an amount Wk. However, in the latter
case he gets caught with probability p, and then he is forced to terminate his
activities and forfeit his earnings thus far. The amounts Wk are independent,
identically distributed with mean w. The problem is to find a policy that
maximizes the burglar's expected earnings over N nights.

We can formulate this problem as a stopping problem with two actions
(retire or continue) and a state space consisting of the real line, the retirement
state, and a special state corresponding to the burglar getting caught. The
DP algorithm is given by

Since past offers can be accepted at a later date, the effective offer available
cannot decrease with time, and it follows that the one-step stopping set (4.51)
is absorbing in the sense of Eq. (4.50). Therefore, the one-step lookahead
stopping rule that accepts the first offer that equals or exceeds a is optimal.
Note that this policy is independent of the horizon length N.

where a is obtained from the equation

TN - 1 = {x I x 2: (1 + r)-l E{ max(x, w)} }.

It is seen [compare with Eqs. (4.45) and (4.46)] that an alternative charac
terization is

Vk(Xk) = max [Xk' (1 + r)-l E{ Vk+1(max(xk, Wk)) }].

The one-step stopping set is

instead of Xk+l = Wk. The DP equations (4.43) and (4.44) then become

Consider the asset selling problem discussed earlier in this section with the
difference that rejected offers can be accepted at a later time. Then if the
asset is not sold at time k the state evolves according to

Example 4.4.1 (Asset Selling with Past Offers Retained)

Sec. 4.4

(4.50)

(4.49)

Chap. 4

for all x and k.

for all x E TN-I,

for all x E TN-I, U E U(x), w.

Problems with Pen"ect State Information

To C .,. C Tk C Tk+l C ... C TN-I.

IN-l(X) = t(x),

f(x, u, w) E TN-I,

To see this, note that by the definition of TN-I, we have

We will show that equality holds in Eq. (4.49) and for all k we have

and using this fact in the DP equation (4.48), we obtain inductively

Tk=TN-l {xESlt(x):s min E{9(x,u,w)+t(f(X,U,w))}}.
uEU(x)

[vVe are making use here of the stationarity of the problem and the mono
tonicity property of DP (Exercise 1.23 in Chapter 1).] Using this fact and
the definition of Tk we see that

and using Eq. (4.50) we obtain for x E TN-l

min E{g(x,u,w) + IN-l(f(x,u,w))}
uEU(x)

= min E{g(x,u,w) +t(f(x,u,w))}
uEU(x)

2: t(x).

We will now consider a condition guaranteeing that all the stopping
sets Tk are equal. Suppose that the set TN-l is absorbing in the sense that
if a state belongs to TN -1 and termination is not selected, the next state
will also be in TN -1:

184

Therefore, stopping is optimal for all XN-2 E TN-lor equivalently TN-l C

TN-2. This together with Eq. (4.49) implies TN-2 = TN-I. Proceeding
similarly, we obtain Tk = TN-l for all k.

In conclusion, if condition (4.50) holds (the one-step stopping set
TN-l is absorbing), then the stopping sets Tk are all equal to the set of
states for which it is better to stop rather than continue for one more stage
and then stop. A policy of this type is known as a one-step lookahead pol
'icy. Such a policy turns out to be optimal in several types of applications.
We provide next some examples. Additional examples are given in the
exercises, and in Vol. Chapter 3.
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Example 4.5.2 (Job Scheduling on a Single Processor)

PiRi > pjRj .
1 - Pi - 1- Pj

Therefore, to maximize expected rewards, questions should be answered in
decreasing order of PiRi/(l Pi).

Suppose we have N jobs to process in sequential order with the ith job requir
ing a random time Ti for its execution. The times T1 , ... , TN are independent.
If job i is completed at time t, the reward is atRi, where a is a discount factor
with 0 < a < 1. The problem is to find a schedule that maximizes the total
expected reward.

It can be seen that the state for this problem is just the collection of jobs
yet to be processed. Indeed, because the execution times Ti are independent,
and also because future costs are multiplicatively affected through discounting
by the completion times of preceding jobs, the optimization of the scheduling
of future jobs is unaffected by the completion times of preceding jobs. As a
result these times need not be included in the state; this would not be so if
either the times T i were correlated or if the reward for completing job i at
time t were not atR i but instead had a general dependence on t. Now, given
that the state is the collection of jobs yet to be processed, it is clear that an
optimal policy can be mapped into an optimal job schedule (ia, ... , iN-1).

Suppose that L = (ia, ... , ik-1, i, j, ik+2, ... ,iN-1) is an optimal job
schedule, and consider the schedule L' = (ia, ... , ik-1,j, i, ik+2, ... , iN-1) ob
tained by interchanging i and j. Let tk be the time of completion of job ik-1.
We compare the rewards of the schedules Land L', similar to the preceding
example. Since the reward for completing the remaining jobs ik+2, ... , iN-1
is independent of the order in which jobs i and j are executed, we obtain

or equivalently

E{reward of L} 2: E{reward of L'},

so it follows from these equations that

E{reward of L'} = E{reward of {ia, ... ,ik-d}

+Pia'" Pik-1 (pjRj + pjPiRi )

+ Pia'" P'ik_1PjPiE{ reward of {ik+2, ... , iN-d}·

Since L is optimally ordered, we have

Sec. 4.5Chap. 4Problems with Perfect State Information

Consider the list

Example 4.5.1 (The Quiz Problem)

obtained from L by interchanging the order of questions i and j. We compare
the expected rewards of Land L'. We have

list

L' = (ia, ... ,ik-1,j,i,ik+2, ... ,iN-1)

Consider a quiz contest where a person is given a list of N questions and can
answer these questions in any order he chooses. Question i will be answered
correctly with probability pi, and the person will then receive a reward R i .
At the first incorrect answer, the quiz terminates and the person is allowed to
keep his previous rewards. The problem is to choose the ordering of questions
so as to maximize expected rewards.

Let i and j be the kth and (k + 1)st questions in an optimally ordered

(more accurately this set together with the special state corresponding to the
burglar's arrest). Since this set is absorbing in the sense of Eq. (4.50), we
see that the one-step lookahead policy by which the burglar retires when his
earnings reach or exceed (1- p)w/p is optimal. The optimality of this policy
for the corresponding infinite horizon problem will be demonstrated in Vol.
II, Chapter 3.

The one-step stopping set is

Suppose one has a collection of tasks to perform but the ordering of the
tasks is subject to optimal choice. As examples, consider the ordering of
operations in a construction project so as to minimize construction time or
the scheduling of jobs in a workshop so as to minimize machine idle time.
In such problems a useful technique is to start with some schedule and then
to interchange two adjacent tasks and see what happens. We first provide
some examples, and we then formalize mathematically the technique.
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4.5 SCHEDULING AND THE INTERCHANGE ARGUMENT

E{reward of L} = E{reward of {ia, ... ,ik-d}

+ Pia'" Pik_ 1(PiRi + PiPjRj )

+ Pia'" Pik_1PiPjE{ reward of {ik+2, ... , iN-d}

Since tk, Ti , and T j are independent, this relation can be written as

E{atk}(E{aTi}Ri + E{aTi }E{a'1j}Rj )

2: E{atk}(E{aTj}Rj + E{aTj}E{aTi}Ri) ,
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(4.54)

(4.53)

Scheduling and the Interchange Argument

in which case Tij = Tji and the order of i and j makes no difference. (This is
the case where the backlog at time k is so large that both jobs i and j will
find B working on an earlier job.) The second possibility is that

Clearly, Jk+2 is monotonically increasing in T, so from Eq. (4.52) we obtain

In view of Eqs. (4.53) and (4.54), this relation implies two possibilities. The
first is

where Tij and Tji are the backlogs at machine B at time k + 2 when i is
processed before j and j is processed before i, respectively, and the backlog
at time k was Tk. A straightforward calculation shows that

Sec. 4.5Chap. 4Problems with Pedect State Information

Example 4.5.3 (Job Scheduling on Two Processors in Series)

Consider the scheduling of N jobs on two processors A and B, such that B
accepts the output of A as input. Job i requires known times ai and bi for
processing in A and B, respectively. The problem is to find a schedule that
minimizes the total processing time.

To formulate the problem into the form of the basic problem, we in
crement discrete time at the moments when processing of a job is completed
at machine A and the next job is started. We take as state at time k the
collection of jobs X k that remain to be processed at A, together with the
backlog of work Tk at machine B, that is, the amount of time that the jobs
currently at B need to clear B. Thus if (Xk , Tk) is the state at stage k and
job i is completed at machine A, the state changes to (Xk + 1 , Tk+l) given by

from which we finally obtain

It follows that scheduling jobs in order of decreasing E{o7i }Rd (1- E{Q;Ti})

maximizes expected rewards. The structure of the optimal policy is identical
with the one we derived for the preceding quiz contest example (identify
E{Q;Ti} with the probability Pi of answering correctly question i).
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The corresponding DP algorithm is
which can be seen to be equivalent to

with the terminal condition

I N(0,TN) = TN,

where 0 is the empty set.
Since the problem is deterministic, there exists an optimal open-loop

schedule

A schedule satisfying these necessary conditions for optimality can be
constructed by the following procedure:

1. Find mini min(ai, bi)'

2. If the minimizing value is an a take the corresponding job first; if it is
a b, take the corresponding job last.

3. Repeat the procedure with the remaining jobs until a complete schedule
is constructed.

By arguing that the cost of this schedule is no worse than the cost of the
schedule

obtained by interchanging i and j, it can be verified that

To show that this schedule is indeed optimal, we start with an optimal
schedule. We consider the job io that minimizes min(ai' bi ) and by successive
interchanges we move it to the same position as in the schedule constructed
previously. It is seen from the preceding analysis that the resulting schedule
is still optimal. Similarly, continuing through successive interchanges and
maintaining optimality throughout, we can transform the optimal schedule
into the schedule constructed earlier. We leave the details to the reader.

(4.52)
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The In1ter'cb,aIJure Argument 4.6.1 Set-Membership Estimation

Let us now consider the basic problem of Chapter 1 and formalize the inter
change argument used in the preceding examples. The main requirement
is that the problem has structure such that there exists an open-loop policy
that is optimal, that is, a sequence of controls that performs as well or
better than any sequence of control functions. This is certainly true in de
terministic problems as discussed in Chapter 1, but it is also true in some
stochastic problems such as those of Examples 4.5.1 and 4.5.2.

To apply the interchange argument, we start with an optimal sequence

{uo, ... ,Uk-l,U,U,Uk+2, ... ,UN-I}

and focus attention on the controls u and U applied at times k and k + 1,
respectively. We then argue that if the order of u and u is interchanged
the expected cost cannot decrease. In particular, if X k is the set of states
that can occur with positive probability starting from the given initial state
Xo and using the control subsequence {uo, . .. ,uk-d, we must have for all
Xk E Xk

E{gk(Xk, u, Wk) + gk+l (Xk+l, u, Wk+l) + Jk+2(Xk+2)}
(4.55)

~ E{9k(Xk, u, Wk) + gk+l (:h+l, u, Wk+l) + Jk+2(Xk+2)},

where Xk+l and Xk+2 (or Xk+l and Xk+2) are the states subsequent to Xk
when Uk U and Uk+l = U (or Uk = u and Uk+l = U, respectively) are
applied, and Jk+2 (·) is the optimal cost-to-go function for time k + 2.

Relation (4.55) is a necessary condition for optimality. It holds for
every k and every optimal policy that is open-loop. There is no guarantee
that this necessary condition is powerful enough to lead to an optimal so
lution, but it is worth considering in some specially structured problems.
Generally in scheduling problems, algorithms that aim to improve a sub
optimal schedule through a sequence of interchanges, may not provide an
optimal solution, but are often the basis for successful heuristics.

4.6 SET-MEMBERSHIP DESCRIPTION OF UNCERTAINTY

In this section, we focus on problems where the uncertain quantities are
described by their membership in given sets rather than probability distri
butions. This type of description is appropriate in minimax control prob
lems, as discussed in Section 1.6. Our purpose in this section is to analyze
some basic problems of estimation and control involving uncertainty with
a set-membership description. These problems are conceptually impor-

Suppose that we are given a linear dynamic system of the type considered
in Section 4.1 but without a control (Uk == 0):

k = 0,1, ... ,N - 1,

where Xk E ~n and Wk E ~n denote the state and disturbance vectors,
respectively, and the matrices Ak are known. Suppose also that at each
time k, we receive a measurement Zk E ~s of the form

where Vk E ~s is an (unknown) observation noise vector, and the matrix
Ck is given.

An important and generic problem is to estimate the value of Xk, given
the observations Zl, ... , Zk, accumulated up to time k. The uncertain quan
tities here are the initial state xo, the system disturbances Wo,·.·, WN-l,
and the observation noise vectors VI, ... , VN, When the joint probability
distribution for these vectors is given, one may calculate the conditional
distribution of Xk given Zl, ... , Zk, and from this, obtain estimates such as
for example the conditional expectation E{Xk I Zl, ... , Zk}. This approach
leads to a rich theory, centered around the Kalman filtering algorithm,
which is described in detail in Appendix E.

Suppose now that, instead of a probability distribution, we have a set
R within which the vector of unknown quantities

r = (xo, Wo, ... ,WN-1, VI, ... , V N )

is known to belong. The state Xk can be expressed in terms of r using the
system equation as

k-l

Xk = A k- 1 ... Aoxo + l:= A k- 2 ... Ai+lWi,
i=O

or more abstractly as

where Lk is an appropriate matrix. Thus, knowing that r E R and before
any measurements are received, the state Xk is known to belong to the set

re(~elVe(j. r,OQTru..·j-" the set of possible values of
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for an appropriate matrix Ei. Thus, with each new measurement, the set
of possible vectors r is further restricted, and so is the set of possible states.
In particular, given the measurements Zl, ... , Zk, the set of possible vectors
r is given by

(4.56)

where S, IVli , and Ni are positive definite symmetric matrices, and Xo is
a given vector. This set is a bounded ellipsoid. Much of the analysis
that follows carries through in the case of more general ellipsoids, but for
simplicity, we restrict attention to bounded ellipsoids.

Let us use DP to derive the set of possible states and show that it is
an ellipsoid of the form

and by a linear transformation, yields the set of possible states Xk as

while ~ is equal to the vector Xk that is generated at the kth stage by the
system

Thus, we have ~ E Xk(Zl, .. . ,Zk) if and only if Vk(~) ::; 1, where Vk(~) is
the optimal cost of the problem of minimizing the quadratic cost

(4.58)i = 0, ... , k - 1.

k-1

(xo - XO)'S-l(xO - xo) +L w~Mi-1W'i

i=O

k-1

+ L(ZH1 - Ci+1Xi+1)'N i+.\ (ZH1 - CHI X H1)

i=O

k-1

(xo - xo)'S-l (xo - xo) + W~Mi-1wi

i=O

k-1

+ L(ZH1 - Ci+l X H1)'N i+.\ (ZH1 - CH1Xi+l) ::; 1
i=O

where

I;k is a positive definite symmetric matrix that is independent of the
observations Zl, ... , Zk,

Xk is a vector that depends on Zl, ... , Zk,

6k is a positive scalar that depends on Zl, ... , Zk.

We observe that a vector ~ belongs to Xk(Zl, ... , Zk) if and only if
there exist Xo and Wo, ... ,Wk-1 such that

(4.57)

Energy Constraints

The procedure just described is straightforward, and can easily be
extended to systems and measurements that are nonlinear. The diffi
culty, however, is to specify conveniently the sets Rk (Zl' ... , Zk) and/or
Xk(Zl,"" Zk). There are only few special cases where these sets admit a
simple description, e.g., one that involves a finite set of numbers. The most
interesting of these are:

(a) The polyhedral case, where the set R is a polyhedron (a set specified
by a finite number of linear inequalities). Then, it can be seen that
the sets Rk(Zl,'" ,Zk) and/or Xk(Zl, ... ,Zk) are also polyhedra. The
reason is that the intersection of a polyhedron with a linear manifold
(a translated subspace) is a polyhedron, and a linear transformation
of a polyhedron yields another polyhedron [cf. Eqs. (4.56) and (4.57)].

(b) The ellipsoidal case, where the set R is an ellipsoid (a linearly trans
formed sphere - a more specific description is given later). Then, it
can be shown that the sets Rk(Zl, . .. ,Zk) and/or Xk(Zl, . .. ,Zk) are
also ellipsoids. Similar to the polyhedral case, the reason is that the
intersection of an ellipsoid with a linear manifold is an ellipsoid, and
a linear transformation of this ellipsoid yields another ellipsoid.

The polyhedral case is interesting in some cases, but suffers from a
quick explosion of the computational requirements to describe the associ
ated polyhedra, as k increases. We will focus instead on the ellipsoidal case,
and we will use DP methods to derive easily implementable algorithms that
resemble the Kalman filtering algorithm described in Appendix E.

We first consider the most favorable case where the set of possible states
Xk (Zl, ... , Zk) turns out to be an ellipsoid. Suppose that the vector of
unknown quantities r is known to belong to a set of the form

subject to the system equation constraint (4.58) and the terminal condition
Xk = ~ (here the Wi are viewed as the controls/minimization variables).
Thus

(4.59)

As the analysis of Section 4.1 suggests, the function Vk is quadratic
in~, and can be calculated by a DP recursion. This is because in the above
problem the system is linear and the cost is quadratic. Thus the set of
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possible states Xk(Zl, ... , Zk) of Eq. (4.59) is an ellipsoid. To calculate the
matrix and center of this ellipsoid, we can use DP. Since here the terminal
state Xk is specified to be equal to the given ~, we should use a forward
DP algorithm and view Vk(~) as an optimal cost to arrive at ~ by optimal
choice of Xo and wo, ... ,Wk-l in the system (4.58). Using the reasoning
employed in Section 2.1, for i = 1, ... , k, we have the forward recursion

Instantaneous Constraints

We now consider a different type of set description of the uncertainty.
In particular, we assume that the initial state, the system disturbances,
and the observation noise vectors are independently constrained to lie in
ellipsoids. In other words, we know that

where S, Mi, and Ni are given symmetric positive definite matrices. Thus
the vector

min
Wi-l'Xi-l

Xi=Ai-1Xi-l +Wi-l

+ (Zi - CiXi)'N i-
1 (Zi - CiXi)}

= min {Vi-I(Xi-l) + (Xi - Ai-IXi-d'Mi~ll (Xi - Ai-lXi-I)
Xi-l

+ (Zi - CiXi)'N~-l (Zi - CiXi)}

X~S-IXO :s; 1,

W~Mi-IWi :s; 1, i = 0, , N - 1,

v~+1 N i+-\Vi+1 :s; 1, i = 0, ,N - 1,

(4.64)

(4.65)

(4.66)

starting with the initial condition

Vo(xo) = (xo - XO)'S-I(xO - xo).

At the kth step of the recursion, we obtain the set of possible states
Xk(ZI, ... ,Zk) ofEq. (4.59).

Rather than provide the detailed derivation, we leave it for the reader
to verify by induction the formula

where Xk and ~k are generated by the recursions

r= (xo,wo, ... ,WN-I,VI, ... ,VN)

is known to belong to the set

R = {r I (xo - xo)' S-I(XO - xo) :s; 1, W~Mi-Iwi :s; 1,

v:+INi+\Vi+1 :s; 1, i = 0, ... , N - I}.

For this case, the set of possible states Xk (Zl' ... , Zk) is not an ellip
soid, but can be bounded by an ellipsoid, by bounding the set R with an el
lipsoid R, and by bounding Xk(ZI, ... , Zk) with the ellipsoid Xk(ZI, ... ,Zk)
that corresponds to R as in the preceding case of energy constraints.

In particular, we observe that if Xo, Wo, ... ,WN-I, VI, .. ·, VN satisfy
the instantaneous constraints of Eqs. (4.64), (4.65), (4.66), then they also
satisfy the energy constraint

(4.60)

(4.61)

(4.62)

N-I

o-(xo - xO)'S--I(xO - xo) + l=: (j..tiw~Mi-Iwi + Vi+lV:+INi+lIVi+I) :s; 1,
i=O

(4.67)
where 0-, j..ti, Vi+l are any positive scalars satisfying

with the initial condition

and 6k is given by

k

6k = I)Zi - CiAi-IXi-I)' (CitiC: + Ni)-l (Zi - CiAi-IXi-I). (4.63)
i=l

There are several variations of the estimation problem discussed above,
for which we refer to the sources given at the end of the chapter.

N-I

0- + L (j..ti + Vi+ I) = 1.
i=O

We thus replace the instantaneous constraints of Eqs. (4.64), (4.65), (4.66)
with the energy constraint (4.67), and we obtain a bounding ellipsoid of
the form

where Xk and ~k are generated by the recursions given earlier for the energy
constraint case, after we replace S with S/o-, Mi with Mi//-li, and Ni
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with Ndvi. The formulas obtained in this way are simplified if we write
(J, /-ti, Vi+l in the following form:

(J = (1 ,80)(1 - rI)(l - ,81)(1 - r2) ... (1 - ,8k-l)(l - rk),

/-to = ,80(1 rI)(l- ,81)(1 - r2)'" (1 - ,8k-l)(l - rk),

VI = rl(l - ,81)(1 - r2)'" (1 - ,8k-I) (1 - rk),

4.6.2 Control with Unknown-but-Bounded Disturbances

We now consider a problem of control when the uncertain quantities are
described by their membership in given sets. We consider the system

where

/-tk-l = ,8k-l (1 - rk),

Vk = rk,

where ,8i-I, ri, i = 1, ... ,k are any scalars with

With this choice, the optimal cost-to-go from a given initial state XQ is the
minimum number of violations of the target tube constraints Xk E Xk that
can occur when the Wk are optimally chosen, subject to the constraint Wk E

Wk(Xk, Uk), by an adversary wishing to maximize the number of violations.
In particular, if Jk(Xk) = 0 for some Xk E Xk, there exists a policy such
that starting from Xk, the subsequent system states Xi, i = k + 1, ... ,
are guaranteed to be within the corresponding sets Xi.

It can be seen that the set

( )_{O if Xk E Xk,
gk Xk - 1 'f d X

1 Xk 'F k·

belongs to a given set Xk, called the target set at time k.
We may view the set sequence {Xl, X 2, ... , XN} as a "tube" within

which the state must stay, even under the worst possible choice of the
disturbances Wk from within the corresponding sets Wk(Xk' fLk(Xk)). Ac
cordingly we refer to this problem as the problem of reachability of a target
tube.

One may formulate this problem as a minimax control problem (cf.
Section 1.6), where the cost at stage k is

is the set that we must reach at time k in order to be able to maintain the
state within the subsequent target sets. Accordingly, we refer to X k as the
effective target set at time k. We can generate the sets X k with a backwards
recursion, which is derived from the DP algorithm for minimax problems

where as usual Xk is the state, Uk is the control to be selected from a set
Uk(Xk), and Wk is a disturbance. However, instead of probability distribu
tions, we only know that Wk belongs to a given set liVdxk, Uk), which may
depend on the current state Xk and control Uk.

Often in control problems one is interested in keeping the state of
the system close to a desired trajectory, in spite of the effects of the dis
turbances. We can formulate such a problem as one of finding a policy
7f = {/-to, . .. , fLN-d with /-tk(Xk) E Uk(Xk) for all Xk and k, such that for
each k = 1,2, ... ,N, the state Xk of the closed-loop system

0< ri < 1.o< ,8i-l < 1,

60 = O.

We omit the verification of the above equations because it is tedious,
and we refer to the cited references. Note that the estimators for both
cases of energy and instantaneous constraints bear close resemblance to
the Kalman filtering algorithm described in Appendix E. An interesting
problem variant is when the system equation has the form Xk+l = Xk. In
this case, the problem is to use linear measurements to estimate the initial
state Xo, which can be viewed as an unknown parameter vector. It can
then be shown under mild assumptions that L..k -7 0 as k -7 00, so that
the parameter vector is identified with arbitrary accuracy as the number
of measurements increases.

Xk = Ak-1Xk-l + rkL..kC£N;;I(Zk - Ck Ak-lxk-I),

L;k = ((1 rk)t;;1 + rk C£N;; ICk) -1,

~k = (1 - ,8k-I)-1Ak-lL;k-lA~_l+ ,8i:~1 Mk-l,

with the initial condition
L;o = S,

and 15k is generated by the equation

15k = (1 - ,8k-l)(l - rk)6k-l + (Zk CkAk-lXk-l)'

((1 - rk)-lCktiC£ + ri: l Nk) -1 (Zk - CkAk-lXk-l),

with the initial condition

It is easy to see that for the scalars (J, /-ti, Vi+l given by the above equations,
we have (J + L/:=~1 (/-ti + Vi+l) = 1. .

Now, by writing the estimator equations (4.60)-(4.63), with S, l\!Ii ,

and Ni replaced by S/ (J, Md/-ti, and NdVi, respectively, we can obtain
after straightforward manipulation a bounding ellipsoid of the form

X k(ZI, ... ,Zk) = {Xk I (Xk :h)'L;;;1 (Xk - Xk) :::; 1 - 15k},



(see Section 1.6) but can also be easily justified from first principles. In
particular, we start with

XN =XN,

and for k = 0,1, ... , N - 1, we have

XN-2 = {x I for some u E [-1,1] we have

- 3/4:S 2x + u + w :S 3/4 for all wE [-1/2, 1/2J} ,

199

We have

Set-Membership Description of Uncertainty

We similarly proceed to construct

Sec. 4.6

(4.68)
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and we see that u must be chosen so that

5 5-- < x < -.8 - - 8

For existence of such a u, the intervals [-1,1] and [-1/4 - 2x, 1/4 - 2x] must
have nonempty intersection, which can be seen to be true if and only if

1 1
- - - 2x < u < - - 2x.4 - - 4-1 :S u :S 1,

Consider the scalar linear system

X k = {Xk E X k I there exists Uk E Uk(Xk) such that

fk(Xk, Uk, Wk) E X k+1 , for all Wk E Wk(Xk, Uk)}.

(4.69)

Example 4.6.1

and the target tube {Xl, X 2 , ..• , XiV}, where for all k,

X k = [-1,1].

We want to keep the state within this tube by using controls Uk that belong
to the set Uk = [-1,1], and in spite of the effects of the disturbances Wk that
can take any values in the set [-1/2,1/2].

Let us construct the effective target sets X k by using the DP recursion
of Eqs. (4.68) and (4.69). We have XN = [-1,1]' and

XN-1 {x I for some U E 1] we have

- 1 :S 2x + U + w :S 1 for all w E [-1/2, 1/2J}.

Thus, to be able to reach the effective target set X N -1 at time N - 1, the
state XN -2 must belong to the set

[-~ ~]8'8 .

The above calculations illustrate the form of the algorithm that yields
the effective target set X k for every k. We have

where the scalars ak satisfy the recursion

We see that for x and U to satisfy -1 :S 2x+u+w :S 1 for all w E [-1/2,1/2]'
it is necessary and sufficient that

ak+1 1
a k =-2-+4' k=O,1, ... ,N-1,

1 1-- < 2x+u <-2 - - 2'

with the starting condition
aN = 1.

so u must be chosen (with knowledge of x) to satisfy

3 < x < ~.- -4

For existence of such a u, the intervals [-1,1] and [-1/2 - 2x, 1/2 - 2x] must
have nonempty intersection, which can be seen to be true if and only if

keeps the state of the system in the interval [-1/2,1/2]' provides the initial
state belongs to that intervaL It can also be seen that if the initial state does
not belong to the interval [-1/2,1/2]' then there is a large enough horizon
length N, such that for every admissible policy, a sequence of feasible distur
bances exists that will force the state to be outside the target set [-1, 1] at
some time k :S N. These observations can be generalized for the case oflinear

fL(x) = -2x,

In order to guarantee reachability of the given target tube, the initial
state Xo should belong to the interval [-ao, ao]. Note that the scalars ak are
monotonically decreasing as k --t -00, and we have ak --t 1/2. Thus, if the
initial state Xo is in the interval [-1/2,1/2]' then given any horizon length
N, there is a policy that keeps the state of the system within the set [-1,1].
In fact, it can be seen that the linear stationary policy {fL, fL, .. .}, where

1 1
-- - 2x < u < - - 2x.

2 - - 2-1 :S u :S 1,

Thus, to be able to reach the set X N at time N, the state XN -1 must belong
to the (effective target) set
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systems and ellipsoidal constraint sets (see the discussion and the references
given below).

In general, it is not easy to characterize the effective target sets X k.

However, similar to the estimation problem of the preceding subsection, a
few special cases involving the linear system

The intersection nf=oxk depends on the size of the horizon N and "de
creases" to the set

X= = nN=1 nf=o Xk

as N increases to 00. We may view X= as the set within which the state
can be kept for an arbitrarily large (but finite) number of time periods.
Paradoxically, under some unusual circumstances, there may be states in
X= starting from which it may be impossible to remain within X= for an
indefinitely long horizon, i.e., an infinite number of time periods. Condi
tions that preclude this possibility have been investigated by the author in
[Ber72a]. References [Ber71] and [Ber72a] contain a methodology for con
structing ellipsoidal inner approximations to X= and an associated linear
control law for the case where the system is linear, and the sets Xk, Uk,
and Wk are ellipsoids.

The certainty equivalence principle for dynamic linear-quadratic problems
was first discussed by Simon [Sim56]. His work was preceded by Theil
[The54], who considered a single-period case, and Holt, Modigliani, and
Simon [HMS55], who considered a deterministic case. Similar problems
were independently considered by Kalman and Koepcke [KaK58], Joseph
and Tou [JoT61], and Gunckel and Franklin [GuF63]. The linear-quadratic
problem is central in control theory; see the special issue [IEE71], which
contains hundreds of references.

The literature on inventory control stimulated by the pioneering pa
per of Arrow et al. [AHM51] is also voluminous. An important work
summarizing most of the research up to 1958 is Arrow, Karlin, and Scarf
[AKS58]. Veinott [Vei66] also surveys the early work on the subject. The
proof of optimality of (8, S) policies in the case of nonzero fixed costs is
due to Scarf [Sca60].

)\IIost of the material in Section 4.3 is taken from Mossin [Mos68]; see
also Hakansson [Hak70], [Hak71], and Samuelson [Sam69]. )\IIany applica
tions of DP in economics are described in Sargent [Sar87], and Stokey and
Lucas [StL89].

The material of Section 4.4 is largely drawn from White [Whi69].
Example 4.5.1 is given by Ross [Ros70], Example 4.5.2 is given by Ross
[Ros83], and Example 4.5.3 is due to Weiss and Pinedo [WeP80]. An ex
tensive reference on scheduling is Pinedo [Pin95].

The problem of state estimation with a set-membership description
of the uncertainty was first formulated and addressed by vVitsenhausen in
his Ph.D. work at MIT [Wit66], and also in the paper [Wit68]. The ma
terial given here follows closely the author's Ph.D. thesis [Ber71], where
the problem of estimation for the case of an energy constraint was first
formulated and solved. The estimator given in Section 4.6.1 for the case
of instantaneous constraints was also first derived in the author's thesis
using the method given here, and a steady-state analysis was also given.
A state estimator using ellipsoidal approximations for the case of instan
taneous constraints was first proposed by Schweppe [Sch68], [Sch74]. This
estimator, however, has several drawbacks relative to the estimator given
here. In particular, the associated matrix :Ek depends on the observations
Zl, .. . ,Zk, and need not converge to a steady state as k --* 00.

Continuous-time versions of the estimators of Section 4.6, as well and
other variants of the estimation problem (the prediction and smoothing
problems) with a set-membership description of the uncertainty were first
given by Bertsekas and Rhodes [BeR71a]. Kurzhanski and Valyi [KuV97]
provide an account of set-membership estimation. Deller [DeI89] surveys
applications in signal processing. Kosut, Lau, and Boyd [KLB92] discuss
applications in system identification. The state estimation problem can
also be addressed as a minimax problem that involves in part a probabilis-

4.7 NOTES~ SOURCES~AND EXERCISES

k = 0,1, ... ,N - 1,

for all k.

where A k and Bk are given matrices, are amenable to exact or approximate
computational solution. One such case is when the sets X k are ellipsoids,
and the sets Uk(Xk) and Wk(Xk, Uk) are also ellipsoids that do not depend
on Xk and (Xk' Uk), respectively. In this case, the effective target sets
X k are not ellipsoids, but can be approximated by inner ellipsoids Xk C

X k (this requires that the ellipsoids Uk have sufficiently large size, for
otherwise the target tube may not be reachable and the problem may not
have a solution). Furthermore, the state trajectory {Xl, X2, ... , XN} can be
maintained within the ellipsoidal tube

{X I ,X2 , ... ,XN }

by using a linear control law (compare with the preceding example). We
outline the main algorithm in Exercise 4.31, and refer to the author's thesis
work, [Ber71], [BeR71b], for a more detailed analysis.

Another case of interest is when the sets X k are polyhedral, and the
sets Uk(Xk) and }Vk(Xk, Uk) are also polyhedral, and independent of Xk and
'Uk' Then the effective target sets are polyhedral and can be computed by
linear programming methods.

An important special case is when the problem is stationary and fk'
Xk, Uk, and Wk do not depend on k. Then it can be shown that the
effective target sets satisfy
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tic description of the uncertainty. Basar [Bas9l] describes the relations
between this approach and the set-membership approach.

The target tube reachability problem was first formulated by the au,..
thor in his Ph.D. thesis [Ber7l]; see also the papers [BeR7lb] and [Ber72a],
and Exercises 3.23 and 3.24 of Vol. II. The associated recursion of Eqs.
(4.68)-(4.69) for the effective target sets, and methods for approximating
this recursion were also given in these references (see Exercise 4.31). The
target tube reachability problem arises within several contexts in control
system design, including model predictive control, which is described in
Section 6.5 (for a recent discussion, see the paper by Mayne [MayOl)). For
a survey of the associated issues, including extensions to continuous-time
systems and additional references, see BIanchini [Blag9].

There has been considerable recent research on minimax formulations
of general optimization problems under uncertainty, such as linear program
ming problems. This approach, which is known as robust optimization, is
also based on a set-membership description of the uncertainty; for some
representative works, see Ben-Tal and Nemirovski [BeN98], [BeNOl], and
Bertsimas and Sim [BeS03].
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Notes, Sources, and Exercises

4.3

Consider an inventory problem similar to the problem of Section 4.2 (zero fixed
cost). The only difference is that at the beginning of each period k the decision
maker, in addition to knowing the current inventory level Xk, receives an accurate
forecast that the demand Wk will be selected in accordance with one out of two
possible probability distributions Pe, Ps (large demand, small demand). The a
priori probability of a large demand forecast is known (d. Section 1.4).

(a) Obtain the optimal ordering policy for the case of a single-period problem.

(b) Extend the result to the N-period case.

(c) Extend the result to the case of any finite number of possible distributions.

is linear in the state variable, assuming that the optimal cost is finite for every
xo. Show by example that the Gaussian assumption is essential for the result to
hold. (For analyses of multidimensional versions of this exercise, see Jacobson
[Jac73], Whittle [Whi82], [Whi90], and Basar [BasOO].)

Sec. 4.7

where ak, bk E R, and each Wk is a Gaussian random variable with zero mean
and variance (J2. We assume no control constraints and independent disturbances.
Show that the control law {{.Lo, f.Li , ... , f.L'Iv -I} that minimizes the cost function
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4.1 (Linear-Quadratic Problems with Forecasts)
4.4

Consider the linear-quadratic problem first examined in Section 4.1 (Ak' Bk:
known) for the case where at the beginning of period k we have a forecast
Yk E {I, 2, ... , n} consisting of an accurate prediction that Wk will be selected in
accordance with a particular probability distribution PklYk (cf. Section 1.4). The
vectors Wk need not have zero mean under the distribution PklYk . Show that the
optimal control law is of the form

Consider the inventory problem of Section 4.2 (zero fixed cost), where the pur
chase costs Ck, k = 0,1, ... ,N - 1, are not initially known, but instead they are
independent random variables with a priori known probability distributions. The
exact value of the cost Ck, however, becomes known to the decision maker at the
beginning of the kth period, so that the inventory purchasing decision at time k
is made with exact knowledge of the cost Ck. Characterize the optimal ordering
policy assuming that p is greater than all possible values of Ck.

4.5

where the matrices Kk are given by the Riccati equation (4.3) and (4.4) and O'.k

are appropriate vectors.
Consider the inventory problem of Section 4.2 for the case where the cost has the
general form

4.2

Consider a scalar linear system The functions rk are convex and differentiable and

k = 0,1, ... ,N - 1, lim drk(X) = -00,

x-...+-oo dx
k=O, ... ,N.



(4.73)z 2: O.

Notes, UVLU \..GU. and Exercises

We will show that

Case 3: y - b < y :::; 0 :::; y + z . In this region, Eq. (4.71) may be written
[in view of Eq. (6.1)] as

If 0 < Sk+l :::; z, then using Eq. (4.72) and the fact p > c, we have

Case 2: y - b < y :::; y + z :::; 0 . In this region, H is linear and hence
K-convex.

Sec. 4.7Chap. 4

k = 0,1, ... , N -1,

Problems with Perfect State Information

(a) Assume that the fixed cost is zero. Write the DP algorithm for this problem
and show that the optimal ordering policy has the same form as the one
derived in Section 4.2.

(b) Suppose there is a one-period time lag between the order and the delivery
of inventory; that is, the system equation is of the form

where U-I is given. Reformulate the problem so that it has the form of the
problem of part (a). Hint: Make a change of variables Yk = Xk + Uk-I.

4.6 (Inventory Control for Nonzero Fixed Cost)

204

Consider the inventory problem of Section 4.2 (nonzero fixed cost) under the
assumption that unfilled demand at each stage is not backlogged but rather is
lost; that is, the system equation is Xk+1 = max(O, Xk + Uk - Wk) instead of
Xk+1 = Xk + Uk - Wk· Complete the details of the following argument, which
shows that a multiperiod (s, S) policy is optimal.

Abbreviated Proof: (due to S. Shreve) Let IN(X) = 0 and for all k

If 0 :::; z :::; Sk+l, then using Eq. (4.72) and the fact p > c, we have

If Sk+1 :::; 0 :::; z, then using Eq. (4.72), the fact p > c, and part (iv) of the lemma
in Section 4.2, we have

where <5(0) = 0, <5(u) = 1 for U > O. The result will follow if we can show that
Gk is K-convex, continuous, and Gk(Y) -7 00 as jyl -7 00. The difficult part is
to show K-convexity, since K-convexity of Gk-I does not imply K-convexity of
E{Jk+l(max(O,y - w))}. It will be sufficient to show that K-convexity of Gk+l
implies K-convexity of

(4.74)
H(y) - H(O) > H(y) - H(y - b)

y - b '

K + H(y + z) 2: H(y) + z (H(Y) ~ H(O))

2: H(y) + z ( H(y) - ~(y - b)) ,

then since H agrees with Jk+1 on [0,00) and Jk+l is K-convex,

Thus Eq. (4.73) is proved and Eq. (4.71) follows for the case under consideration.

Case 4: y - b < 0 < y :::; y + z . Then 0 < Y < b. If

(4.70)H(y) = pmax(O, -y) + Jk+1 (max(O, y)),

or equivalently that

K + H(y + z) 2: H(y) + z ( H(y) - :(y - b)), z 2: 0, b> 0, Y E?R. (4.71)

By K-convexity of Gk+1 we have for appropriate scalars Sk+1 and Sk+1 such that
Gk+I(Sk+l) = miny Gk+l(Y) and K + Gk+l(Sk+l) = Gk+l(Sk+I):

where the last step follows from Eq. (4.74). If

H(y) - H(O) H(y) - H(y - b)
y < b '

then we have

if x < Sk+l,
if x 2: Sk+l,

(4.72) H(y) - H(O) < E(H(y) - H(y - b)) = E(H(y) - H(O) + p(y- b)).

and Jk+1 is K-convex by the theory of Section 4.2.

Case 1: 0 :::; y - b < y :::; y + z . In this region, Eq. (4.71) follows from
K-convexity of Jk+l.

It follows that
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Hence Eq. (4.73) is proved for this case as well. Q.E.D.
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Consider the inventory control problem of Section 4.2 (zero fixed cost) with the
only difference that the orders Uk are constrained to be nonnegative integers. Let
Jk be the optimal cost-to-go function. Show that:

(a) Jk is continuous.

(b) Jk(X + 1) - Jk(X) is a nondecreasing function of x.

(c) There exists a sequence {Sk} of numbers such that the policy given by

4.10 [VeW5], [Tsi84b]

Sec. 4.7

Consider the inventory problem of Section 4.2 (nonzero fixed cost) with the dif
ference that demand is deterministic and must be met at each time period (i.e.,
the shortage cost per unit is 00). Show that it is optimal to order a positive
amount at period k if and only if the stock Xk is insufficient to meet the demand
Wk. Furthermore, when a positive amount is ordered, it should bring up stock to
a level that will satisfy demand for an integral number of periods.

4.9
(4.75)

Chap. 4

k = 0,1, ... ,

Problems with Perfect State Information

H(y) - H(O) < -py.

Now we have, using the definition of H, Eqs. (4.73) and (4.75),

H(y) + zH(Y) - :(y - b) = H(y) + z (H(O) - py - ~(O) + pry - b»)

= H(y) - pz

< H(O) - p(y + z)

:::;K+H(y+z).

and since b > y,

Consider the inventory problem of Section 4.2 (zero fixed cost) with the difference
that successive demands are correlated and satisfy a relation of the form

206

where I is a given scalar, ek are independent random variables, and e-l is given.

(a) Show that this problem can be converted into an inventory problem with
independent demands. Hint: Given wo, WI, ... , Wk-l, we can determine
ek-l in view of the relation

if Sk - n :::; Xk < Sk

if Xk 2 Sk

is optimal.

n+1, n = 1,2, ... ,

k-l

k ~ i
ek-l = I e-l + 6 I Wk-l-i·

i=O

Define Zk = Xk + lek-l as a new state variable.

(b) Show that the same is true when in addition there is a one-period delay in
the delivery of inventory (cf. Exercise 4.5).

4.11 (Capacity Expansion Problem)

Consider a problem of expanding over N time periods the capacity of a production
facility. Let us denote by Xk the production capacity at the beginning of the kth
period and by Uk 2 °the addition to capacity during the kth period. Thus
capacity evolves according to

4.8
k = O,l, ... ,N - 1.

Consider the inventory problem of Section 4.2 (zero fixed cost), the only difference
being that there is an upper bound b and a lower bound Qto the allowable values
of the stock Xk. This imposes the additional constraint on Uk

where d > °is the maximum value that the demand Wk can take (we assume
Q+ d < b). Show that an optimal policy {fLo, ... , fL'Iv-I} is of the form

The demand at the kth period is denoted Wk and has a known probability dis
tribution that does not depend on either Xk or Uk. Also, successive demands are
assumed to be independent and bounded. We denote:

Ck ( Uk): expansion cost associated with adding capacity Uk,

Pk(Xk + Uk - Wk): penalty associated with capacity Xk + Uk and demand
Wk,

S(XN): salvage value of final capacity XN.
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(a) Derive the DP algorithm for this problem.

(b) Assume that S is a concave function with limx -+ oo dS(x)jdx = 0, Pk are
convex functions, and the expansion cost Ck is of the form

Ck(U)={K+CkU ~fu>O,° If U = 0,

where K ;:::: 0, Ck > °for all k. Show that the optimal policy is of the (8, S)
type assuming CkY + E{ Pk(Y - Wk)} -+ 00 as lyl -+ 00.

4.12

We want to use a machine to produce a certain item in quantities that meet as
closely as possible a known (nonrandom) sequence of demands dk over N periods.
The machine can be in one of two states: good (G) or bad (B). The state of the
machine is perfectly observed and evolves from one period to the next according
to

P(G I G) = AG, P(B I G) = 1-AG, P(B I B) = AB, P(G I B) = 1-AB,

where AG and AB are given probabilities. Let Xk be the stock at the beginning
of the kth period. If the machine is in good state at period k, it can produce Uk,
where Uk E [0, ul, and the stock evolves according to

Xk+l = Xk + Uk dk;

otherwise the stock evolves according to

Xk+l = Xk - dk.

There is a cost g(Xk) for having stock Xk in period k, and the terminal cost
is also g(XN). We assume that the cost per stage 9 is a convex function such
that g(x) -+ 00 as Ixi -+ 00. The objective is to find a production policy that
minimizes the total expected cost.

(a) Prove inductively a convexity property of the cost-to-go functions, and
show that for each k there is a target stock level Sk+l such that if the
machine is in the good state, it is optimal to produce Uk E [0, u] that will
bring XkH as close as possible to Sk+l.

(b) Generalize part (a) for the case where each demand dk is random and takes
values in an interval [0, d] with given probability distribution. The stock
and the state of the machine are still perfectly observable.

4.13 (A Gambling Problem)

A gambler enters a game whereby he may at time k stake any amount Uk ;:::: °that
does not exceed his current fortune Xk (defined to be his initial capital plus his
gain or minus his loss thus far). He wins his stake back and as much more with
probability p, where! < p < 1, and he loses his stake with probability (1 - p).
Show that the gambling strategy that maximizes E{lnxN}, where XN denotes
his fortune after N plays, is to stake at each time k an amount Uk = (2p - l)xk.

Hint: The problem is related to the portfolio problem of Section 4.3.

4.14

Consider the dynamic portfolio problem of Section 4.3 for the case where at each
period k there is a forecast that the rates of return of the risky assets for that
period will be selected in accordance with a particular probability distribution
as in Section 1.4. Show that a partially myopic policy is optimaL

4.15

Consider a problem involving the linear system

k = 0,1, ... , N - 1,

where the n x n matrices Ak are given, and the n x m matrices Bk are random
and independent with given probability distributions that do not depend on Xk,
Uk. The problem is to find a policy that maximizes E{U(C'XN)}, where c is a
given n-dimensional vector. We assume that U is a concave twice continuously
differentiable utility function satisfying for all Y

U'(y)
- U"(y) = a + by,

and that the control is unconstrained. Show that the optimal policy consists
of linear functions of the current state. Hint: Reduce the problem to a one
dimensional problem and use the results of Section 4.3.

4.16

Suppose that a person wants to sell a house and an offer comes at the beginning
of each day. We assume that successive offers are independent and an offer is
Wj with probability Pj, j = 1, ... , n, where Wj are given nonnegative scalars.
Any offer not immediately accepted is not lost but may be accepted at any later
date. Also, a maintenance cost C is incurred for each day that the house remains
unsold. The objective is to maximize the price at which the house is sold minus
the maintenance costs. Consider the problem when there is a deadline to sell the
house within N days and characterize the optimal policy.

4.17

Assume that we have Xo items of a certain type that we want to sell over a period
of N days. At each day we may sell at most one item. At the kth day, knowing
the current number Xk of remaining unsold items, we can set the selling price
Uk of a unit item to a nonnegative number of our choice; then, the probability
Ak(Uk) of selling an item on the kth day depends on Uk as follows:
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k = 1,2, ... ,

where q = 1 - p.

(b) Show that an optimal policy is of the form: never park if k ~ k*, but take
the first free place if k < k*, where k is the number of parking places from
the destination and k* is the smallest integer i satisfying qi-l < (pC+q)-l.

4.20 [Whi82]

4.19

A driver is looking for parking on the way to his destination. Each parking place
is free with probability p independently of whether other parking places are free
or not. The driver cannot observe whether a parking place is free until he reaches
it. If he parks k places from his destination, he incurs a cost k. If he reaches the
destination without having parked the cost is C.

(a) Let Pk be the minimal expected cost if he is k parking places from his
destination, where Fo = C. Show that

if Xk ~ N -- k,

if °< x k < N - k,

if Xk = 0.

Prove simultaneously by induction that, for all k, the cost-to-go function
Jk(Xk) is indeed monotonically nondecreasing as a function of Xk, that the
optimal price P,'k(Xk) is monotonically nonincreasing as a function of Xk,

and that Jk(Xk) is given in closed form by

and that

(b)

where a is a given scalar with °< a ::; 1. The objective is to find the optimal
price setting policy so as to maximize the total expected revenue over N days.

(a) Assuming that, for all k, the cost-to-go function Jk(Xk) is monotonically
nondecreasing as a function of Xk, prove that for Xk > 0, the optimal prices
have the form

4.18 (Optimal Termination of Sampling) (www)

k ( 1 1)Jk(O) = - -- + ... +-N N-1 k .

Show that an optimal policy requires that the first r* objects be observed. If
the r*th object has rank 1 relative to the others already observed, it should be
selected; otherwise, the observation process should be continued until an object of
rank 1 relative to those already observed is found. Hint: We assume that, if the
rth object has rank 1 relative to the previous (r -1) objects, then the probability
that it is best is r IN. For k ~ r*, let Jk(O) be the maximal probability of finding
the best object assuming k objects have been selected and the kth object is not
best relative to the previous (k - 1) objects. Show that

This is a classical problem, which when appropriately paraphrased, is known as
the job selection, or as the secretary selection, or as the spouse selection problem.
A collection of N ~ 2 objects is observed randomly and sequentially one at a
time. The observer may either select the current object observed, in which case
the selection process is terminated, or reject the object and proceed to observe
the next. The observer can rank each object relative to those already observed,
and the objective is to maximize the probability of selecting the "best" object
according to some criterion. It is assumed that no two objects can be judged to
be equal. Let r* be the smallest positive integer r such that

4.22

Consider the scalar linear system Xk+l = aXk + bUk, where a and b are known.
At each period k we have the option of using a control Uk and incurring a cost
qx~ + ru~, or else stopping and incurring a stopping cost tx~. If we have not
stopped by period N, the terminal cost is the stopping cost tx~. We assume
that q ~ 0, r > 0, t > 0. Show that there is a threshold value for t below which
immediate stopping is optimal at every initial state, and above which continuing
at every state Xk and period k is optimal.

A person may go hunting for a certain type of animal on a given day or stay
home. When the animal population is x, the probability of capturing one animal
is p(x), a known increasing function, and the probability of capturing more than
one is zero. A captured animal is worth one unit and a day of hunting costs c
units. Assume that x does not change due to deaths or births, that the hunter
knows x at all times, that the horizon is finite, and that the terminal reward is
zero. Show that it is optimal to hunt only when p(x) ~ c.

4.21

Consider a situation involving a blackmailer and his victim. In each period the
blackmailer has a choice of: a) Accepting a lump sum payment of R from the
victim and promising not to blackmail again. b) Demanding a payment of u,
where U E [0,1]. If blackmailed, the victim will either: 1) Comply with the
demand and pay U to the blackmailer. This happens with probability 1 - u. 2)
Refuse to pay and denounce the blackmailer to the police. This happens with
probability u. Once known to the police, the blackmailer cannot ask for any more

1 1+ ... + <l.
- 2 r -

1
-1+
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money. The blackmailer wants to maximize the expected amount of money he
gets over N periods by optimal choice of the payment demands Uk. (Note that
there is no additional penalty for being denounced to the police.) Write a DP
algorithm and find the optimal policy.

4.23 [Whi82]

The Greek mythological hero Theseus is trapped in King Minos' Labyrinth maze.
He can tryon each day one of N passages. If he enters passage i he will escape
with probability pi, he will be killed with probability qi, and he will determine
that the passage is a dead end with probability (1 Pi - qi), in which case he
will return to the point from which he started. Use an interchange argument to
show that trying passages in order of decreasing Pi/qi maximizes the probability
of escape within N days.

4.24 (Hardy's Theorem)

Let {a1, ... , an} and {b1, ... , bn} be monotonically nondecreasing sequences of
numbers. Let us associate with each i = 1, ... ,n a distinct index ji, and consider
the expression 2:7=1 aibji · Use an interchange argument to show that this ex
pression is maximized when ji = i for all i, and is minimized when ji = n - i + 1
for all i. .

4.25

A busy professor has to complete N projects. Each project k has a deadline dk
and the time it takes the professor to complete it is tk. The professor can work
on only one project at a time and must complete it before moving on to a new
project. For a given order of completion of the projects, denote by Ck the time
of completion of project k, Le.,

projects i
completed before k

The professor wants to order the projects so as to minimize the maximum tar
diness, given by maxkE{l, ... ,N} max(O, Ck - dk ). Use an interchange argument to
show that it is optimal to complete the projects in the order of their deadlines
(do the project with the closest deadline first).

4.26

Assume that we have two gold mines, Anaconda and Bonanza, and a gold-mining
machine. Let XA and XB be the current amounts of gold in Anaconda and Bo
nanza, respectively (xA and xB are integer). When the machine is used in Ana
conda or Bonanza, there is a probability P that rr AXA1 (or rrBXB1, respectively)

of the gold will be mined without damaging the machine, and a probability 1 - P
that the machine will be damaged beyond repair and no gold will be mined. We
assume that 0 < r A < 1 and 0 < r B < 1. We want to find a policy that selects
the mine in which to use the machine at each period so as to maximize the total
expected amount of gold mined.

(a) Use an interchange argument to show that it is optimal to mine Anaconda
if and only if r AXA 2: rBXB·

(b) Solve the problem for XA = 2, XB = 4, r A = 0.4, rB = 0.6, P = 0.9.

4.27

Consider the quiz contest problem of Example 5.1, where is an order constraint
that each question i may be answered only after a given number k i of other
questions have been answered. .Use an interchange argument to show that an
optimal list can be constructed by ordering the questions in decreasing order
of PiR i /(l - Pi) and by sequentially answering the top question in the list out
of those that are available (have not yet been answered and satisfy the order
constraints) .

4.28

Consider the quiz contest problem of Example 5.1, where there is a cost Fi 2: °
for failing to answer question i correctly (in addition to losing the reward Ri)'

(a) Use an interchange argument to show that it is optimal to answer the
questions in order of decreasing (Pi Ri - (1 - Pi) Fi ) / (1 - Pi)'

(b) Solve the variant of the problem where there is an option to stop answering
questions.

4.29

Consider the quiz contest problem of Example 5.1, where there is a maximum
number of questions that can be answered, which is smaller than the number of
questions that are available.

(a) Show that it is not necessarily optimal to answer the questions in order of
decreasing PiRi/(l - Pi)' Hint: Try the case where only one out of two
available questions can be answered.

(b) Give a simple algorithm to solve the problem where the number of available
questions is one more than the maximum number of questions that can be
answered.

4.30 (Reachability of One-Dimensional Linear Systems)

Generalize the analysis of Example 4.6.1 for the case of the one-dimensional linear
system

k = O, ... ,N -1,
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k = O,l, ... ,N - 1,
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and (3 is any scalar with °< (3 < 1.

(b) Consider an ellipsoidal target tube {Xo, Xl, ... ,XN }, where

Xk ={xlx'2kx::;1}

F;;;l = (1 - (3k)(K;;:l - (3;;1 D;;l), k = 0, 1, ... , N - 1,

A' (F-l B R-lB')-lA ~ k °1 N 1Kk = k k+l + k k k k + :::::'k, =, , ... ,. - ,

where (3k are scalars satisfying °< (3k < 1. Use the procedure of part (a)
to show that a linear control law of the form

is well defined as a positive definite matrix. Show that if the initial state
belongs to the set X = {x I x'K x ::; I}, then all subsequent states will
belong to X when the stationary linear control law

p,(x) = -(R+B'FB)-lB'FAx

is used.

achieves reachability of the target tube, provided the matrices F k are well
defined as positive definite matrices and Xo satisfies xSKOlxo ::; 1.

(c) Suppose that the matrices Ak, B k, Rk, Dk , and 2k do not depend on k,
and that the algebraic matrix equation

and the 3k are given positive definite symmetric matrices. Let the matrix
sequences {Fk} and {Kk} be generated by the algorithm

has a positive definite solution K for some /3 E (0,1) for which the matrix

F- l = (1 - (3)(K- l /3-1D- l)

Sec. 4.7Chap. 4Problems with Perfect State Information

where K is a positive definite symmetric matrix, such that X is contained
in the intersection of the following two sets: (1) an ellipsoid {x I x'3x::; I},
where 3 is a positive definite symmetric matrix, and (2) the set of all states
x such that there exists a U E Uk with the property that for all W E Wk,
we have AkX + BkU + wE X, where

X = {x I x''lIx ::; I},

and 'lI is a given positive definite symmetric matrix. Show that if for some
scalar (3 E (0,1), the matrix

x = {x I x'K x ::; I},

4.31 (Reachability of Ellipsoidal Tubes [BeR71b], [Ber72a]) (www)

Consider the linear system

where Rk and Dk are given positive definite symmetric matrices.

(a) Focus on a single period k, and consider the problem of finding an ellipsoid

where the controls Uk and the disturbances Wk must belong to the ellipsoids

where Xk should be kept within an interval [-a, a], using controls from an interval
[(3, (3], and in spite of the effects of the disturbances that can take values from the
interval,]. Derive an algorithm to generate the effective target sets, and
characterize the set of initial states from which reachability of the target tube is
guaranteed. What happens to this set as N --1- oo?
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4.32 (Pursuit-Evasion Games and Reachability [BeR71b])

is well-defined as a positive definite matrix, an appropriate matrix K is
given by Consider the linear system

Xk+l = Akxk + BkUk + GkVk, k = 0,1, ... , N - 1

Furthermore, the linear control law

satisfies the constraint p,(x) E Uk for all x E X and achieves reachability
of X if x E X, i.e., p, is such that Akx + BkP,(X) + W E X for all x E X
and W E Wk. Hint: Use the fact that the vector sum of two ellipsoids
{x I x'Elx ::; I} and {x I x'E 2 x ::; I} (with E l and E 2 positive definite
symmetric) is contained in the ellipsoid {x I x'Ex::; I}, where

where the controls Uk and Vk are selected by two antagonistic players from sets
Uk and Vk, respectively, with exact knowledge of Xk (but without knowledge of
the other player's choice at time k). The player selecting Uk aims to bring the
state of the system within some given set X at some time k = 1, ... ,N, while
the player selecting Vk aims to keep the state of the system outside the set X at
all times k = 1, ... ,N. Relate this problem to the problem of reachability of a
target tube, and characterize the sets of initial conditions Xo starting from which
the two players are guaranteed to achieve their objective with suitable choice of
their control laws.
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A famous but somewhat vain opera singer is scheduled to sing on N successive
nights. If she is satisfied with her performance on a given night k (which happens
with probability p, independently of the previous history) she will sing on the
following night (i.e., night k + 1). If she is not satisfied, however, she sulks and
declares that she will not sing further. In this case, the only way to placate her
into performing on the following night is for the opera director to send her an
expensive gift, costing G dollars, which successfully placates her with probabiiity
q (independently of the previous history). If the gift does not placate her, the
missed performance costs the opera house C dollars. The opera director may send
a gift on any night, regardless of the success he has had with gifts on previous
nights. The objective is to find a policy for when to send a gift and when not to,
that minimizes the total cost from the N nights.

(a) Write a DP algorithm for solving the problem, and characterize as best as
you can the optimal policy.

(b) Repeat part (a) for the case where the probability q is not constant, but
rather is a decreasing function of the current stage.

4.33
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4.34

An enterprising but somewhat foolish graduate student has invested the tuition
for next semester in the stock market. As a result, he currently possesses a certain
amount of stock that he/she must sell by registration day, which is N days away.
The stock must be sold in its entirety on a single day, and will then be deposited
in a bank where it will earn interest at a daily rate r. The value of the stock on
day k is denoted by Xk and it evolves according to

Xo : given,

where A is a scalar with 0 < A < 1, and Wk is a random variable taking one of a
finite number of positive values. We assume that Wo, ... , W N -1 are independent
and identically distributed. The student wants to maximize the expected value
of the money he/she has on registration day.

(a) Write a DP algorithm for solving the problem, and characterize as best as
you can the optimal policy.

(b) Assume that the student has the option of selling only a portion of his stock
on a given day. What if anything would he/she do different?

p.·229
236

p.251
p.252
p.258
p.270
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(5.1)
k = 1,2, ... ,N - 1,

k = 1,2, ... , N - 1.

k = 0,1, ... ,N - 1,

for all Ik, k = 0, 1, ... , N - 1.

Zo = ho(xo, vo),

Zk = hk(Xk,,uk-l(h-l),Vk),

Reduction to the Perfect Information Case

Ik = (zo, Zl,· .. ,Zk, UO, Ul,·· ., Uk-l),

[0 = Zoo

and the measurement equation

Note the difference from the perfect state information case. Whereas
before we were trying to find a rule that would specify the control Uk to
be applied for each state Xk and time k, now we are looking for a rule that
gives the control to be applied for every possible information vector h (or
state of information), that is, for every sequence of observations received
and controls employed up to time k.

Consider a collection of transmitting stations sharing a common channel,
for example, a set of ground stations communicating with a satellite at a
common frequency. The stations are synchronized to transmit packets of

Example 5.1.1 (Multiaccess Communication)

subject to the system equation

Such policies are called admissible. We want to find an admissible policy
1r = {,uo, ,u1, ... , ,uN- d that minimizes the cost function

We consider the class of policies consisting of a sequence of functions
1r = {,uo, ,ul, ... , ,uN-d, where each function,uk maps the information vec
tor h into the control space Ok and

The initial state Xo is also random and characterized by a given prob
ability distribution Pxo ' The probability distribution PWk (. I Xk, Uk) of Wk
is given, and it may depend explicitly on Xk and Uk but not on the prior
disturbances Wo, ... ,Wk-l, Vo,.·., Vk-l· The control Uk is constrained to
take values from a given nonempty subset Uk of the control space Ok. It is
assumed that this subset does not depend on Xk·

Let us denote by Ik the information available to the controller at time
k and call it the information vector. We have

Sec. 5.1Chap. 5

k = 1,2, ... , N - 1.

Problems with Imperfect State Information

Zo = ho(xo, va),

We first formulate the imperfect state information counterpart of the basic
problem.

We have assumed so far that the controller has access to the exact value
of the current state, but this assumption is often unrealistic. For example,
some state variables may be inaccessible, the sensors used for measuring
them may be inaccurate, or the cost of obtaining the exact value of the
state may be prohibitive. We model situations of this type by assuming
that at each stage the controller receives some observations about the value
of the current state, which may be corrupted by stochastic uncertainty.

Problems where the controller uses observations of this type in place
of the state are called problems of imperfect state information, and are
the subject of this chapter. We will find that even though there are DP
algorithms for imperfect information problems, these algorithms are far
more computationally intensive than in the perfect information case. For
this reason, in the absence of an analytical solution, imperfect information
problems are typically solved suboptimallyin practice. On the other hand,
we will see that conceptually, imperfect state information problems are no
different than the perfect state information problems we have been studying
so far. In fact by various reformulations, we can reduce an imperfect state
information problem to one with perfect state information. We will study
two different reductions of this type, which will yield two different DP
algorithms. The first reduction is the subject of the next section, while the
second reduction will be given in Section 5.4.

Consider the basic problem of Section 1.2 where the controller, instead of
having perfect knowledge of the state, has access to observations Zk of the
form

Basic Problem with Imperfect State Information

The observation Zk belongs to a given observation space Zk. The random
observation disturbance Vk belongs to a given space Vk and is characterized
by a given probability distribution

which depends on the current state and the past states, controls, and dis
turbances.

PVk (. I Xk,··· ,Xo, Uk-l,·· . ,Uo, Wk-l,···, Wo, Vk-l,···, va),

218

5.1 REDUCTION TO THE PERFECT INFORMATION CASE
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Reformulation as a Perfect State Information Problem

we can similarly reformulate the cost function in terms of the variables of
the new system. The cost per stage as a function of the new state hand
the control Uk is

(5.3)gk(h,Uk) = E {9k(Xk,Uk,Wk) 1 1k, Uk}'
Xk,Wk

In practice, however, Xk is not known (imperfect state information),
and the optimal control must be chosen on the basis of the available ob
servations (i.e., the entire channel history of successes, idles, and collisions).
These observations relate to the backlog history (the past states) and the past
transmission probabilities (the past controls), but are corrupted by stochastic
uncertainty. Mathematically, we may write an equation Zk+l = Vk+l, where
Zk+l is the observation obtained at the end of the kth slot, and the ran
dom variable Vk+l yields an idle with probability (1 - uktk , a success with
probability xkuk(l - Uk)Xk-· 1, and a collision otherwise.

It can be seen that this is a problem that fits the given imperfect state
information framework. Unfortunately, the optimal solution to this problem
is very complicated and for all practical purposes cannot be computed. A
suboptimal solution will be discussed in Section 6.1.

We now show how to effect the reduction from imperfect to perfect state
information. As in the discussion of state augmentation in Section 1.4, it
is intuitively clear that we should define a new system whose state at time
k is the set of all variables the knowledge of which can be of benefit to
the controller when making the kth decision. Thus a first candidate as the
state of the new system is the information vector h. Indeed we will show
that this choice is appropriate.

We have by the definition of the information vector ref. Eq. (5.1)]

h+l = (h, Zk+l, Uk), k = 0,1, ... , N - 2, 10 = Zoo (5.2)

These equations can be viewed as describing the evolution of a system of
the same nature as the one considered in the basic problem of Section 1.2.
The state of the system is h, the control is Uk, and Zk+l can be viewed as
a random disturbance. Furthermore, we have

P(Zk+l I 1k, Uk) =P(Zk+ll h,Uk,ZO,Zl, ... ,Zk),

since Zo, Zl, ... , Zk are part of the information vector 1k. Thus the probabil
ity distribution of Zk+l depends explicitly only on the state h and control
Uk of the new system (5.2) and not on the prior "disturbances" Zk,···, Zoo

By writing

E{gk(Xk, Uk, Wk)} = E { E {9k(Xk, 'Uk, Wk) 11k , Uk}} ,
xk,wk

for all Xk 2: 1.

Xk+l = Xk + ak tk,

where ak is the number of new arrivals and tk is the number of packets
successfully transmitted during slot k. Both ak and tk may be viewed as
disturbances, and the distribution of tk depends on the state Xk and the
control Uk. It can be seen that tk = 1 (a success) with probability xkuk(l
Uk)Xk- 1

, and tk = 0 (idle or collision) otherwise [the probability of anyone
of the Xk waiting packets being transmitted, while all the other packets are
not transmitted, is uk(l- Uk)Xk- 1

].

If we had perfect state information (i.e., the backlog Xk were known at
the beginning of slot k), the optimal policy would be to select the value of
Uk that maximizes xkuk(l - Uk)Xk-\ which is the success probability.t By
setting the derivative of this probability to zero, we find the optimal (perfect
state information) policy to be

Jk(Xk) = gk(Xk) + min E {P(Xk' Uk)Jk+l (Xk + ak - 1)
O:S;uk:S;l ak

+ (1- p(Xk, Uk))Jk+l(Xk + ak )},

data at integer times. Each packet requires one time unit (also called a
slot) for transmission. The total number ak of packet arrivals during slot
k is independent of prior arrivals and has a given probability distribution.
The stations do not know the backlog Xk at the beginning of the kth slot
(the number of packets waiting to be transmitted). Packet transmissions are
scheduled using a strategy (known as slotted Aloha) whereby each packet
residing in the system at the beginning of the kth slot is transmitted during
the kth slot with probability Uk (common for all packets). If two or more
packets are transmitted simultaneously, they collide and have to rejoin the
backlog for retransmission at a later slot. However, the stations can observe
the channel and determine whether in anyone slot there was a collision (two
or more packets), a success (one packet), or an idle (no packets). These
observations provide information about the state of the system (the backlog
Xk) and can be used to select appropriately the control (the transmission
probability Uk). The objective is to keep the backlog small, so we assume a
cost per stage gk(Xk), which is a monotonically increasing function of Xk.

The state of the system here is the backlog Xk and evolves according to
the equation

t For a more detailed derivation, note that the DP algorithm for the perfect
state information problem is

where p(Xk,Uk) is the success probability xkuk(l - Uk)Xk- 1
. Since the cost per

stage gk(Xk) is an increasing function of the backlog Xk, it is clear that each
cost-to-go function Jk(Xk) is an increasing function of Xk (this can also be proved
by induction). Thus Jk+l (Xk + ak) 2: J k+1 (Xk + ak - 1) for all Xk and ak, based
on which the DP algorithm implies that the optimal Uk maximizes p(Xk, Uk) over
[O,lJ.



and for k = 0, 1, ... , N - 2,

Thus the basic problem with imperfect state information has been
reformulated as a problem with perfect state information that involves the
system (5.2) and the cost per stage (5.3). By writing the DP algorithm
for this latter problem and substituting the expressions (5.2) and (5.3), we
obtain
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InspectionState Transition

Reduction to the Perfect Information Case

Figure 5.1.1 State transition diagram and probabilities of inspection outcomes
in the machine repair example.

C: Continue operation of the machine.

S: Stop the machine, determine its state through an accurate diagnostic
test, and if it is in the bad state 15 bring it back to the good state P.

At each period there is a cost of 2 and 0 units for starting the period
with a machine in the bad state P and the good state P, respectively. The
cost for taking the stop-and-repair action S is 1 unit and the terminal cost
is O.

Sec. 5.1

- 1 - 3
P(G I x=P) = 4' P(B I x=P) =4;

see Fig. 5.1.1. After each inspection one of two possible actions can be
taken:

Chap. 5Problems with Imperfect State Information

IN-1(IN-d = min [ E {9N(fN-1(XN-1,'UN-1,WN-1))
UN-IEUN-l XN-l,WN-l

+ 9N-I (XN-I,U,N-I, WN-I) I IN-I, UN-I}],

(5.4)

Jk(Ik) = min [ E {9k(Xk' 'Uk, Wk) + Jk+1 (Ik, Zk+1, 'Uk) 11k, 'Uk}] .
ukEUk xk, wk> Zk+l

(5.5)
These equations constitute one possible DP algorithm for the imper

fect state information problem. An optimal policy {fLo, fLi ,... ,fLiv-I} is
obtained by first minimizing in the right-hand side of the DP Eq. (5.4) for
every possible value of the information vector IN -1 to obtain fLiv -1 (IN-d·
Simultaneously, JN -1 (IN -1) is computed and used in the computation of
IN-2(IN-2) via the minimization in the DP Eq. (5.5), which is carried
out for every possible value of IN-2' Proceeding similarly, IN-3(IN-3)
and fLiv-3 and so on are obtained, until Jo(Io) = Jo(zo) is computed. The
optimal cost J* is then given by
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J* = E{ Jo(zo)}.
ZQ

A machine can be in one of two states denoted P and P. State P cor
responds to a machine in proper condition (good state) and state 15 to a
machine in improper condition (bad state). If the machine is operated for
one time period, it stays in state P with probability ~ if it started in P,
and it stays in state 15 with probability 1 if it started in P. The machine is
operated for a total of three time periods and starts in state P. At the end
of the first and second time periods the machine is inspected and there are
two possible inspection outcomes denoted G (probably good state) and B
(probably bad state). If the machine is in the good state P, the inspection
outcome is G with probability ~; if the machine is in the bad state 15, the
inspection outcome is B with probability ~:

3
P(Glx=P)=4' P(B I x P) = ~

4'

The problem is to determine the policy that minimizes the expected
costs over the three time periods. In other words, we want to find the
optimal action after the result of the first inspection is known, and after
the results of the first and second inspections, as well as the action taken
after the first inspection, are known.

It can be seen that this example falls within the general framework
of the problem of this section. The state space consists of the two states P
and 15,

state space = {P, P},
and the control space consists of the two actions

control space = {C, S}.

The system evolution may be described by introducing a system equa-
tion

Xk+1 = Wk, k = 0, 1,

where for k = 0, 1, the probability distribution of Wk is given by

2 1
P(Wk = P I Xk = P, 'Uk = C) = 3' P(Wk = P I Xk = 'Uk = C) = 3'



We denote by XO, Xl, X2 the state of the machine at the end of the first,
second, and third time period, respectively. Also we denote by Uo the
action taken after the first inspection (end of first time period) and by Ul
the action taken after the second inspection (end of second time period).
The probability distribution of Xo is

Problems with Im/J8ncect State Information

We now apply the DP algorithm. It involves taking the minimum
over the two possible actions, C and S, and it has the form

225Reduction to the Perfect Information Case

Jk(h) = min [P(Xk = P 11k,C)g(P, C) + P(Xk = PI h, C)g(P, C)

+ E {Jk+l(h, c, Zk+l) I h, C},
Zk+I

P(Xk = P Ih, S)g(P, S) + P(Xk = PI h, S)g(P, S)

+ E {Jk+l(h, S, Zk+1) I h, S}],
Zk+I

Sec. 5.1Chap. 5

P (Wk = P I x k = P, Uk = C) = 1,

- 1
P(Wk = P I Xk = P, Uk = S) = 3'

- - 1
P(Wk = P I Xk = P, Uk = S) = 3'

P(Wk P I Xk Uk = C) 0,

2
P(Wk = P I Xk = P, Uk = S) = 3'

2
P(Wk PIXk= uk=S)=3'
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Note that we do not have perfect state information, since the inspec
tions do not reveal the state of the machine with certainty. Rather the
result of each inspection may be viewed as a measurement of the system
state of the form

P(Xo P) = ~
3'

- 1
P(xo = P) = 3'

where k = 0, 1, and the terminal condition is h(I2) = 0.

Last Stage: We use Eq. (5.4) to compute Jl (h) for each of the eight
possible information vectors II (zo, zl, uo). As indicated by the above
DP algorithm, for each of these vectors, we shall compute the expected
cost of the possible actions, Ul = C and Ul = S, and select as optimal the
action with the smallest cost. We have

k 0,1,

where for k = 0,1, the probability distribution of Vk is given by
cost of C = 2· P(XI = J5 I h), cost of S = 1,

is
The cost resulting from a sequence of states Xo, Xl and actions Uo, Ul

g(Xo, uo) + g(Xl, Ul),

Jl(h) = min [2P(XI = P I h), 1].

The probabilities P(Xl = J5 I h) can be computed by using Bayes' rule
and the problem data. Some of the details will be omitted. We have:

(1) For II = (G, G, S)

P( = PIG G S) = P(XI = P, G, GIS)
Xl , , P(G,GIS)

1 . 1 . (~ . ~ + 1 . 1) 1
_343434

- (~ . ~ + ~ . i)2 7

and therefore

g(P, S) = 1.

1
P(Vk = B I Xk = P) = 4'

- 3
P(Vk = B I Xk = P) = 4'

g(P, C) = 2,g(P,S) = 1,

3
P(Vk = G I Xk = P) = 4'

- 1
P(Vk = G I Xk = P) = 4'

g(P, C) 0,

where

The information vector at times °and 1 is Hence

and we seek functions Mo (Io) ,M1(h) that minimize

10 = Zo, h = (zo, Zl, uo),
2

Jl(G, G, S) = 7'

(2) For h = (B, G, S)

MHG, G, S) = C.

- - 1
P(XI = PI B,G,S) = P(XI = PI G,G,S) =-,

7
XQ, Ji, WI {g(xo, Mo(Io)) + g(Xl' Ml (II)) }

VQ,VI

= E {9(XO,MO(ZO)) + 9(Xl,Ml(ZO,Zl,MO(ZO)))}.
XQ'WQ,WI

vQ, vI

2
Jl(B, G, S) = 7' MHB, G, S) = C.
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- - 3
P I B,E,S) = P(X1 = PI G,E,S) = 5'

(3) For h = (G, E, S)

P( = ]5 1GB S) = P(X1 = ]5, G, E I S)
Xl , , P(G,EIS)

_ i'~'(~'~+i'i) _~
- (~'i+i'~)(~'~+i'i) - 5'

J1 (G, E, S) = 1,

(4) For h = (E, B, S)

fJ,l(G, E, S) = S.

Summarizing the results for the last stage, the optimal policy is to
continue (U1 = C) if the result of the last inspection was G, and to 8top
(U1 = S) if the result of the last inspection was B.

First Stage: Here we use the DP Eq. (5.5) to compute Jo(1o) for each
of the two possible information vectors 10 = (G), 10 = (B). We have

cost of C = 2P(xo = ]5 I 10, C) + E{ J1(10, Zl, C) I 10, C}
Zl

= 2P(xo = ]5 I 10, C) + P(Zl = G I 10, C)J1(10, G, C)

+ P(Zl = B I 10, C)J1(10, B, C),

cost of S = 1 + E{ J1(Io, Zl, S) 110 , S}
Zl

= 1 + P(Zl = G I 10, S)h(1o, G, S) + P(Zl = E 110, S)J1(10, B, S),

J1(B, B, S) = 1,

(5) For h = (G, G, C)

P( = ]5 I G G C) = P(X1 = ]5, G, G I C) = ~
Xl , , P(G,GIC) 5'

and

Jo(1o) = min [2P(XO = ]5 I 10, C) + E{ J1 (10, Zl, C) I 10, C},
Zl

1 + E{ J1(10, Zl, S) I10, S}]
Zl

and hence

P(Zl = G I G,C) = ~~, P(Zl = B I G,C) = ~~,

7 5
P(Zl = G I G,8) = 12' P(Zl = BIG,S) = 12'

- 1
P(xo = PIG, C) = 7'

(1) For 10 = (G): Direct calculation yields

- 11
P(X1 = P I E,G,C) = 23'

- 9
P(X1 = P I G,E,C) = 13'

2
J1(G, G, C) = 5'

(6) For h = (B, G, C)

22
J1(E,G,C) = 23'

(7) For h = (G, E, C)

- 33
P(X1 = PI E,B,C) = 37'

J1(G, E, C) = 1,

(8) For h = (B, E, C)

fJ,i(G, B, C) S.
Using the values of J1 obtained in the previous stage

. [ 1 15 2 13 7 2 5 ]Jo (G) = mm 2· - + -- . - + - . 1 1 + - . - + - . 1
7 28 5 28' 12 7 12

. [27 19] 27
= mm 28' 12 = 28'

J1 (E, E, C) = 1, fJ,i(B, E, C) = S.
27

Jo(G) = 28' fJ,o(G) = C.
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(2) For 10 = (B): Direct calculation yields 5.2 LINEAR SYSTEMS AND COST

7 5
P(ZI = G I B,S) = 12' P(ZI = BIB,S) = 12'

- 3
P(xo =P I B,C) = 5'

23
P(ZI = G I B,C) = 60'

37
P(ZI = B I B,C) = 60' We will show how the DP algorithm of the preceding section can be used to

solve the imperfect state information analog of the linear system/quadratic
cost problem of Section 4.1. vVe have the same linear system

k = 0,1, ... ,N - 1,

and quadratic cost
and

but now the controller does not have access to the current state. Instead
it receives at the beginning of each period k an observation of the form

Using the values of J 1 obtained in the previous state

J, (B) = min [131 19] = 19
o 60 ' 12 12'

J* = P(G)Jo(G) + P(B)Jo(B).

k = 0,1, ... ,N - 1,

where Zk E ats , Ck is a given s x n matrix, and Vk E ats is an observation
noise vector with given probability distribution. Furthermore, the vectors
Vk are independent, and independent from Wk and Xo as welL We make
the same assumptions as in Section 4.1 concerning the input disturbances
Wk, i.e., that they are independent, zero mean, and that they have finite
variance. The system matrices Ak , B k are known; there is no analytical
solution of the imperfect information counterpart of the model with random
system matrices considered in Section 4.1.

From the DP Eq. (5.4) we have

J-Lo(B) = S.
19

Jo(B) = 12'

Summarizing, the optimal policy for both stages is to continue if the
result of the latest inspection is G, and to stop and repair otherwise.

The optimal cost is

We can verify that P(G) = 1
7
2 and P(B) = f2, so that

J* = ~ . 27 ~. 19 = 176
12 28 + 12 12 144'

IN-l(IN-l) = min [ E. {x~_lQN-IXN-l+u~_.lRN-IUN-l
UN-l XN-l,WN-l

+ (AN-1XN-l + BN-IUN-l +WN-l)'

. QN(AN-1XN-l + BN-IUN-l + WN-l) lIN-I}]

In the above example, the computation of the optimal policy and the
optimal cost by means of the DP algorithm (5.4) and (5.5) was possible
because the problem was very simple. It is easy to see that for a more com
plex problem, the computational requirements of the DP algorithm can be
prohibitive, particularly if the number of possible information vectors I k is
large (or infinite). Unfortunately, even if the control and observation spaces
are simple (one-dimensional or finite), the space of the information vector
h may have large dimension. This makes the application of the algorithm
very difficult or computationally impossible in many cases. However, there
are some problems where an analytical solution is possible, and the next
two sections deal with such problems.

Since E{WN-l I IN-I} = E{WN-d = 0, this expression can be written as

+ E {W~_lQNWN-d
WN-l

+ min [u~_l(B~_lQNBN-l+ RN-duN-l
UN-l

+- 2E{XN-l I IN-d'A~_lQNBN-1UN-l]'
(5.6)
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The minimization yields the optimal policy for the last stage:

= f-L'N-l (IN-I)

= -(B~_lQNBN-l + RN-I)-lB~_lQNAN-IE{XN-l I IN-d,
(5.7)

The lemma says essentially that the quality of estimation as expressed
by the statistics of the error x k - E {X k I h} cannot be influenced by the
choice of control. This is due to the linearity of both the system and the
measurement equation. In particular, x k and E {x k I h} contain the same
linear terms in (uo, ... , which cancel each other out.

and upon substitution in Eq. (5.6), we obtain

IN-l(IN-I) = E {x~_lKN-IXN-l I IN-d
XN-l

Lemma 5.2.1: For every k, there is a function Mk such that we have

+ E {(XN-l - E{XN-l I IN-d)'
XN-l

. PN-l (XN-l - E{XN-l I IN-d) I IN-I}

+ E {W~_lQNwN-d,
WN-l

where the matrices KN-l and PN-l are given by

independently of the policy being used.

Proof: Fix a policy and consider the following two systems. In the first
system there is control as determined by the policy,

PN-l = A~_lQNBN-l(RN-l + B~_lQNBN-I)-lB~v_IQNAN-l,

KN-l A~_lQNAN-l - PN-l + QN-l. while in the second system there is no control,

Note that the optimal policy (5.6) is identical to its perfect state
information counterpart except that XN-l is replaced by its conditional
expectation E{XN--l I IN-d· Note also that the cost-to-go IN-.l(IN-l)
exhibits a corresponding similarity to its perfect state information counter
part except that JN-1 (IN-1) contains an additional middle term, which is
in effect a penalty for estimation error.

Now the DP equation for period N - 2 is

We consider the evolution of these two systems when their initial conditions
are identical,

Xo = xo,

and when their system disturbance and observation noise vectors are also
identical,

Linearity implies the existence of matrices Fk' Gk, and Hk such that

k = 0,1, ... , N - 1.

-k
Z = (zo, ,Zk)',

V k = (vo, ,Vk)',

Wk = Wk,

Zk = (zo, ,Zk)',

Wk = (wo, ,Wk)',

Consider the vectors

+ IN--l(IN-l) I IN-2, UN-2}]

= E{X~_2QN-2XN-2 I IN-2}

+ min [u~_2RN-2UN-2+ E{X~_lKN-IXN-l I IN-2,uN-2}]
UN-2

+E{ (XN-I-E{XN-l I IN-I})'

. PN-l (XN-l - E{XN-l lIN-I}) I IN- 2,UN-2 }

+ E {W~_lQNWN-d·
WN-l

(5.8)
Note that we have excluded the next to last term from the minimization
with respect to 'UN -2. We have done so since this term turns out to be
independent of UN -2. To show this fact, we need the following lemma.

Xk = FkXO + GkUk-l + Hk VVk-l,

Xk = FkXO + HkWk .- 1 .

Since the vector Uk-l = (uo, . .. ,uk-I)' is part of the information vector
h, we have Uk-l = E{Uk-l I Ik}, so

E{Xk I Ik} = FkE{xo I h} + GkUk - 1 + HkE{Wk-l I h},
E{Xk I Ik} = FkE{XO I h} + I h}.
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We thus obtain where the matrix Lk is given by

From the equations for Zk and Zk, we see that with the matrices K k given recursively by the Riccati equation

where Rk' Sk, and Tk are some matrices of appropriate dimension. Thus,
the information provided by Ik = (Zk, Uk-I) regarding Xk is summarized

-k
in , and we have E{Xk I Ik} = E{Xk I Z }, so that K k = A~Kk+1Ak - Pk + Qk.

The key step in this derivation is that at stage k of the DP algorithm, the
minimization over Uk that defines Jk(h) involves the additional terms

where s = k + 1, ... , N - 1. By using the argument of the proof of the
earlier lemma, it can be seen that none of these terms depends on Uk so
that the presence of these terms does not affect the minimization in the
DP algorithm. As a result, the optimal policy is the same as the one for
the perfect information case, except that the state Xk is replaced by its
conditional expectation E{Xk I h}.

It is interesting to note that the optimal controller can be decomposed
into the two parts shown in Fig. 5.2.1:

(a) An estimator, which uses the data to generate the conditional expec
tation E{Xk I h}.

(b) An actuator, which multiplies E{Xk I Ik} by the gain matrix and
applies the control input 'Uk = LkE{Xk I h}.

Furthermore, the gain matrix L k is independent of the statistics of the
problem and is the same as the one that would be used if we were faced
with the deterministic problem, where Wk and XQ would be fixed and equal
to their expected values. On the other hand, as shown in Appendix the
estimate x of a random vector x given some information (random vector)
I, which minimizes the mean squared error Ex{llx - xl1 2 I I} is precisely
the conditional expectation E{x I I} (expand the quadratic form and set
to zero the derivative with respect to x). Thus the estimator portion of the
optimal controller is an optimal solution of the problem of estimating the
state Xk assuming no control takes place, while the actuator portion is an
optimal solution of the control problem assuming perfect state information
prevails. This property, which shows that the two portions of the optimal
controller can be designed independently as optimal solutions of an esti
mation and a control problem, has been called the separation theorem for(5.9)

XN-1 - E{XN-1 I IN-d = ~N-l,

U N- 2 = f-LN-2(IN-2)

= -(RN-2 + B~_2KN-1BN-2)-lB~_2KN-1AN-2E{XN-2 I IN-2}.

Returning now to our problem, the minimization in Eq. (5.8) yields,
using an argument similar to the one for the last stage,

We can proceed similarly to obtain the optimal policy for every stage:

We can now justify excluding the term

where ~N-1 is a function of Xo, Wo,.·., WN-2, va,.·., VN-1. Since ~N-1

is independent of UN - 2, the conditional expectation of ~~-1 PN -1~N-1

satisfies

from the minimization in Eq. (5.8), as being independent of UN-2' Indeed,
by using the lemma, we see that

The function Mk given by

serves the purpose stated in the lemma. Q.E.D.
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and

k = 0,1, ... ,N - 1,

Linear Systems and Quadratic Cost

where the matrices :Ek1k are precomputable and are given recursively by

and

Sec. 5.2

only the most recent measurement Zk+l is needed, together with
Uk. In particular, we have for all k = 0, ... ,N - 1,

Chap. 5Problems with Imperfect State Information234

Figure 5.2.1 Structure of the optimal controller for the linear-quadratic prob
lem. It consists of an estimator, which generates the conditional expectation
E{Xk lId, and an actuator, which multiplies E{Xk I Id by the gain matrix Lk·

with
:Eo1o = S - SCb(CoSCb + NO)-lCOS.

S = E{ (xo E{xo})(xo - E{XO})/}'

In these equations, Mk' Nk' and S are the covariance matrices of Wk, Vk,
and Xo, respectively, and we assume that Wk and Vk have zero mean; that
is

(5.10)

In addition, the matrices Nk are assumed to be positive definite.
Consider now the case where the system and measurement equations,

and the disturbance statistics are stationary. We can then drop subscripts
from the system matrices. Assume that the pair (A, B) is controllable and
that the matrix Q can be written as Q = F'F J where F is a matrix such that
the pair (A, F) is observable. By the theory of Section 4.1, if the horizon
tends to infinity, the optimal controller tends to the steady-state policy

and the input disturbances Wk, Wk+l,··., WN-l and current state Xk were
known and fixed at their conditional expected values, which are zero and
E {x k I h}, respectively. This is another manifestation of the certainty
equivalence principle, which was referred to in Section 4.1. A similar result
holds in the case of correlated disturbances; see Exercise 5.1.

N-l

X~QNXN+~ (X~QiXi + U~Ri'Ui),
i=k

linear systems and quadratic cost and occupies a central position in modern
automatic control theory.

Another interesting observation is that the optimal controller applies
at each time k the control that would be applied when faced with the
deterministic problem of minimizing the cost-to-go

Inlp.lernent,atllon Aspects - Steady-State Controller

and K is the unique positive semidefinite symmetric solution of the alge
braic Riccati equation

As explained in the perfect information case, the linear form of the actuator
portion of the optimal policy is particularly attractive for implementation.
In the imperfect information case, however, we need to implement an esti
mator that produces the conditional expectation

where
L = -(R+BIKB)-lBIKA, (5.11)

K = A'(K - KB(R+ BIKB)-lBIK)A + Q.

and this is not easy in general. Fortunately, in the important special case,
where the disturbances Wk, Vk, and the initial state Xo are Gaussian random
vectors, a convenient implementation of the estimator is possible by means
of the Kalman filtering algorithm, which is developed in Appendix E. This
algorithm is organized recursively so that to produce Xk+l at time k + 1,

By a similar argument, it can be shown (see Appendix E) that Xk can
be generated in the limit as k -7 00 by a steady-state Kalman filtering
algorithm:

(5.12)
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where I; is given by We denote by sr the operator resulting from r successive applications of s:

I; = L; - ~C'(CL;C' + N)-IC"L" k = 0,±1, (5.14)

and "L, is the unique positive semidefinite symmetric solution of the Riccati
equation

We also write for simplicity SrXk = Xk-r. The forward shift operator',
denoted s-l, is the inverse of s and is defined by

Thus the notation (5.14) holds for all integers T. We can form linear com
binations of operators of the form sr. Thus, for example, the operator
(s + 2s2 ) is defined by

"L, = A("L, - "L,C'(C~C' + N)-IC"L,)A' + M.

The assumptions required for this are that the pair (A, C) is observable
and that the matrix M can be written as JYI = DD', where D is a matrix
such that the pair (A, D) is controllable. The steady-state controller of
Eqs. (5.10)-(5.12) is particularly attractive for practical implementation.
Furthermore, as shown in Appendix E, it results in a stable closed-loop
system, under the preceding controllability and observability assumptions.

k = 0,±1,±2, ...

k = 0, ±1, ±2, ...

With this notation, Eq. (5.13) can be written as

5.3 MINIMUM VARIANCE CONTROL OF LINEAR SYSTEMS

where A(s), B(s) are the operators

B(s) = bo + b1 s + .,. + bmsm.

Sometimes it is convenient to write the equation A(S)Yk = B(S)Uk as

for Uk == °has as solutions all sequences of the form Yk = f3( -a)k, where
f3 is any scalar; the solution becomes unique only after some boundary
condition for the sequence {Yk} is specified. As will be discussed shortly,
however, for stable systems and for a bounded sequence {ud there is a
unique solution {Yk} that is bounded. It is this solution that will be denoted
by (B(s)jA(s))Uk in what follows. The reader who is familiar with linear

A(s)
--Yk = Uk·
B(s)

The meaning of both equations is that the sequences {Yk} and {Uk} are
related via A(S)Yk = B(S)Uk' There is a certain ambiguity here in that,
for a fixed {Uk}, the equation A(S)Yk = B(S)Uk has an infinite number of
solutions in {Yk}' For example, the equation

or

k = 0, ±1, ±2, ...

Yk + alYk-l + ... + amYk-m = bOUk + b1Uk-l + ... + bmuk-m, (5.13)

We have considered so far the control of linear systems in state variable
form as in the previous section. However, linear systems are often mod
eled by means of an input-output equation, which is more economical in the
number of parameters needed to describe the system dynamics. In this sec
tion we consider single-input, single-output, linear, time-invariant systems,
and a special type of quadratic cost function. The resulting optimal policy
is particularly simple and has found wide application. vVe first introduce
some of the basic facts regarding linear systems in input-output form. De
tailed discussions may be found in the books by Astrom and Wittenmark
[AsW84]' [AsW90], Goodwin and Sin [GoS84], and Whittle [Whi63].

vVe consider a single-input single-output discrete-time linear system,
which is specified by an equation of the form

where ai, bi are given scalars. The scalar sequences {Uk I k = 0,±1, ±2, ...},
{Yk I k = 0, ±1, ±2, ...} are viewed as the input and output of the system,
respectively. Note that we allow time to extend to -00 as well as +00;
this will be useful for describing generic properties of the system relating
to stability. We will later revert to our usual convention of starting at time°and proceeding forward.

It is convenient to describe this type of system by means of the
backward shift operator, denoted s, which when operating on a sequence
{Xk I k = 0, ±2, ...} shifts its index by one unit; that is,
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dynamic system theory will note that B (s)/ A (s) can be viewed as a transfer
function involving z-transforms.

We now introduce some terminology. When the sequences {Yk} and
{Uk} satisfy A(S)Yk = B(S)Uk, we say that Yk is obtained by passing Uk
through the filter B(s)/A(s). This comes from engineering terminology,
where linear time-invariant systems are commonly referred to as filters.
We also refer to the equation A(S)Yk = B(S)Uk as the filter B(s)/A(s).

A filter B(s) / A(s) is said to be stable if the polynomial A(s) has all its
(complex) roots strictly outside the unit circle of the complex plane; that
is, Ipl > 1 for all complex p satisfying A(p) = O. A stable filter B(s)/A(s)
has the following two properties:

(a) Every solution {Yk} of
A(S)Yk = 0

satisfies limk-+= Yk = 0; that is, the output Yk tends to zero if the
input sequence {Uk} is identically zero.

(b) For every bounded sequence {Uk}, the equation

has a unique solution {Zh} within the class of bounded sequences.
Furthermore, every solution {Yk} (possibly unbounded) of the equa
tion satisfies

For example, consider the system

Yk - 0.5Yk-l = Uk·

Given the bounded input sequence Uk = { ... , 1, 1, 1, ...}, the set of
all solutions is given by

Yk = 2+ ~
2k '

where (3 is a scalar, but of these the only bounded solution is fh =
{... ,2,2,2, ...}. The solution {ih} can thus be naturally associated
with the input sequence {Uk}; it is also known as the forced response
of the system due to the input {Uk}'

and it is known as an ARMAX model (AutoRegressive, Moving Average,
with eXogenous input). We assume throughout that the random variables
Ek are mutually independent. We can write the model in the shorthand
form

where the polynomials A(s), B(s), and C(s) are given by

A(s) = 1 + alS + ... + amsm,

B(s) = bls + ... +- bmsm,

C(s) = 1 + Cl S + ... + Cm sm.

The ARMAX model is very common and its derivation is outlined
in Appendix F, where it is shown that without loss of generality we can
assume that C (s) has no roots strictly inside the un'it circle. For much
of the analysis in subsequent sections, it will be necessary to exclude the
critical case where C (s) has roots on the unit circle and assume that C (s)
has all its roots strictly outside the unit circle. This assumption is usually
satisfied in practice.

In several situations, analysis and algorithms relating to the ARMAX
model are greatly simplified if C(s) = 1 so that the noise terms C(S)Ek = Ek
are independent. However, this is typically an unrealistic assumption. To
emphasize this point and see how easily the noise can be correlated, suppose
that we have a first-order system

where we observe

Then
Yk+l = Xk+l +- 'Uk+l

= aXk + Wk + 'Uk+l

= a(Yk - 'Uk) + Wk + 'Uk+l,

so finally

ARMAX Models - Reduction to State Space Form

We now consider a linear system with output Yk, which is driven by two
inputs: a random noise input Ek, and a control input Uk. It has the form

Yk + alYk-l + ... + amYk-m = blUk-l + ... + bmuk-m

+ Ek + ClEk-l + ... + CmEk-m,
(5.15)

However, the noise sequence {'Uk+l - a'Uk + Wk} is correlated even if {'Uk}
and {Wk} are individually and mutually independent.

The ARMAX model (5.15) can be put into state space form. The
process is based on state augmentation and can perhaps be best understood
in terms of an example. Consider the system

(5.16)
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The problem is of the same nature as the linear-quadratic problem of Sec
tion 4.1 except that the corresponding matrices Rk in the quadratic cost
function are zero here. Nonetheless, in Section 4.1 we used the invertibility
of Rk only to ensure that various matrices in the optimal policy and the
Riccati equation are invertible. If invertibility of these matrices can be
guaranteed by other means, the same analysis applies even if Rk is posi
tive semidefinite. This is indeed the case here. An analysis analogous to
the one of Section 4.1 shows that the optimal control uk at time k (given
Yk, Yk-I,···, Yk-m+1 and Uk-I,···, Uk-m+l) is the same as the one that
would be applied if all future disturbances Ek+I, ... ,EN were set equal to
zero, their expected value (certainty equivalence). It follows that

Sec. 5.3

There are no constraints on Uk. By transforming the system to state space
form, we see that this problem can be reduced to a perfect state information
linear-quadratic problem where the state Xk is

Chap. 5

~)o '
o

Cl) ( Yk) (b1 ) (Ek+l )o Yk-l 0 0
O + 1 Uk + 0 .Uk-l
o Ek 0 Ek+l

(5.17)

Problems with Imperfect State Information

Xk = (Y~~l) ,
Uk-l

Ek

(T(
Y~+l )Yk

Uk
Ek+l

VVe have

By setting

A=Cf
we can write Eq. (5.17) as
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Xk+l = AXk + BUk + Wk,

where {wd is a stationary independent process. We have arrived at this
state space model through state augmentation. Notice that the state Xk
includes Ek. Thus if the controller is assumed to know at time k only the
present and past outputs Yk, Yk-I, . .. , and past controls Uk-I, Uk-2, ...
(but not Ek, Ek-l, ...), we are faced with a model of imperfect state infor
mation. If Cl = 0 in Eq. (5.16) then the state space model can be simplified
so that

Xk = ·(Y~~l) ,
Uk-l

in which case we have perfect state information. More generally, we have
perfect state information in the ARMAX model (5.15) if b1 =1= 0 and CI =
C2 = ... = Cm = O.

1
J-lrJYk, . .. ,Yk-m+I, Uk-I,··· ,Uk-m+l) = bl (alYk + ... + amYk--m+l

- b2Uk-1 _.... - bmUk-m+l),

and {Uk} is generated via the equation

In other words, {uk} is generated by passing {Yk} through the linear filter
A(s)jB(s), where

A(s) = al + a2S + ... + amsm- 1 = s- l (A(s) 1),

B(s) = b1 + b2S + ... + bmsm- 1 = s-lB(s),

as shown in Fig. 5.3.1. The resulting closed-loop system is

Minimum Variance Control: Perfect State Information Case Yk = Ek (5.18)

Consider the perfect state information case of the ARMAX model (5.15): and the associated cost is

where bl =1= O. A problem of interest, known as the minimum variance
control problem, is to select Uk as a function of the present and past outputs
Yk, Yk-I, ... , as well as the past controls Uk-I, Uk-2, ... , so as to minimize
the cost

Notice that the optimal policy, called minimum variance control law, is
time invariant and does not depend on the horizon N.

Whereas the optimal closed-loop system as given by Eq. (5.18) is
clearly stable, we can anticipate serious difficulties if the filter A(s) j B(s)
in the feedback loop is unstable. For if B (s) has some roots inside the
unit circle, then the sequence {Uk} will tend to be unbounded. This is
illustrated by the following example.
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t ck

1
A(s)

+~uk 8(s) Yk

A(s)

-
.§(s)

Uk
A(s)

Yk

Figure 5.3.1 Minimum variance control with perfect state information. Structure
of the optimal closed-loop system, where A(8) = 1 + a1S + ... + am. 8m. , B(s) =

bI 8 + ... + bm. 8m., A(s) = S-1 (A (8) - 1), and 13(s) = 8 -1 B (s ).

~ ..,,_u.".'''pJL'V 5.3.1 (An Optimal but Unstable Controller)

Consider the system

Yk + Yk-1 = Uk-1 - 2U k-2 + Ck·

The optimal policy is

and the optimal closed-loop system is

which is a stable system. On the other hand, the last two equations yield

Thus, Uk is generated by an unstable system, and in fact it is given by

n=O

Therefore, even though the output Yk stays bounded, the control Uk typically
becomes unbounded.

For another view of the same difficulty, suppose that the coefficients
bI , ... ,bm of B (s) are slightly different from the ones of the true system.

We will show that if the feedback filter A(s)j13(s) is unstable, then the
closed-loop system is also unstable in the sense that both Uk and Yk become
unbounded with probability one.

Assume that the system is governed by

(5.19)

while the policy is calculated under the assumption that the system model
is

A(S)Yk = E(s)uk + Ek,

where the coefficients of A(s) and E(s) differ slightly from those of AO(s),
-0 -0

EO (s). Define A (s), B (s) by

-0
1 + sA (s) = AO(s),

-0
sB (s) = EO (s).

-0 - -0 -
Note that A (s) = A(s) and B (s) = B(s) if AO(s) = A(s),BO(s) = B(s).
By multiplying Eq. (5.19) with 13(s) and by using the relation defining the
optimal policy

we obtain
B(s)AO(s)Yk = BO(s)A(s)Yk + B(S)Ek'

-0 -0 - -
If the coefficients of A (s) and B (s) are close to those of A(s), B (s), then
the roots of the polynomial

are close to the roots of B (s). Thus the closed-loop system is stable only if
the roots ofB(s) are outside the unit circle, or equivalently, if and only ifthe
filter A(s) j B(s) is stable. If our model is exact, the closed-loop system will
be stable due to what is commonly referred to as a pole-zero cancellation.
However, the slightest modeling discrepancy will induce instability.

The conclusion from the preceding analysis is that the minimum vari
ance control law is advisable only if it can be realized through a stable filter
[B(s) has roots outside the unit circle]. Even if B(s) has its roots outside
the unit circle, but some of these roots are near the unit circle, the perfor
mance of the minimum variance policy can be very sensitive to variations
in the parameters of the polynomials A (s) and E (s). One way to overcome
this sensitivity is to change the cost to
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where R is some positive parameter. This requires solution via the Riccati
equation as in Section 4.1. For a detailed derivation, see Astrom [Ast83].

In some problems, the system equation includes an additional external
input sequence {Vk}, the values of which can be measured by the controller
as they occur. In particular, consider the scalar system

Yk + alYk-1 + ... + amYk-m = bl Uk-l + ... + bmUk-m

+ dl Vk-l + ... + dmVk-m + Ek,

where each value Vk becomes known to the controller without error at time
k. The minimum variance controller then takes the form

!Jk(Yk, ... ,Yk-m+I,Uk-I,···, Uk-m+l, Vk,···, Vk-m+l)

1
= bl (alYk + ... + amYk-m+1 - dl Vk - . . . dmVk-m+1

- b2Uk-I'" - bmUk-m+I),

and the optimal controls {ukJ are generated by

where
A(s) = al + a2S + '" + am sm-l,

B(s) = bl + b2S + + bmsm- l ,

D(s) = dl + d2S + + dmsm- l .

The closed-loop system is again Yk = Ek, but for practical purposes it is
stable only if B (s) has its roots outside the unit circle. The process whereby
external inputs are measured and used for control is commonly referred to
as feedforward control.

Imperfect State Information Case

Consider now the general ARMAX model

Yk + alYk-1 + ... + amYk-m = bMUk-1VI + ... + bmUk-m

+ Ek + CIEk-1 + ... + CmEk-m

or, equivalently,

where
A(s) = 1 + als + .. ,+ amsm ,

B(s) = bMSM + ... + bmsm ,

C(s) = l+CIS+···+cm sm .

We assume the following;

(1) bM =1= 0 and 1 :::; 1\11 :::; m.

(2) {Ek} is a zero mean, independent, stationary process.

(3) The polynomial C (s) has all its roots outside the unit circle. (As
explained in Appendix F, this assumption is not overly restrictive.)

The controller knows at each time k the past inputs and outputs.
Thus the information vector at time k is

(We include in the information vector the control inputs U-I, ... , U-m+M.
If control starts at time 0, these inputs will be zero.) There are no con
straints on Uk. The problem is to find a policy {!Ja(Ia), ... , ,uN-I (IN-I) }
that minimizes

E {~(Yk)2}

By using state augmentation, we can cast this problem into the frame
work of the linear-quadratic problem of Section 5.2. The corresponding
linear system in state space format involves a state Xk given by

Because Yk+M-I, .. "Yk+1 and Ek+M-I, ... ,Ek+M-m are unknown to the
controller, we are faced with a problem of imperfect state information.

An analysis analogous to the one of Section 5.2 shows that certainty
equivalence holds; that is, the optimal control uk at time k given h is the
same as the one that would be applied in the deterministic problem where
the current state

is set equal to its conditional expected value given h, and the future dis
turbances Ek+M, ... , EN are set equal to zero (their expected value).

Thus the optimal control uk = ,uk(Ik) is obtained by solving for Uk
the equation

E{Yk+M I Uk, h} = E{Yk+M I Yk, Yk-l,"" Y-m+l, Uk, Uk-I,···, U-m+M}

=0.

This leads to the problem of calculating E{Yk+M 11k, Uk}, known as the
forecasting or prediction problem, which is important in its own right. We
first treat the easier case where there is no delay (M = 1) and then discuss
the more general case where the delay can be positive.



Zk = Yk - tk·

A key fact is that, since {tk} is an independent, zero-mean sequence, we
have

Assume that NJ = 1. We would like to generate an equation for the forecast
E{Yk+l I h, Uk}, and then determine the optimal control uk = J-Lk(h) by
setting this forecast to zero. Let us introduce an auxiliary sequence {Zk}
via the equation

E{Zk+l Ih, Uk} = E{Yk+l 11k, Uk}.

vVe can thus obtain the desired forecast of Yk+l by forecasting Zk+l instead.
vVe can then obtain the optimal control uk by setting E{Zk+1 1 1k, u,J O.

By using the definition Zk = Yk - tk to express Yk in terms of Zk in
the ARMAX model equation for M = 1, we obtain
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1
Uk = - (Wk - b2uk-l - ... - bmUk-m+l)

b1

1
= -((a1 - Cl)Yk + ... + (am - Cm)Yk-m-l

b1

- b2uk-l - . . . bmUk-m+l)'

Minimum Variance Control of Linear Systems

Yk+l + alYk + ... + amYk-m+l = blUk + ... + bmUk-m+l

+ tk+l + Cl t k + ... + Cmtk-m+l,

we see that the closed-loop system becomes

By substituting this policy in the ARMAX model

Sec. 5.3

If this policy is followed, however, the earlier forecasts Yk, ... , will
be equal to zero. Thus the (approximate) minimum variance policy is given

by

Chap. 5

(NJ = 1)

Problems with Imperfect State Information

Forecasting for ARMAX Models - No

Zk+l + C1Zk + ... + CmZk-m+1 = bl Uk + ... + bmUk-m+l + Wk, (5.20)

where

Minimum Variance Control: Imperfect State Information and
No Delay

(5.21)C(s) = A(s)F(s) + sMG(s).
which satisfy

The coefficients of F (s) and G (s) are uniquely determined from those of
C (s) and A (s) by equating coefficients of both sides of the relation

Yk = tk + "((k),

F(s) = 1 + !Is + ... + !Ivl_1 sM - 1
,

G(s) = go + glS + ... + gm_l sm- 1 ,

)( f M-l)1 + CIS + ... + cmsm = (1 + alS + ... + amsm 1 + !Is + ... + M-lS .

+ sM(gO + g1 S + ... + gm_lSm-1).

Consider now the general case where the delay M can be greater than 1.
The forecasting problem can still be nicely solved by using a certain trick
to transform the ARMAX equation into a more convenient form. To this
end, we first obtain polynomials F(s) and G(s) of the form

Forecasting: The General Case

where "((k) -70 as k -7 00.

or equivalently C(S)(Yk - tk) = O. Since C(s) has its roots outside the unit
circle, this is a stable system, and we have

Y1-m = 0,

lim (Yk - Zk) = O.
k-+oo

Y-1 = 0,
with

Yo = 0,

then we will have

Wk = (Cl - ar)Yk + ... + (cm - am)Yk-m+l.

We note that Wk is perfectly observable by the controller; however, the
scalars Zk, ... ,Zk-m+1 are not known to the controller because the initial
conditions Zo, ... , Zl-m of the system (5.20) are unknown. Nonetheless, the
system (5.20) is stable, since the roots of the polynomial C(s) have been
assumed to be outside the unit circle. As a result, the initial conditions do
not matter asymptotically. In other words, if we generate a sequence {Yk}
using the system (5.20) and zero initial conditions, Le.,

Based on the earlier discussion, an asymptotically accurate approximation
to the minimum variance policy is obtained by setting Uk to the value that
makes Yk+1 = 0; that is, by solving for Uk the equation

Thus, Yk+l is an asymptotically accurate approximation to the optimal
forecast E{Yk+l I h, 'Uk}.
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(5.24)

(5.26)YM-l = YM-2 = ... = YM-m = 0,

l\I]jnimum Variance Control of LinearSec. 5.3

where

or

Wk = F(s)13(s)uk + G(S)Yk' (5.25)

Since the scalar Wk of Eq. (5.25) is available at time k (i.e., it is
determined from h and Uk), the system (5.24) can serve as a basis for
forecasting Zk+M. We would be able to predict exactly Zk+M and use
it as a forecast of Yk+M if we knew appropriate initial conditions with
which to start the equation (5.24) that generates it. We don't know such
initial conditions, but because this equation represents a stable system, the
choice of initial conditions does not matter asymptotically, as we proceed
to explain more formally.

We consider the sequence Yk+M generated by

Yk+M + CIYk+M-l + ... + CmYk+M-m = Wk

with initial condition

(5.22)

Chap. 5Problems with Imperfect State Information

The ARMAX model can be written as

Let m = 3 and 1\11 = 2. Then the preceding equation takes the form

and by equating coefficients we have

from which iI, go, gl, and g2 are uniquely determined.
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where

13(s) = s-MB(s) = bM + bM+1S + ... + bmsm-M.

lVIultiplying both sides of Eq. (5.22) with F(s), we have

F(s)A(s)Yk+M = F(s)B(s)Uk + F(s)C(S)ck+M,

and using Eq. (5.21) to express F(s)A(s) as C(s) - sMG(s), we obtain

and we claim that the forecast E{Zk+M 11k} can be approximated by
Yk+M. To see this, note that from Eqs. (5.24) to (5.26) we have

Zk+M = Yk+M + C'n(k)ZM-l + ... + im(k)ZM-m)

(C(s) - sMG(s))Yk+M = F(s)13(s)uk + F(s)C(S)ck+M,

or equivalently

C(s) (Yk+M - F(S)ck+M) = F(s)B(s)Uk + G(S)Yk' (5.23)

Let us now introduce the auxiliary sequence {Zk} via the equation

and
m

E{Zk+M I Ik,uk} = Yk+M + 2::= ii(k)E{ZM-i I Uk},
i=1

where il (k), . .. ,im(k) are appropriate scalars depending on k. Since C(s)
has all its roots outside the unit circle, we have (compare with the discussion
on stability earlier in this section)

lim il(k) = lim i2(k) = ... = lim im(k) = O.
k-+oo k-+oo k-+oo

Note that when NI = 1, we have F(s) = 1 and Zk = Yk - Ck, so {Zk} is the
same sequence as the one introduced earlier for the case of no delay. Again,
since {ck} is an independent, zero-mean sequence, by taking expectations
in the definition Zk+M = Yk+M - F(S)ck+M, we obtain

and we can obtain the desired forecast of Yk+M by forecasting Zk+M in its
place. Furthermore, by Eq. (5.23), Zk+lv[ is written as

It follows that, for large values of k,

Yk+M ~ E{Zk+M I h, Uk} = E{Yk+M I h, Uk}.

(More precisely, we have IYk+M - E{Yk+M Ih, udl -+ 0 as k -+ 00, where
the convergence is in the mean-square sense.)

In conclusion, an asymptotically accurate approximation to the opti
mal forecast E{Yk+M 11k, Uk} is given by Yk+M and is generated by the
equation

Yk+M + CIYk+M-l + ... + CmYk+M-m = F(s)13(s)uk + G(S)Yk (5.27)

with the initial condition

YM-l = YM-2 = ... = YM-m = O. (5.28)



If this policy is followed, however, the earlier forecasts Yk+M --1, ... ,Yk+M-m
will be equal to zero. Thus the (approximate) minimum variance policy is
given by

Based on the earlier discussion, the minimum variance policy is obtained by
solving for Uk the equation E{Yk+M Ih, Uk} = O. Thus an asymptotically
accurate approximation is obtained by setting Uk to the value that makes
Yk+M = 0, that is, by solving for Uk the equation [ef. Eqs. (5.27) and (5.28)]

F(s)B(s)Uk + G(S)Yk = CIYk+M-l + ... + CmYk+M-m.
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(5.31)

(5.30)

Sufficient Statistics

C(s) = A(s)F(s) + sMG(s).

Operating on Eq. (5.30) with F(s)B(s) and using Eq. (5.31), we obtain

F(s)B(s)Uk + G(S)Yk = 0,

where

while Uk is given by the minimum variance policy

Sec. 5.4

Yk = Ek + !lEk-l + ... + fM-IEk-M+l.

Let us consider now the stability properties of the closed-loop system
when the true system parameters differ slightly from those of the assumed
model. Let the true system be described by

where ,,((k) ---7" 0 as k ---7" 00. So asymptotically, the closed-loop system takes
the form

(5.29)

Chap. 5

-G(s)/F(s)B(s),

F(s)B(s)Uk + G(S)Yk = 0;

Problems with Imperfect State Information

that is, uk is generated by passing Yk through the linear filter
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as shown in Fig. 5.3.2.
- -0 -

F(s)B(s)AO(s)Yk = -sMB (s)G(S)Yk + F(s)B(s)CO(S)Ek'

C(s)
A(s)

Combining the last two equations and collecting terms, we have

{F(s)B(s)AO(s) + (C(s) - A(s)F(s))Bo(s) }Yk = F(s)B(s)CO(S)Ek

B(s)
A(s)

+

or

1...--........--1 _ G~) !-----<lill---.....J
F(s)B(s)

-0 -
If the coefficients of AO(s), B (s), and CO(s) are near those of A(s), B(s),
and C (s), then the poles of the closed-loop system will be near the roots
of B(s)C(s). Thus the closed-loop system will be in effect stable only if the
roots of B (s) are strictly outside the unit circle, similar to the perfect state
information case examined earlier.

Figure 5.3.2 Minimum variance control with imperfect state information. Struc
ture of the optimal closed-loop system.

5.4 SUFFICIENT STATISTICS

From Eqs. (5.23) and (5.29), we obtain the equation for the closed
loop system

C(S)(Yk+M F(S)Ek+M) = O.

Since C(s) has its roots outside the unit circle, we obtain

Yk+M = F(S)Ek+M + "((k),

The main difficulty with the DP algorithm for imperfect state information
problems is that it is carried out over a state space of expanding dimension.
As a new measurement is added at each stage k, the dimension of the state
(the information vector h) increases accordingly. This motivates an effort
to reduce the data that are truly necessary for control purposes. In other
words, it is of interest to look for quantities known as sufficient statistics,
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for appropriate functions HN - I and 1N-I.

We now use induction, i.e., we assume that

To this end, we will use an important fact that relates to state es
timation of discrete-time stochastic systems: the conditional distribution
Pxkl lk can be generated recursively by an equation of the form

(5.35)

where <Pk is some function that can be determined from the data of the
problem. Let us postpone a justification of this for the moment, and accept
it for the purpose of the following discussion.

We note that to perform the minimization in Eq. (5.32), it is suffi
cient to know the distribution PXN-IIIN--1 together with the distribution
PWN-llxN-l>UN-l' which is part of the problem data. Thus, the minimiza
tion in the right-hand side of Eq. (5.32) is of the form

IN-I(IN-I) = . min [ E {gN(hv-I(XN-I,UN-I,WN-I))
'UN-IEUN-l XN-l>WN-l

+gN-I(XN-I,UN-I,WN-I) I IN-l,UN-I}] ,

(5.32)

Jk(Ik) = min [ E {gk(Xk, Uk, Wk) + Jk+1 (h, Zk+l, Uk) I h, Uk}] .
ukEUk Xk,Wk,Zk+l

(5.33)
Suppose that we can find a function Sk(Ik) of the information vector, such
that a minimizing control in Eqs. (5.32) and (5.33) depends on Ik via
Sk(h). By this we mean that the minimization in the right-hand side of
the DP algorithm (5.32) and (5.33) can be written in terms of some function
Hk as

which ideally would be of smaller dimension than h and yet summarize all
the essential content of h as far as control is concerned.

Consider the DP algorithm (5.4) and (5.5), restated here for conve
nience:

Such a function Sk is called a sufficient statistic. Its salient feature is that
an optimal policy obtained by the preceding minimization can be written
as

(5.36)
for appropriate functions H k+1 and lk+l, and we show that

where tlk is an appropriate function. Thus, if the sufficient statistic is
characterized by a set of fewer numbers than the information vector h, it
may be easier to implement the policy in the form Uk = 7lk(Sk(h)) and
take advantage of the resulting data reduction.

(5.37)

for appropriate functions H k and J k.

Indeed, using Eqs. (5.35) and (5.36), the DP equation (5.33) is written

5.4.1 The Conditional State Distribution

There are many different functions that can serve as sufficient statistics.
The identity function Sk(h) = Ik is certainly one of them. In this section,
we will derive another important sufficient statistic: the conditional prob
ability distribution PXkllk of the state Xk, given the information vector h.
An extra assumption is necessary for this, namely that the probability dis
tribution of the observation disturbance Vk+1 depends explicitly only on the
immediately pr-eceding state, contml, and system disturbance Xk, Uk, wk,

and not on Xk-I, ... , Xo, Uk-I, ... ,Uo, Wk-I ... ,Wo, Vk-I,· .. ,Va. Under
this assumption, we will show that for all k and h, we have

as

Jk(h) = min E {9k(Xk,Uk,Wk) + lk+I(<Pk(Pxkllk,Uk,Zk+I)) I Ik,uk}'
UkEUk

(5.38)
In order to calculate the expression being minimized over Uk above, we
need, in addition to Pxkl lk ' the joint distribution

or, equivalently,

(5.34)

where Hk and 1k are appropriate functions.

This distribution can be expressed in terms of PXk Ilk' the given distribu
tions



and the system equation Xk+l = Jk(Xk, uk, Wk). Therefore the expression
minimized over Uk in Eq. (5.38) can be written as a function of PXkllk and
'Uk, and the DP equation (5.33) can be written as
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for a suitable function H k . Thus the induction is complete and it follows
that the distribution PXkllk is a sufficient statistic.

Note that if the conditional distribution P
Xk

11k is uniquely determined
by another expression Sk(h), i.e.,

System

Xk + 1 == fk(Xk 'Uk 'Wk)

Measurement

zk==hk(xk,uk -1,vk)

k = 0, 1, ... , N - 1,

Let us first give an example.

{

Pk

- 0
Pk+I - Pk(I-(3)

Pk(I-(3)+1 Pk

. e the treasure is removed after a successful
The second relatIOn holds becaus r t' of Bayes' rule (Pk+! is equal
search. The third relatio~.follows by a~~:C:ei~:present and the search being
to the kth period probabIhty of ~t~~~~ of an unsuccessful search). The pre
unsuccessful, divided by the pr~ a I 1 y. f the conditional distribution
ceding equation defines the desIred recurSIOn or
of the state and is a special case of Eq. (5.39).

Example 5.4.1 (Search

h s to decide at each period whether to
In a classical problem of sea~ch, one a If a treasure is present, the search

. h t contam a treasure. h
search a SIte t a may . h' h the treasure is removed from t e. . h b b 'lity P m w IC case .
reveals It WIt pro a 1 fJ, 'th treasure is present in the SIteh t 0 values' eI er a
site. Here the state as w . 1 S' search and not search. If the

h t 1 takes two va ue .
or it is not. T e con ro Uk . t k two values treasure found or not.. h d the observatIOn Zk+1 a es , . .
SIte IS searc e, .. h d the value of Zk+1 IS Irrelevant.found, while if the SIte IS not searc e ,

Denote

. t t th belYinning of period k.b b 'l't a treasure IS presen a e bPk: pro a 11 y

This probability evolves according to the equation

if the site is not searched at time k, .
if the site is searched and a treasure I~ found,
if the site is searched but no treasure IS found.

t' f the optimal controller into an estimatorFigure 5.4.1 Conceptual separa IOn 0

and an actuator.

The general form of the recursion

P II = <Pk (PXk Ilk' Uk, Zk+l)xk+1 k+1

. the case where the state, control, observa-
is developed in ExerCIse 5.

7
for fi't t In the case where these spaces

tion, and disturbance spaces are ill e se s.

(5.39)

for an appropriate function Gk, then Sk(h) is also a sufficient statistic.
Thus, for example, if we can show that PXkllk is a Gaussian distribution,
then the mean and the covariance matrix corresponding to PXkllk form a
sufficient statistic.

Regardless of its computational value, the representation of the opti
mal policy as a sequence of functions of the conditional probability distri
bution PXkllk'

is conceptually very usefuL It provides a decomposition of the optimal
controller in two parts:

(a) An estimator, which uses at time k the measurement Zk and the
control Uk-l to generate the probability distribution P

Xk
11k'

(b) An actuator, which generates a control input to the system as a func-
tion of the probability distribution P

Xk
11k (Fig. 5.4.1).

This interpretation has formed the basis for various suboptimal control
schemes that separate the controller a priori into an estimator and an actu
ator and attempt to design each part in a manner that seems "reasonable."
Schemes of this type will be discussed in Chapter 6.

The ~'#~-~~'v~~__~~_ State Distribution Recursion

There remains to justify the recursion
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are the real line and all random variables involved possess probability den
sity functions, the conditional density p(Xk+l I h+l) is generated from
p(Xk 11k), Uk, and Zk+l by means of the equation

p(Xk+l I h+d = p(Xk+l I h, Uk, Zk+l)

p(Xk+l,Zk+l I h,Uk)
p(Zk+l 11k , Uk)

p(Xk+l I h, Uk)p(Zk+l I h, Uk, Xk+l)

= J~oo p(Xk+l I h, Uk)p(Zk+l 11k, Uk, Xk+ddxk+l .

In this equation all the probability densities appearing in the right-hand
side may be expressed in terms of p(Xk 11k), Uk, and Zk+l. In particu
lar, the density p(Xk+l I h, Uk) may be expressed through p(Xk 11k), Uk,
and the system equation Xk+l = fk(Xk, Uk, Wk) using the given density
p(Wk , Xk, Uk) and the relation

p(Wk I h, Uk) = i: p(Xk I h)P(Wk I Xk, Uk)dxk.

Similarly, the density p(Zk+l , h, Uk, Xk+l) is expressed through the mea
surement equation Zk+l = hk+1 (Xk+l, Uk, Vk+l) using the densities

p(Xk 11k), p(Wk I Xk, Uk), p(Vk+l I Xk, Uk, Wk).

By substituting these expressions in the equation for p(Xk+l I Ik+l), we ob
tain a dynamic system equation for the conditional state distribution of the
desired form. Other similar examples will be given in subsequent sections.
A mathematically rigorous substantiation of the recursion PXk +1I Ik+l

<I>k (Pxkllk' Uk, Zk+l) can be found in Bertsekas and Shreve [BeS78].

Alternative Perfect State Information Reduction

Finally, let us formally rewrite the DP algorithm in terms of the sufficient
statistic Pxkl 1k ' Using Eqs. (5.35), (5.37), and (5.38), we have for k < N-1

] k(PXkllk) = min [ E {9k(Xk, Uk, Wk)
ukEUk xk,wk,zk+l

+ ] k+l (<I>k(PXkI 1k , Uk, Zk+l)) Ih, Uk }] .

(5.40)
In the case where k = N - 1, we have

] N-l(PXN_lIIN_J

min [XN_IE,WN_l {gN(fN-l(XN-l,UN-l,WN-d)'UN-IEUN-l

+9N-l(XN-l,UN-l,WN-l) I IN-l,UN-l}].
(5.41)

This DP algorithm yields the optimal cost as

where ]0 is obtained by the last step, and the probability distribution of
zo is obtained from the measurement equation Zo = ho(xo, vo) and the
distributions of Xo and vo·

By observing the form of Eq. (5.40), we note that it has the standard
DP structure, except that Pxkl 1k plays the role of the "state." Indeed the
role of the "system" is played by the recursive estimator of Pxkl 1k ,

and this system fits the framework of the basic problem (the role of control
is played by Uk and the role of the disturbance is played by Zk+l). Further
more, the controller can calculate (at least in principle) the state PXk 11k
of this system at time k, so perfect state information prevails. Thus the
alternate DP algorithm (5.40)-(5.41) may be viewed as the DP algorithm
of the perfect state information problem that involves the above system,
whose state is Pxkl Ik , and an appropriately reformulated cost function. In
the absence of perfect knowledge of the state, the controller can be viewed
as controlling the "probabilistic state" Pxkl 1k so as to minimize the expected
cost-to-go conditioned on the information h available.

Example 5.4.1 (Continued)

Let us write the DP algorithm (5.40) for the search problem of Example 5.4.1,
assuming that the treasure's worth is V, that each search costs C, and that
once we decide not to search at a particular time, then we cannot search at
future times. The algorithm takes the form

with ] N(PN) = O. From this algorithm, it is straightforward to show by
induction that the functions]k satisfy ]k(Pk) = 0 for all Pk ::; C/(f3V), and
that it is optimal to search at period k if and only if

Thus, it is optimal to search if and only if the expected reward from the next
search is greater or equal to the cost of the search.
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Zl = G,

ZI =B,

ZI = G,

ZI = B.

if Uo = 5,

if Uo = 5,

if U1 = C,

if Uo = C,

po = P(xo = ]5 I 10)'PI = P (Xl = ]5 I h),

In the two-state machine repair example of Section 5.1, let us denote

PI = 1>0 (po , Un, Zl).

One may verify by straightforward calculation that 1>0 is given by

E:x:an:lp]le 5.4.2 (Machine Repair)

It turns out that the cost-to-go functions J k in the DP algorithm are
piecewise linear and concave. The demonstration of this fact is straight
forward, but tedious, and is outlined in Exercise 5.7. A consequence of
the piecewise linearity property is that J k can be characterized by a fi
nite set of scalars. Still, however, for fixed k, the number of these scalars
can increase fast with lV, and there may be no computationally efficient
way to solve the problem (see Papadimitriou and Tsitsiklis [PaT87J). We
will not discuss here any special procedures for computing (see Lovejoy
[Lov91a], [Lov91b], and Smallwood and Sondik [SmS73], [Son71J). Instead
we will demonstrate the DP algorithm by means of examples.

The equation relating P1,PO, Un, Zl is written as

n n

P(Zk+1 = Z IPk, Uk) = Lpt LPij(Uk)P(Zk+1 = Z I Xk+1 = j, Uk)'
i=l j=l

where G is the column vector with components the terminal costs G('i),
i = 1, ... ,n, and proceeds backwards. Note that in this DP algorithm, the
conditional distribution of Zk+1 given Pk and Uk can be computed using the
transition probabilities Pij (u), and the known conditional distribution of
Zk+1 given Xk+1 and Uk. In particular, we have for any possible observation
value z,

i = 1, ... ,no

5.4.2 Finite-State Systems

where for all i, Zi and Ui are the observation and control at stage i, respec
tively. Following the observation Zk, a control 'Uk is chosen by the controller,
and a cost g(Xk' Uk) is incurred, where Xk is the current (hidden) state. The
terminal cost for being at state x at the end of the N stages is denoted
G(x). vVe wish to minimize the expected value of the sum of costs incurred
over the lV stages.

As discussed in Section 5.4.1, one can reformulate the problem into a
problem of perfect state information: the objective is to control the column
vector of conditional probabilities

where

vVe will now consider systems that are stationary finite-state Markov chains,
in which case the conditional probability distribution PXklik is character
ized by a finite set of numbers. The states are denoted 1,2, ... ,n. When a
control U is applied, the system moves from state i to state j with proba
bility Pij (u). The control U is chosen from a finite set U. Following a state
transition, an observation is made by the controller. There is a finite num
ber of possible observation outcomes, and the probability of each depends
on the current state and the preceding control. The information available
to the controller at stage k is the information vector

We refer to Pk as the belief state. It evolves according to an equation of
the form

Pk+1 = q,(pk' Uk, Zk+1),

where the function <I> represents an estimator, as discussed in Section 5.4.1.
The initial belief state Po is given.

The corresponding DP algorithm [see Eqs. (5.40) and (5.41)] has the
form

The DP algorithm (5.42) may be written in terms of Po, PI, and 1>0 above as

where g(Uk) is the column vector with components g(l, Uk), ... , g(n, Uk),
and P~g(Uk), the expected stage cost, is the inner product of the vectors
Pk and gCUk). The algorithm starts at stage lV, with

]1(P1) = min[2pl, IJ,

]o(po) = min [2PO + P(ZI = G I Po, C)]l (1)0 (po, C, G))

+ P(ZI = B I po, C)]l (1)0 (po, C, B)),

1 + P(Zl = G I Po, 5)]1 (1)0 (po , 5, G))

+ p(Zl = B I po, 5)]1 (1)0 (po , 5, B)) J.
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The probabilities entering in the second equation may be expressed in terms
of Po by straightforward calculation as

Example 5.4.3 (A Problem of

By minimization in the equation defining]1 (PI), we obtain an optimal
policy for the last stage

]0 (Po) = min [2PO + 7 - 4PO]1 (1 + 2Po ) + 5 + 4po]1 (3 + 6Po)
12 7 4po 12 5 + 4po ' T: Terminate the instruction.

T: Continue the instruction for one period and then conduct a test that
indicates whether the student has learned the item.

The test has two possible outcomes:

R: Student gives a correct answer.

R: Student gives an incorrect answer.

The transition probabilities from one state to the next if instruction
takes place are given by

Consider a problem of instruction where the objective is to teach a student a
certain simple item. At the beginning of each period, the student may be in
one of two possible states:

L: Item learned.

L: Item not learned.

At the beginning of each period, the instructor must make one of two
decisions:

5 +4po
P(ZI = B I Po,C) = --,

12
5

P(ZI = B I po,S) =-.
12

( 7 - 4po
P ZI = G I po,C)=~,

7
P(ZI = G I po,S) = 12'

Using these values we have

7--0 (1) 5- (3)]1+-J1 - +-h -
12 7 12 5 .

Also by substitution of ]1 (PI) and by carrying out the straightforward calcu
lation, we obtain

P(Xk+l L I Xk = L) = 1,

P(Xk+l = L I Xk = L) = t,

P(Xk+l = L I Xk = L) = 0,

P(Xk+l = L I Xk = L) = 1 - t,

and an optimal policy for the first stage:

{

19
- 12
Jo(po) =

if ~ ::; Po ::; 1,

if °::; po ::; ~,
where t is a given scalar with °< t < 1.

The outcome of the test depends probabilistically on the state of knowl-·
edge of the student as follows:

_*( {C/-Lo Po) = S
if Po ::; ~,

if Po > ~.

P(Zk = R I Xk = L) = 1,

P(Zk = R I Xk = L) = r,

P(Zk =R I Xk =L) =0,

P(Zk = R I Xk = L) = 1 - r,

yields the same optimal cost as the one obtained in Section 5.1 by means of
the DP algorithm (5.4) and (5.5).

Note that

- 1
P (xo = P I Zo = G) = ;;'

7
P(zo = G) = 12'

so that the formula

J*

- 3
P(xo = P I Zo = B) = 5'

5
P(zo = B) =-

12 '

where r is a given scalar with °< r < 1. The probabilistic structure of the
problem is illustrated in Fig. 5.4.2.

Figure 5.4.2 Probabilistic structure of the instruction problem.
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The term (1 -- PN-I)C is the cost of terminating instruction, while the term
(1- t)(l- PN-I) is the probability that the student still has not learned the
item following an additional period of instruction.

Similarly, the algorithm is written for every stage k by replacing N by
k + 1:

P(Zk+l = R I Pk) = (1 - t)(l - r)(l - Pk),

P(Zk+l = R I Pk) = 1 - (1- t)(l - r)(1- Pk),

Now using expression (5.43) for the function 1? and the probabilities

At the end of period N - 1, the instructor has calculated the conditional
probability PN-I that the student has learned the item and wishes to decide
whether to terminate instruction and incur an expected cost (1- PN-I)C or
continue the instruction and incur an expected cost I + E {]N (pN ) }. This
leads to the following equation for the optimal expected cost-to-go:

] N-I(PN-I) = min[(1- PN-I)C, 1+ (1 - t)(l - PN-I)C].

This equation is a special case of the general recursive update equation (5.39)
for the conditional probability of the state. A cursory examination of Eq.
(5.43) shows that, as expected, the conditional probability PHI that the
student has learned the item increases with every correct answer and drops
to zero with every incorrect answer.

We now derive the DP algorithm for the problem. At the end of the
Nth period, assuming instruction has continued to that period, the expected
cost is

if Zk+1 = R,
if Zk+1 = R.

P(Zk+1 I Zo,· .. ,Zk)

= P(Xk+1 = L I Zo, ... , Zk)P(Zk+1 I Zo, ... , Zk, Xk+1 = L)

+ P(Xk+1 = L I Zo, ... ,Zk)P(Zk+l I Zo, ... ,Zk, Xk+1 = L).

From the probabilistic descriptions given, we have

Pk = P(xklh) = P(Xk = L I Zo, Zl, ... , Zk).

In addition, we can use the DP algorithm (5.40) and (5.41) defined over the
space of the sufficient statistic Pk to obtain an optimal policy. However,
rather than proceeding with this elaborate reformulation, we prefer to argue
and obtain this DP algorithm directly.

Concerning the evolution of the conditional probability Pk (assuming
instruction occurs), we have by Bayes' rule

The cost of instruction and testing is I per period. The cost of terminat
ing instruction is 0 or C > 0 if the student has learned or has not learned the
item, respectively. The objective is to find an optimal instruction-termination
policy for each period k as a function of the test information accrued up to
that period, assuming that there is a maximum of N periods of instruction.

It is straightforward to reformulate this problem into the framework
of the basic problem with imperfect state information and to conclude that
the decision whether to terminate or continue instruction at period k should
depend on the conditional probability that the student has learned the item
given the test results so far. This probability is denoted

where

P(Zk+1 I Zo, ... ,Zk, Xk+1 = L) = P(Zk-H I Xk+1 = L)

_ {r if Zk+1 = R,
- 1 - r if Zk+1 = R.

P(Xk+1 = L I Zo, ,Zk) = Pk + (1 - pk)t,

P(Xk+1 = L I Zo, ,Zk) = (1 - Pk)(l - t).

Combining these equations, we obtain

we have

where
Ak(Pk) = P(Zk+1 = R I h)]k+I(if>(pk,R))

+P(Zk+1 = R I h)]k+l(if>(pk,R))

or, equivalently, using Eq. (5.43),

or equivalently

if Zk+1 = R,

if Zk+l = R,
)
.- ( l-(l-t)(l Pk) )

Ak(Pk) = (1- (1- t)(l r)(l- Pk) Jk+1 1 _. (1 t)(l- r)(l Pk)

+ (1- t)(l - r)(l - Pk)]k+I(O).

if Zk+1 = R,

if Zk+1 = R.
(5.43)

As shown in Fig. 5.4.3, if 1+ (1 - t)C :::; C or, equivalently, if

1< tC,
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Since the functions A k (p) are monotonically nondecreasing with respect
to k, it follows from Fig. 5.4.4 that

(5.45)
ifpk :Sak,

ifpk >ak.

continue instruction

terminate instruction

1
aN-l < aN-2 < ... < ak < ... < 1 - -- - - - - C'

and therefore the sequence {ad converges to some scalar a as k -+ -00.

Thus, as the horizon gets longer, the optimal policy (at least for the initial
stages) can be approximated by the stationary policy

p
Terminate
Instruction

(1 - p)C

,/

O .....-:----!110-~----_____l~
Continue aN - 1

Instruction

C '

Figure 5.4.3 Determining the optimal instruction policy in the last period.

then there exists a scalar aN-l with °< 1 h daN-l < t at etermines an
optimal policy for the last period:

In the opposite case, where I ~ te, the cost of instruction is so high relative
to the cost of not learning that instructing the student is never optimal.
. It may be shown by induction (Exercise 5.8) that if I < te, the func-
~lOns A k (p) are concave and piecewise linear for each k and satisfy, for all
, po

C

if PN-l ::; aN-I,

if PN-l > aN-I.

continue instruction

terminate instruction

Furthermore, they satisfy for all k,

for °:; P < p' ::; 1,

Figure 5.4.4 Demonstrating that the instruction thresholds are decreasing
with time.

A k- 1(p) ::; Ak(p) ::; A k+ 1(p), for all P E [0,1].

,!,hus the functions .(1- Pk)C and 1+ Ak(Pk) intersect at a single point, and
fro~ t~e DP algonthm (5.44), we obtain that the optimal policy for each
penod IS determined by the unique scalars ak, which are such that

It turns out that this stationary policy has a convenient implementation
that does not require the calculation of the conditional probability at each
stage. From Eq. (5.43), we see that Pk+l increases over Pk if a correct answer R
is given, and drops to zero if an incorrect answer Ii is given. For m = 1,2, .. 0'
define recursively the probability 1rrn of getting m successive correct answers
following an incorrect answer:

k = 0,1, ... , N - 1.

Let n be the smallest integer for which 1rn > a. Then the stationary pol
icy (5.45) can be implemented by terminating instruction if and only if n
successive correct answers have been received.

An optimal policy for period k is given by

continue instruction

terminate instruction

if Pk ::; ak,

if Pk > ak.

1rl = <r?(0, R), 1r2 = <r?(1rlj R), ,1rk+l = <r?(1rk, R),. o.
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IUI'UlIU.Il..Il.1CCl ..Il.Cl Testing) we obtain the optimal expected cost-to-go for the kth period as

where

(5.50)

(5.49)

Zk+l E Z.

if PN-l 2: r,accept fo

An optimal policy for the last period (see Fig. 5.4.5) is obtained from
the minimization indicated in Eq. (5.48):

Equivalently, for k = 0,1, ... , N - 2,

where the expectation over Zk+l is taken with respect to the probability dis

tribution

X
O

: true distribution is fo,

Let us consider a hypothesis testing problem that is typical of statistical
sequential analysis. A decision maker can make observations, at a cost C
each, relating to two hypotheses. Given a new observation, he can either
accept one of the hypotheses or delay the decision for one more period, pay
the cost C, and obtain a new observation. At issue is trading off the cost of
observation with the higher probability of accepting the wrong hypothesis.

Let Zo, Zl, ... , ZN-l be the sequence of observations. We assume that
they are independent, identically distributed random variables taking values
on a finite set Z. Suppose we know that the probability distribution of the
Zk'S is either fo or h and that we are trying to decide on one of these. Here,
for any element Z E Z, fo (z) and h (z) denote the probabilities of Z when
fo and h are the true distributions, respectively. At time k after observing
Zo, ... , Zk, we may either stop observing and accept either fo or h, or we
may take an additional observation at a cost C > 0. If we stop observing and
make a choice, then we incur zero cost if our choice is correct, and costs L o
and L l if we choose incorrectly fo and h, respectively. We are given the a
priori probability P that the true distribution is fo, and we assume that at
most N observations are possible.

It can be seen that we are faced with an imperfect state information
problem involving the two states:

Xl : true distribution is h.

The alternate DP algorithm (5.40) and (5.41) is defined over the interval [0,1]
of possible values of the conditional probability

accept h if PN-l < r,
where r is determined from the relation (1 -- r)Lo = rLl or equivalently

Lo
r = L o + L 1 '

Similar to the previous section, we will obtain this algorithm directly.
The conditional probability Pk is generated recursively according to the

following equation [assuming fo(z) > 0, h(z) > °for all z E Z]: IN-1(p) (1 - p)Lo pL1 .". .....1

I \ ... ... I
I
I...
I

""
I

"" I
I
I
I
I
I

I

0 P
Accept f1

La Accept fo
La+L1(5.48)

(5.47)

(5.46)

k = 0, 1, ... ,N - 2,

pfo(zo)
Po = pfo(zo)' + (1- p)h(zo) '

Pk+l = Pkfo(zk+l) + (1 - Pk)h (Zk+l) '

where P is the a priori probability that the true distribution is fo. The optimal
expected cost for the last period is

where (1 - PN - d Lo is the expected cost for accepting fo and PN-1 L 1 is the
expected cost for accepting h. Taking into account Eqs. (5.46) and (5.47), Figure 5.4.5 Determining the optimal policy for the last period.
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We now prove that the functions Ak : [0,1] -+ R of Eq. (5.50) are
concave, and satisfy for all k and P E [0,1]

This relation, however, is implied by the concavity of Jk+1.

Using Eqs. (5.51) and (5.52), we obtain (see Fig. 5.4.6) that if

Ak -1 (p) :::; Ak (p) .

Indeed, we have for all P E [0,1]

(5.51)

(5.52)
then an optimal policy for each period k is of the form

accept fa if Pk :::: Ctk,

accept h if Pk :::; fh,

C
... :::: 13k+1 :::: 13k :::: 13k-1 :::: ... :::: L1 .

Hence as N -+ 00 the sequences {CtN - d, {13N - 'L} converge to scalars a, 73,
respectively, and the optimal policy is approximated by the stationary policy

By making use of the stationarity of the system and the monotonicity property
of DP (Exercise 1.23 in Chapter 1), we obtain

for all k and P E [0,1]. Using Eq. (5.50), we obtain A k+ 1(p) :::; Ak(p) for all
k and p E [0,1].

To prove concavity of Ak in view of Eqs. (5.48) and (5.49), it is sufficient
to show that concavitrof]k+1 implies concavity of A k through relation (5.50).
Indeed, assume that J k+1 is concave over [0,1]. Let Zl, Z2, ... ,zn denote the
elements of the observation space Z. We have from Eq. (5.50) that

Hence it is sufficient to show that concavity of]k+1 implies concavity of each
of the functions

To show concavity of Hi, we must show that for every .\ E [0, 1], P1,
P2 E [0,1] we have '

continue the observations if 13k < Pk < Ctk,

where the scalars Ctk, 13k are determined from the relations

13kL1 = c + A k(13k),

(1 - Ctk)La = C + Ak(Ctk).

Furthermore, we have

accept fa if Pk :::: a,

accept h if Pk :::; 13,

continue the observations if 13 < Pk < a.

Now the conditional probability Pk is given by

(5.53)

(5.54)

(5.55)

(5.56)

Using the notation where P is the a priori probability that fa is the true hypothesis. Using Eq.
(5.56), the stationary policy (5.53)-(5.55) can be written in the form

this inequality is equivalent to

.\6 ] (Pda(zi)) + (1 - .\)6 ] (P2fa(Zi))
.\6 + (1 - .\)6 k+1 6 .\6 + (1 - .\)6 k+1 6

+(1- where

accept fa if Rk :::: A,

accept h if Rk :::; B,

continue the observations if B < Rk < A,

(5.57)

(5.58)

(5.59)
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Figure 5.4.6 Determining the optimal hypothesis testing policy.

Rk = !o(zo) ... !O(Zk)
h(zo)'" h(Zk)'

Note that Rk can be easily generated by means of the recursive equation

Problems with exponential cost functions are discussed in James, Baras,
and Elliott [JBE94], and Fernandez-Gaucherand and Markus

The idea of data reduction via a sufficient statistic gained wide at
tention following the paper by Striebel [Str65]; see also Shiryaev [Shi64],
[Shi66]. For the analog of the sufficient statistic idea in sequential minimax
problems with set membership description of the uncertainty, see Bertsekas
and Rhodes [BeR73] .

Sufficient statistics have been used for analysis of finite-state problems
with imperfect state information by Eckles [Eck68], and by Smallwood and
Sondik [SmS73], [Son71]. The proof of piecewise linearity of the cost-to-go
functions, and an algorithm for their computation are given by Smallwood
and Sondik [SmS73], [Son71]. For further material on finite-state problems
with imperfect state information, see Arapostathis et. aL [ABF93], Lovejoy
[Lov91a], [Lov91b], and White and Scherer [WhS89].

The instruction model described in Example 5.4.3 has been considered
(with some variations) by a number of authors such as Atkinson, Bower,
and Crothers [ABC65], Groen and Atkinson [GrA66], Karush and Dear
[KaD66], and Smallwood [Sma71].

For a discussion of the sequential probability ratio test (cf. Exam
ple 5.4.4) and related subjects, see Chernoff [Che72], DeGroot [DeG70],
[Whi82], and the references quoted therein. The treatment given here stems
from Arrow, Blackwell, and Girshick [ABG49].

p

,'I
I
I
I

1
I
I
I
I
1
1

--- C
I

B = (1- p)/3
p(l -/3) ,

(1 - p)Lo

"'" 'oj

o

c

and

The policy (5.57)-(5.59) is known as the sequential probability ratio test,
an.d was among the first formal methods studied in statistical sequential anal
ySIS by Wald [WaI47]. The optimality of this policy for the infinite horizon
version of the problem will be shown in Vol. II, Chapter 3.

EXERCISES

5.1 (Linear Quadratic Problems - Correlated

5.5 NOTES, SOURCES, AND EXERCISES

For literature on linear-quadratic problems with imperfect state informa
tion, see the references quoted for Section 4.1 and the survey paper by Wit
senhausen [vVit71]. The Kalman filtering algorithm is discussed in many
textbooks, such as Anderson and Moore [AnM79], Ljung and Soderstrom
[LjS83]. For linear-quadratic problems with Gaussian uncertainties and
obser~ation cost in the spirit of Exercise 5.6, see Aoki and Li [AoL69].
~xercise 5.1, which indicates the form of the certainty equivalence prin
cIple when the random disturbances are correlated, is based on an un
?ublish~d report by the author [Ber70]. The minimum variance approach
IS descnbed in Astrom and

Consider the linear system and measurement equation of Section 5.2 and consider
the problem of finding a policy {/-Lo(Io), ... ,/-LN-1(IN-.1)} that minimizes the
quadratic cost

Assume, however, that the random vectors Xo, Wa, ... , WN -1, va,·.·, VN --1 are
correlated and have a given joint probability distribution, and finite first and
second moments. Show that the optimal policy is given by
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A linear system with Gaussian disturbances and Gaussian initial state

Zk+l = + Vk+l

Zk+l = C2Xk+l +

first type:

second type:

Here C l and C 2 are given matrices of appropriate dimension, and {vD and {vD
are zero-mean, independent, random sequences with given finite covariances that
do not depend on Xo and {Wk}' There is a cost gl (or g2) each time a measurement
of type 1 (or type 2) is taken. The problem is to find the optimal control and
measurement selection policy that minimizes the expected value of the sum of
the quadratic cost

N-l

X~QXN + L (X~QXk + U~RUk)
k=O

and the total measurement cost. Assume for convenience that N = 2 and that the
first measurement Zo is of type 1. Show that the optimal measurement selection
at k = 0 and k 1 does not depend on the value of the information vectors
10 and 11 , and can be determined a priori. Describe the nature of the optimal
policy.

is to be controlled so as to minimize a quadratic cost similar to that in Section
5.2. The difference is that the controller has the option of choosing at each time
k one of two types of measurements for the next stage (k + 1):

5.3where the gain matrices Lk are obtained from the algorithm

L k = -(B~Kk+1Bk + Rk)-lB~Kk+1Ak,

KN=Q,

K k A~ (Kk+l - Kk+1Bk(B~Kk+1Bk + Rk)-lB~Kk+l)Ak,

and the vectors Yk are given by

Yk = Xk + A;lWk + A;lA;~lWk+l + ... + A;l ... AN~lWN-l

(assuming the matrices A o, A l , ... , A N - l are invertible). Hint: Show that the
cost can be written as

where

Consider the scalar system

where we assume that the initial condition Xo, and the disturbances Wk and Vk
are all independent. Let the cost be

5.2

and let the given probability distributions be

5.4

Consider a scalar single-input, single-output system given by

1
p(xo = 2) = 2'

1
p(xo = -2) = 2'

1
P(Wk = 1) = 2'

1
p(Wk = -1) = -,

2

p (Vk = ~) = ~,

P (Vk = -~) = ~.

Yk + alYk-l + ... + amYk-m = bMUk-M + ... + bmUk-m

+ tk + Cltk-l + ... + Cmtk-m + Vk-n,

where 1 ::;: M ::;: m, 0 ::;: n ::::; m, and Vk is generated by an equation of the form

(a) Determine the optimal policy. Hint: For this problem, E{Xk I h} can be
determined from E{Xk-l I h-d, Uk-l, and Zk.

(b) Determine the policy that is identical to the optimal except that it uses
a linear least squares estimator of x k given I k in place of E {x k Ilk} (see
Appendix E - this policy can be shown to be optimal within the class of
all policies that are linear functions of the measurements).

(c) Determine the asymptotic form of the policies in parts (a) and (b) as N --t

00.

and the polynomials (1+C1S+" ·+cmSm ), (l+dl s+·· ·+dmsm ), and (l+tlS+
... + tmsm) have roots strictly outside the unit circle. The value of the scalar
Vk is observed by the controller at time k together with Yk. The sequences {tk}
and {~d are zero mean independent identically distributed with finite variances.
Find an easily implementable approximation to the minimum variance controller
minimizing E{I:::=o(Yk)2}. Discuss the stability properties of the closed-loop
system.
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5.5 (Finite-State Systems State

(a) Within the framework of the basic problem with imperfect state informa
tion, consider the case where the system and the observations are linear:

Xk+l = AkXk + BkUk + Wk,

Zk = CkXk + Vk·

The initial state Xo and the disturbances Wk and Vk are assumed Gaussian
and mutually independent. Their covariances are given, and Wk and Vk
have zero mean. Show that E{xo I Io}, ... , E{XN-l I IN-I} constitute a
sufficient statistic for this problem.

(b) Use the result of part (a) to obtain an optimal policy for the special case
of the single-stage problem involving the scalar system and observation

Consider a system that at any time can be in anyone of a finite number of
states 1,2, ... , n. When a control U is applied, the system moves from state i
to state j with probability Pij (u). The control U is chosen from a finite col
lection u l

, u 2
, ..• ,um

. Following each state transition, an observation is made
by the controller. There is a finite number of possible observation outcomes
Zl, Z2 , ... , zq. The probability of occurrence of z{) , given that the current state is
j and the preceding control was u, is denoted by r j ( U, ()), () = 1, ... , q.

(a) Consider the column vector of conditional probabilities

Pk = [Pk, ... ,P~]',

where

[r(Uk,Zk+l)] * [P(Uk)'Pk]
Pk+l = ('r(Uk' Zk+l)' P Uk)' Pk

where prime denotes transposition and

P(Uk) is the n x n transition probability matrix with ijth element
Pij(Uk),

r(uk' Zk+l) is the column vector with jth coordinate rj(1.Lk' Zk+l),

[P(Uk)' PkLis the jth coordinate of the vector P(Uk)' Pk,

[r(Uk,Zk+l)] * [P(Uk)'Pk] is the vector whose jth coordinate is the

scalar rj(uk, Zk+l) [P(Uk)' PkL·
Assume that there is a cost for each stage k denoted 9k(i, u,j) and associ
ated with the control U and a transition from i to j. There is no terminal
cost. Consider the problem of finding a policy that minimizes the sum of
expected costs per stage over N periods. Show that the corresponding DP
algorithm is given by

] N-l(PN-.l) = min P!v-lGN-.l(U),
uE{ul, ... ,um }

Xl = Xo +uo,

Zo= Xo + Va,

and the cost function E{lxkl}.

(c) Generalize part (b) for the case of the scalar system

Zk = CXk +Vk,

and the cost function E{L~=llxkl}. The scalars a and c are given. Note:
You may find useful the following "differentiation of an integral" formula:

d j'(3(Y) J(3(y) dlf( C)
d f(y, ~)d~ = +d~

y a(y) a(y) Y

+ f(Y, (3(y)) d~~) _ f(y,a(y») d:~).

5.6

Consider a machine that can be in one of two states, good or bad. Suppose that
the machine produces an item at the end of each period. The item produced is
either good or bad depending on whether the machine is in a good or bad state
at the beginning of the corresponding period, respectively. We suppose that once
the machine is in a bad state it remains in that state until it is replaced. If
the machine is in a good state at the beginning of a certain period, then with
probability t it will be in the bad state at the end of the period. Once an item
is produced, we may inspect the item at a cost I or not inspect. If an inspected
item is found to be bad, the machine is replaced with a machine in good state
at a cost R. The cost for producing a bad item is C > O. Write a DP algorithm
for obtaining an optimal inspection policy assuming a machine initially in good
state and a horizon of N periods. Solve the problem for t = 0.2, I = 1, R = 3,
C 2, and N = 8. (The optimal policy is to inspect at the end of the third
period and not inspect in any other period.)

(b)

Pk = P(Xk = j I Zo,···, Zk, Uo,·.·, Uk-I),

and show that it can be updated according to

Write this equation in the compact form

j = 1, ... ,n,

j = 1, ... ,n.
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p(m,n) =

where G k ('u) is the vector of expected kth stage costs given by

(c) Show that, for all k,]k when viewed as a function defined on the set of
vectors with nonnegative coordinates, is positively homogeneous; that is,

for all A > O. Use this fact to write the DP algorithm in the simpler form

(d) Show by induction that, for all k, ]k has the form

where aL ... ,a";k are some vectors in ~n.

5.8

Consider the functions ]k(Pk) in the instruction problem of Example 5.4.3. Show
inductively that each of these functions is piecewise linear, concave, and of the
form

] () . [ 1 + fJl 2 + fJ2 mk fJmk ]k Pk =mm ak kPk,ak kPk, ... ,ak, + k Pk ,

where aL ... ,a";k, fJ}" ... ,fJ",;k are suitable scalars.

5.9

A person is offered N free plays to be distributed as he pleases between two
slot machines A and B. Machine A pays a dollars with known probability sand
nothing with probability (1 - s). Machine B pays fJ dollars with probability P
and nothing with probability (1 - p). The person does not know P but instead
has an a priori probability distribution F(p) for p. The problem is to find a
playing policy that maximizes expected profit. Let (m +n) denote the number of
plays in machine B after k free plays (m + n ::; k), and let m denote the number
of successes and n the number of failures. Show that a DP algorithm for this
problem is given for m + n :s; k by

]N-l(m,n) = max [sa, p(m,n)fJ] ,

]k(m,n) = max [s(a + ]k+l(m,n)) + (1- S)]k+l(m,n),

p(m, n) (fJ + ]k+l (m + 1, n)) + (1 - p(m, n))]k+l(m, n + 1)]
where

pm+l(l _ p)ndF(p)

pm(1- p)ndF(p)

Solve the problem for N = 6, a = fJ = 1, s = 0.6, dF(p)/dp = 1 for 0 :s; p ::; L
[The answer is to play machine B for the following pairs (m, n) : (0,0), (1,0),
(2,0), (3,0), (4,0), (5,0), (2,1), (3,1), (4,1). Otherwise, machine A should be
played.]

5.10

A person is offered 2 to 1 odds in a coin-tossing game where he wins whenever
a tail occurs. However, he suspects that the coin is biased and has an a priori
probability distribution F(p) for the probability p that a head occurs at each toss.
The problem is to find an optimal policy of deciding whether to continue or stop
participating in the game given the outcomes of the game so far. A maximum of
N tossings is allowed. Indicate how such a policy can be found by means of DP.

5.11

Consider the ARMAX model of Section 5.3 where instead of E {I:::=1(Yk)2},
the cost is

where y is a given scalar. Generalize the minimum variance policy for this case.

5.12

Consider the ARMAX model

Yk + aYk-l = Uk-M + Ek,

where M 2:: L Show that the minimum variance controller is

fJ,k(h) = aUk-l - a2uk_2 + .,. - (_l)M-l aM-l uk_M+l - (_1)1\11 aM Yk,

that the resulting closed-loop system is

Yk = Ek - aEk-l + a2Ek_2 - '" + (-l)M-l aM-l Ek _M+l,

and that the long-term output variance is

] a2M
E{ (Yk)2} = 1-- a2 E{ (Ek)2}.

Discuss the qualitative difference between the cases lal < 1 and lal > 1, and
relate it to the stability properties of the uncontrolled system Yk + aYk-l = Ek
and the size of the delay M.
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5.16

where c, h, and p are positive scalars with p > c. There is no terminal cost. The
stock Xk is perfectly observed at each stage. The demands Wk are independent,
identically distributed, nonnegative random variables. However, the (common)
distribution of the Wk is unknown. Instead it is known that this distribution is
one out of two given distributions FI and F2 , and that the a priori probability
that F I is the correct distribution is a given scalar q, with °< q < 1.

(a) Formulate this as an imperfect state information problem, and identify
the state, control, system disturbance, observation, and observation distur
bance.

(b) Write a DP algorithm in terms of a suitable sufficient statistic.

(c) Characterize as best as you can the optimal policy.

CUk + hmax(O, Wk - Xk - Uk) +pmax(O, Xk + Uk - Wk),

and the cost of stage k is

Consider an inventory control problem where stock evolves according to

Sec. 5.5

5.15

Chap. 5
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is a suitable sufficient statistic, and write a corresponding DP algorithm.

(c) Show that the optimal control law is of the form

5.13

where the matrices K k are given by the Riccati equation, and Ck(qk) are
appropriate functions of qk. Hint: Show that the cost-to-go function has
the form

qk = P(distribution is F I I Wo,···, Wk-I),

Consider the linear-quadratic problem discussed in Section 4.1 (A k , B k : known).
The state Xk is perfectly observed at each stage, and the demands Wk are inde
pendent, identically distributed random vectors. However, the (common) distri
bution of the Wk is unknown. Instead it is known that this distribution is one
out of two given distributions F I and F 2 , and that the a priori probability that
FI is the correct distribution is a given scalar q, with °< q < 1. For convenience,
assume that Wk can take a finite number of values under each of F I and F2.

(a) Formulate this as an imperfect state information problem, and identify
the state, control, system disturbance, observation, and observation distur
bance.

A(Xk, qk) = X~KkXk + ak(qk)' Xk + bk(qk),

where ak(qk) and bk(qk) are appropriate functions of qk.

Consider the search problem of Example 5.4.1 for different values of the search
horizon N.

5.14 (Asset Selling Problem with Offer Estimation)

Consider the asset selling problem of Section 4.4. The offers Wk are independent
and identically distributed. However, the (common) distribution of the Wk is
unknown. Instead it is known that this distribution is one out of two given
distributions PI and F2 , and that the a priori probability that FI is the correct
distribution is a given scalar q, with °< q < 1.

(a) Formulate this as an imperfect state information problem, and identify
the state, control, system disturbance, observation, and observation distur
bance.

(b) Show that (Xk, qk), where

qk = P(distribution is F I IWo,···, Wk-I),

is a suitable sufficient statistic, write a corresponding DP algorithm, and
derive the form of the optimal selling policy.

(a) Show that for any value of the a priori probability Po that is strictly less
than 1, there is a threshold value of N, call it N, such that the optimal
reward function Jo(Po) is independent of N as long as N > N.

(b) For N greater than the threshold N of part (a) and for a given value of po,
give a method to calculate the value of Jo(po) that does not use the DP
algorithm.

(c) Suppose that there are two sites that can be searched, instead of one. The
sites may contain a treasure of corresponding values VI and V 2 (indepen
dently of each other), and the probabilities of a successful search are /31
and 132, respectively. After finding a treasure in one site, one may continue
searching for the treasure in the other site (but of course each search costs
C). Write a DP algorithm involving the probabilities p~ and Pk that a
treasure is present at sites 1 and 2, respectively.

(d) Under the assumptions of part (c), show that for any values of the a priori
probabilities P6,P5, there is a threshold value of N, call it N, such that
the optimal cost-to-go function JO(P6,P5) is independent of N as long as
N > N. Find the optimal search policy if N > N.
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vVe have seen that it is sometimes possible to use the DP algorithm to
obtain an optimal policy in closed form. However, this tends to be the
exception. In most cases a numerical solution is necessary. The associated
computational requirements are often overwhelming, and for many prob
lems a complete solution of the problem by DP is impossible. To a great
extent, the reason lies in what Bellman has called the "curse of dimension
ality." This refers to an exponential increase of the required computation
as the problem's size increases.

Consider for example a problem where the state, control, and distur
bance spaces are the Euclidean spaces iJ{n, iJ{m, and iJ{r, respectively. In a
straightforward numerical approach, these spaces are discretized. Taking
d discretization points per state axis results in a state space grid with dn

points. For each of these points the minimization in the right-hand side
of the DP equation must be carried out numerically, which involves com
parison of as many as dm numbers. To calculate each of these numbers,
one must calculate an expected value over the disturbance, which is the
weighted sum of as many as dr numbers. Finally, the calculations must be
done for each of the N stages. Thus as a first approximation, the number of
computational operations is at least of the order of N dn and can be of the
order of N dn +m +r . It follows that for perfect state information problems
with Euclidean state and control spaces, DP can be applied numerically
only if the dimensions of the spaces are relatively small. Based on the
analysis of the preceding chapter, we can also conclude that for problems
of imperfect state information the situation is hopeless, except for very
simple or very special cases.

In the real world, there is an additional aspect of optimal control
problems that can have a profound impact on the feasibility of DP as a
practical solution method. In particular, there are many circumstances
where the structure of the given problem is known well in advance, but
some of the problem data, such as various system parameters, may be
unknown until shortly before control is needed, thus -seriously constraining
the amount of time available for the DP computation. Usually this occurs
as a result of one or both of the following situations:

(a) A family of problems is addressed, rather than a single problem, and
we do not get to know the exact problem to be solved until shortly
before the control process begins. As an example, consider a problem
of planning the daily route of a utility vehicle within a street network
so that it passes through a number of points where it must perform
some service. The street network and the vehicle characteristics may
be known well in advance, but the service points may vary from day
to day, and may not become known until shortly before the vehicle
begins its route. This example is typical of situations, where the same
problem must periodically be solved with small variations in its data.
Yet, if DP is to be used, the solution of one instance of the problem

may not help appreciably in solving a different instance.

(b) The problem data changes as the system is being controlled. As an
example, consider the route planning example in case (a) above, and
assume that new service points to be visited arise as the vehicle is
on its way. It is possible in principle to model these data changes
in terms of stochastic disturbances, but then we may end up with
a problem that is too complicated for analysis or solution by DP. A
frequently employed alternative is to use on-line replanning, whereby
the problem is resolved on-line with the new data, as soon as these
data become available, and control continues with a policy that cor
responds to the new data.

A common feature of the above situations, which can seriously impact the
solution, is that there may be stringent time constraints for the compu
tation of the controls. This may substantially exacerbate the "curse of
dimensionality" problem mentioned above.

As indicated by the above discussion, in practice one often has to
settle for a suboptimal control scheme that strikes a reasonable balance
between convenient implementation and adequate performance. In this
chapter we discuss some general approaches for suboptimal control, which
are based on approximations to the DP algorithm. We begin with two gen
eral schemes to simplify the DP computation, certainty equivalent control
(Section 6.1), which replaces the stochastic quantities of the problem by
deterministic nominal values, and open-loop-feedback control (Section 6.2),
which ignores in part the availability of information in the future. These
two schemes set the stage for limited lookahead control, which together with
its many variations (Sections 6.3-6.5), is one of the principal approaches
for suboptimal control. We also discuss adaptive control in the context
of certainty equivalent control. This discussion is not used in subsequent
developments, so the reader may skip Sections 6.1.1-6.1.4 if desired.

6.1 CERTAINTY EQUIVALENT AND ADAPTIVE CONTROL

The certainty equivalent controller (CEC) is a suboptimal control scheme
that is inspired by linear-quadratic control theory. It applies at each stage
the control that would be optimal if the uncertain quantities were fixed at
some "typical" values; that is, it acts as if a form of the certainty equivalence
principle were holding.

The advantage of the CEC is that it replaces the DP algorithm with
what is often a much less demanding computation: the solution of a de
terministic optimal control problem at each stage. This problem yields
an optimal control sequence, the first component of which is used at the
current stage, while the remaining components are discarded. The main
attractive characteristic of the CEe is its ability to deal with stochastic
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and even imperfect information problems by using the mature and effec
tive methodology of deterministic optimal control.

vVe describe the CEC for the general problem with imperfect state
information of Section 5.1. As can be expected, the implementation is
considerably simpler if the controller has perfect state information. Sup
pose that we have an "estimator" that uses the information vector h to
produce a "typical" value xk(h) of the state. Assume also that for ev
ery state-control pair (Xk, Uk) we have selected a "typical" value of the
disturbance, which we denote by Tih(Xk, Uk)' For example, if the state
spaces and disturbance spaces are convex subsets of Euclidean spaces, the
expected values

can serve as typical values.
The control input Jik(h) applied by the CEC at each time k is deter

mined by the following rule:

(1) Given the information vector h, compute the state estimate xk(Ik).

(2) Find a control sequence {Uk, Uk+I, .. . ,UN-I} that solves the deter
ministic problem obtained by fixing the uncertain quantities Xk and
Wk, ... ,WN-I at their typical values:

An alternative to solving N optimal control problems in an "on-line"
fashion is to solve these problems a priori. This is accomplished by com
puting an optimal feedback controller for the deterministic optimal con
trol problem obtained from the original problem by replacing all uncertain
quantities by their typical values. It is easy to verify, based on the equiva
lence of open-loop and feedback implementation of optimal controllers for
deterministic problems, that the implementation of the CEC given earlier
is equivalent to the following.

Let {J.LS(XO) , ... , J.LrJv-1 (XN-I)} be an optimal controller obtained from
the DP algorithm for the deterministic problem

N-I

minimize gN(XN) + L gk(Xk,J.Ldxk),Wk(Xk,Uk))
k=O

subject to Xk+1 = fk(Xk,J.Lk(Xk),Wk(Xk,Uk)), J.Lk(Xk) E Uk, k ~ O.

Then the control input Jik(h) applied by the CEC at time k is given by

as shown in Fig. 6.1.1.

(3) Use as control the first element in the control sequence found:

subject to the initial condition Xk = xk(h) and the constraints

Measurement

zk =hk(Xk ,Uk -1'Vk)

System

Xk + 1 = fk(Xk 'Uk ,Wk)

i = k, k + 1, ... ,N - 1.Ui E

N-I

minimize gN(XN) + gi(Xi,Ui,Wi(Xi,Ui))
i=k

Note that step (1) is unnecessary if we have perfect state information;
in this case we simply use the known value of the Xk. The deterministic
optimization problem in step (2) must be solved at each time k, once the
initial state xk(h) becomes known by means of an estimation (or perfect
observation) procedure. A total of N such problems must be solved by
the CEC at every system run. In many cases of interest, these determin
istic problems can be solved by powerful numerical methods such as con
jugate gradient, Newton's method, augmented Lagrangian, and sequential
quadratic programming methods; see e.g. Luenberger [Lue84] or Bertsekas
[Ber99]. Furthermore, the implementation of the CEC requires no storage
of the type required for the optimal feedback controller.

Figure 6.1.1 Structure of the certainty equivalent controller when implemented
in feedback form.

In other words, an equivalent alternative implementation of the CEC
consists of finding a feedback controller {J.LS, J.Lf,···, J.LrJv-l} that is optimal
for a corresponding deterministic problem, and subsequently using this
controller for control of the uncertain system [modulo substitution of the
state Xk by its estimate xk(h)]. Either one of the definitions given for the
CEC can serve as a basis for its implementation. Depending on the nature
of the problem, one method may be preferable to the other.

The CEC approach often performs well in practice and yields near
optimal policies. In fact, for the linear-quadratic problems of Sections 4.1
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and 5.2, the CEC is identical to the optimal controller (certainty equiva
lence principle). It is possible, however, that a CEC performs strictly worse
than the optimal open-loop controller (see Exercise 6.2).

In what follows in this section, we will discuss a few variants of the
CEC, and we will then focus on one particular type of methodology, adap
tive control of systems with unknown parameters.

·,o-..1l-",'.V1>'\1""U Equivalent Control with Heuristics

Even though the CEC approach simplifies a great deal the computations,
it still requires the solution of a deterministic optimal control problem at
each stage. This problem may be difficult, and a more convenient approach
may be to solve it suboptimally using a heuristic algorithm. To simplify
notation, let us assume perfect state information [the ideas to be discussed
can also be applied to imperfect state information problems, by substituting
Xk with its estimate xk(Ik)]. Then, in this approach, given Xk, we use
some (easily implementable) heuristic to find a suboptimal control sequence
{17k, Uk+l,"" UN-I} for the problem

N-l

minimize gN(XN) + L gi (Xi, 'Ui, Wi(Xi, Ui))
i=k

subject to

i = k, k + 1, ... , N - 1.

We then use Uk as the control for stage k.
An important enhancement of this idea is to use minimization over

the first control Uk and to use the heuristic only for the remaining stages
k + 1, ... , N - 1. To implement this variant of the CEC, we must apply at
time k a control Uk that minimizes over Uk E Uk(Xk) the expression

where Hk+l is the cost-to-go function corresponding to the heuristic, i.e.,
H k+1(Xk+l) is the cost incurred over the remaining stages k + 1, ... ,N -1
starting from a state Xk+l, using the heuristic, and assuming that the
future disturbances will be equal to their typical values Wi(Xi, Ui)' Note
that for any next-stage state Xk+l, it is not necessary to have a closed
form expression for the heuristic cost-to-go Hk+1(Xk+l). Instead we can
generate this cost by running the system forward from Xk+l and accu
mulating the corresponding single-stage costs. Since the heuristic must
be run for each possible value of the control Uk to calculate the costs

(ik (Xk' 'Uk, Wk(Xk, 'Uk))) needed in the minimization, it is necessary
to discretize the control constraint set if it is not already finite.

Note that the general structure of the preceding variant of the CEC is
similar to the one of standard DP. It involves minimization of the expression
(6.1), which is the sum of a current stage cost and a cost-to-go starting
from the next state. The difference with DP is that the optimal cost
to-go Jk+1(X k+1) is replaced by the heuristic cost H k+1(X k+1), and the
disturbance Wk is replaced by its typical value Wk(Xk, Uk) (so that there is
no need to take expectation over Wk). We thus encounter for the first time
an important suboptimal control idea, based on an approximation to the
DP algorithm: minimizing at each stage k the sum of approximations to the
current stage cost and the optimal cost-to-go. This idea is central in other
types of suboptimal control such as the limited lookahead, rollout, and
model predictive control approaches, which will be discussed in Sections
6.3-6.5.

Partially Stochastic Certainty Equivalent Control

In the preceding descriptions of the CEC all future disturbances are fixed at
their typical values. A useful variation for some imperfect state information
problems is to take into account the stochastic nature of these disturbances,
and to treat the problem as one of perfect state information, using an esti
mate xk(h) of Xk as if it were exact. Thus, if {J1b(xo), ... , J1fv'-l (XN-l)}
is an optimal policy obtained from the DP algorithm for the stochastic
perfect state information problem

minimize E {9N(XN) + :~>k(Xk'!'k(Xk)'Wk)}
subject to Xk+l = fk (Xk' J-lk(Xk), Wk), J-lk(Xk) E Uk, k = 0, ... ,N - 1,

then the control input llk(Ik) applied by this variant of CEC at time k is
given by

llk(h) = J-l~ (xk(h)).

Generally, there are several variants of the CEC, where the stochastic
uncertainty about some of the unknown quantities is explicitly dealt with,
while all other unknown quantities are replaced by estimates obtained in a
variety of ways. Let us provide some examples.

Example 6.1.1 (Multiaccess Communication)

Consider the slotted Aloha system described in Example 5.1.1. It is very
difficult to obtain an optimal policy for this problem, primarily because there
is no simple characterization of the conditional distribution of the state (the
system backlog), given the channel transmission history. We therefore re
sort to a suboptimal policy. As discussed in Section 5.1, the perfect state
information version of the problem admits a simple optimal policy:

for all Xk 2:: 1.
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As a result, there is a natural partially stochastic CEC,

Jik(h) = min [1, Xkth)] ,

where xdlk) is an estimate of the current packet backlog based on the entire
past channel history of successes, idles, and collisions (which is Ik). Recursive
estimators for generating Xk(Ik) are discussed by Mikhailov [Mik79], Hajek
and van Loon [HaL82], Tsitsiklis [Tsi87], and Bertsekas and Gallager [BeG92].

~:x:anClpJLe 6.1.2 (Finite-State Systems with Imperfect
State

Consider the case where the system is a finite-state Markov chain under im
perfect state information. The partially stochastic CEC approach is to solve
the corresponding problem of perfect state information, and then use the con
troller thus obtained for co:p.trol of the imperfectly observed system, modulo
substitution of the exact state by an estimate obtained via the Viterbi algo
rithm described in Section 2.2.2. In particular, suppose that {Il~, ... , Il~-I}
is an optimal policy for the corresponding problem where the state is perfectly
observed. Then the partially stochastic CEC, given the information vector
Ik, uses the Viterbi algorithm to obtain (in real time) an estimate x(h) of
the current state Xk, and applies the control

where e is a vector of unknown parameters with a given a priori probability
distribution. We introduce an additional state variable Yk e and obtain a
system equation of the form

(
Xk+1) = (fk(Xk,Yk,Uk,Wk)).
Yk+1 Yk

This equation can be written compactly as

Xk+1 = ]k(Xk, Uk, Wk),

where Xk = (Xk, Yk) is the new state, and]k is an appropriate function. The
initial state is

Xo = (xo, e).

With a suitable reformulation of the cost function, the resulting problem
becomes one that fits our usual framework.

Unfortunately, however, since Yk (i.e., e) is unobservable, we are faced
with a problem of imperfect state information even if the controller knows
the state Xk exactly. Thus, typically an optimal solution cannot be found.
Nonetheless, the partially stochastic CEC approach is often convenient. In
particular, suppose that for a fixed parameter vector e, we can compute the
corresponding optimal policy

{Il~ (la, e), ... ,IlN-1 (IN -1, e) };

this is true for example if for a fixed e, the problem is linear-quadratic of
the type considered in Sections 4.1 and 5.2. Then a partially stochastic CEC
takes the form

Jik(h) = f-L~(Ik, (h),

where ih is some estimate of e based on the information vector h. Thus, in
this approach, the system is identified while it is being controlled. However,
the estimates of the unknown parameters are used as if they were exact.

The approach of the preceding example is one of the principal methods
of adaptive control, that is, control that adapts itself to changing values of
system parameters. In the remainder of this section, we discuss some of
the associated issues. Because adaptive control is somewhat disjoint from
other material in the chapter, the reader may skip directly to Section 6.2.

Suboptimal control is often guided by the qualitative nature of optimal
control. It is therefore important to try to understand some of the charac
teristic features of the latter in the case where some of the system parame
ters are unknown. One of these is the need for balance between "caution"
(the need for conservatism in applying control, since the system is not fully
known), and "probing" (the need for aggressiveness in applying control, in
order to excite the system enough to be able to identify it). These notions
cannot be easily quantified, but often manifest themselves in specific con
trol schemes. The following example provides some orientation; see also
Bar-Shalom [Bar81].

and Dual Control6.1.1 Caution,

We have been dealing so far with systems having a known system equation. In
practice, however, there are many cases where the system parameters are not
known exactly or change over time. One possible approach is to estimate the
unknown parameters from input-output records of the system by using system
identification techniques. This is a broad and important methodology, for
which we refer to textbooks such as Kumar and Varaiya [KuV86], Ljung and
Soderstrom [LjS83], and Ljung [Lju86]. However, system identification can
be time consuming, and thus difficult to apply in an on-line control context.
Furthermore, the estimation must be repeated if the parameters change.

The alternative is to formulate the stochastic control problem so that
unknown parameters are dealt with directly. It can be shown that problems
involving unknown system parameters can be embedded within the frame
work of our basic problem with imperfect state information by using state
augmentation. Indeed, let the system equation be of the form

~:x:anClpJLe 6.1.3 (Systems with Unknown Parameters)
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Jl:!jx~81.m1Ple 6.1.4 [Kum83]

Consider the linear scalar system

k = 0,1, ... ,N - 1,

and the quadratic terminal cost E { (x N )
2

}. Here everything is as in Section
4.1 (perfect state information) except that the control coefficient b is unknown.
Instead, it is known that the a priori probability distribution of b is Gaussian
with mean and variance

The salient feature of this equation is that 0"; (1) is affected by the control Uo.
Basically, if luo I is small, the measurement Xl = Xo + buo + wo is dominated
by wo and the "signal-to-noise ratio" is small. Thus to achieve small error
variance 0";(1) [which is desirable in view of Eq. (6.2)], we must apply a
control Uo that is large in absolute value. A choice of large control to enhance
parameter identification is often referred to as probing. On the other hand,
if luo I is large, IXII will also be large, and this is not desirable in view of Eq.
(6.2). Therefore, in choosing Uo we must strike a balance between caution
(choosing a small value to keep Xl reasonably small) and probing (choosing a
large value to improve the signal-to-noise ratio and enhance estimation of b).

b = E{b} > 0,

Furthermore, Wk is zero mean Gaussian with variance 0"; for each k.
Consider first the case where N 1, so the cost is calculated to be

The tradeoff between the control objective and the parameter esti
mation objective is commonly referred to as dual control.

6.1.2 Two-Phase Control and .Jl.'UL'.......... ,,,.u... O ......

The minimum over Uo is attained at

and the optimal cost is verified by straightforward calculation to be

{
2 } { 2 } 2 - (-2 2 ) 2 2E (Xl) = E (xo + buo + WO) = Xo + 2bxouo + b + O"b Uo + O"w' An apparently reasonable form of suboptimal control in the presence of

unknown parameters (d. Example 6.1.3) is to separate the control process
into two phases, a parameter identification phase and a control phase. In
the first phase the unknown parameters are identified, while the control
takes no account of the interim results of identification. The final param
eter estimates from the first phase are then used to implement an optimal
control law in the second phase. This alternation of identification and con
trol phases may be repeated several times during any system run in order
to take into account subsequent changes of the parameters.

One drawback of this approach is that information gathered during
the identification phase is not used to adjust the control law until the begin
ning of the second phase. Furthermore, it is not always easy to determine
when to terminate one phase and start the other.

A second difficulty, of a more fundamental nature, is due to the fact
that the control process may make some of the unknown parameters invis
ible to the identification process. This is the problem of parameter identi
fiability, discussed by Ljung [Lju86], which is best explained by means of
an example.

(6.2)

b
----Xo

b2 + 0"; ,
Uo

(
0"; (1) 2 2

h h) = 2 Xl + o"w,

(b(l)) + 0";(1)

Therefore, the optimal control here is cautious in that the optimum luo I de
creases as the uncertainty in b (Le., 0";) increases.

Consider next the case where N = 2. The optimal cost-to-go at stage
1 is obtained by the preceding calculation:

where h = (xo, Uo, Xl) is the information vector and Example 6.1.5

b(l) = E{b I h}, Consider the scalar system

Let us focus on the term 0";(1) in the expression (6.2) for JI(h). We
can obtain 0";(1) from the equation Xl = Xo + buo + wo (which we view as a
noise-corrupted measurement of b) and least-squares estimation theory (see
Appendix E). The formula for 0";(1) will be of no further use to us, so we just
state it without going into the calculation:

k = 0, 1, ... ,N - 1,

with the quadratic cost

We assume perfect state information, so if the parameters a and b are known,
this is a minimum variance control problem (d. Section 5.3), and the optimal
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control law is
P,'k(Xk) = -~Xk'

Assume now that the parameters a and b are unknown, and consider the
two-phase method. During the first phase the control law

(6.3)

is used (r is some scalar; for example, 1 = -alb, where a and b are a priori
estimates of a and b, respectively). At the end of the first phase, the control
law is changed to

Jik(Xk) = -~Xk'
b

where a and b are the estimates obtained from the identification process.
However, with the control law (6.3), the closed-loop system is

Xk+l = (a + bl)Xk + Wk,

so the identification process can at best identify the value of (a + bl ) but
not the values of both a and b. In other words, the identification process
cannot discriminate between pairs of values (al' b1) and (a2, b2) such that
al + hi = a2 + b21· Therefore, a and b are not identifiable when feedback
control of the form (6.3) is applied.

One way to correct the difficulty is to add an additional known input
;h to the control law (6.3); that is, use

Then the closed-loop system becomes

Xk+l = (a + bl)Xk + Mk + Wk,

and the knowledge of {Xk} and {6k} makes it possible to identify (a+bl ) and
b. Given I, one can then obtain estimates of a and b. Actually, to guarantee
this in a more general context where the system is of higher dimension, the
sequence {6k} must satisfy certain conditions: it must be "persistently excit
ing" (see for example Ljung and Soderstrom [LjS83] for further explanation
of this concept).

A second possibility to bypass the identifiability problem is to change
the structure of the system by artificially introducing a one-unit delay in
the control feedback. Thus, instead of considering control laws of the form
P,k(Xk) = IXk, as in Eq. (6.3), we consider controls of the form

Uk = [lk(Xk-l) = IXk-l·

The closed-loop system then becomes

and given I, it is possible to identify both parameters a and b. This technique
can be generalized for systems of arbitrary order, but artificially introducing
a control delay makes the system less responsive to control.

6.1.3 Certainty Equivalent Control and .JI.Ul'GJUl[,U.JlOlUJl.iI.Jl[,.Y

At the opposite extreme of the two-phase method we have the certainty
equivalent control approach, where the parameter estimates are incorpo
rated into the control law as they are generated, and they are treated as if
they were true values. In terms of the system

considered in Example 6.1.3, suppose that, for each possible value of f), the
control law 7f* (f)) = {fJ,o (', f)), ... , fJ,N-1 (', f))} is optimal with respect to a
certain cost J1r (xo, f)). Then the (suboptimal) control used at time k is

where iJk is an estimate of f) based on the information

available at time k; for example,

or, more likely in practice, an estimate obtained via an on-line system
identification method (see [KuV86], [LjS83], [Lju86]).

One would hope that when the horizon is very long, the parameter
estimates iJk will converge to the true value 8, so the certainty equivalent
controller will become asymptotically optimal. Unfortunately, we will see
that difficulties related to identifiability arise here as well.

Suppose for simplicity that the system is stationary with a priori
known transition probabilities P{Xk+1 I Xk, Uk, 8} and that the control law
used is also stationary:

k = 0,1, ...

There are three systems of interest here (cf. Fig. 6.1.2) :

(a) The system (perhaps falsely) believed by the controller to be true,
which evolves probabilistically according to

(b) The true closed-loop system, which evolves probabilistically according
to
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Example 6.1.6 [BoV79]

Consider a two-state system with two controls u 1 and u 2
• The transition

probabilities depend on the control applied as well as a parameter B, which
is known to take one of two values B* and e. They are as shown in Fig. 6.1.3.
There is zero cost for a transition from state 1 to itself and a unit cost for
all other transitions. Therefore, the optimal control at state 1 is the one that
maximizes the probability of the state remaining at 1. Assume that the true
parameter is B* and that

On the other hand, if the parameter estimates converge to some (pos
sibly wrong) value, we can argue intuitively that the first two systems
(believed and true) typically become equal in the limit as k ---+ 00, since,
generally, parameter estimate convergence in identification methods im
plies that the data obtained are asymptotically consistent with the view of
the system one has based on the current estimates. However, the believed
and true systems mayor may not become asymptotically equal to the opti
mal closed-loop system. We first present two examples that illustrate how,
even when the parameter estimates converge, the true closed-loop system
can differ asymptotically from the optimal, thereby resulting in a certainty
equivalent controller that is strictly suboptimal. We then discuss the spe
cial case of the self-tuning regulator for ARMAX models with unknown
parameters, where, remarkably, it turns out that all three of the above sys
tems are typically equal in the limit, even though the parameter estimates
typically converge to false values.

True Closed-Loop System

P{Xk +1IXk,,,./(Xk,~),8}

System Believed to beTrue

P{XI< +1I Xk,,u'(Xk,8k),8k }

Optimal Closed-Loop System

P{xk+1I xk,,/(xk,8),8}

Figure 6.1.2 The three systems involved in certainty equivalent control, where
() is the true parameter and ek is the parameter estimate at time k. Loss of
optimality occurs when the true system differs asymptotically from the optimal
closed-loop system. If the parameter estimates converge to some value e, the true
system typically becomes asymptotically equal to the system believed to be true.
However, the parameter estimates need not converge, and even if they do, both
systems may be different asymptotically from the optimal.

(c) The optimal closed-loop system that corresponds to the true value of
the parameter, which evolves probabilistically according to

For asymptotic optimality, we would like the last two systems to be equal
asymptotically. This will certainly be true if Ok ---+ (). However, it is quite
possible that either

(1) Ok does not converge to anything, or that

(2) Ok converges to a parameter 0 =J. ().

There is not much we can say about the first case, so we concentrate
on the second. To see how the parameter estimates can converge to a wrong
value, assume that for some 0 =J. () and all Xk+l, Xk, we have

Then the optimal control is u 2
, but if the controller thinks that the true

parameter is e, it will apply u 1
. Suppose also that

Then, under u 1 the system looks identical for both values of the parameter,
so if the controller estimates the parameter to be eand applies u 1

, subsequent
data will tend to reinforce the controller's belief that the true parameter is
indeed e.

More precisely, suppose that we estimate B by selecting at each time k
the value that maximizes

In words, there is a false value of parameter for which the system under
closed-loop control looks exactly as if the false value were true. Then, if the
controller estimates at some time the parameter to be 0, subsequent data
will tend to reinforce this erroneous estimate. As a result, a situation may
develop where the identification procedure locks onto a wrong parameter
value, regardless of how long information is collected. This is a difficulty
with identifiability of the type discussed earlier in connection with two
phase controL

P{8 I L} = P{h 18}P(B)
k P(h) ,

where P(8) is the a priori probability that the true parameter is 8 (this is a
popular estimation method). Then if p(e) > P(8*), it can be seen, by using
induction, that at each time k, the controller will estimate falsely B to be
eand apply the incorrect control u 1

. To avoid the difficulty illustrated in
this example, it has been suggested to occasionally deviate from the certainty
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To estimate (a, b), we use a least-squares identification method. The value of
the least-squares criterion at time k is given by

(6.5)for (a, b) = (1,1),

if (a, b) = (1,1),
if (a, b) = (0, -1).

k-l

Vk(l, 1) = L(XHI - Xi - Ui)2,
i=O

equation to be

Cost =1

Cost = 1

Transition probabilities for 8 = 8*
(true parameter value)

Cost =1

Cost =1

k-l

Vk(O, -1) = L(XHI + Ui)2,
i=O

The control applied at time k is

for (a, b) = (0, -1). (6.6)

P11(U 2) = 0.3

Transition probabilities for 8 =e
(false parameter value)

if Vk(l, 1) < Vk(O, -1),
if Vk(1, 1) > Vk (0, -1).

Suppose the true parameters are B = (0, -1). Then the true system evolves
according to

If at time k the controller estimates incorrectly the parameters to be () = (1, 1),
because Vk(B) < Vk(B), the control applied will be Uk = -Xk/2 and the true
closed-loop system will evolve according to

Figure 6.1.3 Transition probabilities for the two-state system of Example
6.1.6. Under the nonoptimal control u 1 , the system looks identical under the
true and the false values of the parameter ().

equivalent control, applying other controls that enhance the identification
of the unknown parameter (see Doshi and Shreve [DoS80], and Kumar and
Lin [KuL82]). For example, by making sure that the control u 2 is used in
frequently but infinitely often, we can guarantee that the correct parameter
value will be identified by the preceding estimation scheme.

(6.7)

(6.8)

J:t.jxample 6.1. 7 [Kum83]

On the other hand, the controller thinks (given the estimate B) that the closed
loop system will evolve according to

Consider the linear scalar system (6.9)

where we know that the parameters are either (a, b) = (1,1) or (a, b) =
(0, -1). The sequence {Wk} is independent, stationary, zero mean, and Gaus
sian. The cost is quadratic of the form

so from Eqs. (6.7) and (6.8) we see that under the control law Uk = -Xk/2,
the closed-loop system evolves identically for both the true and the false values
of the parameters [ef. Eq. (6.4)].

To see what can go wrong, note that if Vk (fJ) < Vk (B) for some k we
will have, from Eqs. (6.5)-(6.9),

N-l

L ((Xk)2 + 2(Uk)2),
k=O so from Eqs. (6.5) and (6.6) we obtain

where N is very large, so the stationary form of the optimal control law is
used (see Section This control law can be calculated via the Riccati
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Therefore, if Vl (e) < Vl (8), the least-squares identification method will yield
the wrong estimate efor eveTy k. To see that this can happen with positive
probability, note that, since the true system is Xk+l = -Uk + Wk, we have

~ 2 )2V l (8) = (Xl - Xo - uo) = (wo - Xo - 2uo ,

Vl (8) = (Xl + UO)2 = w5.

Therefore, the inequality Vl (e) < Vl (8) is equivalent to

(xo + 2UO)2 < 2wo(xo + 2uo),

which will occur with positive probability since wo is Gaussian.

The preceding examples illustrate that loss of identifiability is a se
rious problem that frequently arises in the context of certainty equivalent
control.

where Ctk and bk are the estimates obtained at time k. Then the difficulty
with identifiability occurs when

where Ct and b are such that the true dosed-loop system given by

coincides with the closed-loop system that the controller thinks is true on the
basis of the estimates Ct and b. This latter system is

For these two systems to be identical, we must have

6.1.4 Regulators which means that the control law (6.10) asymptotically becomes optimal de
spite the fact that the asymptotic estimates Ct and bmay be incorrect.

We described earlier the nature of the identifiability issue in certainty equiv
alent control: under closed-loop control, incorrect parameter estimates can
make the system behave as if these estimates were correct [cf. Eq. (6.4)].
As a result, the identification scheme may lock onto false parameter values.
This is not necessarily bad, however, since it may happen that the control
law implemented on the basis of the false parameter values is near optimal.
Indeed, through a fortuitous coincidence, it turns out that in the practically
important minimum variance control formulation (Section 5.3), when the
parameter estimates converge, they typically converge to false values, but
the resulting control law typically converges to the optimal. We can get an
idea about this phenomenon by means of an example.

~xample 6.1.8

Consider the simplest ARMAX model:

The minimum variance control law when a and b are known is

Suppose now that a and b are not known but are identified on-line by means
of some scheme. The control applied is

(6.10)

Example 6.1.8 can be extended to the general ARMAX model of
Section 5.3 with no delay:

m m m

Yk + L aiYk-i = L biuk-i + Ek + CiEk-i'

i=l i=l i=l

If the parameter estimates converge (regardless of the identification method
used and regardless of whether the limit values are correct), then a min
imum variance controller thinks that the closed-loop system is asymptoti
cally

Yk = Ek·

Furthermore, parameter estimate convergence intuitively means that the
true closed-loop system is also asymptotically Yk = Ek, and this is clearly
the optimal closed-loop system. Results of this type have been proved
in the literature in connection with several popular methods for parameter
estimation. In fact, surprisingly, in some of these results, the model adopted
by the controller is allowed to be incorrect to some extent.

One issue that we have not discussed is whether the parameter esti
mates indeed converge. A complete analysis of this issue is quite difficult.
We refer to the survey paper by Kumar [Kum85], and the textbooks by
Goodwin and Sin [GoS84], Kumar and Varaiya [KuV86], and Astrom and
vVittenmark [AsW90] for a discussion and sources on this subject. How
ever extensive simulations have shown that with proper implementation,
thes~ estimates typically converge for the type of systems likely to arise in
many applications.
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6.2 OPEN-LOOP FEEDBACK CONTROL

Generally, in a problem with imperfect state information, the performance
of the optimal policy improves when extra information is available. How
ever, the use of this information may make the DP calculation of the op
timal policy intractable. This motivates an approximation, based on a
more tractable computation that in part ignores the availability of extra
information.

Let us consider the imperfect state information problem under the
assumption of Section 5.4.1, which guarantees that the conditional state
distribution is a sufficient statistic, i.e., that the probability distribution of
the observation disturbance Vk+l depends explicitly only on the immedi
ately preceding state, control, and system disturbance Xk, Uk, Wk, and not
on Xk-l, ... , Xo, Uk-I, ... ,UO, Wk-l ... ,Wo, Vk-l,···, Va·

VVe introduce a suboptimal policy known as the open-loop feedback
controller (OLFC), which uses the current information vector h to deter
mine P x k Ilk' However, it calculates the control Uk as if no further measure
ments will be received, by using an open-loop optimization over the future
evolution of the system. In particular, Uk is determined as follows:

(1) Given the information vector h, compute the conditional probability
distribution PXkllk (in the case of perfect state information, where h
includes Xk, this step is unnecessary).

(2) Find a control sequence {Uk, Uk+l,"" UN-I} that solves the open
loop problem of minimizing

respect to the uncertain quantities. The main difficulty in the implementa
tion of the OLFC is the computation of PXkllk' In many cases one cannot
compute Pxkl 1k exactly, in which case some "reasonable" approximation
scheme must be used. Of course, if we have perfect state information, this
difficulty does not arise.

In any suboptimal control scheme, one would like to be assured that
measurements are advantageously used. By this we mean that the scheme
performs at least as well as any open-loop policy that uses a sequence
of controls that is independent of the values of the measurements re
ceived. An optimal open-loop policy can be obtained by finding a sequence
{uo,'ui, ... ,uN-I} that minimizes

subject to the constraints

k = 0,1, ... , N - 1.

A nice property of the OLFC is that it performs at least as well as an opti
mal open-loop policy, as shown by the following proposition. By contrast,
the CEC does not have this property (for a one-stage problem, the optimal
open-loop controller and the OLFC are both optimal, but the CEC may
be strictly suboptimal; see also Exercise 6.2).

6.2.1: The cost J1f corresponding to an OLFC satisfies

~ Jo, (6.11)

subject to the constraints
where J'O is the cost corresponding to an optimal open-loop policy.

(3) Apply the control input

Ui E Ui, i = k, k + 1, ... , N - 1.

Proof: We assume throughout the proof that all expected values appear
ing are well defined and finite, and that the minimum in the following Eq.
(6.14) is attained for every h. Let 1f = {Ilo, Ill"'" IlN-d be the OLFC.

Ilk(h) = Uk· Its cost is given by

IN-l(IN-l) = E {gN(fN-l ,IlN-l(IN-r),WN-l))
XN-l,WN-l

+ gN-l(XN-l,IlN-l(IN-r),WN-l) I IN-I},

Thus the OLFC uses at time k the new measurement Zk to calculate the
conditional probability distribution PXkllk' However, it selects the control
input as if future measurements will be disregarded.

Similar to the CEC, the OLFC requires the solution of N optimal con
trol problems. Each problem may again be solved by deterministic optimal
control techniques. The computations, however, may be more complicated
than those for the CEe, since now the cost involves an expectation with

J1f = E{Jo(Io)} = E{Jo(zo)},
ZQ ZQ

where J 0 is obtained from the recursive algorithm

(6.12)
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while Ezo{ J8(zo)} can be written as

E
Xk,Wk,Wi

Xi+l =fi(Xi,Ui,Wi)
i=k+l, ... ,N-l

Xk+l =!k(xk,Jik(Ik),wk)

min
uiEUi

i=k+l, ... ,N-l

N-l
+ L gi(Xi, Ui, Wi) I h }

i=k+l
= Jk(h).

The preceding proposition shows that the OLFC uses the measure
ments advantageously even though it selects at each period the present
control input as if no further measurements will be taken in the future. It
is worth noting that by Eq. (6.16), Jk(h), which is the calculated open
loop optimal cost from time k to time N, provides a readily obtainable
performance bound for the OLFC.

The second inequality follows by interchanging expectation and minimiza
tion (since we generally have E{min[·]) ::;; min[E{-}]) and by "integrating
out" Vk+l. The last equality follows from the definition of OLFC. Thus
Eq. (6.16) is proved for all k and the desired result is shown.

N-l
+ L gi(Xi, Ui, Wi) + gN(XN)

i=k+l

lk(h) = E {9k(Xk,Tik(Ik),Wk)
XbWk,Vk+l

+ lk+l(h,hk+1 (fk(Xk,llk(h),wk),llk(h),vk+l),llk(Ik)) I h}
::;; E {9k(Xk, Tik(h), Wk)

Xk,Wk,Vk+l

+ Jk+1 (Ik, hk+l (ik (Xk' llk(h), Wk), Ilk(Ik) ,Vk+l), Ilk(Ik)) I h }

E {min E {9k(Xk,llk(h),Wk)
XbWk,Vk+l ,UiEUi Xk+l,Wi

t=k+l, ... ,N-l xi+l=fi(xi,ui,wi)
i=k+l, ... ,N-l

Then from Eqs. (6.13), (6.14), and (6.17), we have

(6.16)

(6.15)

(6.14)

for all hand k.

E{ J8(zo)} ::;; Jo'
Zo

Jk(h) = i~:~~-l E {9N(XN) +%'9i(Xi, Ui, Wi) Ih}.

(we generally have E{min[.]) ::;; min[E{-}]). We will prove that

Then from Eqs. (6.12), (6.15), and (6.16), it will follow that

min E {E {cost I zo} },
UO"",UN-l Zo

~ {UO'~!;;,-l E{cost I zo}}

The minimization problem in this equation is the one that must be solved
at time k in order to calculate the control Ilk(Ik) of the OLFC. Clearly,
Jk(Ik) can be interpreted as the optimal open-loop cost from time k to
time N when the current information vector is I k . It can be seen that

lk(Ik) E {9k(Xk,llk(h),Wk)
xk,wbvk+l

+ lk+l(Ik, hk+l(fk(Xk,llk(Ik),Wk),Tik(h),vk+l),llk(h)) Ih},

k = 0, ... ,N -1,
(6.13)

where hk is the function involved in the measurement equation as in the
basic problem with imperfect state information of Section 5.l.

Consider the functions Jk(h), k = 0,1, ... , N - 1, defined by

since Jois the minimum over 'Uo, ... ,UN -1 of the total expected cost and
can be written as

which is the relation to be proved. We show Eq. (6.16) by induction.
By the definition of the OLFC and Eq. (6.14), we have

Partial Open-Loop Feedback Control

and hence Eq. (6.16) holds for k = N - 1. Assume that

for all IN -1,

(6.17)

A form of suboptimal control that is intermediate between the optimal
feedback controller and the OLFC is provided by a generalization of the
OLFC called the partial open-loop feedback controller (POLFC for short).
This controller uses past measurements to compute Pxl 1k ' but calculates
the control input on the basis that some (but not necessarily all) of the
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measurements will in fact be taken in the future, and the remaining mea
surements will not be taken.

This method often allows one to deal with those measurements that
are troublesome and complicate the solution. As an example consider an
inventory problem such as the one considered in Section 4.2, where forecasts
in the form of a probability distribution of each of the future demands
become available over time. A reasonable form of POLFC calculates at
each stage an optimal (s, S) policy based on the current forecast of future
demands and follows this policy until a new forecast becomes available.
vVhen this happens, the current policy is abandoned in favor of a new one
that is calculated on the basis of the new probability distribution of future
demands, etc. Thus the complications due to the forecasts are bypassed at
the expense of suboptimality of the policy obtained.

vVe note that an analog of Prop. 6.2.1 can be shown for the POLFC
Bertsekas [Ber76)). In fact the corresponding error bound is potentially

much better than the bound (6.11), reflecting the fact that the POLFC
takes into account the future availability of some of the measurements.

We will discuss further the idea of ignoring a portion of the informa
tion for the purpose of obtaining a tractable suboptimal policy in Section
6.5.3. There we will generalize the OLFC and the POLFC by embedding
them within a more general suboptimal scheme.

6.3 LIMITED LOOKAHEAD POLICIES

An effective way to reduce the computation required by DP is to truncate
the time horizon and use at each stage a decision based on lookahead of
a small number of stages. The simplest possibility is to use a one-step
lookahead pol'icy whereby at stage k and state Xk one uses the control
Tik(Xk), which attains the minimum in the expression

min E{9k(Xk,Uk,Wk) + Jk+l(fk(Xk,Uk,Wk))}, (6.18)
ukEUk(Xk)

where Jk+l is some approximation of the true cost-to-go function Jk+l,
with JN gN. Similarly, a two-step lookahead policy applies at time k
and state Xk, the control Tik(Xk) attaining the minimum in the preceding
equation, where now Jk + l is obtained itself on the basis of a one-step
lookahead approximation. In other words, for all possible states Xk+l that
can be generated via the system equation starting from Xk,

Xk+l = A(Xk, Uk, Wk),

we have

(:Ek+I) = min E{9k+l Uk+l, Wk+l)
'Uk+l EUk+ 1(Xk+l)

+ Jk+2(fk+l(Xk+l,Uk+l,Wk+l))},

where Jk+2 is some approximation of the cost-to-go function Jk+2 . Policies
with lookahead of more than two stages are similarly defined.

Note that the limited lookahead approach can be used equally well
when the horizon is infinite. One simply uses as the terminal cost-to-go
function an approximation to the optimal cost of the infinite horizon prob
lem that starts at the end of the lookahead. Thus the following discussion,
with a few straightforward modifications, applies to infinite horizon prob
lems as well.

Given the approximations Jk to the optimal costs-to-go, the com
putational savings of the limited lookahead approach are evident. For a
one-step lookahead policy, only a single minimization problem has to be
solved per stage, while in a two-step policy the corresponding number of
minimization problems is one plus the number of all possible next states
Xk+l that can be generated from the current state Xk.

However, even with readily available cost-to-go approximations Jk ,

the minimization over Uk E Uk(Xk) in the calculation of the one-step looka
head control [cf. Eq. (6.18)] may involve substantial computation. In a
variant of the method that aims at reducing this computation, the mini
mization is done over a subset

Thus, the control Tik(Xk) used in this variant is one that attains the mini
mum in the expression

(6.19)

A practical example of this approach is when by using some heuristic or
approximate optimization, we identify a subset Uk(Xk) of promising con
trols, and to save computation, we restrict attention to this subset in the
one-step lookahead minimization.

6.3.1 Performance Bounds for Limited Lookahead Policies

Let us denote by Jk(Xk) the expected cost-to-go incurred by a limited looka
head policy {Tio, Til' ... ,TiN-d starting from state Xk at time k [Jk(Xk)
should be distinguished from Jk(Xk), the approximation of the cost-to-go
that is used to compute the limited lookahead policy via the minimization
in Eq. (6.19)). It is generally difficult to evaluate analytically the functions
J k, even when the functions Jk are readily available. We thus aim to ob
tain some estimates of]k(xk). The following proposition gives a condition
under which the one-step lookahead policy achieves a cost J k (xk) that is
better than the approximation Jk(Xk). The proposition also provides a
readily computable upper bound to Jk(Xk).
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I'll. JJ. •• 6.3.1: Assume that for all Xk and k, we have

Then the cost-to-go functions J k corresponding to a one-step looka
head policy that uses Jk and Uk(Xk) [cf. Eq. (6.19)] satisfy for all Xk
and k

Proof: For k = 0, ... , N - 1, denote

and let I N = gN. We must show that for all Xk and k, we have

i.e., the cost-to-go of the one-step lookahead policy is no greater than the
lookahead approximation on which it is based. The critical assumption
(6.20) in Prop. 6.3.1 can be verified in a few interesting special cases, as
indicated by the following examples .

.l!.ix,ample 6.3.1 (Rollout Algorithm)

Suppose that Jk(Xk) is the cost-to-go of some given (suboptimal) heuris
tic policy 1f = {j.to, ... , j.tN-l} and that the set fh(Xk) contains the control
j.tk(Xk) for all Xk and k. The resulting one-step lookahead algorithm is called
the rollout algorithm and will be discussed extensively in Section 6.4. From
the DP algorithm (restricted to the given policy 1f), we have

which in view of the assumption j.tk(Xk) E fh(Xk), yields

Jk(Xk) ~ ~in E{gk(Xk,Uk,Wk) + Jk+l(Jk(Xk,Uk,Wk))}.
ukEUk(xk)

Thus, the assumption of Prop. 6.3.1 is satisfied, and it follows that the rollout
algorithm performs better than the heuristic on which it is based, starting
from any state and stage.

':Ye use bac~wards induction on k. In particular, we have J N(XN)
~N(XN) = IN(XN) = gN(XN) for all XN. Assuming that J k+1 (Xk+l) ::;
Jk+l (xk+d for all Xk+l, we have

Example 6.3.2 (Rollout

Jk(Xk) E{gk (Xk' 7lk(Xk), Wk) + J k+1 (ik (Xk' 7lk(Xk), Wk))}

::; E{g(Xk' tlk (Xk), Wk) + Jk+1 (fk (Xk' 7lk(Xk), Wk)) }

::; E{g(Xk' 7lk(Xk), Wk) + Jk+1 (ik (Xk' 7lk(Xk,), Wk))}

Jk(Xk),

for all Xk· The first equality above follows from the DP algorithm that
defines the costs-to-go J k of the limited lookahead policy, while the first
inequality follows from the induction hypothesis, and the second inequality
follows from the assumption (6.20). This completes the induction proof.

Note that by Eq. (6.21), the value Jk(Xk) of Eq. (6.22), which is
the calculated one-step lookahead cost from state Xk at time k, provides
a readily obtainable performance bound for the cost-to-go J k(xk) of the
one-step lookahead policy. Furthermore, using also the assumption (6.20),
we obtain for all Xk and k,

Consider a scheme that is similar to the one of the preceding example, except
that Jk(xk) is the minimum of the cost-to-go functions corresponding to m
heuristics, Le.,

where for each j, J7r .,k(Xk) is the cost-to-go of a policy 1fj = {j.tj,O, ... ,j.tj,N-I},
starting from state JXk at stage k. From the DP algorithm, we have, for all j,

from which, using the definition of Jk, it follows that

J7rj ,k(Xk) ~ E{gk(Xk,j.tj,k(Xk),Wk) + Jk+l(Jk(Xk,j.tj,k(Xk),Wk))}

~ ~in E{gk(Xk,Uk,Wk) + Jk+l(Jk(Xk,Uk,Wk))}'
ukEUk(xk)

Taking the minimum of the left-hand side over j, we obtain

Jk(Xk) ~ ~in E{gk(Xk,Uk,Wk) + Jk+l(!k(Xk,Uk,Wk))}'
ukEUk(xk)
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Consider the CEC for the case of a perfect state information problem, where
each disturbance 'Wk is fixed at a nominal value "1ih, k = 0, ... , N -1, which is
independent of Xk and 'Uk. Consider the optimal value of the problem solved
by the CEC at state Xk and stage k,

Thus, Prop. 6.3.1 implies that the one-step lookahead algorithm based on
the heuristic algorithms' costs-to-go J7fI ,k(Xk), ... , J7frn ,k(Xk) performs better
than all these heuristics, starting from any state and stage.

Generally, the cost-to-go approximation functions Jk need not sat
isfy the assumption (6.20) of Prop. 6.3.1. The following proposition does
not require this assumption. It is useful in some contexts, including the
case where the minimization involved in the calculation in the one-step
lookahead policy is not exact.

Example 6.3.3 (Certainty

lnI" -
~.I. 'J:' 6.3.2: Let Jk, k = 0,1, ... , N, be functions of Xk with
IN(XN) = gN(XN) for all XN, and let Jr = {Po, PI'"'' PN-l} be a
policy such that for all Xk and k, we have

E{9k(Xk,Pk(Xk),Wk) + Jk+l(fk(Xk,llk(Xk),Wk))}::; Jk(Xk) +Ok,
(6.23)

where 00,01, .. " ON-l are some scalars, Then for all Xk and k, we have

N-l

J7f ,k(Xk) ::; Jk(Xk) + ~ o,i,
i=k

where J7f ,k(Xk) is the cost-to-go of Jr starting from state Xk at stage k.

~roof: We use backwards induction on k. In particular, we have J7f ,N(XN) =
IN(XN) = gN(XN) for all XN. Assuming that

N-l

J7f ,k+l(Xk+1) ::; Jk+l(Xk+d + ~ Oi,
i=k+l

for all Xk+1, we have

J7f ,k(Xk) = E{9k(Xk,Pk(Xk),Wk) + J7f ,k+l(fk(Xk,llk(Xk),Wk))}

{

N-1
::; E g(Xk,Pk(Xk),Wk) + Jk+l (fk(Xk,71k(Xk),Wk))} + ~ Oi

i=k+1
N-1

::; Jk(Xk) + Ok + ~ Oi,
i=k+l

for, all Xk. The first equality above follows from the DP algorithm that
defines the costs-to-go J7f ,k of Jr, while the first inequality follows from the
i~duct~on hypo~hesis, and the second inequality follows from the assump
tIOn (6.23). ThIs completes the induction proof. Q.E.D.

and let JN(XN) = gN (XN) for all XN. Recall that the CEC applies the control
Jik(Xk) = Uk after finding an optimal control sequence {Uk, ... ,UN--I} for
the deterministic problem in the right-hand side above. Note also that the
following DP equation

holds, and that the control Uk applied by the CEC minimizes in the right-hand

side.
Let us now apply Prop. 6.3.2 to derive a performance bound for the

CEC. We have for all Xk and k,

Jk(Xk) = gk(Xk,Jik(Xk),1ih) + J k +1 (Jk (Xk,Jik(Xk),Wk))

= E {9 ( Xk, Jik(xk), 'Wk) + J k+ I (Jk (X k, Jik(X k) , 'Wk) ) } - rdxk)

where rk(Xk) is defined by

rk (Xk) = E{g(Xk' Jik (Xk), 'Wk) + Jk+1 (Jk (Xk' Jik(Xk), 'Wk)) }

- gk(Xk,Jik(Xk),Wk) - Jk+l(Jk(Xk,Jik(Xk),Wk)).

It follows that

where
bk = maXrk(Xk),

Xk

and by Prop. 6.3.2, we obtain the following bound for the cost-to-go function

Jk(Xk) of the CEC:

N-I

Jk(Xk) ::::; JdXk) +~ bi.
i=k

The preceding performance bound is helpful when it can be shown that
bk ::::; 0 for all k, in which case we have Jk(Xk)::::; Jk(Xk) for all Xk and k.

This is true for example if for all Xk and Uk, we have
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and then choose a vector u{ from a subset Ul (uo, w j
) C 3(m at a cost gl (u{, w j

).

The objective is to minimize the expected cost

Jo(xo) =

subject to Uo E Uo(xo),

The most common way to assert that inequalities of this type hold is via some
kind of concavity assumptions; for example, the inequalities hold if the state,
control, and disturbance spaces are Euclidean spaces, Wk is the expected
value ofwk, and the functions g(Xk,Uk,') and Jk+l(fk(Xk,Uk,'))' viewed as
functions of Wk, are concave (this is known as Jensen's inequality, and at least
in the case where Wk takes a finite number of values, follows easily from the
definition of concavity). It can be shown that the concavity conditions just
described are guaranteed if the system is linear with respect to Xk and Wk,

the cost functions gk are concave with respect to Xk and Wk for each fixed Uk,

the terminal cost function gN is concave, and the control constraint sets Uk
do not depend on Xk.

6.3.2 Computational Issues in Limited Lookahead

vVe now discuss the computation of the cost-to-go approximations and the
corresponding minimization of the one-step lookahead costs.

Minimization Using Nonlinear Programming

One approach to obtain the control 71k(xk) used by the one-step lookahead
policy is to exhaustively calculate and compare the one-step lookahead
costs of all the controls in the set Uk(Xk). In some cases, there is a more
efficient alternative, which is to solve a suitable nonlinear programming
problem. In particular, if the control space is the Euclidean space Rm,
then for a one-step lookahead control calculation, we are faced with a min
imization over a subset of Rm, which may be approached by continuous
optimization/nonlinear programming techniques.

It turns out that even a multistage lookahead control calculation can
be approached by nonlinear programming. In particular, assume that the
disturbance can take a finite number of values, say r. Then, it can be
shown that for a given initial state, an I-stage perfect state information
problem (which corresponds to an I-step lookahead control calculation)
can be formulated as a nonlinear programming problem with m(l + r l - 1 )

variables. VVe illustrate this by means of an important example where I = 2
and then discuss the general case.

~)\:anapjle 6.3.4 (Two-Stage Stochastic Programming)

Here we want to find an optimal two-stage decision rule for the following
situation: In the first stage we will choose a vector Uo from a subset Uo C 3(m

with cost go (uo). Then an uncertain event represented by a random variable W
will occur, where W will take one of the values WI, ... ,wT with corresponding
probabilities pI, ... , pT. We will know the value w j once it occurs, and we must

go(uo) + 2:pjgl(Ui, w
j
)

j=l

subject to

Uo E Uo,

This is a nonlinear programming problem of dimension rn(l + r) (the opti
mization variables are uo, ui, ... , ul). It can also be viewed as a two-stage
perfect state information problem, where Xl = Wo is the state equation, Wo

can take the values WI, ... , w T with probabilities pI, ... , pT, the cost of the
first stage is go (uo), and the cost of the second stage is gl (Xl, Ul).

The preceding example can be generalized. Consider the basic prob
lem of Chapter 1 for the case where there are only two stages (I = 2) and
the disturbances Wo and WI can independently take one of the r values
WI, ... ,wT with corresponding probabilities pI, ... ,pT. The optimal cost
function Jo(xo) is given by the two-stage DP algorithm

min [t PJ {go(xo,uo, wJ)
uoEUo(xo) j=1

+. min . [ t pi {gl (fo (xo, uo, wJ), u{, Wi)
u{ EUl(fO(XO,uo,wJ )) i=1

This DP algorithm is equivalent to solving the nonlinear programming
problem

minimize ~p.i {90(XO,Uo, w j ) +~Pi {91 (Jo(xo, uo, w j ), u{, wi)

+ 92 (h (Jo(xo, uo, w j ), u{, wi)) } }

u{ E Ul(fo(xo,uo,wJ)), j = l, ... ,r.

If the controls Uo and Ul are elements of Rm, the number of variables in
the above problem is m(l + r). More generally, for an I-stage perfect state
information problem a similar reformulation as a nonlinear programming
problem requires m(l + r l - 1 ) variables. Thus if the number of lookahead
stages is relatively small, a nonlinear programming approach may be the
preferred option in calculating suboptimal limited lookahead policies.
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Cost-to-Go Example 6.3.5

An often convenient approach for cost-to-go approximation is based on
solution of a simpler problem that is tractable computationally or analyti
cally. Here is an illustrative example, involving a convenient modification
of the probabilistic structure of the problem.

A key issue in implementing a limited lookahead policy is the selection of
the cost-to-go approximation at the final step. It may appear important
at first that the true cost-to-go function should be approximated well over
the range of relevant states; however, this is not necessarily true. What
is important is that the cost-to-go differentials (or relative values) be ap
proximated well; that is, for an l-step lookahead policy it is important to
have

for any two states x and x' that can be generated 1 steps ahead from the
current state. For example, if equality were to hold above for all x, x', then
Jk+1(X) and Jk+l(X) would differ by the same constant for each relevant x
and the l-step lookahead policy would be optimal.

The manner in which the cost-to-go approximation is selected de
pends very much on the problem being solved. There is a wide variety of
possibilities here. We will discuss three such approaches:

(a) Problem Approximation: The idea here is to approximate the optimal
cost-to-go with some cost derived from a related but simpler problem
(for example the optimal cost-to-go of that problem). This possibility
is discussed and is illustrated with examples in Sections 6.3.3 and
6.3.4.

for all x and y.J(x,O) = J(O, y) = 0,

One possibility to approximate the optimal cost-to-go is to use certainty
equivalence, in the spirit of Section 6.1. In particular, for a given state Xk+l
at time k + 1, we fix the remaining disturbances at some nominal values
Wk+l, ... ,WN-l' and we compute an optimal control trajectory starting from
Xk+l at time k+1. The corresponding cost, denoted by Jk+1(Xk+l), is used to
approximate the optimal cost-to-go Jk+l(Xk+l) for the purpose of computing
the corresponding one-step lookahead policy. Thus to compute the one-step
lookahead control at state Xk, we need to solve a deterministic optimal con
trol problem from all possible next states h(Xk, 'Uk, Wk) and to evaluate the
corresponding optimal cost Jk+l (Jk(Xk, Uk, Wk)) based on the nominal values
of the uncertainty.

A simpler but less effective variant of this approach is to compute
Jk+l(Xk+l) as the cost-to-go of a given heuristic (rather than optimal) policy

J (x, y) = . max [Pi (ri + J (x - 1, y - 1)) + (1 - Pi) J (x, y - 1)] '
t=l, ... ,Tn

On the other hand, when the innkeeper does not know y at the times of
decision, but instead only has a probability distribution for y, it can be seen
that the problem becomes a difficult imperfect state information problem. Yet
a reasonable one-step lookahead policy is based on approximating the optimal
cost-to-go of subsequent decisions with J (x - 1, Y-1) or J (x, y - 1), where the
function J is calculated by the above recursion and y is the closest integer to
the expected value of y. In particular, according to this one-step lookahead
policy, when the innkeeper has a number of vacancies x 2: 1, he quotes to the
current customer the rate that maximizes Pi (ri + J(x -1, Y-1) - J(x, Y-1)).

for all x 2: 1 and y 2: 1, with initial conditions

Consider the problem of an unscrupulous innkeeper who charges one of m
different rates rl, ... , rm for a room as the day progresses, depending on
whether he has many or few vacancies, so as to maximize his expected total
income during the day (Exercise 1.25 in Chapter 1). A quote of a rate ri is
accepted with probability Pi and is rejected with probability 1 - pi, in which
case the customer departs, never to return during that day. When the number
y of customers that will ask for a room during the rest of the day (including the
customer currently asking for a room) is known and the number of vacancies
is x, the optimal expected income J(x, y) of the innkeeper is given by the DP
recursion

The preceding example is based on replacing the problem uncertainty
(the random variable y) with a "certainty equivalent" (the scalar y). The
next example describes a generalization of this type of approximation,
based on simplifying the stochastic structure of the problem.

Example 6.3.6 (Approximation Using Scenarios)

UA..U ..I..I.Ol.I,.l.U.l..l. - Enforced Decomposition6.3.3 Problem

(b) Pammetric Cost-to-Go Approximation: The idea here is to approxi
mate the optimal cost-to-go with a function of a suitable parametric
form, whose parameters are tuned by some heuristic or systematic
scheme. This possibility is discussed in Section 6.3.5 and is illus
trated using the computer chess paradigm. Additional methods of
this type are discussed in Vol. II.

(c) Rollout Approach: Here the optimal cost-to-go is approximated by the
cost of some suboptimal policy, which is calculated either analytically,
or more commonly, by simulation. Generally, if a reasonably good
suboptimal policy is known (e.g., a certainty equivalent or open-loop
feedback controller, or some other problem-dependent heuristic), it
can be used to obtain a cost-to-go approximation. This approach
is also particularly well-suited for deterministic and combinatorial
problems. It is discussed at length in Section 6.4.
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These are the scenarios considered at state x k+ 1. The cost Jk+ 1 (X k+1) is
approximated by

The simplification/approximation approach is often well-suited for prob
lems that involve a number of subsystems that may be coupled through

Example 6.3.7 (Vehicle Routing)

Consider m vehicles that move along the arcs of a given graph. Each node
of the graph has a given "value" and the first vehicle that will pass through
the node will collect its value, while vehicles that pass subsequently through
the node do not collect any value. This may serve as a model of a situation
where there are various valuable tasks to be performed at the nodes of a
transportation network, and each task can be performed at most once and
by a single vehicle. We assume that each vehicle starts at a given node and
after at most a given number of arc moves, it must return to some other
given node. The problem is to find a route for each vehicle satisfying these
constraints, so that the total value collected by the vehicles is maximized.

This is a difficult combinatorial problem that in principle can be ap
proached by DP. In particular, we can view as the state the set of current po
sitions of the vehicles together with the list of nodes that have been traversed
by some vehicle in the past, and have thus "lost" their value. Unfortunately,
the number of these states is enormous (it increases exponentially with the
number of nodes and the number of vehicles). The version of the problem
involving a single vehicle, while still difficult in principle, can often be solved
in reasonable time either exactly by DP or fairly accurately using a heuris
tic. Thus a one step-lookahead policy suggests itself, with the value-to-go
approximation obtained by solving single vehicle problems.

In particular, in a one step-lookahead scheme, at a given time k and
from a given state we consider all possible kth moves by the vehicles, and at

the system equation, or the cost function, or the control constraints, but
the degree of coupling is "relatively weak." It is difficult to define precisely
what constitutes "weak coupling," but in specific problem contexts, usually
this type of structure is easily recognized. For such problems it is often sen
sible to introduce approximations by artificially decoupling the subsystems
in some way, thereby creating either a simpler problem or a simpler cost
calculation, where subsystems can be dealt with in isolation. There are a
number of different ways to effect this type of artificial decomposition, and
the best approach is often problem-dependent.

As an example consider a deterministic problem, where the control
Uk at time k consists of rn components, Uk = {u~, ... ,uk}' with ui corre
sponding to the ith subsystem. Then to compute a cost-to-go approxima
tion at a given state Xk, one may try a one-subsystem-at-a-time approach:
first optimize over the control sequence {u ~, U~+ l' ... , U Iv-I} of the first
subsystem, while keeping the controls of the remaining subsystems at some
nominal values, then minimize over the controls of the second subsystem,
while keeping the controls of the first subsystem at the "optimal" values
just computed and the controls of subsystems 3, ... , rn to the nominal val
ues, and continue in this manner. There are several possible variations, for
example to make the order in which the subsystems are considered subject
to optimization as well. Let us illustrate this approach by means of an
example.

(6.24)

m = 1, ... ,N1.

LX)Ull)led Systems

M

]k+l(Xk+1,r) = ro + L rmCm(Xk+d,
m=l

for the deterministic problem that corresponds to the nominal values of the
uncertainty and the starting state Xk+1. The advantage of using certainty
equivalence here is that the potentially costly calculation of the expected
value of the cost is replaced by a single state-control trajectory calculation.

The certainty equivalent approximation involves a single nominal trajec
tory of the remaining uncertainty. To strengthen this approach, it is natural
to consider multiple trajectories of the uncertainty, called scenarios, and to
construct an approximation to the optimal cost-to-go that involves, for every
one of the scenarios, the cost of either an optimal or a given heuristic policy.
Mathematically, we assume that we have a method, which at a given state
Xk+1, generates Iv1 uncertainty sequences

where r (ro, r1, ... ,rM) is a vector of parameters, and Cm (xk+d is the cost
corresponding to an occurrence of the scenario Wm(Xk+1), when starting from
state Xk+1 and using either an optimal or a given heuristic policy.

The parameters ro, rl, ... , rM may depend on the time index, and in
more sophisticated schemes, they may depend on some characteristics of the
state (see our subsequent discussion of feature-based architectures in Section
6.3.5). We may interpret the parameter rm as an "aggregate weight" that en
codes the aggregate effect on the cost-to-go function of uncertainty sequences
that are similar to the scenario Wm(Xk+1). Note that, if ro = 0, the approxi
mation (6.24) may also be viewed as a calculation by limited simulation, based
on just the 1\11 scenarios Wm(Xk+l), and using the weights rm as "aggregate
probabilities." One difficulty with this approach is that we have to choose
the parameters (ro, r·l, ... , rM). For this, we may either use some heuristic
scheme based on trial and error, or some of the more systematic schemes of
neuro-dynamic programming, discussed in Vol. II.

We finally mention a variation of the scenario-based approximation
method, whereby only a portion of the future uncertain quantities are fixed at
nominal scenario values, while the remaining uncertain quantities are explic
itly viewed as random. The cost of scenario m at state Xk+1 is now a random
variable, and the quantity Cm(Xk+l) used in Eq. (6.24) should be the expected
cost of this random variable. This variation is appropriate and makes practi
cal sense as long as the computation of the corresponding expected scenario
costs Cm (xk+d is convenient.

Enforced U~:lc()mlP()si'tiolnof



Another context where enforced decomposition may be an attractive
possibility, is when the subsystems are coupled only through the distur
bance. In particular, consider m subsystems of the form
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(6.25)

Limited Lookahead Policies

If there is only one part type (n = 1), the optimal policy can be fairly easily
determined from this algorithm (see Exercise 6.7). However, in general, the
algorithm requires a prohibitive amount of calculation for an FMS of realistic
size (say for n > 10 part types). We thus consider a one-step lookahead policy

is minimized. The function gi expresses the desire to keep the current backlog
or surplus of part i near zero. Two examples are gi(Xi ) = Pilxil and gi(Xi ) =
Pi(X'i )2, where Pi > O.

The DP algorithm for this problem is

Jk(Xk, CY-k) I:gi(xt)
i=l (6.26)

+ min E {Jk+l(Xk +Uk dk,CY-k+l) I CY-k}.
ukEU(Otk) Otk+l

The work center consists of a number of workstations that fail and get
repaired in random fashion, thereby affecting the productive capacity of the
system (i.e., the constraints on Uk)' Roughly, our problem is to schedule part
production so that Xk is kept around zero to the extent possible.

The productive capacity of the system depends on a random variable
CY-k that reflects the status of the workstations. In particular, we assume that
the production vector Uk must belong to a constraint set U(CY-k)' We model
the evolution of CY-k by a Markov chain with known transition probabilities
P(CY-k+l I CY-k). In practice, these probabilities must be estimated from in
dividual station failure and repair rates, but we will not go into the matter
further. Note also that in practice these probabilities may depend on Uk·

This dependence is ignored for the purpose of development of a cost-to-go
approximation. It may be taken into account when the actual suboptimal
control is computed.

vVe select as system state the pair (Xk, CY-k), where Xk evolves according
to Eq. (6.25) and CY-k evolves according to the Markov chain described earlier.
The problem is to find for every state (Xk' CY-k) a production vector Uk E U(CY-k)

such that a cost function of the form

Consider a work center in which n part types are produced. Denote

ut: the amount of part i produced in period k.

dt: a known demand for part i in period k.

xt: the cumulative difference of amount of part i produced and de
manded up to period k.

Let us denote also by Xk, Uk, d k the n-dimensional vectors with coordinates
xt, ui, di, respectively. We then have

Sec. 6.3Chap. 6

i = 1, ... ,m.

Manufacturing)

Approximate Dynamic Programming

Example 6.3.8

the resulting states we approximate the optimal value-to-go with the value
corresponding to a suboptimal set of paths. These paths are obtained as
follows: we fix an order of the vehicles and we calculate a path for the first
vehicle, assuming the other vehicles do not move. (This is done either opti
mally by DP, or nearly optimally using some heuristic.) Then we calculate
a path for the second vehicle in the order, taking into account the value col
lected by the first vehicle, and we similarly continue: for each vehicle, we
calculate in the given order a path, taking into account the value collected
by the preceding vehicles. We end up with a set of paths that have a cer
tain total value associated with them, and which correspond to the particular
order for considering the vehicles. We can also calculate other sets of paths
and their corresponding total values, for other orders (possibly all orders) for
considering the vehicles. We then use as the value-to-go approximation at
the given state the maximal value over all the sets of paths computed from
that state.

Flexible manufacturing systems (FMS) provide a popular approach for in
creasing productivity in manufacturing small batches of related parts. There
are several workstations in an FMS, and each is capable of carrying out a
variety of operations. This allows the simultaneous manufacturing of more
than one part type, reduces idle time, and allows production to continue even
when a workstation is out of service because of failure or maintenance.

Here the ith subsystem has its own state xt, control ut, and cost per stage
g~(xk'uk' wk), but the probability distribution of wi depends on the full
state

Xk = (xl, ... ,xr)·

A natural form of suboptimal control is to solve at each stage k and for
each i, the ith subsystem optimization problem where the probability dis
tribution of each of the future disturbances wi+1"'" wjy. -1 is fixed at
some distribution that depends only on the corresponding "local" states
xi+1' ... ,x~v-1' This distribution may be derived on the basis of some

nominal values X{+l' ... , x1v-1' j #- i, of the future states of the other sub
systems, and these nominal values may in turn depend on the full current
state Xk. The first control ut in the optimal policy thus obtained is applied
at the ith subsystem in stage k, and the remaining portion of this policy
is discarded.

Let us also discuss in some detail an example of subsystem decompo
sition where the coupling comes through the control constraint.

316



318 A(mr'oxim,g,tE Dynamic Programming Chap. 6 Sec. 6.3 Limited Lookahead Policies 319

Inscribed Hypercube \:!.(Qk) Circumscribed Hypercube U(Qk)

~1(Qk) 81(Qk)

Production Constraint Set U(Qk)

Figure 6.3.1 Inner and outer approximations of the production capacity
constraint set by hypercubes in the flexible manufacturing example.

with the cost-to-go Jk+l replaced by an approximation }k+l that exploits the
nearly separable structure of our problem.

In particular, we note that the problem can to a large extent be de
composed with respect to individual part types. Indeed, the system equation
(6.25) and the cost per stage are decoupled, and the only coupling between
parts comes from the constraint Uk E U(ak). Suppose we approximate U(ak)
by inner and outer approximating hypercubes Il(ak) and U(ak) of the form

U(ak) = {ut 10:; ut :; Bi(ak)},

Il(ak) C U(ak) C U(ak),

as shown in Fig. 6.3.1. If U(ak) is replaced for each ak by either U(ak)
or Il(ak), then the problem is decomposed completely with respect to part
types. For every part i the DP algorithm for the outer approximation is given
by

Furthermore, since Il(ook) C U(OOk) c U(OOk), the cost-to-go functions ]~ and
~1 provide lower and upper bounds to the true cost-to-go function J k ,

n

l: ]~(x1, OOk) :; Jk(Xk, OOk) :; l:~~ (x1, OOk),
i=l i=l

and can be used to construct approximations to Jk that are suitable for a
one-step lookahead policy. A simple possibility is to adopt the averaging
approximation

}k(Xk,OOk) = ~ t(]~(Xt,OOk) + ~~(XLOOk))
i=l

and use at state (Xk, OOk) the control Uk that minimizes [ef. Eq. (6.26)]

over all Uk E U(ak)' Multiple upper bound approximations, based on multiple
choices of Iii (OOk), can also be used.

To implement this scheme, it is necessary to compute and store the

approximate cost-to-go functions ]~ and 11 in tables, so that they can be used
in the real-time computation of the suboptimal control via the minimization
of expression (6.29). The corresponding calculations [cf. the DP algorithms
(6.27) and (6.28)] are nontrivial, but they can be carried out off-line, and in
any case they are much less than what would be required to compute the
optimal controller. The feasibility and the benefits of the overall approach
have been demonstrated by simulation in the thesis by Kimemia [Kim82], on
which this example is based. See also Kimemia, Gershwin, and Bertsekas
[KGB82], and Tsitsiklis [Tsi84a].

For some other examples of decomposition approaches, see vVu and
Bertsekas [WuB99], which deals with admission control in cellular commu
nication networks, and Meuleau et. al. [MHK98], which deals with problems
of resource allocation.

]~(x1, ak) = gi(xt)

+m~ E {]~(xt + ut - d1, ak+l) I ak},
O::;u'k::;Bi(C>k) C>k+l

and for the inner approximation it is given by

ak) = g'i(xt)

+ min E {~~+1 (xt + ut - d1, ak+l) lOOk}.
O::;·u'k::;l2.i(C>k) C>k+l

(6.27)

(6.28)

6.3.4

An alternative method for constructing a simpler and more tractable prob
lem is based on reducing the number of states by "combining" many of
them together into aggregate states. This results in an aggregate problem,
with fewer states, which may be solvable by exact DP methods. The opti
mal cost-to-go functions of the aggregate problem is then used to construct
a one-step-lookahead cost approximation for the original problem. The
precise form of the aggregate problem may depend on intuition and/or
heuristic reasoning, based on our understanding of the original problem.
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where n s is the number of states of s.

and (assuming all states that belong to aggregate state/subset s are "equally
representative") disaggregation probabilities

(6.30)j E I.J(j) = L WjtJ(t),

tES

if state i E I belongs to aggregate state/subset s E S,

if state j E I belongs to aggregate state/subset t E 5,Wjt = 1

As an illustration, for the preceding hard aggregation Example 6.3.9,
the aggregate system transition process works as follows: Starting from an
aggregate state/subset s, we generate with equal probability a state i in s,
then a next state j E I according to the transition probabilities Pij (u), and
then we declare as next aggregate state the subset t to which j belongs.
The corresponding transition probability and expected transition cost are

1
'rst(u) = - Pij(U),

n s iEs jEt

We are given a partition of the original system state spaces I and I into subsets
of states (each state belongs to one and only one subset). We view each subset
as an aggregate state. This corresponds to aggregation probabilities

Tst(U) = L L qsiPij(U)Wjt,
iEI JEI

h(s, u) = L L qsiPij(U)g(i, u,j).
iEI JEI

These transition probabilities and costs define the aggregate problem. After
solving for the optimal costs-to-go J(t), t E 5, of the aggregate problem,
the costs of the original problem are approximated by

Given the disaggregation and aggregation probabilities, qsi and Wjt,
and the original transition probabilities Pij (u), we envisage an aggregate
system where state transitions occur as follows:

(i) From aggregate state s, generate state i according to qsi·

(li) Generate a transition from i to j according to Pij(U), with cost
g(i, u,j).

(iii) From state j, generate aggregate state t according to Wjt·

Then, the transition probability from aggregate state s to aggregate state
t under u, and the corresponding expected transition cost, are given by

In this subsection, we will discuss various aggregation methods, start
ing with the case of a finite-state problem. We will focus on defining the
transition probabilities and costs of the aggregate problem, and to simplify
notation, we suppress the time indexing in what follows. We generically
denote:

I, I: The set of states of the original system at the current and the
next stage, respectively.

Pij (u): The transition probability of the original system from state i E I
to state j E I under control u.

g( i, 'u, j): The transition cost of the original system from state i E I to
state j E I under control u.

S, 5: The set of states of the aggregate system at the current and the
next stage, respectively.

'rst(u): The transition probability of the aggregate system from state
s E S to state t E 5 under control u.

h(s, u): The expected transition cost of the aggregate system from state
s E S under control u.

For simplicity, we assume that the control constraint set U (i) is the
same for all states i E I. This common control constraint set, denoted by
U, is chosen as the control constraint set at all states s E S of the aggregate
problem.

There are several types of aggregation methods, which bring to bear
intuition about the problem's structure in different ways. All these methods
are based on two (somewhat arbitrary) choices of probabilities, which relate
the original system states with the aggregate states:

(1) For each aggregate state s E S and original system state i E I, we
specify the disagg'regation pmbability qsi (we havEl :LiEI qsi = 1 for
each s E S). Roughly, qsi may be interpreted as the "degree to which
s is represented by i."

(2) For each original system state j E I and aggregate state t E 5, we
specify the agg'regation pmbability Wjt (we have :LtES Wjt 1 for each

j E I). Roughly, Wjt may be interpreted as the "degree of membership
of j in the aggregate state t."

Note that in general, the disaggregation and aggregation probabilities may
change at each stage (since the state space may change at each stage). On
the other hand, for a stationary problem, where state and control spaces,
system equation, and cost per stage that are the same for all stages, the dis
aggregation and aggregation probabilities will ordinarily also be the same
for all stages.

As an illustration consider the following example of aggregation.
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Aggregation
Probabilities

Disaggregation
Probabilities

Pij(U)

Original System
States

Aggregate States

Hard Aggregation

Pij(U)

(0-10 customers), "lightly loaded" (11-50 customers), "heavily loaded" (51-90
customers), and "nearly full" (91-100 customers). Then it makes sense to
use soft aggregation, so that a state with close to 50 customers is classified
neither as "lightly loaded" nor as "heavily loaded," but is viewed instead as
associated with both of these aggregate states, to some degree.

It can be seen from Eq. (6.30), that in soft aggregation, the approxi
mate cost-to-go function J is not piecewise constant, as in the case of hard
aggregation, and varies "smoothly" along the boundaries separating aggregate
states. This is because original system states that belong to multiple aggre
gate states/subsets have approximate cost-to-go that is a convex combination
of the costs-to-go of these aggregate states.

6.3.10 (Soft Aggregation)

1
h(s,u) =;; LL P·ij(u)g(i,u,j).

S iEs jEI

Consider a facility that serves m types of customers. At each time period,
a single customer of each type arrives, and requires a level of service per
unit time that is random and has a given distribution (which depends on the
customer type). The facility must decide which of the arriving customers to
admit at each time period. The total service capacity of the facility is given,
and must at all times be no less than the sum of service levels of the customers
currently within the facility. An admitted customer of a given type has a given
probability of leaving the facility at each time period, independently of his
required. level of service and of how long he has already been in the facility.
An admitted customer also pays to the facility a given amount per period,
which is proportional to his required level of service (with the constant of
proportionality depending on the customer type). The objective here is to
maximize the expected revenue of the facility over a given horizon. Thus
the tradeoff is to provide selective preference to high-paying customer types,
or alternatively expressed, to avoid filling up the facility with low-paying
long-staying customers, thereby potentially blocking out some high-paying
customers.

In a problem of this type, the system state, just prior to making an
admission decision, is the entire list of customers of each type within the
facility as well as their service levels (together with the list of service levels
of the customers that have just arrived). There is clearly an extremely large
number of states. Intuition suggests here that it is appropriate to aggregate
all customers of a given type, and represent them with their total service level.
Thus the aggregate state in this approach is the list of total required service
level of each type within the facility (together with the list of service levels of
the customers that have just arrived - an uncontrollable state component, d.
Section 1.4). Clearly it is much easier to deal with such a space of aggregate
states in a DP context.

The choice of aggregation probabilities here is clear, since any original
system state maps naturally into a unique aggregate state. The rationale
for specifying the disaggregation probabilities, while somewhat arbitrary, is

Example 6.3.11 (Admission Control in a Service

The choices of aggregate states, and aggregation and disaggregation
probabilities are often guided by insight into the problem's structure. The
following is an example.

Original System
States

Aggregate States

Soft Aggregation

Disaggregation
Probabilities

Aggregation
Probabilities

Figure 6.3.1 Disaggregation and aggregation probabilities in the hard and
soft aggregation Examples 6.3.9 and 6.3.10. The difference is that in soft
aggregation, some of the aggregation probabilities are strictly between 0 and
1, i.e., a state of the original system may be associated with multiple aggregate
states.

In hard aggregation, the aggregate states/subsets are disjoint, and each origi
nal system state is associated with a single aggregate state. A generalization is
to allow the aggregate states/subsets to overlap, with the aggregation prob
abilities Wjt quantifying the "degree of membership" of j in the aggregate
state t. Thus, an original system state j may be a member of multiple ag
gregate states/subsets t, and if this is so, the aggregation probabilities Wjt

will be positive but less than 1 for all t that contain j (we should still have
Wjt = 1); see Fig. 6.3.I.

example, assume that we are dealing with a queue that has space
for 100 customers, and that the state is the number of spaces occupied at a
given time. Suppose that we introduce four aggregate states: "nearly empty"

After computing the optimal costs J(t) of the aggregate problem, we use
Eq. (6.30) to obtain the approximate cost function J(j), which for this
hard aggregation example is piecewise constant, with alfstates j E S that
belong to the same aggregate state/subset t having the same value of J(j).
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M

Jk(x) = L wm(x)Jk(xm).
m=l

We finally note that one may address the solution of the aggregate
problem itself by some suboptimal method, thereby introducing an addi
tional layer of approximation in the solution of the original problem.

for all m,

for some nonnegative weights wm(x), which add to 1 and are chosen on the
basis of some geometric considerations. We view the weights wm(x) as ag
gregation probabilities, and we specify the disaggregation probabilities to as
sociate the grid states with themselves, i.e.,

similar to the coarse grid approach of Example 6.3.12.
The aggregation and disaggregation probabilities just given specify the

aggregate problem, which has a finite state space, the set {Xl, .. . , x~}, and
can be solved by DP to obtain the corresponding optimal costs-to-go Jdxm ),

m = 1, ... ,M, for each stage k. Then the cost-to-go of each nongrid state x
at stage k is approximated by

The idea here is to select from within a parametric class of functions, some
cost-to-go approximations Jk , which will be used in a limited lookahead
scheme in place of the optimal cost-to-go functions Jk . Such parametric
classes of functions are called approximation architectures, and are generi
cally denoted by J(x, r), where x is the current state and r = (rl, ... , rm )

is a vector of "tunable" scalar parameters, also called weights (to simplify
notation, we suppress the time indexing in what follows). adjusting the
weights, one can change the "shape" of the approximation so that it is
reasonably close to the true optimal cost-to-go function.

There is an extensive methodology for the selection of the weights.
The simplest and often tried approach is to do some form of semi-exhaustive
or semi-random search in the space of weight vectors and adopt the weights
that result in best performance of the associated one-step lookahead con
troller. Other more systematic approaches are based on various forms of
cost-to-go evaluation and least squares fit. We will discuss such approaches
briefly here and more extensively in Vol. II in the context of the method
ology of neuro-dynamic programming; see also the books by Bertsekas and
Tsitsiklis [BeT96], and Sutton and Barto [SuB98].

There is also a large variety of approximation architectures, involv
ing for example polynomials, neural networks, wavelets, various types of
basis functions, etc. We provide a brief discussion of architectures based
on extraction of features, and we refer to the specialized literature (e.g.,
Bertsekas and Tsitsiklis [BeT96], Bishop [Bis95], Haykin [Hay99], Sutton
and Barto [SuB98]) for detailed discussions.

6.3.5 Parametric Cost-to-Go

Discl["et;iz'31.tion of Continuous State Spaces)

.ll-I..l'>,<A.Ju.Jl.II-.n,c.; 6.3.12 (Using a Coarse Grid)

A technique often used to reduce the computational requirements of DP is to
select a small collection S of states from I and a small collection 5 of states
from I, and define an aggregate problem whose states are those in Sand 5.
The aggregate problem is then solved by DP and its optimal costs are used
to define approximate costs for all states in I and 1. This process, is known
as coarse grid approximation, and is motivated by the case where the original
state spaces I and I are dense grids of points obtained by discretization
of continuous state spaces, while the collections Sand 5 represent coarser
subgrids.

The aggregate problem may be formalized by specifying the disaggrega
tion probabilities to associate the states of S with themselves (since S C 1):

qss = 1, qsi = 0 if i =1= s, s E S.

The aggregation probabilities are used to represent each state in I as a prob
abilistic mixture of states in 5, respectively, possibly using some geometrical
attribute of the state space.

guided by intuition into the problem structure. Given an aggregate state
(a total level of service for each customer type within the facility), we must
generate through the disaggregation probabilities, a "representative" list of
customers of each type. It is not difficult to devise reasonable heuristic meth
ods for doing so. The disaggregation and aggregation probabilities, together
with the transition probabilities of the original system, specify the transition
probabilities and the expected cost per stage of the aggregate problem.

Assume for simplicity a stationary problem, where the state space of the
original problem is a bounded region of a Euclidean space. The idea here is
to discretize this state space using some finite grid {Xl, ... ,xM }, and then to
express each nongrid state by a linear interpolation of nearby grid states. By
this we mean that the grid states Xl, ... ,xM are suitably selected within the
state space, and each nongrid state X is expressed as

M

x = L wm(x)xm,
rn=l

Some simplification techniques, aimed at reducing the complexity of
the DP computation, can be interpreted in terms of aggregation. The
following is an example.

The aggregation methodology also applies to problems with an infinite
number of states. The only difference is that for each aggregate state, the
disaggregation probabilities are replaced by a disaggregation distribution
over the original system's state space. Among other possibilities, this type
of aggregation provides methods for discretizing continuous state space
problems, as illustrated by the following example.
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J(x, T') = L TiYi(X),
i=l

Computer Chess

where Yi (x) is the aggregation probability associated with state x and ag
gregate state i. Thus, within this context, the aggregation probability Yi(X)
may be viewed as a feature, which, roughly speaking, specifies the "degree
of membership of x to aggregate state i."

We now illustrate the preceding concepts with a detailed discussion
of computer chess, where feature-based approximation architectures play
an important role.

m

constant with respect to this partition; that is, it assigns the same cost
to-go value J(v, r) to all states in the set Sv. This suggests that a feature
extraction mapping is well-chosen if states that have the same feature vector
have roughly similar optimal cost-to-go.

A feature-based architecture is also related to the aggregation method
ology of Section 6.3.4. In particular, suppose that we introduce m aggregate
states, 1, ... , m, and associated aggregation and disaggregation probabil
ities. Let T'i be the optimal cost-to-go associated with aggregate state i.
Then, the aggregation methodology yields the linear parametric approxi
mation

matian
Feature

Cost~ApproxiState x Vector y
Feature Extraction Cost Approximator wI J (y,r)
Mapping Parameter Vector r

J(x, r) = J(y(x), r),

pI=Dro1xim:cxtion Architectures Based on Feature Extraction

where T is a parameter vector. Thus, the cost approximation depends on
the state x through its feature vector y(x) (see Fig. 6.3.2).

?learly,. for the success of the cost function approximation approach, it
IS very Important to select a class of functions J (x, r) that is suitable for
t~le ~roble~ at hand. One particularly interesting type of cost approxima
tIOn IS provIded by feature extraction, a process that maps the state x into
some other vector y(x), called the feature vector associated with state x.
The vector y(x) consists of scalar components Yl (x), ... ,Ym (x), called fea
t'ures. These features are usually handcrafted based on whatever human
intelligence, insight, or experience is available', and are meant to capture
the most important aspects of the current state x. A feature-based cost
approximation has the form

Figur~ 6.3.2 Using a feature extraction mapping to generate an input to a cost
approxlmator.

~he idea is t.hat the co~t-to-go function J to be approximated may
~e a hIghly. c01:uplIcated nonlInear map and it is sensible to try to break
Its complexIty mto smaller, less complex pieces. Ideally, the features will
enc~de much of t~e nonlinearity that is inherent in J,and the approxi
mation may be qUIte accurate without requiring a complicated function J.
For example, with a well-chosen feature vector y(x), a good approximation
to the cost-to-go is often provided by linearly weighting the features, i.e.,

m

J(x,r) = J(y(x),r) = LriYi(X),
i=l

where T'1, ... , T m is a set of tunable scalar weights.
No~e that the use of a feature vector implicitly involves the grouping

of states mto the subsets that share the same feature vector, i.e., the subsets

Sv={xIY(x)=v},

where v is possible value of y(x). These subsets form a partition of the
state space, and the approximate cost-to-go function J(y(x), r) is piecewise

Chess-playing computer programs are one of the more visible successes
of artificial intelligence. Their underlying methodology relies provides an
interesting case study in the use of approximate DP. It involves the idea of
limited lookahead, but also illustrates some DP ideas that we have not had
much opportunity to look at in detail. These are the idea of forward depth
first search, an important memory-saving technique that was discussed in
Section 2.3 in the context of label correcting methods, and the idea of
alpha-beta pruning, which is an effective method for reducing the amount
of computation needed to find optimal strategies in competitive games.

The fundamental paper on which all computer chess programs are
based was written by one of the most illustrious modern-day applied math
ematicians, C. Shannon [Sha50]. It was argued by Shannon that whether
the starting chess position is a win, loss, or draw is a question that can be
answered in principle, but the answer will probably never be known. He
estimated that, based on the chess rule requiring at least one pawn advance
or capture within every 50 moves (otherwise a draw is declared), there are
on the order of 10120 different possible sequences of moves in a chess game.
He concluded that to examine these and select the best initial move for
White would require 1090 years of a "fast" computer's time (fast here re
lates to the standards of the '50s, but the number 1090 is overwhelming
even by today's standards). As an alternative, Shannon proposed a limited
lookahead of a few moves and eval'uating the end positions by means of a
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scoring junction. The scoring function may involve, for example, the calcu
lation of a numerical value for each of a set of major features of a position
(such as material balance, mobility, pawn structure, and other positional
factors), together with a method to combine these numerical values into
a single score. Thus, we may view a scoring function as a feature-based
architecture for evaluating a chess position/state.

Consider first a one-move lookahead strategy for selecting the first
move in a given position P. Let l\Ih, . .. ,l\IIr be all the legal moves that
can be made in position P by the side to move. Denote the resulting
positions by 1VlrP, ... ,l\IIrP, and let S(1\;11P) , ... ,S(MrP) be the corre
sponding scores (the convention here is that White is favored in positions
with high score, while Black is favored in positions with low score). Then
the move selected by White (Black) in position P is the move with maxi
mum (minimum) score. This is known as the backed-up score of P and is
given by

Figure 6.3.4 A two-move lookahead tree with 'White to move. The backed-up
scores are shown in parentheses. The best initial move is Ma and the principal

continuation is (i\13, M32)'

-1 +27o +5 +16

P (White to Move)

-5 +3 -4+10

if White is to move in P,
if Black is to move in P.

BS(P) = {max{S(MIP), ,S(1\iIrP)}
min{ S(l\IhP) , , S(MrP)}

BS(P) max{ BS(M1P), . .. ,BS(MrP)}.

Figure 6.3.5 A four-move lookahead tree with White to move. The backed-up
scores are shown in parentheses. The best initial move is NIl. The principal

continuation is heavily shaded.

The sequence of best moves is known as the principal continuation. The
process is illustrated in 6.3.4. It is clear that Shannon's method as just
described can be generalized for an arbitrary number of lookahead moves .

(see Fig. 6.3.5).
Generally, to evaluate the best move at a given position and the

corresponding backed-up score using lookahead of n moves, one can use
the following DP-like procedure:

+1

p

+5

This process is illustrated in Fig. 6.3.3.

Figure 6.3.3 A one-move lookahead tree. If White moves at position P, the best
move is 1\IiI and the backed-up score is +5. If Black moves in position P, the best
move is 1\113, and the backed-up score of Pis -3.

Consider next a two-move lookahead strategy in a given position P.
Assume for concreteness that vVhite moves, and let the legal moves be
Ml, ... ,l\IIr and the corresponding positions be M1P, ... ,MrP. Then in
each of the positions MiP, i = 1, ... , r, apply the one-move lookahead
strategy with Black to move. This gives a best move and a backed-up
score BS(l\IIiP) for Black in each ofthe positions MiP, i = 1, ... , r. Finally,
based on the backed-up scores BS(M1P), ... ,BS(MrP), apply a one-move
lookahead strategy for White, thereby obtaining the best move at position
P and a backed-up score for position P of



Figure 6.3.6 Traversing a tree in depth-first fashion. The numbers indicate the
order in which the scores of the terminal positions and the backed-up scores of
the intermediate positions are evaluated.

1. Evaluate the scores of all possible positions that are n moves ahead
from the given position P.

2. Using the scores of the terminal positions just evaluated, calculate
the backed-up scores of all possible positions that are n -- 1 moves
ahead from P.

3. For k = 1, ... , n - 1, using the backed-up scores of all possible po-
sitions that are n - k moves ahead from P, calculate the backed-up
scores of all positions that are n - k - 1 moves ahead from P.

The above procedure requires a lot of memory storage even for a mod
est number of lookahead moves. Shannon pointed out that with an alter
native but mathematically equivalent calculation, the amount of memory
required grows only linearly with the depth of lookahead, thereby allowing
chess programs to operate in limited-memory microprocessor systems. This
is accomplished by searching the tree of moves in depth-first fashion, and
by generating new moves only when needed, as illustrated in Figs. 6.3.6
and 6.3.7. It is only necessary to store the one move sequence under cur
rent examination together with one list of legal moves at each level of the
search tree. The precise algorithm is described by the following routine,
which calls itself recursively.
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Minimax Algorithm

To determine the backed-up score BS(n) of position n, do the follow
ing:

1. If n is a terminal position return its score. Otherwise:

2. Generate the list of legal moves at position n and let the cor
responding positions be nI, ... , n r . Set the tentative backed-up
score TBS(n) of position n to 00 if it is vVhite's turn to move at
n and to -00 if it is Black's turn to move at n.

3. For i = 1, ... , r, do:

a. Determine the backed-up score BS(ni) of position ni.

b. If it is White's move at position n, set

max{TBS(n), BS(ni)};TBS(n)

"-
"-

"-
"-

"-

bQ
I \

I \
I \

I \

I \
I \

I \
I \

Figure 6.3.7 Storage requirements of the depth-first version of the minimax
algorithm for the tree of Fig. 6.3.6. At the time that the terminal position marked
by a checkmark is scored, only the solid-line moves are stored in memory. The
dotted-line moves have been generated and purged from memory. The broken-line
moves have not been generated as yet. The memory required grows linearly with
the depth of the lookahead.

if it is Black's move at position n, set

TBS(n) := min{TBS(n), BS(ni)}.

4. Return BS(n) = TBS(n).
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worse than that of lViI. Such a response, called a refutation of move lVh,
makes further consideration of move M2 unnecessary (i.e., the portion of
the search tree that descends from move J\;h can be discarded). An example
is shown in Fig. 6.3.8.

Figure 6.3.8 The 0<-(3 procedure. White has evaluated move lVil to have backed
up score (+1), and starts evaluating move M2. The first reply of Black is a
refutation of M2, since it leads to a temporary score of -2, less than the backed
up score of MI. Since the backed-up score of M2 will be -2 or less, M2 will be
inferior to lVIl. Therefore, it is not necessary to evaluate move 1\12 further.

The a-(3 procedure can be generalized to trees of arbitrary or irregular
depth and can be incorporated very simply into the minimax algorithm.
Generally, if in the process of updating the backed-up score of a given
position (step 3b) this score crosses a certain bound, then no further cal
culation is needed regarding that position. The cutoff bounds are adjusted
dynamically as follows:

1. The cutoff bound in position n, where Black has to move, is denoted
a and equals the highest current score of all ancestor positions of
n where White has to move. The exploration of position n can be
terminated as soon as its temporary backed-up score equals or falls

belowa.

2. The cutoff bound in position n, where vVhite has to move, is denoted
(3 and equals the lowest current value of all ancestor positions of n
where Black has the move. The exploration of position n can be
terminated as soon as its temporary backed-up score rises above (3.

The process is illustrated in Fig. 6.3.9. It can be shown that the
backed-up score and optimal move at the starting position are unafJected
by the incorporation of the a-(3 procedure in the minimax algorithm. We
leave the verification of this fact to the reader (Exercise 6.8). It can also
be seen that the a-(3 procedure will be more efJective 'if the best moves in
each position are explored first. This tends to keep the OL bounds high and
the (3 bounds low, thus saving a maximum amount of calculation. Current

+3 +20-5-2

P (White to Move)

+20 +3+1+5

The idea of solving one-step lookahead problems with a terminal cost
(or backed-up score) that summarizes future costs is of course central in
the DP algorithm. Indeed, it can be seen that the minimax algorithm
just described is nothing but the DP algorithm for minimax problems (see
Section 1.6). Here, positions and moves can be identified with states and
controls, respectively, there are only terminal costs (the scores of the ter
minal positions), and the backed-up score of a position is nothing but the
optimal cost-to-go at the corresponding state.

The minimax algorithm is also known as the type A strategy. Shannon
argued that with this strategy, one could not expect a computer to seriously
challenge human players of even moderate strength. In a typical chess
position there are around 30 to 35 legal moves. It follows that for an n-move
lookahead there will be around 30n to 35n terminal positions to be scored.
Thus the number of terminal positions grows exponentially with the size of
lookahead, practically limiting n to being of the order of 10 with present
computers. Unfortunately, in some chess positions it is essential to look
a substantially larger number of moves ahead. In particular, in dynamic
positions involving many captures and countercaptures, the necessary size
of lookahead can be very large.

These considerations led Shannon to consider another strategy, called
type B, whereby the depth of the search tree is variable. He suggested that
at each position the computer give all legal moves a preliminary exam
ination and discard those that are "obviously bad." A scoring function
together with some heuristic strategy can be used for this purpose. Sim
ilarly, he suggested that some positions that are dynamic, such as those
involving many captures or checkmate threats, be explored further beyond
the nominal depth of the search.

Chess-playing computer programs typically use a combination of Shan
non's type A and B strategies. These programs use scoring functions, the
forms of which have evolved by trial-and-error, but they also use sophisti
cated heuristics to evaluate dynamic terminal positions in detail. In partic
ular, an effective algorithm, known as swapofJ, is used to quickly analyze
long sequences of captures and countercaptures, thereby making it possible
to score realistically complex, dynamic positions (see Levy [Lev84] for a de
scription). One may view such heuristics as either defining a sophisticated
scoring function, or as implementing a type B strategy.

The efficiency of the minimax algorithm can be substantially im
proved by using the alpha-beta pruning procedure (denoted OL-(3 for short),
which can be used to forego some calculations involving positions that can
not affect the selection of the best move. To understand the OL-(3 procedure,
consider a chess player pondering the next move at position P. Suppose
that the player has already exhaustively analyzed one relatively good move
M 1 with corresponding score BS(M1P) and proceeds to examine the next
move M2. Suppose that as the opponent's replies are examined, a partic
ularly strong response is found, which assures that the score of M2 will be
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chess programs use sophisticated techniques for ordering moves so as to
maximize the effectiveness of the a-/3 procedure. We discuss briefly two of
these techniques: iterative deepening and the killer heuristic.

Figure 6.3.9 The CY.-/3 procedure applied to the tree of Fig. 6.3.5. For example,
the /3-cutoff in position PI is due to the fact that its temporary score (+20)
exceeds its current /3-bound (+16). The CY.-cutoffs in positions P2, Pa, and P4 are
due to the fact that the corresponding temporary scores, +8, +11, and +11, have
fallen below the current CY.-bound, which is +16, the current temporary score in
position P.

+8 +20 +18 +16 +24 +20 +10 +12 -4 -5 +10 +32 +27 +10 +9 +3

obtain a thoroughly sorted list of moves at the starting position via a
one"'move lookahead, and then use the improved ordering in subsequent
iterations to enhance the performance of the a-/3 procedure.

The killer heuristic is similar to iterative deepening in that it aims
at examining first the most powerful moves at each position, thereby en
hancing the pruning power of the a-/3 procedure. To understand the idea,
suppose that in some position, White selects the first move M 1 from a can
didate list {JlliI, JIIh, .lVh, ...}, and upon examining Black's responses to M 1

finds that a particular move, which we will refer to as the killer move, is by
far Black's best. Then it is often true that the killer move is also Black's
best response to the second and subsequent moves M 2 , JIIIs, . .. in White's
list. It is therefore a good idea from the point of view of a-{3 pruning to
consider the killer move first as a potential response to the remaining moves
.M2, JIIIs, ... Of course, this does not always work as hoped, in which case it
is advisable to change the killer move depending on subsequent results of
the computation. In fact, some programs maintain lists of more than one
killer move at each level of lookahead.

The a-/3 procedure is safe in the sense that searching a game tree
with it and without it will produce the same result. Some computer chess
programs use more drastic tree-pruning procedures, which usually require
less computation for a given level of lookahead, but may miss on occasion
the strongest move. There is some debate at present regarding the merits
of such procedures. The books by Levy [Lev84] and Newborn [New75]
consider this subject, and provide a broader discussion of the limitations
of computer chess programs. A fascinating account of the development of
a checkers computer program that implements many of the ideas discussed

here is given by Schaeffer [Sch97].

vVe now discuss a specific type of cost-to-go approximation within the con
text of a limited lookahead scheme. Recall that in the one-step lookahead
method, at stage k and state Xk we use the control Ilk (Xk) that attains the

minimum in the expression

where J
k
+1 is some approximation of the true cost-!o-go function Jk+l' In

the rollout algorithm, the approximating function Jk+l is the cost-to-go of
some known heuristic/suboptimal policy 1r = {Mo, .. ·, MN--I}, called base
policy (see also Example 6.3.1). The policy thus obtained is called the
rollout policy based on 1r. Thus the rollout policy is a one-step lookahead

Iterative deepening, in its pure form, consists of first conducting a
search based on lookahead of one move; then carrying out (from scratch) a
search based on lookahead of two moves; then carrying out a search based
on lookahead of three moves and so on. This process is 'continued either
up to a fixed level of lookahead or until some limit on computation time
is exceeded. At each iteration associated with a certain level of lookahead,
one obtains a best move at the starting position, which is examined first in
the subsequent iteration that requires one extra move of lookahead. This
enhances the power of the a-/3 procedure, thereby more than making up for
the extra computation involved in doing a short lookahead search before
doing a longer one. (Actually, given that the number of terminal positions
increases on the average by a factor of the order of 30 with each additional
level of lookahead, the extra computation is relatively small.) An additional
benefit of this method is that a best move is maintained throughout the
search and can be produced at any time as needed. This comes in handy
in commercial programs that incorporate a feature whereby the computer
is forced to move either upon exhausting a given time allocation or upon
command by a human opponent. An improvement of the method is to

6.4 ROLLOUT
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policy, with the optimal cost-to-go appTOximated by the cost-to-go of the
base policy.

The process of starting from some suboptimal policy and generating
another policy using the one-step lookahead process described above is also
called policy improvement. This process will be discussed in Section 7.2
and in Vol. II in the context of the policy iteration method, which is a
primary method for solving infinite horizon problems.

Note that it is also possible to define rollout policies that make use of
multistep (say, I-step) lookahead. Here we assign to every state x that can
be reached in I steps, the exact cost-to-go of the base policy, as computed
by Monte Carlo simulation of several trajectories that start at x. Clearly,
such multistep lookahead involves much more on-line computation, but it
may yield better performance than its single-step counterpart. In what
follows, we concentrate on rollout policies with single-step lookahead.

The viability of a rollout policy depends on how much time is avail
able to choose the control following the transition to state x and on how
expensive the Monte Carlo evaluation of the expected value

E{gk(Xk,Uk,Wk) + Jk+1(!k(Xk,Uk,Wk))}

is. In particular, it must be possible to perform the Monte Carlo simulations
and calculate the rollout control within the real-time constraints of the
problem. If the problem is deterministic, a single simulation trajectory
suffices, and the calculations are greatly simplified, but in general, the
computational overhead can be substantial.

It is possible, however, to speed up the calculation of the rollout
policy if we are willing to accept some potential performance degradation.
For example, we may use an approximation Jk+1 of Jk+1 to identify a few
promising controls through a minimization of the form

mUin( )E{gk(Xk,Uk,Wk) + Jk+1(fk(xk,uk,wk))},
Uk E k Xk

and then restrict attention to these controls, using fairly accurate Monte
Carlo simulation. In particular, the required values of Jk+1 may be ob
tained by performing approximately the Monte Carlo simulation, using a
limited number of representative trajectories. Adaptive variants of this
approach are also possible, whereby we use some heuristics to adjust the
accuracy of the Monte Carlo simulation depending on the results of the
computation.

Generally, it is important to use as base policy one whose expected
cost-to-go is conveniently calculated. The following is an example.

}:i.;x:ample 6.4.1 (The

Consider the quiz problem of Example 4.5.1, where a person is given a list
of N questions and can answer these questions in any order he/she chooses.

Question i will be answered correctly with probability pi, and the person will
then receive a reward Vi. At the first incorrect answer, the quiz terminates
and the person is allowed to keep his or her previous rewards. The problem
is to choose the ordering of questions so as to maximize the total expected

reward.
We saw that the optimal sequence can be obtained using an interchange

argument: questions should be answered in decreasing order of the "index of
preference" Pivi/(l- Pi)' We refer to this as the index policy. Unfortunately,
with only minor changes in the structure of the problem, the index policy
need not be optimal. Examples of difficult variations of the problem may
involve one or more of the following characteristics:

(a) A limit on the maximum number of questions that can be answered,
which is smaller than the number of questions N. To see that the index
policy is not optimal anymore, consider the case where there are two
questions, only one of which may be answered. Then it is optimal to
answer the question that offers the maximum expected reward PiVi·

(b) A time window for each question, which constrains the set of time slots
when each question may be answered. Time windows may also be com
bined with the option to refuse answering a question at a given period,
when either no question is available during the period, or answering any
one of the available questions involves excessive risk.

(c) Precedence constraints, whereby the set of questions that can be an
swered in a given time slot depends on the immediately preceding ques
tion, and possibly on some earlier answered questions.

(d) Sequence-dependent rewards, whereby the reward from answering cor
rectly a given question depends on the immediately preceding question,
and possibly on some questions answered earlier.

Nonetheless, even when the index policy is not optimal, it can conve
niently be used as a base policy for the rollout algorithm. The reason is that
at a given state, the index policy together with its expected reward can be
easily calculated. In particular, each feasible question order ... ,iN) has
expected reward equal to

Thus the rollout algorithm based on the index heuristic operates as follows:
at a state where a given subset of questions have already been answered, we
consider the set of questions J that are eligible to be answered next. For each
question j E J, we consider a sequence of questions that starts with j and
continues with the remaining questions chosen according to the index rule.
We compute the expected reward of the sequence, denoted R(j), using the
above formula. Then among the questions j E J, we choose to answer next the
one with maximal R(j). A computational study of rollout algorithms for the
quiz problem and some variations, using several methods for approximating
the cost-to-go of the base policy, is given by Bertsekas and Castanon [BeC99].
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Cost ml[)l:rrI)Vl~rrle:IrJl.1C with a Rollout root

Rollout policies have a nice property: in their pure form, they always
result in improved performance over the corresponding base policy. This
is essentially a consequence of Prop. 6.3.1 (see Example 6.3.1), but for the
purpose of convenient reference, we adapt the proof of that proposition
to the rollout context. Let ]k(Xk) and Hk(Xk) be the costs-to-go of the
rollout and the base policies, respectively, starting from a state Xk at time
k. We will show that ]k(Xk) :::; Hk(Xk) for all Xk and k, so that the rollout
policy 1f is an improved policy over the base policy Jr. We have]N(XN) =
HN(XN) = gN(XN) for all XN· Assuming that ]k+l(Xk+l) :::; Hk+l(Xk+d
for all x k+ 1, we have

J k(Xk) E {gk (Xk' Tlk (Xk), Wk) + ] k+l (fk (Xk' Tlk(Xk), Wk)) }

:::; E{gk (Xk' Tlk(Xk), Wk) + Hk+l Uk (Xk' Tlk(Xk), Wk))}

:::; E{gk (Xk' J-Lk(Xk), Wk) + Hk+1(fk (Xk' J-Lk(Xk), Wk))}

= Hk(Xk),

for all Xk. The first inequality above follows from the induction hypothesis,
the second inequality follows from the definition of the rollout policy, and
the first and second equalities follow from the DP algorithm that defines the
costs-to-go of the rollout and the base policies, respectively. This completes
the induction proof that 7f is an improved policy over Jr.

Empirically, it has been observed that the rollout policy typically pro
duces considerable (and often dramatic) cost improvement over the base
policy. However, there is no solid theoretical support for this observation.
The following example provides some insight into the nature of cost im
provement.

Consider a binary tree with N stages as shown in Fig. 6.4.1. Stage k of the
tree has 2k nodes, with the node of stage 0 called root and the nodes of stage
N called leaves. There are two types of tree arcs: free and blocked. A free
(or blocked) arc can (cannot, respectively) be traversed in the direction from
the root to the leaves. The objective is to break through the graph with a
sequence of free arcs (a free path) starting from the root, and ending at one
of the leaves.

One may use DP to discover a free path (if one exists) by starting from
the last stage and by proceeding backwards to the root node. The kth step of
the algorithm determines for each node of stage N - k whether there is a free
path from that node to some leaf node, by using the results of the preceding
step. The amount of calculation at the kth step is O(2 N

-
k

). Adding the
calculations for the N stages, we see that the total amount of calculation is
O(N2 N

), so it increases exponentially with the number of stages. For this
reason it is interesting to consider heuristics that require calculation that is

Figure 6.4.1 Binary tree for the breakthrough problem. Each arc is either
free or is blocked (crossed out in the figure). The problem is to find a path
from the root to one of the leaves, which is free (such as the one shown with
thick lines).

linear or polynomial in N, but may sometimes fail to determine a free path,
even when a free path exists.

Thus, one may suboptimally use a greedy algorithm, which starts at the
root node, selects a free outgoing arc (if one is available), and tries to construct
a free path by adding successively nodes to the path. Generally, at the current
node, if one of the outgoing arcs is free and the other is blocked, the greedy
algorithm selects the free arc. Otherwise, it selects one of the two outgoing
arcs according to some fixed rule that depends only on the current node (and
not on the status of other arcs). Clearly, the greedy algorithm may fail to
find a free path even if such a path exists, as can be seen from Fig. 6.4.1.
On the other hand the amount of computation associated with the greedy
algorithm is O(N), which is much faster than the O(N2N

) computation of
the DP algorithm. Thus we may view the greedy algorithm as a fast heuristic,
which is suboptimal in the sense that there are problem instances where it
fails while the DP algorithm succeeds.

Let us also consider the rollout algorithm that uses the greedy algorithm
as the base heuristic. This algorithm starts at the root and tries to construct a
free path by exploring alternative paths constructed by the greedy algorithm.
At the current node, it proceeds according to the following two Cases:

(a) If at least one of the two outgoing arcs of the current node is blocked,
the rollout algorithm adds to the current path the arc that the greedy
algorithm would select at the current node.

(b) If both outgoing arcs of the current node are free, the rollout algorithm
considers the two end nodes of these arcs, and from each of them it
runs the greedy algorithm. If the greedy algorithm succeeds in finding
a free path that starts from at least one of these nodes, the rollout
algorithm stops with a free path having been found; otherwise, the
rollout algorithm moves to the node that the greedy algorithm would
select at the current node.

lr-t- !'1l1Y"r,nn,h Problem)~x,ample 6.4.2
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so (1 - Gk-l)Hk-l = Rk-l - Gk-l, and the probability of the event

E4 is

Event Es . Both the arcs (no, nl) and (no, n~) are free, and the greedy
algorithm does not find a free path starting from nl but finds a free path
from n~. The probability of this event is peEs) = P2(1- Gk-l)Gk-l.

Event E4 . Both the arcs (no, nl) and (no, nD are free, the greedy
algorithm does not find a free path starting from either nl or n~, but
the rollout algorithm finds a free path from nl. The probability of this
event is P2(1- Gk-l? Hk-l, where Hk-l is the conditional probability
that the rollout finds a free path from nl given that the greedy does
not find a free path from nl· We have

(3)

Rk = (2p(1-p) +p2(1_ Gk-l))Rk-l +p2Gk _ l

= p(2 - p)Rk- l + p2Gk_l(1- Rk-l),

with the initial condition Ro = 1. Since limk--+oo Gk = °and p(2 - p) < 1,
it follows from the above equation that limk--+oo Rk = 0. Furthermore, by
dividing with G k = p(2 - p)Gk-l, we have

so since limk--+oo Rk = 0, we obtain for large N

From this, by substituting the expressions PI = 2p(l - p) and P2 = p2, we

obtain

Thus, by adding the probabilities of the above mutually exclusive and
collectively exhaustive events, we have

Rk = peEl) + P(E2) + peEs) + P(E4)

= PlRk-l + P2(Gk-l + (1 - Gk-l)Gk-l + (1 - Gk-l)(Rk-l - Gk-l))

= (PI + P2(1- Gk-l))Rk-l + P2Gk-l.

Sec. 6.4Chap. 6

and let P2 denote the probability that both arcs (no, nl) and (no, n~) are free,
so

The probability Rk that the rollout algorithm will find a free path in a
graph of k stages can be calculated by means of a recursion, as we now show.
At a given node no with k stages to go, consider the path (no, nl,.·., nk)
generated by the greedy algorithm, and let (no, nl) and (no, n~) denote the
incident arcs of node no. Let PI denote the probability that exactly one of
the arcs (no, nl) and (no, nD is free, so

PI = 2p(1 - p),

Thus, when both outgoing arcs are free, the rollout algorithm explores
further the suitability of these arcs, as in case (b) above. Because of this
additional discriminatory capability, the rollout algorithm always does at least
as well as the greedy (it always finds a free path when the greedy algorithm
does, and it also finds a free path in some cases where the greedy algorithm
does not). This is consistent with our earlier discussion of the generic cost
improvement property of the rollout algorithm over the base heuristic. On the
other hand, the rollout algorithm applies the greedy heuristic as many as 2N
times, so that it requires O(N2

) amount of computation - this is intermediate
between the O(N) computation of the greedy and the O(N2N

) computation
of the DP algorithm.

Let us now calculate the probabilities that the algorithms will find a
free path given a randomly chosen breakthrough problem. In particular, we
generate the graph of the problem randomly, by selecting each of its arcs to
be free with probability p, independently of the other arcs. We then calcu
late the corresponding probabilities of success for the greedy and the rollout
algorithms.

The probability Gk that the greedy algorithm will find a free path in
a graph of k stages is the probability of a "success" in each of the k stages,
where a success is counted whenever at least one of the two arcs involved is
free, an event of probability 1- (1- p)2 or p(2 - p). Thus we have, using the
independence of the blocked/unblocked status of the arcs,
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To calculate the probability Rk of the event that the rollout algorithm suc
ceeds in finding a free path, we partition this event into the following four
mutually exclusive events, and we calculate their probabilities:

(1) Event El. Exactly one of the arcs (no, nl) and (no, nD is free [by
necessity (no, nl) since it is chosen by the greedy algorithm] and the
rollout algorithm finds a free path starting from nl. The probability of
this event is peEl) = PlRk-l.

(2) Event E2. Both arcs (no, nl) and (no, nD are free and the greedy
algorithm finds a free path starting from nl. The probability of this
event is P(E2) = P2Gk- l .

Thus, asymptotically, the rollout algorithm requires O(N) times more
computation, but has an O(N) times larger probability of finding a f~ee ?ath
than the greedy algorithm. This type of tradeoff appears to be qualItatIvely
typical: the rollout algorithm achieves a substantial performanc~ improv~

ment over the base heuristic at the expense of extra computatlOn that IS

equal to the computation time of the base heuristic times a factor that is a
low order polynomial of the problem size.
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i = k, ... ,N -1,

and a cost

base policy 1r produces deterministic sequences of states
and controls {Uk, .. . ,UN-I} such that

Thus the Q-factor
known as the Q-factor of (Xk, Uk) at time k. Alternatively, for the compu
tation of JIk(Xk) we need the value of the cost-to-go

Hk+l (fk(Xk, Uk, Wk))

We now consider in more detail implementation issues and specific proper
ties of rollout algorithms in a variety of settings. To compute the rollout
control JIk(Xk), we need for all Uk E Uk(Xk) the value of

Qk(Xk, Uk) = E{gk(Xk, Uk, Wk) + H k+l (fk(Xk, Uk, Wk)) },

'-'~jlJl.Jl..Jl.IJI'Ul"':Jl."J.VJl..Aa.Jl.Issues in Rollout

UI = {UI I there exists a solution of the form (UI, U2, ... ,UN) E U}.

can be obtained by running 1r starting from state fk(Xk, Uk) and time k+ 1,
and recording the corresponding cost Hk+l (JdXk, Uk)). The rollout control
JIk(Xk) is obtained by calculating in this manner the Q-factors Qk(Xk, Uk)
for all Uk E Uk(Xk), and setting

Aside for being convenient for the deterministic special case of the
basic problem of Chapter 1, this rollout method can be adapted for gen
eral discrete or combinatorial optimization problems that do not necessar
ily have the strong sequential character of the basic problem. For such
problems the rollout approach provides a convenient and broadly appli
cable suboptimal solution method that goes beyond and indeed enhances
the common types of heuristics, such as greedy algorithms, local search,
genetic algorithms, tabu search, and others.

To illustrate the ideas involved, let us consider the problem

(6.31)
minimize G (u)
subject to U E U

where U is a finite set of feasible solutions and G(u) is a cost function. We
assume that each solution U has N components; that is, it has the form
U = (UI' U2, . .. ,UN), where N is a positive integer. Under this assump
tion, we can view the problem as a sequential decision problem, where the
components UI,··., UN are selected one-at-a-time. An n-tuple (UI, ... , un)
consisting of the first n components of a solution is called an n-solution.
We associate n-solutions with the nth stage of a DP problem. In particular,
for n = 1, ... , N, the states of the nth stage are of the form (Ul,." ,Un).
The initial state is a dummy (artificial) state. From this state we may move
to any state (uI), with UI belonging to the set

6.4.1 Discrete Detenninistic Problems

Let us assume that the problem is deterministic, i.e., that Wk can take only
one value at each stage k. Then, starting from state Xk at stage k, the

of the base policy at all possible next states h(Xk, Uk, Wk), from which we
can compute the required Q-factors.

vVe will focus on the case where a closed form expression of the Q
factor is not available. We assume instead that we can simulate the system
under the base policy 1r, and in particular, that we can generate sample sys
tem trajectories and corresponding costs consistently with the probabilistic
data of the problem. We will consider several cases and possibilities, we will
point out their advantages and drawbacks, and we will discuss the contexts
within which they are most appropriate. These cases are:

(1) The deterministic problem case, where Wk takes a single known value
at each stage. vVe provide an extensive discussion of this case, focus
ing not only on traditional deterministic optimal control problems,
but also on quite general combinatorial optimization problems, for
which the rollout approach has proved convenient and effective.

(2) The stochastic problem case with Q-factors e'valuated by lVlonte-Carlo
simulation. Here, once we are at state Xk, the Q-factors Qk(Xk, Uk)
are evaluated on-line by Monte-Carlo simulation, for all Uk E Uk(Xk).

(3) The stochastic problem case with Q-factors approximated in some
way. One possibility is to use a certainty equivalence approximation,
where the problem is genuinely stochastic, but the values Hk(Xk) are
approximated by the cost-to-go of 1r that would be incurred if the sys
tem were replaced by a suitable deterministic system from state Xk
and time k onward (assumed certainty equivalence). There are also
other possibilities based on the use of an approximation architecture
and some form of least squares.

We examine each of these three cases in the next three subsections.
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(6.32)

t In the case where there are multiple arcs connecting a node pair, we can
merge all these arcs to a single arc, since the set of destination nodes that can
be reached from any non-destination node will not be affected.

for DiscreteThe Basic Rollout

discrete optimization. To this end, we introduce a graph search problem,
which contains as special cases broad classes of discrete/integer optimiza
tion problems, and will serve as the context of our methodology. We will
then describe and analyze a basic form of a one-step lookahead algorithm,
we will discuss some of its variations, we will illustrate it by means of some
examples, and we will discuss its connection with the DP context.

As we explain later (see the end of Section 6.4.1), the algorithm to
be introduced is not quite a rollout algorithm in the sense discussed so far,
because, strictly speaking, it does not use the cost of a heuristic policy as a
one-step lookahead cost approximation, except under a special assumption
(the sequential consistency assumption, to be described later). The basic
idea of the algorithm is, however, very close to a rollout: it is a one-step
lookahead policy with cost approximation derived from a heuristic. Thus,
with a stretch of terminology, we will call this algorithm "rollout" as well.

Let us introduce a graph search problem that will serve as a general model
for discrete optimization. We are given a graph with set of nodes N, set
of arcs A, and a special node s, which we call the origin. The arcs are
directed in the sense that arc (i, j) is distinct from arc (j, i). We are also
given a subset N of nodes, called destinations, and a cost g(i) for each
destination i. The destination nodes are terminal in the sense that they
have no outgoing arcs. For simplicity, we assume that the node and arc
sets, N and A contain a finite number of elements. However, the following
analysis and discussion applies, with minor modifications in language, to
the case of a countably infinite number of nodes and a finite set of outgoing
arcs from each node. We want to find a path that starts at the origin s,
ends at one of the destination nodes i E N, and is such that the cost g( i)
is minimized.

In the context of the discrete optimization problem (6.31), nodes i
correspond to n-tuples (Ul, , Un) consisting of the first n components
of a solution, where n = 1, , N. Arcs lead from nodes of the form
(Ul"",Un-l) to nodes of the form (Ul, ... ,Un-l,Un), and there is an arc
for each Un of the form (6.32). An interesting property of this special case
is that its associated graph is acyclic.

In our terminology, a path is a sequence of arcs

(il,i2), (i2,i3),"" (im-l,im),

all of which are oriented in the forward direction. The nodes il and im
are called the start node and the end node of the path, respectively. For
convenience, and without loss of generality,t we will assume that given an

i = 1, ... ,N.

Un+l = arg min H(Ul,"" Un, un+d.
Un+l EUn+1CU1,···,Un)

and operates sequentially, for n = 1, , N - 1, as follows:

Given a partial solution (liI, ,Un), it runs the heuristic starting
from the partial solutions (Ul, , Un, Un+l) corresponding to all the
possible next solution components Un+l E Un+l (Ul,'" , Un), and se
lects as next component

In order to analyze most economically the preceding algorithm and its
variants, we will embed it within a more general and flexible framework for

Unfortunately, this is seldom viable, because of the prohibitive computation
required to obtain J*(Ul, ... ,Un).

Assume now that we have a heuristic, which starting from an n

solution (Ul,""Un), produces an N-solution ('Ul, ... ,Un'Un+l .... ,UN)
whose cost is denoted by H(Ul, ... ,Un). Such a heuristic may be viewed
as a base policy for the problem, in the sense that given the current state
(Ul, ... ,Un) it generates the next decision Un+l as the first component of
the remaining portion (Un +1, ... , UN) of the solution. Let us consider the
corresponding rollout algorithm. It can be seen that this algorithm selects
as the first solution component

liI = arg min H(Ul),
U1EUl

The choices available at state (Ul, ... ,Un-l) are Un E Un(Ul, ... ,Un-l)'
These are the choices of 'Un that are consistent with the preceding choices
Ul, ... ,Un-I, and are also consistent with feasibility. The terminal states
correspond to the N-solutions (Ul, ... ,UN), and the only nonzero cost is
the terminal cost G('Ul, . .. ,UN).

Let J* (Ul, ... ,Un) denote the optimal cost starting from the n-solution
(Ul, ... ,Un), i.e., the optimal cost of the problem over solutions whose first
n components are constrained to be equal to Ui, i = 1, ... ,n, respectively. If
we knew the optimal cost-to-go function J*(Ul, ... ,Un), we could construct
an optimal solution by a sequence of N single component minimizations.
In particular, an optimal solution (ui, ... ,uN) could be obtained through
the algorithm

Thus Ul is the set of choices of Ul that are consistent with feasibility.
More generally, from a state of the form (Ul, ... ,Un-I), we may move

to any state of the form (Ul, ... ,Un-I, Un), with Un belonging to the set

Un(Ul, ... ,Un-I) = {Un I there exists a solution of the form

(Ul, ... ,Un-l,Un , ... ,UN) E U}.
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N(i) {j I (i,j) is an arc}.

H(i) = g(p(i)).

Projections of
Neighbors of im

Neighbors of im

Let us consider the traveling salesman problem, whereby a salesman wants to
find a minimum mileage/cost tour that visits each of iV given cities exactly
once and returns to the city he started from. We associate a node with each
city i = 1, ... , iV, and we introduce an arc (i,j) with traversal cost aij for
each ordered pair of nodes i and j. Note that we assume that the graph is
complete; that is, there exists an arc for each ordered pair of nodes. There is
no loss of generality in doing so because we can assign a very high cost aij to

irn+l=arg min H(j)=arg min g(p(j)).
jEN(i rn ) jEN(i rn )

and the projection that corresponds to the minimum above may be taken as
the final (suboptimal) solution produced by the rollout algorithm. vVe may
also compare the above minimal cost with the cost 9 (p(s)) of the projection
p(s) of the origin, and use p(s) as the final solution if it produces a smaller
cost. This will ensure that the rollout algorithm will produce a solution
that is no worse than the one produced by the base heuristic.

min H(ik) = min g(p(ik))'
k=l, ... ,m k=l, ... ,m

Figure 6.4.2 Illustration of the rollout algorithm. After m steps of the algorithm,
we have the path (8, il, ... ,irn ). To extend this path at the next step, we generate
the set N (i rn ) of neighbors of the terminal node irn , and select from this set the
neighbor that has the best projection, i.e.

Example 6.4.3 (Traveling Salesman ..... lr·n n, ",:nT'

If im+l is a destination node, R1i terminates. Otherwise, the process is
repeated with the sequence (s, il, ... , im+I) replacing (s, il, ... , im ); see
Fig. 6.4.2.

Note that once RH has terminated with a path (s, il, ... , im ), we will
have obtained the projection p(ik) of each of the nodes ik' k = 1, ... , m.
The best of these projections yields a cost

(6.33)= arg min H(j).
jEN(irn )

Note that N(i) is nonempty for every non-destination node i, since by
assumption there exists a path starting at i and ending at its projection
p(i). The rollout algorithm RH starts with the origin node s. At the typical
step, given a node sequence (s, i l , ... , im ), where i m is not a destination,
RH adds to the sequence a node im+l such that

The projection of a destination node is the node itself by convention, so
that for all i E N we have i = p(i) and H(i) = g(i). Note that while the
base heuristic H will generally yield a suboptimal solution, the path that it
constructs may involve a fairly sophisticated suboptimization. For example,
H may construct several paths ending at destination nodes according to
some heuristics, and then select the path that yields minimal cost.

One possibility for suboptimal solution of the problem is to start at
the origin s and use the base heuristic H to obtain the projection p(s).
vVe instead propose to use 1i to construct a path to a destination node se
quentially. At the typical step of the sequence, we consider all downstream
neighbors j of a node i, we run the base heuristic 1i starting from each of
these neighbors, and obtain the corresponding projections and costs. We
then move to the neighbor that gives the best projection. This sequential
version of H is called the rollout algorithm based on H, and is denoted by
RH.

To formally describe the rollout algorithm, let N (i) denote the set of
downstream neighbors of node i,

ordered pair of nodes (i, j), there is at most one arc with start node i and
end node j, which (if it exists) will be denoted by (i, j). In this way, a path
consisting of arcs (iI, i2), (i2, i3), , (im-l, im ) is unambiguously specified
as the sequence of nodes (i I, i2, , im ) .

Let us assume that we have a heuristic path construction algorithm,
denoted H, which given a non-destination node i t/:. N, constructs a path

iI, ... , i m , I) starting at i and ending at one of the destination nodes
Implicit in this assumption is that for every non-destination node, there

exists at least one path starting at that node and ending at some destination
node. We refer to the algorithm H as the base heuristic, since we will
use this algorithm as the basic building block for constructing the rollout
algorithm to be introduced shortly.

The end node I of the path constructed by the base heuristic H is
completely specified by the start node i. We call I the projection of i under
H, and we denote it by p(i). vVe denote the corresponding cost by H(i),



Example 6.4.4 (Greedy Algorithms as Base Heuristics)

Definition 6.4.1: We say that the base heuristic 7-{ is sequentially
consistent if for every node i, it has the following property: If 7i gen
erates the path (i, iI, ... ,im , I) when it starts at i, it generates the
path (iI, ... , im , I) when it starts at the node il.
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(6.34)irn+l = arg min F(j).
jEN(i rn )

Rollout

In the case where i rn+1 is a destination, the algorithm terminates with the
path (i, i l , ... , i rn , i rn+ l ). Otherwise, the process is repeated with the path
(i, il, ... , irn , irn+l) replacing (i, i l , ... , i rn ).

An example of a greedy algorithm is the nearest neighbor heuristic for
the traveling salesman problem (cf. Example 6.4.3). Recall from that example
that nodes of the graph search problem correspond to paths (sequences of
distinct cities), and a transition to a neighbor node corresponds to adding
one more unvisited city to the end of the current path. The function F in the
nearest neighbor heuristic specifies the cost of the addition of the new city.

It is also interesting to note that by viewing F as a cost-to-go approxi
mation, we may consider the greedy algorithm to be a special type of one-step
lookahead policy. Furthermore, if F(j) is chosen to be the cost obtained by
some base heuristic starting from j, then the greedy algorithm becomes the
corresponding rollout algorithm. Thus, it may be said that the rollout algo
rithm is a special case of a greedy algorithm. However, the particular choice
of F used in the rollout algorithm is responsible for special properties that
are not shared by other types of greedy algorithms.

Let us denote by H the greedy algorithm described above and assume
that it terminates starting from every node (this has to be verified indepen
dently). Let us also assume that whenever there is a tie in the minimization
of Eq. (6.34), H resolves the tie in a manner that is fixed and independent
of the starting node i of the path, e.g., by resolving the tie in favor of the

Suppose that we have a function F, which for each node i, provides a scalar
estimate F( i) of the optimal cost starting from i, that is, the minimal cost
g(1,) that can be obtained with a path that starts at i and ends at one of
the destination nodes I E Then F can be used to define a base heuristic,
called the greedy algorithm with respect to F, as follows:

The greedy algorithm starts at a node i with the (degenerate) path that
consists of just node i. At the typical step, given a path (i, iI, ... ,irn ), where
i rn is not a destination, the algorithm adds to the path a node -[rn+l such that

Thus H is sequentially consistent if all the nodes of a path that it
generates have the same projection. There are many examples of sequen
tially consistent algorithms that are used as heuristics in combinatorial
optimization, including the following.

Sec. 6.46

Termination and Sequential Consistency

an arc (i, j) that is precluded from participation in the solution. The problem
is to find a cycle that goes through all the nodes exactly once and whose sum
of arc costs is minimum.

There are many heuristic approaches for solving the traveling salesman
problem. For illustration purposes, let us restrict attention to the simple
nearest neighbor heuristic. Here, we start from a path consisting of just a
single node i l and at each iteration, we enlarge the path with a node that
does not close a cycle and minimizes the cost of the enlargement. In particular,
after k iterations, we have a path {iI, ... , ik} consisting of distinct nodes, and
at the next iteration, we add an arc (ik, ik+l) that minimizes aiki over all arcs
(ik, i) with i =1= i1, ... , ik. After N -1 iterations, all nodes are included in the
path, which is then converted to a tour by adding the final arc (iN, i1).

We can formulate the traveling salesman problem as a graph search
problem as follows: There is a chosen starting city, say i1 corresponding
to the origin of the graph search problem. Each node of the graph search
problem corresponds to a path (i1, i2, ... , i k) , where i 1, i2, ... , i k are distinct
cities. The neighbor nodes of the path (i1, i2, ... , ik) are paths of the form
(i1, i2, , ik, which correspond to adding one more unvisited city ik+1 =1=

i 1, i2, ,ik at the end of the path. The destinations are the cycles of the form
(i1, i2, ,iN), and the cost of a destination in the graph search problem is the
cost of the corresponding cycle. Thus a path from the origin to a destination
in the graph search problem corresponds to constructing a cycle in N - 1 arc
addition steps, and at the end incurring the cost of the cycle.

Let us now use as base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k iterations, we
have a path {i1, ... , ik} consisting of distinct nodes. At the next iteration
we run the nearest neighbor heuristic starting from each of the paths of th~
form {i1, ... , ik, i} where i =1= i1, ... , ik, and obtain a corresponding cycle. We
then select as next node ik+l of the path the node i that corresponds to the
best cycle thus obtained.

We say that the rollout algorithm RH is terminating if it is guaranteed to
terminate finitely starting from any node. Contrary to the base heuristic
H, which by definition, has the property that it yields a path terminating
at a destination starting from any node, the rollout algorithm RH need not
have this property in the absence of additional conditions. The termination
question can usually be resolved quite easily, and we will now discuss a few
different methods by which this can be done.

One important case where RH is terminating is when the graph is
acyclic, since then the nodes of the path generated by RH cannot be re
peated within the path, and their number is bounded by the number of
nodes in N. As a first step towards developing another case where RH is
terminating, we introduce the following definition, which will also set the
stage for further analysis of the properties of RH.



350 Approximate Dynamic Programming Chap. 6 Sec. 6.4 Rollout Algorithms 351

Proof: Let im and im+l be two successive nodes generated by R'H, and
let (im, i~+l' i~+2"" 3m) be the path generated by H starting from im,
where 2m is the projection of i m . Then, since H is sequentially consistent,
we have

numerically smallest node j that attains the minimum in Eq. (6.34). Then
it can be seen that H is sequentially consistent, since by construction, every
node on a path generated by H has the same projection.

For a sequentially consistent base heuristic H, we will assume a re
striction in the way the rollout algorithm RH resolves ties in selecting the
next node on its path; this restriction will guarantee that RH is terminat
ing. In particular, suppose that after m steps, RH has produced the node
sequence (8, il, ... ,im), and that the path generated by H starting from
'lm is (im, im+l, ·lm+2, ... , I). Suppose that among the neighbor set N(im),
the node attains the minimum in the selection test

Furthermore, for all m = 1, ... ,m,

H(im) = min {H(i l ), min H(j), ... , min H(j)} .
jEN(il) jEN(irn _ 1 )

(6.37)

but there are also some other nodes, in addition to im+l, that attain this
minimum. Then, we require that the tie is broken in favor of im+l, i.e., that
the next node added to the current sequence (8, il, ... , im) is im+l. Under
this convention for tie-breaking, we show in the following proposition that
the rollout algorithm RH terminates at a destination and yields a cost that
is no larger than the cost yielded by the base heuristic H. t

Furthermore, since i~+l E N(im), we have using the definition of RH ref.
Eq. (6.33)]

min H(j),
jEN(irn )

(6.35)

H(i~+l) 2:: . min H(j) = H(im+l).
JEN(trn)

Combining the last two relations, we obtain

min H(j).
jEN(irn )

(6.38)

6.4.1: Let the base heuristic H be sequentially con
sistent. Then the rollout algorithm RH is terminating. Further
more, if (il, ... , im) is the path generated by RH starting from a
non-destination node il and ending at a destination node im, the cost
of RH starting from ir is less or equal to the cost of H starting from
i l . In particular, we have

(6.36)

t For an example where this convention for tie-breaking is not observed and
as a consequence R1i does not terminate, assume that there is a single destination
d and that all other nodes are arranged in a cycle. Each non-destination node i

has two outgoing arcs: one arc that belongs to the cycle, and another arc which
is (i, d). Let H be the (sequentially consistent) base heuristic that starting from
a node i ::/= d, generates the path (i, d). When the terminal node of the path is
node i, the rollout algorithm RH compares the two neighbors of i, which are d
and the node next to i on the cycle, call it j. Both neighbors have d as their
projection, so there is tie in Eq. (6.35). It can be seen that if RH breaks ties in
favor of the neighbor j that lies on the cycle, then RH continually repeats the
cycle and never terminates.

To show that R'H is terminating, note that in view of Eq. (6.38),
either H(im) > H(im+l), or else H(im) = H(im+l). In the latter case, in
view of the convention for breaking ties that occur in Eq. (6.35) and the
sequential consistency of 'H, the path generated by 'H starting from im+l is
the tail portion of the path generated by H starting from i m , and has one
arc less. Thus the number of nodes generated by RH between successive
times that the inequality H(im) > H(im+d holds is finite. On the other
hand, the inequality H(im) > H(im+l) can occur only a finite number of
times, since the number of destination nodes is finite, and the destination
node of the path generated by H starting from i m cannot be repeated if
the inequality H(im) > H(im+l) holds. Therefore, RH is terminating.

If (il, ... , im) is the path generated by RH, the relation (6.38) implies
the desired relations (6.36) and (6.37). Q.E.D.

Proposition 6.4.1 shows that in the sequentially consistent case, the
rollout algorithm RH has an important "automatic cost sorting" property,
whereby it follows the best path generated by the base heuristic 'H. In par
ticular, when RH generates a path (il, ... , im), it does so by using H to
generate a collection of other paths and corresponding projections starting
from all the successor nodes of the intermediate nodes il, ... , im- l . How
ever, (i I, ... , i m) is guaranteed to be the best among this path collection
and i m has minimal cost among all generated projections [ef. Eq. (6.37)].
Of course this does not guarantee that the path generated by RH will be a
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(6.39)

(0,0)

H(i) 2:: min H(j).
jEN(i)

Rollout Algorithms

(N,-N) (N,O) i- (N,N)

~v~
-N ° i N - 2 N

Figure 6.4.3 Illustration of the path generated by the rollout algorithm RH in
Example 6.4.5. The algorithm keeps moving to the left up to the time where
the base heuristic H generates two destinations (N,7) and (N,7 -·2) with g(7) ::;
g(7 - 2). Then it continues to move to the right ending at the destination (N,7),
which corresponds to the local minimum closest to N.

Definition 6.4.2: We say that the base heuristic H is sequentially
improving if for every non-destination node i, we have

It can be seen that a sequentially consistent H is also sequentially
improving, since sequential consistency implies that H (i) is equal to one of
the values H(j), j E N(i). vVe have the following generalization of Prop.
6.4.1, which also bears a relation with the general cost estimate for one-step
lookahead policies of Prop. 6.3.1.

Sec. 6.4Chap. 6ProgrammingApproximate

Consider a person who walks on a straight line and at each time period takes
either a unit step to the left or a unit step to the right. There is a cost
function assigning cost g( i) to each integer i. Given an integer starting point
on the line, the person wants to minimize the cost of the point where he will
end up after a given and fixed number N of steps.

We can formulate this problem as a graph search problem of the type
discussed in the preceding section. In particular, without loss of generality, let
us assume that the starting point is the origin, so that the person's position
after n steps will be some integer in the interval [-n, n]. The nodes of the
graph are identified with pairs (k, m), where k is the number of steps taken
so far (k = 1, ... , N) and m is the person's position (m E [-k, k]). A node
(k, m) with k < N has two outgoing arcs with end nodes (k + 1, m - 1)
(corresponding to a left step) and (k + 1, m + 1) (corresponding to a right
step). The starting state is (0, 0) and the terminating states are of the form
(N, m), where m is of the form N - 2l and l E [0, N] is the number of left
steps taken.

Let the base heuristic H be defined as the algorithm, which, starting
at a node (k, m), takes N - k successive steps to the right and terminates at
the node (N, m +N - k). Note that H is sequentially consistent. The rollout
algorithm RH, at node (k, m) compares the cost of the destination node
(N, m +N - k) (corresponding to taking a step to the right and then following
H) and the cost of the destination node (N, m + N - k - 2) (corresponding
to taking a step to the left and then following H).

Let us say that an integer i E [-N + 2, N - 2] is a local minimum if
g(i - 2) 2: g(i) and g(i) :::; g(i + 2). Let us also say that N (or -N) is a
local minimum if g(N - 2) :::; g(N) [or g(-N) :::; g(-N + 2), respectively].
Then it can be seen that starting from the origin (0,0), RH obtains the local
minimum that is closest to N, (see Fig. 6.4.3). This is no worse (and typically
better) than the integer N obtained by H. Note that if 9 has a unique local
minimum in the set of integers in the range [-N, N], the minimum must also
be global, and it will be found by RH. This example illustrates how RH may
exhibit "intelligence" that is totally lacking from H, and is in agreement with
the result of Prop. 6.4.1.

near-optimal path, because the collection of paths generated by H may be
"poor." Still, the property whereby RH at all times follows the best path
found so far is intuitively reassuring.

The following example illustrates the preceding concepts.

352

It is possible to show that the rollout algorithm improves on the base
heuristic (cf. Prop. 6.4.1) under weaker conditions. To this end we introduce
the following definition.

Proposition 6.4.2: Let the base heuristic H be sequentially im
proving, and assume that the rollout algorithm RH is terminating.
Let (il,"" i m) be the path generated by RH starting from a non
destination node il and ending at a destination node im. Then the
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cost of RH starting from il is less or equal to the cost of H starting
from il. In particular, we have for all m = 1, ... , 'm,

H(im ) = min {H(i l ), min H(j), ... , min H(j)}.
jEN(il) jEN(im _ 1 )

Proof: For each m = 1, ... ,m 1, we have

H(im ) 2: min H(j),
jEN(im )

by the sequential improvement assumption, while we have

(6.40)

Jt":r01P~os:n;l.on 6.4.3: Assume that the rollout algorithm RH is termi
nating. Let (il, ... , im) be the path generated by RH starting from
a non-destination node il and ending at a destination node irh. Then
the cost of RH. starting from iI is equal to

where for every non-destination node i, we denote

6i = min H(j) H(i).
jEN(i)

. min H(j) = H(im +l ),
JEN(zm)

by the definition of the rollout algorithm. These two relations imply Eq.
(6.40). Since the cost of RH starting from il is H(im), the result follows.

Proof: vVe have by the definition of the rollout algorithm

m = 1, ... ,m-1.

By adding these equations over m, we obtain

J:;xample 6.4.6 ne--Ulmlen~3iojnalWalk Continued) Since the cost ofRH starting from il is H(im), the result follows.

Consider the one-dimensional walk problem of Example 6.4.5, and let H be
defined as the algorithm that, starting at a node (k, m), compares the cost
g(m +N - k) (corresponding to taking all of the remaining N - k steps to the
right) and the cost 9 (m - N +k) (corresponding to taking all of the remaining
N k steps to the left), and accordingly moves to node

If the base heuristic is sequentially improving, we have 6i ::; 0 for all
non-destination nodes i, so it follows from Prop. 6.4.3 that the cost of the
rollout algorithm is less or equal to the cost of the base heuristic (cf. Prop.
6.4.2).

It can be seen that H is not sequentially consistent, but is instead sequentially
improving. Using Eq. (6.40), it follows that starting from the origin (0,0),
RH obtains the global minimum of 9 in the interval [-N, N], while H obtains
the better of the two points - Nand N.

Proposition 6.4.2 actually follows from a general equation for the cost
of the path generated by the rollout algorithm, which holds for any base
heuristic (not necessarily one that is sequentially improving). This is given
in the following proposition, which is related to Prop. 6.3.2.

(N,m+N-k)

or to node

(N,m N + k)

if

if

g(m + N - k) S; g(m - N + k),

g(m - N + k) < g(m + N - k).

The Fortified Rollout

We now describe a variant of the rollout algorithm that implicitly uses a
sequentially improving base heuristic, so that it has the cost improvement
property of Prop. 6.4.2. This variant, called the fortified rollout algorithm,
and denoted by RH., starts at the origin s, and after m steps, maintains,
in addition to the current sequence of nodes (3, il, ... , 'im ), a path

P( ') ("f 'f)'tm = ~m,'tm+l""'~k'

ending at a destination i~. Roughly speaking, the path P( i m ) is the tail
portion of the best path found after the first m steps of the algorithm, in
the sense that the destination i~ has minimal cost over all the projections
of nodes calculated thus far.

In particular, initially P(s) is the path generated by the base heuristic
H. starting from s. At the typical step of the fortified rollout algorithm RH,



356 Approximate Chap. 6 Sec. 6.-"1 Rollout Algorithms

we have a node sequence (8, -iI, ... ,im ), where 'im is not a destination, and
the path P(im) = (im,i~+l"" ,iU. Then, if

In many problems, several promising path construction heuristics may be
available. It is then possible to use all of these heuristics in the roll
out framework. In particular, let us assume that we have K algorithms
HI, ... , HK. The kth of these algorithms, given a non-destination node i,
produces a path (i, il, ... , im , I) that ends at a destination node I, and the
corresponding cost is denoted by Hk(i) = g(2). We can incorporate the K
algorithms in a generalized version of the rollout algorithm, which uses the
minimal cost

(6.43)H(i) = min Hk(i),
k=I, ... ,K

.L'l'.ll.Vl.JL<,JL!I-'.C'" Path Construction

(6.41). min H(j) < g(iU,
JEN(zm)

im+l = arg min H(j),
jEN(im )

RH adds to the node sequence (s, il, ... , im ) the node

and sets P(im+l) to the path generated by H, starting from im+l. On the
other hand, if

min H(j) 2: g(i~),
jEN(im )

(6.42)

in place of the cost obtained by anyone of the K algorithms HI, ... , HK·
In particular, the algorithm starts with the origin node 8. At the typi

cal step, given a node sequence (8, il,"" im ), where im is not a destination,
the algorithm adds to the sequence a node im+l such that

RH adds to the node sequence (s, il, ... , im ) the node im+l = arg min H(j).
jEN(im )

(6.44)

and sets P(im+l ) to the path (im+l' i~+2"'" iU. If im+l is a destination,
RH terminates, and otherwise RH repeats the process with (8, iI, ... ,im+l)
replacing (8, 'iI, ... ,im), and P(im+l) replacing P(im), respectively.

The idea behind the construction of RH is to follow the path P(im )

unless a path of lower cost is discovered through Eq. (6.41). We can show
that RH may be viewed as the rollout algorithm RH corresponding to a
modified version of H, called fortified H, and denoted H. This algorithm is
applied to a slightly modified version of the original problem, which involves
an additional downstream neighbor for each node i m that is generated in
the course of the algorithm RH and for which the condition (6.42) holds.
For every such node im , the additional neighbor is a copy of i~+l' and the
path generated by H starting from this copy is (i~+l"'" i~). From every
other node, the path generated by H is the same as the path generated by
H.

It can be seen that H is sequentially improving, so that RH is ter
minating and has the automatic cost sorting property of Prop. 6.4.2; that
is,

H(im ) = min {H(iI), min H(j), ... , min H(j)}.
jEN(il) jEN(im-l)

The above property can also be easily verified directly, using the definition
of RH. Finally, it can be seen that when H is sequentially consistent, the
rollout algorithm RH and its fortified version RH coincide.

If im+l is a destination node, the algorithm terminates, and otherwise
the process is repeated with the sequence (8, il, ... , im , im+I) replacing
(8, il, ... ,im ).

An interesting property, which can be readily verified by using the
definitions, is that if all the algorithms HI, ... ,HK are sequentially im
proving, the same is true for H. This is consistent with the analysis of
Example 6.3.2.

The fortified version of the rollout algorithm RH easily generalizes
for the case of Eq. (6.43), by defining the path generated starting from a
node i as the path generated by the path construction algorithm, which
attains the minimum in Eq. (6.43).

In an alternative version of the rollout algorithm that uses multiple
path construction heuristics, the results of the K algorithms HI, ... , HK
are weighted with some fixed scalar weights rk to compute H(i) for use in
Eq. (6.33):

K

H(i) = L rkHk(i).
k=l

The weights Tk may be adjusted by trial and error. An alternative and
more sophisticated possibility, is to use weights that depend on the node i
and which are obtained by training using the neuro-dynamic programming
methodology described in Vol. II.

Extension for Intermediate Arc Costs

Let us consider a variant of the graph search problem where in addition to
the terminal cost g( i), there is a cost c(i, j) for a path to traverse an arc
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(i, j). Within this context, the cost of a path ('iI, i2, ... ,in) that starts at
il and ends at a destination node in is redefined to be

where is the next node on the path generated by H starting from
ik. Furthermore, Prop. 6.4.2 remains unchanged, except that (6.40) is
modified to read

n-l

g(in ) +~ C(ik' i k+l ).

k=l
(6.45) k = 1, ... ,m 1.

Note that when the cost g( i) is zero for all destination nodes i, this is
the problem of finding a shortest path from the origin node 8 to one of
the destination nodes, with c(i,j) viewed as the length of arc (i,j). We
have seen in Chapter 2 that there are efficient algorithms for solving this
problem. However, here we are interested in problems where the number of
nodes is very large, and the use of the shortest path algorithms of Chapter
2 is impractical.

One way to transform the problem with arc costs into one involving
a terminal cost only is to redefine the graph of the problem so that nodes
correspond to sequences of nodes in the original problem graph. Thus if we
have arrived at node ik using path (il, ... , ik), the choice of ik+l as the next
node is viewed as a transition from (il, ... , ik) to (il, ... , ik' ik+l). Both
nodes (il, ... , ik) and ('il, ... , ik, 'ik+l) are viewed as nodes of a redefined
graph. Furthermore, in this redefined graph, a destination node has the
form (iI, i2, ... , in), where in is a destination node of the original graph,
and has a cost given by (6.45).

After the details are worked out, we see that to recover our earlier
algorithms and analysis, we need to modify the cost of the heuristic algo
rithm H as follows: If the path (il, ... , in) is generated by H starting at
iI, then

n-l

H(il) = g(in ) + c('ik' ik+l).
k=l

Furthermore, the rollout algorithm 'RH at node i m selects as next node
the node

im+l = arg . min [c(im,j) + H(j)J;
]EN(2m)

[ef. (6.33)]. The definition of a sequentially consistent algorithm re
mains unchanged. Furthermore, Prop. 6.4.1 remains unchanged except
that Eqs. (6.36) and (6.37) are modified to read

A sequentially improving algorithm should now be characterized by the
property

Finally, the criterion minjEN(im ) H(j) < g(iU [ef. Eq. (6.41)] used in the
fortified rollout algorithm, given the sequence (8, il, ... , im ), where im ~ N,
and the path P (im ) = (im , i~+ l' ... , iU, should be replaced by

k-l

min [c(im,j) + H(j)J < g(iU + c(im,i~+l) + c(i~,i~+l)'
jEN(im ) l=m+l

Rollout Algorithms with -l.VJl.. UL.U'''''''''-'j[-' Lookahead

We may incorporate multistep lookahead into the rollout framework. To
describe the case of 2-step lookahead, suppose that after m steps of the
rollout algorithm, we have the current node sequence (8, il, ... , im ). We
then consider the set of all 2-step-ahead neighbors of im , defined as

N2(im) = {j EN I j E N(im) and j E N,
or j E N(n) for some n E N(im)}.

We run the base heuristic H starting from each j E N2(im) and we find the
node JE N2(im) that has projection of minimum cost. Let i m +l E N(im)
be the node next to im on the (one- or two-arc) path from im to J. If im+l
is a destination node, the algorithm terminates. Otherwise, the process is
repeated with the sequence (8, .... ,im , im+l) replacing (s, .... , im ).

Note that a fortified version of the rollout algorithm described above
is possible along the lines described earlier. Also, it is possible to eliminate
from the set N2(im) some of the 2-step neighbors of i m that are judged
less promising according to some heuristic criterion, in order to limit the
number of applications of the base heuristic. This may be viewed as selec
tive depth lookahead. Finally, the extension of the algorithm to lookahead
of more than two steps is straightforward: we simply replace the 2-step
ahead neighbor set N2 (im) with a suitably defined k-step ahead neighbor
set Nk(im).

ntl3n>re:ta1tion in Terms of DP

Let us now reinterpret the graph-based rollout algorithm within the context
of deterministic DP. We will aim to view the base heuristic as a suboptimal
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policy, and to view the rollout algorithm as a policy obtained by a process of
policy improvement, provided the base heuristic is sequentially consistent.

To this end, we cast the graph search problem as a sequential decision
problem, where each node corresponds to a state of a dynamic system. At
each non-destination node/state i, a node j must be selected from the set
of neighbors N (i); then if j is a destination, the process terminates with
cost g(j), and otherwise the process is repeated with j becoming the new
state. The DP algorithm calculates for every node i, the minimal cost that
can be achieved starting from i, that is, the smallest value of g(l) that can
be obtained using paths that start from i and end at destination nodes
I. This value, denoted .l*(i), is the optimal cost-to-go starting at node
i. Once .l*('i) is computed for all nodes i, an optimal path (iI, i2, ... , im )

can be constructed starting from any initial node/state il by successively
generating nodes using the relation

6.4.2 Q-FactoJLs Evaluated by Simulation

We now consider a stochastic problem and some computational issues re
garding the implementation of the rollout policy based on a given heuristic
policy. A conceptually straightforward approach to compute the rollout
control at a given state Xk and time k is to use Monte-Carlo simulation.
To implement this algorithm, we consider all possible controls Uk E Uk(Xk)
and we generate a "large" number of simulated trajectories of the system
starting from Xk, using Uk as the first control, and using the policy 1r there
after. Thus a simulated trajectory has the form

i = k + 1, ... ,N - 1,

where the first generated state is

must be computed accurately for all pairs of controls Uk and ilk, so that
these controls can be accurately compared. On the other hand, the simula
tion/approximation errors in the computation of the individual Q-factors
Qk(Xk, Uk) may be magnified through the preceding differencing operation.

An alternative approach is to approximate by simulation the Q-factor
difference Qk(Xk, Uk) Qk(Xk, ilk) by sampling the difference

There is a serious flaw with this approach, due to the simulation
error involved in the calculation of the Q-factors. In particular, for the
calculation of 7lk(Xk) to be accurate, the Q-factor differences

Here, Qk(Xk, Uk) is an approximation to Qk(Xk, Uk) because of the sim
ulation error resulting from the use of a limited number of trajectories.
The approximation becomes increasingly accurate as the number of· sim
ulated trajectories increases. Once the approximate Q-factor Qk(Xk, Uk)
corresponding to each control U E Uk(Xk) is computed, we can obtain the
(approximate) rollout control 7lk(Xk) by the minimization

and each of the disturbances Wk, ... , WN-l is an independent random sam
ple from the given distribution. The costs corresponding to these trajecto
ries are averaged to compute an approximation Qk(Xk, Uk) to the Q-factor

(6.46)k = 1, ... ,m -1,

t We assume here that there are no termination/cycling difficulties of the
type illustrated in the footnote following Example 6.4.4.

up to the point where a destination node i m is encountered. t
A base heuristic H defines a policy 1r, i.e., an assignment of a successor

node to any non-destination node. However, starting from a given node i,
the cost of 1r need not be equal to H(i) because if a path (iI, i2, i3, ... ,im )

is generated by H starting from node iI, it is not necessarily true that
the path (i2, i3, ... , im ) is generated by the base heuristic starting from i2.
Thus the successor node chosen at node i2 by policy 1r may be different
than the one used in the calculation of H(il). On the other hand, if H is
sequentially consistent, the cost of policy 1r starting from a node i is H (i),
since sequential consistency implies that the path that the base heuristic
generates starting at the successor node is part of the path it generates at
the predecessor node. Thus the cost improvement property of the rollout
algorithm in the sequentially consistent case also follows from the cost
improvement property shown earlier in the DP context.

Generally, we can view the rollout algorithm RJ-{ as a one-step looka
head policy that uses H(j) as a cost-to-go approximation from state j.
In some cases, H(j) is the cost of some policy (in the DP sense), such
as for example when H is sequentially consistent, as explained above. In
general, however, this need not be so, in which case we can view H (j)
as a convenient cost-to-go approximation that is derived from the base
heuristic. Still, the rollout algorithm RH may improve on the cost of the
base heuristic (e.g., when H is sequentially improving, d. Prop. 6.4.2) just
as a general one-step lookahead policy may improve on the corresponding
one-step lookahead cost approximation (d. Prop. 6.3.1).
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from which we obtain, using also (6.48),

N-I

Ck(Xk,Uk,Wk) gN(XN)+gdxk,Uk,Wk)+ gi(Xi,/--Li(Xi),Wi).
i=k+I

This approximation may be far more accurate than the one obtained
by differencing independent samples of Ck(Xk, 'Uk, Wk) and Ck(Xk, Uk, Wk).
Indeed, by introducing the zero mean sample errors

it can be seen that the variance of the error in estimating Qk(Xk, Uk)
Qk(Xk, Uk) with the former method will be smaller than with the latter
method if and only if

EWk , wk {IDk(Xk' Uk, Wk) - Dk(Xk, Uk, Wk) 1
2

}

> EWk {IDk(Xk' Uk, Wk) - Dk(Xk, Uk, 1

2
} ,

or equivalently

(6.47)

i.e., if and only if the correlation between the errors Dk(Xk, Uk, Wk) and
Dk(Xk, Uk, Wk) is positive. A little thought should convince the reader
that this property is likely to hold in many types of problems. Roughly
speaking, the relation (6.47) holds if changes in the value of Uk (at the first
stage) have little effect on the value of the error Dk(Xk, Uk, Wk) relative to
the effect induced by the randomness of Wk. In particular, suppose that
there exists a scalar I < 1 such that, for all Xk, Uk, and Uk, there holds

E {IDk(xk, Uk, Wk) - Dk(Xk, Uk, w k)1
2

} :::; IE {IDk(Xk' Uk, wk)1
2
}.

(6.48)
Then we have

Dk(Xk, Uk, wk)Ddxk, Uk, Wk)

= IDk(Xk, Uk, 1

2

+ Dk(Xk, Uk, Wk) (Dk(Xk, Uk, Wk) - Dk(Xk, Uk, Wk))

~ IDk(Xk, Uk, Wk) 1

2

-IDk(Xk, Uk, Wk) 1 . IDk(Xk, Uk, Wk) - Dk(Xk, Uk, Wk) j,

E{ Dk(Xk,Uk, wk)Dk(Xk, Uk, }

~ E {IDk(Xk, Uk, 1

2
}

- E{ IDk(Xk, Uk, Wk)i ·IDk(Xk, Wk) - Dk(Xk, 'Uk, Wk) I}
~ E {IDk(Xk' Uk, wk)1

2
} - ~E {IDdxk' Uk, 1

2
}

- ~E{ IDk(Xk, Uk, Wk) - Dk(Xk, Uk, 1

2
}

~ 1; {IDk(Xk,Uk,Wk)1
2
}.

Thus, under the assumption (6.48) and the assumption

the condition (6.47) holds and guarantees that by averaging cost difference
samples rather than differencing (independently obtained) averages of cost
samples, the simulation error variance decreases.

6.4.3 Q-Faetor Approximation

Let us now consider the case of a stochastic problem and various possi
bilities for approximating the costs-to-go Hk(Xk), k = 1, ... , N 1, of
the base policy 1r = {/--Lo, /--LI, ... , /--LN-d, rather than calculating them by
Monte-Carlo simulation. For example, in a certainty equivalence approach,
given a state Xk at time k, we fix the remaining disturbances at some "typ
ical" values Wk+I, ... ,WN-I, and we approximate the true Q-factor

with

(6.49)

where

N-I

(fk(Xk, Uk, Wk)) =gN(XN) + gi(Xi, /--Li(X'i), Wi),
i=k+I

the initial state is
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and the intermediate states are given by

i = k + 1, ... , N - 1.

Thus, in this approach, the rollout control is approximated by

Note that the approximate cost-to-go f:h+1 (Xk+1) represents an ap
proximation of the true cost-to-go Hk+1(Xk+1) of the base policy based on
a single sample (the nominal disturbances Wk+1,'" ,WN-1). A potentially
more accurate approximation is obtained using multiple nominal distur
bance sequences and averaging the corresponding costs with appropriate
nominal probabilities, similar to the scenario approximation approach of
Example 6.3.6.

Let us also mention another approach for approximation of the cost
to-go Hk+1 of the base policy 1f = {{to, /11, ... ,/1N-d, using an approxi
mation architecture. Here we calculate (possibly approximate) values for
the cost-to·_go of the base policy at a finite set of state-time pairs, and then
we select the weights through a "least-squares fit" of these values.

In particular, suppose that we have calculated the correct value of the
cost-to-go HN -1 (x·i ) at the next-to-last stage for s states xi, i = 1, ... , s,
through the DP formula

HN- 1(XN-I) = E {gN-1(XN-1,/1N-1(XN-1),WN-1)

+ gN (iN-I (XN-1, /1N-1 (XN-1), WN-1) ) },

and the given terminal cost function gN. We can then approximate the
entire function HN- 1(XN-1) by a function of some given form

the least squares problem (6.50) is

mjn i~' !HN_l(X
i

) ~TJYJ(X'Jj'
This is a linear least squares problem that can be solved in closed form (its
cost function is convex quadratic in the vector I).

Note that this approximation procedure can be enhanced if we have
additional information on the true cost-to-go function H N -1 (X N -1). For
example, if we know that HN- 1(XN-1) 20 for all XN-l, we may first com
pute the approximation fIN-I (X N -1, IN-I) by solving the least-squares
problem (6.50) and then replace this approximation by

max{ 0, HN-1 (XN-1, IN-I)}.

Once an approximating function H N -1 (X N -1 , IN-I) for the next-to
last stage has been obtained, it can be used to similarly obtain an approx
imating function fIN- 2(xN-2"N-2). In particular, (approximate) cost
to-go function values HN_2(X'i ) are obtained for s states x'i , i = 1, ... , s,
through the (approximate) DP formula

HN-2(XN-2) = E {gN-2(XN-2,/1N-2(XN-2),WN-2)

+ fIN-I (iN-2 (XN-2, [iN-2(XN-2), WN-2), IN-I) }.

These values are used to approximate the cost-to-go function H N- 2(XN-2)
by a function of some given form

fIN- 2(xN-2,'N-2),

where IN-2 is a vector of parameters, which is obtained by solving the
problem

s

min :L:IHN-2(Xi ) - HN_2(Xi , I) 1

2
•

r
i=l

The process can be similarly continued to obtain
by solving for each k the problem

where IN-I is a vector of weights, which can be obtained by solving the
problem

is specified to be a linear function of m featuresFor example if
Y1 (x), ... ,Ym(X),

s

mjn :L: I H N -1 (xi) - HN -1 (Xi, I) 1

2
.

i=l

m

(x, I) = :L: IjYj(X),
j=l

(6.50)

(6.51)

Given the approximations HO(XO,'O), ... ,fIN-I ,IN-I) to the
cost-to-go of the base policy, one may obtain a suboptimal policy by using
at state-time pair (xk, k) the one-step lookahead control

7lk(Xk) = arg min E {gk(Xk, Uk, Wk) + (ik(Xk' Uk, Wk), T"k+1)}'
UkEUk(Xk)

This control must be calculated on-line once the state Xk at time k becomes
known.
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6.5 MODEL PREDICTIVE CONTROL AND RELATED METHODS 6.5.1 Horizon

In many control problems where the objective is to keep the state of a
system near some desired point, the linear-quadratic models of Sections
4.1 and 5.3 are not satisfactory. There are two main reasons for this:

(a) The system may be nonlinear, and using for control purposes a model
that is linearized around the desired point may be inappropriate.

(b) There may be control and/or state constraints, which are not han
dled adequately through a quadratic penalty on state and control.
The reason may be special structure of the problem dictating that, for
efficiency purposes, the system should often be operated at the bound
ary of its constraints. The solution obtained from a linear-quadratic
model is not suitable for this, because the quadratic penalty on state
and control tends to "blur" the boundaries of the constraints.

These inadequacies of the linear-quadratic model have motivated a
form of suboptimal control, called model predictive control (MPC), which
combines elements of several ideas that we have discussed so far: certainty
equivalent control, multistage lookahead, and rollout algorithms. We will
focus primarily on the most common form of MPC, where the system is
either deterministic, or else it is stochastic, but it is replaced with a deter
ministic version by using typical values in place of all uncertain quantities,
as in the certainty equivalent control approach. At each stage, a (determin
istic) optimal control problem is solved over a fixed length horizon, starting
from the current state. The first component of the corresponding optimal
policy is then used as the control of the current stage, while the remaining
components are discarded. The process is then repeated at the next stage,
once the next state is revealed. We will also briefly discuss a version of
MPC where there is uncertainty with a set-membership description.

The primary objective in MPC, aside from fulfilling the state and
control constraints of the problem, is to obtain a stable closed-loop system.
Note here that we may only be able to guarantee the stability of the deter
ministic model that forms the basis for the calculations of the MPC. This
is consistent with a common practice in control theory: design a stable
controller for a deterministic model of the system, and expect that it will
provide some form of stability in a realistic stochastic environment as well.

In Section 6.5.2, we will discuss the mechanism by which stability
is achieved by MPC under some reasonable conditions. We will first dis
cuss in the next subsection some issues of multistage lookahead, which are
relevant to MPC, but are also important in a broader context. In Sec
tion 6.5.3, we provide a general unifying framework for suboptimal control,
which includes as special cases several approaches discussed in this chapter,
OLFC, rollout, and MPC, and captures the mathematical essence of their
attractive properties.

Let us consider the l-step lookahead policy when the cost-to-go approxi
mation is just zero. vVith this policy, at each stage we apply a control that
would be optimal if the remaining horizon length were l and there were no
terminal cost. Thus at the typical stage k we ignore the costs incurred in
stages k + l + 1 and beyond, and accordingly we neglect the corresponding
long-range effects of our action. vVe call this the rolling horizon approach.
In a variant of this approach, following the l steps of lookahead, we use a
cost-to-go approximation that is equal to the terminal cost function gN.
This is essential if gN is significant relative to the costs per stage accumu
lated over l stages.

We may also use a rolling horizon approach for infinite horizon prob
lems. Then the length of the horizon of the problem solved at each stage
stays the same at all stages. As a result, for a time-invariant system and
cost per stage, the rolling horizon approach produces a stationary policy
(the controls applied at the same state but in different stages are the same).
This is a generic characteristic of infinite horizon control, as we have seen
in the context of linear-quadratic problems (see also the discussion of Vol.
II).

Naturally, a policy obtained using a rolling horizon is typically not
optimal. One is tempted to conjecture that if the size of the lookahead l is
increased, then the performance of the rolling horizon policy is improved.
This, however, need not be true as the following example shows.

Example 6.5.1

This is an oversimplified problem, which, however, demonstrates the basic
pitfall of the rolling horizon approach.

Optimal Trajectory

... --0---0---0-- ... -0--0

Current
State

2
0--0----- .,.~ ... --0----0

....----1 Stages "" High Low High ____
Cost Cost Cost

Figure 6.5.1 The problem of Example 6.5.1.
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Figure 6.5.2 The problem of Example 6.5.2.

~~~o.~~~~
Stopped State )

(6.52)

k=O,l, ... ,

k = 0,1, ... ,

00

(X~QXk+ fJ,(Xk)' RfJ,(Xk)) < 00.

k=O

Issues in Mode! Predictive Control

Xk EX,

Xk+l = f(Xk, Uk),

and the cost per stage is quadratic:

X~QXk + U~RUk, k = 0, 1, ... ,

where Q and R are positive definite symmetric matrices. We impose state
and control constraints

and we assume that the set X contains the origin of the corresponding
Euclidean space. Furthermore, if the system is at the origin, it can be kept
there at no cost with control equal to 0, i.e., °E U(O) and f(O,O) = O. We
want to derive a stationary feedback controller that applies control fJ,( x)
at state x, and is such that, for all initial states Xo E the state of the
closed-loop system

Xk+l = f (Xk' fJ,(Xk)),

satisfies the state and control constraints, and the total cost over an infinite
number of stages is finite:

6.5.2

As mentioned earlier, model predictive control was initially moti
vated by the desire to introduce nonlinearities, and control and/or state
constraints into the linear-quadratic framework, and obtain a suboptimal
but stable closed-loop system. With this in mind, we will describe MPC
for the case of a stationary, possibly nonlinear, deterministic system, where
state and control belong to some Euclidean spaces. The system is

a rollout algorithm, where the greedy heuristic is evaluated using an l-step
rolling horizon approximation, can be modeled using a Markov chain with
l + 1 states (see Exercise 6.18). Using this Markov chain, it is possible to
ascertain that for a problem with a large number of steps the length of
the rolling horizon that maximizes the breakthrough probability approaches
an optimal value that is essentially independent of N.

Another example of a rollout algorithm whose performance can be
improved by using a rolling horizon approximation is the breakthrough
problem of Example 6.4.2. In this case, the evolution of the system under

J::4.:x:ample 6.5.2

Consider an N -stage stopping problem where at each stage we may either
stop with a stopping cost equal to 0, or continue at a certain cost that is
either -E or 1, where °< E < liN (see Fig. 6.5.2). Let the first state with
continuation cost equal to 1 be state m. Then the optimal policy is to stop
after m steps at state m. The corresponding optimal cost is -mE. It can
also be seen that an l-step rolling horizon approach with the cost evaluated
optimally over the l steps (rather than suboptimally using a base heuristic)
is optimal.

Consider now the rollout policy where the base heuristic is to continue
at every state (except the last where stopping is mandatory). It can be seen
that this policy will stop at the initial state at a cost of 0, since it will evaluate
the continuation action as having positive cost, in view of the fact 1-N E > 0,
and will thus prefer the stopping action. However, the rollout policy that uses
a rolling horizon of l stages, with l :S m, will continue up to the first m -l+1
stages, thus compiling a cost of -(m - l + l)E. Thus, as the length l of
the rolling horizon becomes shorter, the performance of the rollout policy
improves!

Consider a deterministic setting where at the initial state there are
two possible controls, say 1 and 2 (see Fig. 6.5.1). At all other states there
is only one available control, so a policy consists of just the initial choice
between controls 1 and 2. Suppose that (based on the cost of the subsequent
N stages) control 1 is optimal. Suppose also that if control 2 is chosen,
an "unfavorable" (high cost) state results after l transitions, followed by a
"particularly favorable" state, which is then followed by other "unfavorable"
states. Then, in contrast with the l-step lookahead policy, the (l + I)-step
lookahead policy may view the inferior control 2 as being better, because it
may be "fooled" by the presence of the "particularly favorable" state l + 1
transitions ahead.

The rolling horizon approach is also interesting in the context of a
rollout algorithm, where we need to calculate the cost-to-go of the base
policy at various states. It is possible to use a rolling horizon approxima
tion in the calculation of this cost-to-go. Thus, from the given state, we
calculate the cost of the base policy over a fixed number of stages, rather
than over the entire remaining horizon. This can result in significant com
putational savings. Furthermore, there may also be an improvement in
the performance of the rollout policy if a rolling horizon approximation is
used. One reason is the phenomenon illustrated in the preceding example.
In fact, because of the suboptimality of the base policy, this phenomenon
can get exaggerated, as shown in the following example.
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Xk EX = {x Ilxl'::; lo5},

Consider the scalar linear system

Example 6.5.3

and the state and control constraints

Let also Q = R = 1. We select m = 2. For this value of m, the constrained
controllability assumption is satisfied.

When at state Xk E X, the MPC minimizes the two-stage cost

x~ + u~ + (Xk + Uk)2 + U~+l'

subject to the control constraints

Xk+l EX,

and the state constraints

It is easily verified that this minimization yields Uk+l
Uk = -(2/3)Xk. Thus the MPC takes the form

k+m-l

I: (X~QXi + U~RUi),
i=k

Note that because of the positive definiteness of Q and R, the feedback
controller Jl is stable in the sense that Xk -+ 0 and Jl(Xk) -+ 0 for all initial
states Xo EX. (In the case of a linear system, the assumption of positive
definiteness of Q may be relaxed to positive semidefiniteness, together with
an observability assumption of the type introduced in Section 4.1 and Prop.
4.1.1. )

In order for such a controller to exist, it is evidently sufficient [in
view of the assumption that 1(0,0) = 0] that there exists a positive integer
m such that for every init'ial state Xo EX, one can find a sequence of
controls 'Uk, k = 0,1, ... , m - 1, which drive to 0 the state Xm of the
system at time m, while keeping all the preceding states Xl, X2, ... , Xm-l
w'ith'in X and satisfy'ing the control constraints Uo E U(xo), ... , Um-l E

U(Xm-l). We refer to this as the constrained controllabildy assumption (d.
the corresponding assumption of Section 4.1). In practical applications, this
assumption can often be checked easily. Alternatively, the state and control
constraints can be constructed in a way that the assumption is satisfied;
the methodology of reachability of target tubes, discussed in Section 4.6.2,
can be used for this purpose.

Let us now describe a form of lVIPC under the preceding assumption.
At each stage k and state Xk EX, it solves an m-stage deterministic optimal
control problem involving the same quadratic cost and the requirement
that the state after m stages be exactly equal to O. This is the problem of
minimizing

subject to the system equation constraints and the dosed-loop system is

i = k, k + 1, ... , k + m - 1, k = 0,1, ...

the state and control constraints

X'i E i = k, k + 1, ... , k + m - 1,

Note that while the dosed-loop system is stable, its state is never driven to°if started from Xo i= 0.

and the terminal state constraint

Xk+m = O.

We now show that the MPC satisfies the stability condition (6.52).
Let Xo, Uo, Xl, Ul,· .. be the state and control sequence generated by MPC,
so that

m-2

I: (X~QXk+ U~RUk),
k=O

Denote J(x) the optimal cost of the m-stage problem solved by MPC when
at a state x EX. Let also j (x) be the optimal cost starting at X of a
corresponding (m-1 )-stage problem, i.e., the optimal value of the quadratic
cost

k = 0,1, ...

and discards the remaining components.

By the constrained controllability assumption, this problem has a feasible
solution. Let {Uk, Uk+l,"" Uk+m-l} be a corresponding optimal control
sequence. The MPC applies at stage k the first component of this sequence,
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Adding this equation for all k in a range [0, K], where K = 0,1, ... , we
obtain

[For states x E X for which this problem does not have a feasible solution,
we write J(x) = 00.] Since having one less stage in our disposal to drive
the state to °cannot decrease the optimal cost, we have for all x E X

MPC with Set-Membership Disturbances

case of a quadratic cost, implies that if the base heuristic results in a stable
closed-loop system) the same is true for the corresponding rollout algorithm.

Regarding the choice of the horizon length TIL for the lVIPC calcula
tions, note that if the constrained controllability assumption is satisfied for
some value of TIL, it is also satisfied for all larger values of m. Further
more, it can be seen that the m-stage cost J(x), which by Eq. (6.55), is
an upper bound to the cost of ]\IIPC, cannot increase with TIL. This argues
for a larger value of m. On the other hand, the optimal control problem
solved at each stage by the lVIPC becomes larger and hence more difficult
as TIL increases. Thus, the horizon length is usually chosen on the basis
of some experimentation: first use target tube reachability methods (cf.
Section 4.6.2) to ensure that TIL is large enough for the constrained con
trollability assumption to hold with a target tube that is sufficiently large
for the practical problem at hand, and then by further experimentation to
ensure overall satisfactory performance.

The ]\IIPC scheme that we have described is just the starting point
for a broad methodology with many variations, which often relate to the
suboptimal control methods that we have discussed so far in this chapter.
For example, in the problem solved by JVIPC at each stage, instead of the
requirement of driving the system state to 0 in TIL steps, one may use a large
penalty for the state being nonzero after TIL steps. Then, the preceding
analysis goes through, as long as the terminal penalty is chosen so that
Eq. (6.53) is satisfied. In another variant one may use a nonquadratic cost
function, which is everywhere positive except at (x, u) = (0,0). In still
another variant, instead of aiming to drive the state to °after TIL steps, one
aims to reach a sufficiently small neighborhood of the origin, within which
a stabilizing controller, designed by other methods, may be used. This
variant is also well-suited for taking into account disturbances described
by set membership, as we now proceed to explain.(6.55)

(6.53)

k = 0,1, ....

K=O,I, ... ,

k = 0,1, .. . ,TIL- 2,

J(x) ~ J(x).

K

J(XK+l) + L(X~QXk + U~\;RUk) ~ J(xo).
k=O

~ 0, it follows that

K

L(X~QXk + U~RUk) ~ J(xo),
k=O

From the definitions of j and J, we have for all k,

and taking the limit as K -7 00,

Since

so using Eq. (6.53), we obtain

X~QXk + U~RUk + J(Xk+l) ~ J(Xk),

Xm-l 0.

min [X~Qxk+UfRu+J(f(xk, u))] = x~Qxk+u~Ruk+J(Xk+l) = J(Xk),
uEU(x)

(6.54)

and

where Xo = x, subject to the constraints

00

L(X~QXk+ U~RUk) ~ J(xo) < 00.
k=O

To extend the MPC methodology to the case where there are disturbances
Wk in the system equation

This shows the stability condition (6.52).
We note that the one-step lookahead funct'ion J implicitly used by

lIIIPC [cf. Eg. (6. 54)} is the cost-to-go function of a certain policy. This is
the policy that drives to 0 the state after m - 1 stages and keeps the state
at 0 thereafter, while observing the state and control constraints Xk E X
and Uk E U(Xk), and minimizing the quadratic cost. Thus, we can also
view lVIPC as a rollout algorithm with the policy just described viewed
as the base heuristic. In fact the stability property of ]\IIPC is a special
case of the cost improvement property of rollout algorithms, which in the

we must first modify the stability objective. The reason is that in the
presence of disturbances, the stability condition (6.52) is impossible to
meet. A reasonable alternative is to introduce a set-membership constraint
Wk E W(Xk, Uk) for the disturbance and a target set T for the state, and
to require that the controller specified by ]\IIPC drives the state to T with
finite quadratic cost.

To formulate the MPC, we assume that T C and that once the
system state enters T, we will use some control law jJ, that keeps the state
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within T for all possible values of the disturbances, i.e., Example 6.5.4

The detailed methodology by which such a target set T and control law
ri are obtained is outside our scope. We refer to the discussion of reacha
bility of target tubes in Section 4.6.2 for orientation into this problem and
references; see also Exercise 4.31, and Exercises 3.21 and 3.22 of Vol. II.
vVe view T essentially as a cost-free and absorbing state, similar to our
view of the origin in the earlier deterministic context. Consistent with this
interpretation, we introduce the stage cost function

g(x, u) = {X01QX + u
l
Ru if x tf; T,

if x E T.

The MPC is now defined as follows: At each stage k and state Xk EX
with Xk tf; T, it solves the m-stage minimax control problem of finding a
policy ilk, [lk+l, ... , [lk+m-l that minimizes

f(x,jl(x),w) E T, for all x E T,w E W(x,jl(x)). (6.56)
This example is a version of the preceding one, modified to account for the
presence of disturbances. We consider the scalar linear system

and the state and contml constraints

Xk E X = {x Ilxl ::; 1.5},

and assume that the disturbances satisfy

We select m = 2, and it can be verified that for the target set

subject to the system equation constraints

max
WiEW(Xi,P,(Xi»,

i=k,k+l, ... ,k+rn-l

the control and state constraints

k+m-l

2:= g(Xi,p,(Xi)),
i=k

k, k + 1, ... ,k + m - 1,

T= {x Ilxl ::;0.2},

the constrained controllability assumption is satisfied, and the condition (6.56)
is also satisfied using some control law fJ" namely fJ,(x) = -x.

The associated 2-stage minimax control problem to be solved at each
stage by MPC requires a DP solution. At the last stage, assuming x t/: T, the
DP algorithm calculates

Xi E Ui E U(Xi),

and the terminal state constraint

i = k, k + 1, ... , k + m - 1, J(x) = min
luiS!,

Ix+u+wISO.2 for all Iw!so.2

These constraints must be satisfied for all disturbance sequences satisfying

Xi E T, for some i E [k + 1, k + m] . This is a straightforward minimization. It is feasible if and only if Ixl ::; 1,
and it yields a minimizing policy for the last stage:

i = k, k + 1, ... ,k'+ m - 1. fll(X) = -x, for all x t/: T with Ixl ::; 1,

At the first stage, the DP algorithm calculates

Of, since the maximum over w is attained for w 0.2 sgn(x + u),

min [x2+ u2+ 2 (x + u + 0.2 sgn(x + u)) 2] ,
luiS!,

Ix+,u+O.2 sgn(x+u)ISl

The MPC applies at stage k the first component of the policy ilk, [lk+l,
... ,[lk+m-l thus obtained,

and discards the remaining components. For states x within the target set
T, the MPC applies the control jl(x) that keeps the state within T, as per
Eq. (6.56), at no further cost [17(x) = jl(x) for x E T].

vVe make a constrained controllability assumption, namely that the
problem solved at each stage by MPC has a feasible solution for all Xk E X
with Xk tf; T (this assumption can be checked using the target tube reach
ability methods of Section 4.6.2). Note that this problem is a potentially
difficult minimax control problem, which generally must be solved by DP
(cf. the algorithm of Section 1.6).

and a cost-to-go

min
luiS!,

Ix+u+wIS! for all Iwl:::;o.2

for all x t/: T with Ixl ::; 1.

[ max (X2+'U2+J(x+u+w))],
Iwlso.2
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This minimization is again straightforward, and yields the MPC

6.5.3 Restricted Structure Policies

This piecewise linear form of the MPC should be compared with the corre
sponding linear form, flex) = -(2/3)x, of Example 6.5.3, in which there are
no disturbances.

where for all i, Z'i and Ui are the observation and control at stage i, respec
tively. Following the observation Zk, a control Uk is chosen by the controller,

under some conditions may be viewed as a form of rollout algorithm, as
discussed in the preceding subsection.

For a problem with N stages, implementation of the suboptimal
scheme to be discussed requires the solution of a problem involving the
restricted structure at each stage. The horizon of this problem starts at
the current stage, call it k, and extends up to the final stage N. This so
lution yields a control 'Uk for stage k and a policy for the remaining stages
k + 1, ... ,N - 1 (which must obey the constraints of the restricted struc
ture). The control Uk is used at the current stage, while the policy for the
remaining stages k + 1, ... ,N - 1 is discarded. The process is repeated at
the next stage k + 1, using the additional information obtained between
stages k and k + 1; this is similar to CEC, OLFC, multistage lookahead,
and MPC.

Similarly, for an infinite horizon model, implementation of the subop
timal scheme requires, at each stage k, the solution of a problem involving
the restricted structure and a (rolling) horizon of fixed length. The solu
tion yields a control Uk for stage k and a policy for each of the remaining
stages. The control Uk is then used at stage k, and the policy for the re
maining stages is discarded. For simplicity in what follows, we will focus
attention to the finite horizon case, but the analysis applies, with minor
modifications, to infinite horizon cases as well.

Our main result is that the performance of the suboptimal control
scheme is no worse than the one of the restricted problem, i.e., the prob
lem corresponding to the restricted structure. This result unifies and gen
eralizes our analysis for open-loop-feedback control (which is known to
improve the cost of the optimal open-loop policy, cf. Section 6.2), for the
rollout algorithm (which is known to improve the cost of the corresponding
heuristic policy, cf. Section 6.4), and for model predictive control (where
under some reasonable assumptions, stability of the suboptimal closed-loop
control scheme is guaranteed, ef. Section 6.5.2).

For simplicity, we focus on the imperfect state information framework
for stationary finite-state Markov chains with N stages (ef. Section 5.4.2);
the ideas apply to much more general problems with perfect and imperfect
state information, as well problems with an infinite horizon. We assume
that the system state is one of a finite number of states denoted 1,2, ... ,n.
When a control U is applied, the system moves from state i to state j with
probability Pij(U). The control U is chosen from a finite set U. Following
a state transition, an observation is made by the controller. There is a
finite number of possible observation outcomes, and the probability of each
depends on the current state and the preceding control. The information
available to the controller at stage k is the information vector

if x E (0.2,1.5],

if x E [-1.5, -0.2).

flex) = {-min [x, ~(x+0.2)J
min [-x, -~(x - 0.2)]

min [x
2 +u

2 + 2(x
2 + + 2xu + 0.41x + ul + 0.04)].

lu[::;l,
Ix+u[::;O.8

or

The stability analysis of ]\IIPC (in the modified sense of reaching the
target set T with finite quadratic cost, for all possible disturbance values)
is similar to the one given earlier in the absence of disturbances. It is also
possible to view ]\IIPC in the presence of disturbances as a special case of a
rollout algorithm, suitably modified to take account of the set-membership
description of the disturbances. The details of this analysis are sketched in
Exercise 6.21.

We will now introduce a general unifying suboptimal control scheme that
contains as special cases several of the control schemes we have discussed:
OLFC, POLFC, rollout, and MPC. The idea is to simplify the problem
by selectively restricting the information and/or the controls available to
the controller, thereby obtaining a restricted but more tractable problem
structure, which can be used conveniently in a one-step lookahead context.

An example of such a structure is one where fewer observations are
obtained, or one where the control constraint set is restricted to a single
or a small number of given controls at each state. Generally, a restricted
structure is associated with a problem where the optimal cost achievable
is less favorable than in the given problem; this will be made specific in
what follows. At each stage, we compute a policy that solves an optimal
control problem involving the remaining stages and the restricted problem
structure. The control applied at the given stage is the first component of
the restricted policy thus obtained.

An example of a suboptimal control approach that uses a restricted
structure is the OLFC, where one uses the information available at a given
stage as the starting point for an open-loop computation (where future
observations are ignored). Another example is the rollout algorithm, where
at a given stage one restricts the controls available at future stages to be
those applied by some heuristic policy. Still another example is MPC, which
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according to the restricted structure. More specifically, this policy chooses
the control at the typical stage k and state x k as follows:

and a cost g(Xk' 'Uk) is incurred, where Xk is the current (hidden) state. The
terminal cost for being at state x at the end of the N stages is denoted
G(x). We wish to minimize the expected value of the sum of costs incurred
over the N stages.

As discussed in Section 5.4, we can reformulate the problem into a
problem of perfect state information where the objective is to control the
column vector of conditional probabilities

Restricted Structure
control

where

At stage k and state Xk, apply the

vVe refer to Pk as the belief state, and we note that it evolves according to
an equation of the form

with
p{ = P(Xk j I h), j = 1, ... ,no is a policy that attains the optimal cost achievable from stage k on

ward with knowledge of Pk and with access to the future observations
Zk+l, ... ,ZN-l (in addition to the future controls), and subject to the
constraints

The function 1? represents an estimator, as discussed in Section 5.4. The
initial belief state po is given.

The corresponding DP algorithm was given in Section 5.4, and has
the form

where g('Uk) is the column vector with components g(l, 'Uk), ... ,g(n, 'Uk),
and p~g(Uk), the expected stage cost, is the inner product of the vectors
Pk and g('Uk). The algorithm starts at stage N, with

where G is the column vector with components G(t), ... ,G(n), and pro
ceeds backwards.

We will also consider another control structure, where the information
vector is

'Uk E U,

Let Jk(Pk) be the cost-to-go, starting at belief state Pk at stage k, of
the restricted structure policy {Va' ... 'VN-.d just described. This is given
by the DP algorithm

]k(Pk) = (71k(Pk)) + E Zk+1 {]k+l (1?(Pk' 7lk(Pk), Zk+l)) IPk, 7lk(Pk)}

(6.57)
for all Pk and k, with the terminal condition]N(PN) = p~vG for all PN·

Let us also denote by J'k(Pk) the optimal cost-to-go of the restricted
problem, i.e., the one where the observations and control constraints of
the restricted structure are used exclusively. This is the optimal cost
achievable, starting at belief state Pk at stage k, using the observations
Zi, i = k + 1, ... ,N 1, and subject to the constraints

k = 0, ... ,N -1,

with Z'i being some observation for each i (possibly different from Zi), and
the control constraint set at each Pk is a given set U(Pk)' The probability
distribution of Zk given Xk and 'Uk-l is known, and may be different than
the one of Zk. Also U(Pk) may be different than U [in what follows, we will
assume that U(Pk) is a subset of U].

We introduce a suboptimal policy, which at stage k, and starting
with the current belief state Pk, applies a control 7lk(Pk) E U, based on
the assumption that the future observations and control constraints will be

We will show, under certain assumptions to be introduced shortly,
that

'v'Pk, k=O, ... ,N 1,

and we will also obtain a readily computable upper bound to ]k(Pk). To
this end, for a given belief vector Pk and control 'Uk E we consider
three optimal costs-to-go corresponding to three different patterns of avail
ability of information and control restriction over the remaining stages
k + 1, ... , N - 1. We denote:
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t"r~oplDsltlOn 6.5.1: Under the assumptions (6.59) and (6.60), there

JI::(Pk): The optimal cost achievable, starting at belief state Pk at
stage k, using the observations Zi, i = k + 1, ... ,N - 1, and subject
to the constraints

'Uk E U, /-Lk+l(Pk+l) E U(Pk+l), ... ,f-LN-l(PN-d E U(PN-d.

This is given by

Proof: The inequality Jk(Pk) ::; ]k(Pk) is evident, since Jk(Pk) is the
optimal cost-to-go over a class of policies that includes the restricted struc
ture policy {71o, ... ,71N-l}' Also the inequality JI::(Pk) ~ J;;(Pk) follows
from the definitions; see Eq. (6.63). vVe prove the remaining inequality
] k(Pk) ::; JI::(Pk) by induction on k.

We have ]N(PN) = IN(PN) = 0 for allpN. Assume that for allpk+l,
we have

-1.\:j Pk, k = 0, ...

holds

JI::(Pk) = min Qk(Pk, 'Uk), (6.62)
Uk EU

and it is the cost that is computed when solving the optimization
problem of stage k in the restricted structure policy scheme. Note
that we have for all Pk,

Jk(Pk) = mjn Qk(Pk, 'Uk) 2: min Qk(Pk, 'Uk) JI::(Pk) , (6.63)
ukEU(Pk) Uk EU

where the inequality holds in view of the assumption U(Pk) C U.

Our main result is the following:

Then, for all Pk,

]k(Pk) = p~g(71k(Pk)) + E Zk+1 {]k+l (<I> (Pk' 71k(Pk), Zk+l)) I Pk, 71k(Pk)}

::::; p~g(71k(Pk)) + E Zk+1 { JI::+1 (<I> (pk' 71k(Pk), Zk+l)) I Pk, 71k(Pk)}

= p~g(71k(Pk))

+EZk +1 { min Qk+l(<I>(Pk,71k(Pk),Zk+l),'Uk+l) I Pk,71k(Pk)}
Uk+l EU

= Qk(Pk,71k(Pk))

::::; Qk(Pk,71k(Pk))

= JI::(Pk),

Qk(Pk, 'Uk): The cost achievable from stage k onward starting with
Pk, applying 'Uk at stage k, and optimally choosing each future con
trol 'U'i, i = k + 1, ... ,N - 1, with knowledge of Pk, the observations
Zk+l, .. . ,Zi and the controls 'Uk, .. . , 'Ui-l, and subject to the con
straint 'Ui E U.

Qk(Pk, 'Uk): The cost achievable from stage k onward starting with
Pk, applying 'Uk at stage k, and optimally choosing each future con
trol 'Ui,'i k + 1, ... , N - 1, with knowledge of Pk, the observations

, ... ,Zi, and the controls 'Uk, ... , 'Ui-l, and subject to the con
straint Ui E U(Pi). Note that this definition is equivalent to

Qk(Pk,71k(Pk)) = min Qk(Pk, 'Uk), (6.58)
Uk EU

where 71dpk) is the control applied by the restricted structure policy
just described.

Qk(Pk, 'Uk): The cost achievable from stage k onward starting with
Pk, applying 'Uk at stage k, optimally choosing the control 'Uk+l with
knowledge of Pk, the obse::.",rati0Il Zk+l, ::md the control 'Uk, subject to
the constraint 'Uk+l E U, and optimally choosing each of the remain-

cuntrols 'Ui, i = k + 2, ... , N -1, with knowledge of Pk, the obser
vations Zk+l, Zk+2,.'" Zi, and the controls 'Uk, ... , 'Ui--l, and subject
to the constraints 'Ui E U(Pi) .

Thus, the difference between Qk(Pk, 'Uk) and Qk(Pk, 'Uk) is due to the
difference in the control constraint and the information available to the
controller at all future stages k+ 1, ... , N -1 [U(Pk+l) , ... , U(PN-l) versus
U, and , ... , ZN-l versus Zk+l,"" ZN-l, respectively]. The difference
between Qk(Pk, 'Uk) and Qk(Pk, 'Uk) is due to the difference in the control
constraint and the information available to the controller at the single stage
k + 1 [U(Pk+l) versus U, and Zk+l versus Zk+l, respectively]. Our key
assumptions are that

U (Pk) c U, \:j Pk, k = 0, ... , N - 1, (6.59)

Qk(Pk, 'Uk) ~ Qk(Pk, 'Uk) ~ Qk(Pk, 'Uk), \:j Pk, 'Uk E U, k = 0, ... , N -1.
(6.60)

Roughly, this means that the control constraint U(Pk) is more stringent
than U, and the observations Zk+l,"" ZN-l are "weaker" (no more valu
able in terms of improving the cost) than the observations Zk+l, ... , ZN-l.
Consequently, if Eqs. (6.59) and (6.60) hold, we may interpret a controller
that uses in part the observations Zk and the control constraints U(Pk), in
place of Zk and U, respectively, as "handicapped" or "restricted."

Let us denote:

Jk(Pk): The optimal cost-to-go of the original problem, starting at
belief state Pk at stage k. This is given by

Jk(Pk) = min Qk(Pk, 'Uk)' (6.61)
Uk EU
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where the first equality holds by Eq. (6.57), the first inequality holds by
the induction hypothesis, the second equality holds by Eq. (6.62), the third
equality holds by the definition of Qk' the second inequality holds by the
assumption (6.60), and the last equality holds from the definition (6.58) of
the restricted structure policy. The induction is complete. Q.E.D.

The main conclusion from the proposition is that the performance of
the restricted structure policy {flo,"" flN-d is no worse than the per
formance associated with the restricted control structure. Furthermore, at
each stage k, the value Jf;(Pk), which is obtained as a byproduct of the on
line computation of the control 71k(Pk) , is an upper bound to the cost-to-go
]k(Pk) of the suboptimal policy. This is consistent with Prop. 6.2.1, which
shows the cost improvement property of the OLFC, and Prop. 6.3.1, which
is the basis for the cost improvement property of the rollout algorithm and
the stability property of MPC.

achieved in the limit as the discretization becomes finer and finer. Consis
tency is typically guaranteed if there is a "sufficient amount of continuity"
in the problem; for example, if the cost-to-go functions and the optimal
policy of the original problem are continuous functions of the state. This
in turn can be guaranteed through appropriate continuity assumptions on
the original problem data (see the references given in Section 6.7).

Continuity of the cost-to-go functions may be sufficient to guarantee
consistency, even if the optimal policy is discontinuous in the state. vVhat
may happen here is that for some states there may be a large discrepancy
between the optimal policy of the continuous problem and the optimal
policy of its discretized version, but this discrepancy may occur over a
portion of the state space that diminishes as the discretization becomes
finer. As an example consider the inventory control problem of Section 4.2
with nonzero fixed cost. We obtained an optimal policy of the (s, S) type

if Xk < Sk,
if Xk ~ Sk,

It can be seen then that the state at time t + tlt can be anywhere within
the square centered at x(t) with side of length 2tlt (note that the effect of
any control in the interval [-1, 1] can be obtained in the continuous-time
system by "chattering" between the +1 and -1 controls). Thus, given tlt,
the appropriate discrete-time approximation of the control constraint set
should involve a discretized version of the entire unit square, the convex
hull of the control constraint set of the continuous-time problem. An ex
ample that illustrates some of the pitfalls associated with the discretization
process is given in Exercise 6.10.

which is discontinuous at the lower threshold Sk. The optimal policy ob
tained from the discretized problem may not approximate well the optimal
around the point of discontinuity Sk, but it is intuitively clear that the dis
crepancy has a diminishing effect on the optimal cost as the discretization
becomes finer.

If the original problem is defined in continuous time, then the time
must also be discretized, to obtain a discrete-time approximating problem.
The issue of consistency becomes now considerably more complex, because
the time discretization affects not only the system equation but also the
control constraint set. In particular, the control constraint set may change
considerably as we pass to the appropriate discrete-time approximation.
As an example, consider the two-dimensional system

6.6 ADDITIONAL TOPICS IN APPROXIMATE DP

We close this chapter with a brief discussion of a few additional topics
relating to approximate DP. We first address some of the discretization
issues that arise when continuous state and control spaces are approximated
by discrete spaces for DP computation purposes. We then describe some
alternative suboptimal control approaches.

6.6.1 Discretization

An important practical issue is how to deal computationally with problems
involving nondiscrete state and control spaces. In particular, problems
with continuous state, control, or disturbance spaces must be discretized
in order to execute the DP algorithm. Here each of the continuous spaces
of the problem is replaced by a space with a finite number of elements,
and the system equation is appropriately modified. Thus the resulting
approximating problem involves a finite number of states, and a set of
transition probabilities between these states. Once the discretization is
done, the DP algorithm is executed to yield the optimal cost-to-go function
and an optimal policy for the discrete approximating problem. The optimal
cost function and/or the optimal policy for the discrete problem may then
be extended to an approximate cost function or a suboptimal policy for the
original continuous problem through some form of interpolation. We have
already seen an example of such a process in the context of aggregation (ef.
Example 6.3.13).

A prerequisite for success of this type of discretization is consistency.
By this we mean that the optimal cost of the original problem should be

with the control constraint

Ul(t) E {--I, I}, U2 ( t) E {-I, I}.
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vVe can then approximate the optimal policy f.-Lk(Xk) by a function of some
given form

by a smooth approximation (see Bertsekas [Ber82b], eh. 3). The approach
of cost-to-go functions by minimizing the error in the DP
equations will also be discussed in more detail within an infinite horizon
context (see Vol. II, Section 2.3).

In the second approach, optimal policies are directly approximated.
In particular, suppose that the control space is a Euclidean space, and that
we obtain, for a finite number of states i = 1, ... , m, the minimizing
controls

rO"~~~-l L _]Jk(Xk,Tk)
(xk,k)ES

- min E {9k(Xk, Uk, Wk) + Jk+1 (fk(Xk, Uk, Wk), Tk+l)} 1

2

UkEUk(Xk) Wk

(6.64)
where § is a suitably chosen subset of "representative" state-time pairs.
The above minimization can be attempted using some type of gradient
method. Note that there is some difficulty in doing so because the cost
function of Eq. (6.64) may be nondifferentiable for some values of T. How
ever, there are adaptations of gradient methods that work with nondiffer
entiable cost functions, and for which we refer to the specialized literature.
One possibility is to replace the nondifferentiable term

(6.65)
m

min LII,uk(X i ) - [lk(X i , sk)11
2
.

Sk i=l

[lk(Xk, Sk),

where Sk is a vector of parameters obtained by solving the problem

DP equations; for example by solving the problem

We refer to the papers by Gonzalez and Rofman [GoR85], and by Falcone
[Fa187] for an account of this approach, and to the survey paper by Kushner
[Kus90], and the monograph by Kushner and Dupuis [KuD92] for a detailed
analysis of the associated consistency issues.

An important special case is the continuous-space shortest path prob
lem, described in Exercise 6.10. For the corresponding stochastic shortest
path problem, a finitely terminating adaptation of the Dijkstra shortest
path algorithm has been developed by Tsitsiklis [Tsi95]; see Exercises 2.10
and 2.11 in Chapter 2 of Vol. II. Other related works are the papers by Bert
sekas, Guerriero, and lVlusmanno [BGM95], and Polymenakos, Bertsekas,
and Tsitsiklis [PBT98], which develop continuous space versions of label
correcting algorithms, such as the Small-Label-First algorithm discussed in
Section 2.3.1.

for some nonnegative weights wm(x), which add to 1. When this is worked
out (cf. Example 6.3.13), one ends up with a stochastic optimal control
problem having as states the finite number of grid states, and transition
probabilities that are determined from the weights w m (x) above. If the
original continuous-time optimal control problem has fixed terminal time,
the resulting stochastic control approximation has finite horizon. If the
terminal time of the original problem is free and subject to optimization,
the stochastic control approximation is of the stochastic shortest path type
to be discussed in Section 7.2. , ::>~"i.ce t.ne costs-to-go Jk~X"~) vf
the grid states in the q+:: ::,llCL::3tlC approximating problem are computed, the
cost-to-gO each nongrid state x at stage k is approximated by

M

Jk(x) = L wm(x)Jk(xm).
m=l

A general method to address the discretization issues of continuous
time/ space optimal control is the aggregation/discretization approach de
scribed in Example 6.3.13. The idea is to discretize, in addition to time,
the state space using some finite grid, and then to approximate the cost-to
go of nongrid states by linear interpolation of the cost-to-go values of the
nearby grid states. Thus, the grid states xl, ... ,xM are suitably selected
within the state space, and each nongrid state x is expressed as

M

x = L wm(x)xm,
m=l

6.6.2 Other

We mention briefly three additional approaches for using approximations.
In the first approach, the optimal cost-to-go functions Jk(Xk) are approx
imated with functions Jk(Xk, Tk), where TO, Tl, ... ,TN-l are unknown pa
rameter vectors, which are chosen to minimize some form of error in the

In the case of deterministic optimal control problems, we can take
advantage of the equivalence between open-loop and feedback control to
carry out the approximation process more efficiently. In particular, for
such problems we may select a representative finite subset of initial states,
and generate an optimal open-loop trajectory starting from each of these
states. (Gradient-based methods can often be used for this purpose.) Each
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of these trajectories yields a sequence of pairs (xk, Jk (xk)) and a sequence
of pairs (Xk' f-Lk(Xk)) , which can be used in the least-squares approximation
procedures discussed above. In particular, we can use the exact values
Jdxi ) and f-Lk(X i ) obtained from the optimal open-loop trajectories in place
of Jk(Xi ) and flk(X i ), respectively, in the least-squares problems of Eqs.
(6.51) and (6.65).

In the third approach, sometimes called optimization in policy space,
we parameterize the set of policies by a vector S = (so, Sl, ... , SN-1) and we
optimize the corresponding cost over this vector. In particular, we consider
policies of the form

where the Jld·,·) are functions of a given form. We then minimize over s
the expected cost

E{J7r (s) (xo) },

where J7r (S) (xo) is the cost of the policy 1I"(s) starting from the initial state
Xo, and the expected value is taken with respect to a suitable probability
distribution of xo. One of the difficu.lties associated with this approach
is that optimization of E{ J7r (S) (xo) } over s may be Lime-consuming,
because it may require some brute force search, local search, or random
search method. Sometimes, it is possible to use a gradient-based approach
for optimizing E{ J7r (s) (xo)} over s, but this can be time-consuming as well.

In an important special case of this approach, the parameteriza
tion of the policies is indirect through a parameterization of an approx
imate cost-to-go function. In particular, for a given parameter vector
S (so, ... , we define

where Jk +1 (', .) is a function of a given form. For example, Jk +1 may rep
resent a linear feature-based architecture, where Sk is a vector of adjustable
scalar weights multiplying corresponding features of states Xk+1 (d. Section
6.3.5). Note that the policies

1I"(s) = {Jlo(xo, so), ... ,JlN-1 (XN -1, SN-d}

form a class of one-step lookahead policies parametrized by s. By optimiz
ing over S the corresponding expected cost E{ J7r (S) (xo) }, we end up with
a one-step lookahead policy that is optimal within this class.

6.7 AND EXERCISES

Many schemes for suboptimal control have been discussed in this chapter,
and it may be helpful to summarize them here. Most of these schemes are

based on one-step lookahead, whereby we apply at stage k and state Xk the
control 7lk(Xk) that minimizes over Uk E Uk(Xk)

where Jk +1 is a suitable cost-to-go approximating function; in some cases,
the control constraint set and/or the expected cost per stage are also ap
proximated. The principal distinction between alternative approaches is
the method for calculating Jk +1 . There are several possibilities (and vari
ations thereoff), the principal of which are:

(a) Explicit cost-to-go approximation. Here Jk+1 is computed off-line in
one of a number of ways.

(1) By solving a related problem, obtained for example by aggrega
tion or enforced decomposition, and by deriving Jk+1 from the
optimal cost-to-go of that problem.

(2) By introducing a parametric approximation architecture, possi
bly using features. The parameters of the architecture are tuned
by some form of heuristic or systematic method.

(b) Implicit cost-to-go approximation. Here the values of Jk+1 at the
states fk(xk, Uk, Wk) are computed on-line as needed, by using an
open-loop computation (optimal or suboptimal/heuristic, with or with
out a rolling horizon). We focused on a few possibilities, all which
were interpreted under the unifying framework of restricted structure
policies in Section 6.5.3:

(1) Open-loop-feedback control, where an optimal open-loop compu
tation is used, starting from the state Xk (in the case of perfect
state information) or the conditional probability distribution of
the state (in the case of imperfect state information).

(2) Rollout, where the cost-to-go of a suboptimal/heuristic policy
is used as Jk +1 . This cost is computed as necessary by on-line
simulation (which in some variants may be approximate and/or
use a rolling horizon).

(3) Model predictive control, where an optimal control computation
is used in conjunction with a rolling horizon. This computa
tion is deterministic, possibly based on a simplification of the
original problem via certainty equivalence, but there is also a
minimax variant that implicitly involves reachability of target
tube computations.

A few important variations of the preceding schemes should be men
tioned. The first is the use of multistep lookahead, which aims to improve
the performance of one-step lookahead, at the expense of increased on-line
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computation. The second is the use of certainty equivalence, which sim
plifies the off-line and on-line computations by replacing the current and
future unknown disturbances Wk, ... ,WN-l with nominal values. A third
variation, which applies to problems of imperfect state information, is to
use one of the preceding schemes with the unknown state Xk replaced by
some estimate.

While the idea of one-step lookahead is old, it has gained a lot of
credibility recently, thanks to extensive research on approximate dynamic
programming and wide acceptance of model predictive control in practical
applications. With experience and research, the relative merits of different
approaches have been clarified to some extent, and it is now understood
that some schemes possess desirable theoretical performance guarantees,
while others do not. In particular, in this chapter, we have discussed qual
itative and/or quantitative performance guarantees for open-loop feedback
control (cf. Prop. 6.2.1 and the discussion of Section 6.5.3), rollout
amples 6.3.1 and 6.3.2), and model predictive control (the stability guar
antee discussed in Section 6.5.2). The performance guarantee for certainty
equivalent control (cf. Prop. 6.3.2 and Example 6.3.3) is weaker, and indeed
for some stochastic problems, certainty equivalent control may be outper
formed by open-loop control (see Exercise 6.2) FOl: addItional theoretical
analysis on performance bounds. "vVitsenhausen [Wit69], [Wit70] . De
spite the recent progress ill theory and practical experience, the method
ology for perfoImance analysis of suboptimal control schemes is not very

at present, and the validation of a suboptimal policy by simu
lation is often essential in practice. This is true of all approaches described
in this chapter, including ones that are not based on one-step lookahead,
such as approximation in policy space (cf. Section 6.6.2).

Excellent surveys of adaptive control, which contain many other ref
erences, are given by Astrom [Ast83] and Kumar [Kum85]. Self-tuning
regulators received wide attention following the paper by Astrom and Wit
tenmark [AsW73]. For textbook treatments of adaptive control, see Astrom
and Wittenmark [AsW94], Goodwin and Sin [GoS84], Hernandez-Lerma

Ioannou and Sun [IoS96], Krstic, Kanellakopoulos, and Koko
tovic [KKK95], Kumar and Varaiya [KuV86], Sastry, Bodson, and Bartram
[SBB89], and Slotine and Li [SlL91].

Open-loop feedback control was suggested by Dreyfus [Dre65]. Its
superiority over open-loop control (cf. Prop. 6.2.1) was established by the
author in the context of minimax control [Ber72b]. A generalization of
this result is given by White and Harrington [WhH80]. The POLFC was
proposed in Bertsekas [Ber76].

Stochastic programming problems have been discussed in detail in the
literature the texts by Birge and Louveaux [BiL97], Kall and Wallace

and Prekopa [Pre95]). The connections between stochastic pro
gramming and stochastic optimal control have been highlighted by Varaiya
and \tVets [VaW89].

There is a long history of limited lookahead approximations in spe
cificapplication contexts. The performance bounds for limited lookahead
policies, given in Section 6.3.1 and Exercises 6.11-6.15 are new.

The main idea of rollout algorithms, obtaining an improved policy
starting from some other suboptimal policy using a one-time policy im
provement, has appeared in several DP application contexts. In the con
text of game-playing computer programs, it has been proposed by Abram
son [Abr90] and by Tesauro [TeG96]. The name "rollout" was coined by
Tesauro in specific reference to rolling the dice in the game of backgam
mon. In Tesauro's proposal, a given backgammon position is evaluated
by "rolling out" many games starting from that position, using a simu
lator, and the results are averaged to provide a "score" for the position.
The internet contains a lot of material on computer backgammon and the
use of rollout, in some cases in conjunction with multistep lookahead and
cost-to-go approximation.

The application of rollout algorithms to discrete optimization prob
lems has its origin in the neuro-dynamic programming work of the author
and J. Tsitsiklis [BeT96], and has been further formalized by Bertsekas,
Tsitsiklis, and \tVu [BTW97], Bertsekas [Ber97], and Bertsekas and Cas
tanon [BeC99]. The analysis of the breakthrough problem (Example 6.4.2)
is based on unpublished joint work of the author with D. Castanon and J.
Tsitsiklis. An analysis of the opcimal policy and some suboptimal policies
for this problem is given by Pearl [Pea84]. A discussion of rollout algo
rithms as applied to network optimization problems may be found in the
author's network optimization book [Ber98a]. The technique for variance
reduction in the calculation of Q-factor differences (Section 6.4.2) is from
Bertsekas [Ber97].

For work on rollout algorithms, see Christodouleas [Chr97], Seco
mandi [SecOO], [Sec01], [Sec03], Bertsimas and Demir [BeD02], Ferris and
Voelker [FeV02], [FeV04], McGovern, Moss, and Barto [MMB02], Sav
agaonkar, Givan, and Chong [SGC02], Bertsimas and Popescu [BeP03],
Guerriero and Mancini [GuM03], Tu and Pattipati [TuP03], Wu, Chong,
and Givan [WCG03], Chang, Givan, and Chong [CGC04], lVleloni, Paccia
relli, and Pranzo [MPP04], and Yan, Diaconis, Rusmevichientong, and Van
Roy [YDR05]. These works discuss a broad variety of applications and case
studies, and generally report positive computational experience.

The model predictive control approach has become popular in a vari
ety of control system design contexts, and particularly in chemical process
control, where meeting explicit control and state constraints is an impor
tant practical issue. Over time, there has been increasing awareness of the
connection with the problem of reachability of target tubes, set-membership
descriptions of uncertainty, and minimax control (see the discussion of Sec
tion 4.6). The stability analysis given here is based on the work of Keerthi
and Gilbert [KeG88]. For extensive surveys of the field, see Morari and
Lee [MoL99], and Mayne et. al. [lVIRROO], who give many references. For
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6.3

6.2

k = 0,1,

where 11·11 denotes the usual Euclidean norm. Show that the CEC with nominal
values wo = Wl = 0 has worse performance than the optimal open-loop controller.
In particular, show that the optimal open-loop cost and the optimal closed-loop
cost are both V3/2, but the cost corresponding to the CEC is 1.

Argue that for a one-stage problem, the optimal open-loop controller and the
OLFC are both optimal. Construct an example where the CEC may be strictly
suboptimal. Also work out the following two-stage example, due to [ThW·66] ,
which involves the following two-dimensional linear system with scalar control
and disturbance:

where b = (1,0)/ and d = (1/2, -12/2)/. The initial state is Xo = o. The controls
Uo and Ul are unconstrained. The disturbances Wo and Wl are independent
random variables and each takes the values 1 and -1 with equal probability 1/2.
Perfect state information prevails. The cost is

where cERn is a given vector. Show that the DP algorithm for this problem
can be carried out over a one-dimensional state space.

and a cost function of the formrelated textbooks, see Camacho and Bordons [CaB04], and Maciejowski
[Mac02]. The connection with rollout algorithms and one-time policy it
eration reported in Section 6.5.2 is new. The material of Section 6.5.3 on
the unifying suboptimal control framework based on restricted structure
policies is also new.

The computational requirements for solving stochastic optimal con
trol problems are discussed from the point of view of computational com
plexity in the survey by Blondel and Tsitsiklis [BlTOO], who give several
additional references; see also Rust [Rus97]. For consistency analyses
of various discretization and approximation procedures for discrete-time
stochastic optimal control problems, see Bertsekas [Ber75], [Ber76a], Chow
and Tsitsiklis [ChT89], [ChT91], Fox [Fox71], and Whitt [Whi78], [Whi79].
A discretization method that takes advantage of the special structure of
finite-state imperfect state information problems was first given by Lovejoy
[Lov91a]; see also the survey [Lov91b]. For more recent work, based on the
aggregation/discretization approach described in Example 6.3.13, see Yu
and Bertsekas [YuB04]. The discretization issues of continuous-time/space
optimal control problems have been the subject of considerable research;
see Gonzalez and Rofman [GoR85], Falcone [Fa187], Kushner [Kus90], and
Kushner and Dupuis [KuD92], which give additional sources.

There have been important algorithmic developments for certain types
of continuous space shortest path problems. A finitely terminating adap
tation of the label setting (Dijkstra) method has been developed by Tsit
siklis [Tsi95]. This method was rediscovered later, under the name "fast
marching method," by Sethian [Set99a], [Set99b], who discusses several
other related methods and many applications, as well as by Helmsen et
al. [HPC96]. Efficient analogs of label correcting algorithms for continuous
space shortest path problems were developed by Bertsekas, Guerriero, and
Musmanno [BGIVI95], and Polymenakos, Bertsekas, and Tsitsiklis [PBT98].

Consider a two-stage problem with perfect state information involving the scalar
system

Xo = 1, Xl = Xo +uo +wo,

EXERCISES The control constraints are Uo, U1 E {O, -I}. The random variable Wo takes the
values 1 and -1 with equal probability 1/2. The function f is defined by

6.1

f(l,O) = f(l, -1) = f( -1,0) = f( -1, -1) = 0.5,

f(2,0) = 0, f(2, -1) = 2, f(O, -1) = 0.6, f(O,O) = 2.

The cost function is

Consider a problem with perfect state information involving the n-dimensional
linear system of Section 4.1: (a) Show that one possible OLFC for this problem is

k = 0,1, ... , N - 1,

if Xl = ±1, 2,
if Xl = 0,
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and the resulting cost is 0.5.

(b) Show that one possible CEC for this problem is

and the resulting cost is 0.3. Show also that this CEC is an optimal feedback
controller.

Systems)

Consider the basic problem for semilinear systems (Exercise 1.13 in Chapter 1).
Show that the OLFC, and the CEC, with nominal values of the disturbances
equal to their expected values, are optimal for this problem.

6.7

6.6

if Xl = ±1,2,
if Xl = 0,

6.4

Consider the system and cost function of Exercise 6.3 but with the difference
that

!(O, -1) = 0.

(a) Show that the controller of part (a) of Exercise 6.3 is both an OLFC and
('Fl'. ~md that the corresponding cost is 0.5.

(b) Assume that the control constraint set lui ~he first stage is {o} rather
than {O, -I}. Show that the controller of part (b) vI Bxercise 6.3 is both
an OLFC and a CEC, and that the corresponding cost is O. Note: This
problem illustrates a pathology that occurs generically in suboptimal con
trol; that is, if the control constraint set is restricted, the performance of
a suboptimal scheme may be improved. To see this, consider a problem
and a suboptimal control scheme that is not optimal for the problem. Let
7[* = {Po, ... ,PN-l} be an optimal policy. Restrict the control constraint
set so that only the optimal control P'k(Xk) is allowed at state Xk. Then
the cost attained by the suboptimal control scheme will be improved.

Consider the production control problem of Example 6.3.8 for the case where
there is only one part type (n = 1), and assume that the cost per stage is a
convex function 9 with limlxl->l g(x) = 00.

(a) Show that the cost-to-go function Jk(Xk, ak) is convex as a function of Xk
for each value of ak.

(b) Show that for each k and ak, there is a target value Xk+l such that for
each Xk it is optimal to choose the control Uk E Uk(ak) that brings Xk+l =
Xk + Uk - dk as close as possible to Xk+1'

6.8

Provide a careful argument showing that searching a chess position with and
without a-/3 pruning will give the same result.

6.9

In a version of the game of Nim, two players start with a stack of five pennies
and take turns removing one, two, or three pennies from the stack. The player
who removes the last penny loses. Construct the game tree and verify that the
second player to move will win with optimal play.

6.5

Consider the ARMAX model

Yk+l + aYk = bUk + Ek+l + CEk,

where the parameters a, b, and C are unknown. The controller hypothesizes a
model of the form

6.10 L,;OlntlnllOl.lS Space Shortest Path

Yk+l + aYk = Uk + Ek+l

and uses at each k the minimum variance/certainty equivalent control

Consider the two-dimensional system

where ak is the least-squares estimate of a obtained as

k

ak argmlnl.~)Yn + aYn-l - U~_1)2.
n=l

Write a computer program to test the hypothesis that the sequence {ak} con
verges to the optimal value, which is (c a)/b. Experiment with values lal < 1
and lal > 1.

with the control constraint Ilu(t) II = 1. We want to find a state trajectory that
starts at a given point x(O), ends at another given point x(T), and minimizes

[ r(x(t))dt

The function rC) is nonnegative and continuous, and the final time T is subject to
optimization. Suppose we discretize the plane with a mesh of size b. that passes
through x(O) and x(T), and we introduce a shortest path problem of going from
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Consider a graph with nodes 1, , N, and the problem of finding a shortest
path from each of the nodes 1, , N - 1 to node N with respect to a given set
of arc lengths aij. We assume that all cycles have positive length. Let F(i),
i = 1, ... ,N, be some given scalars with F(N) = 0, and denote

X(O) to x(T) using moves of the following type: from each mesh point x = (Xl, X2)
we can go to each of the mesh points (Xl +~, X2), (Xl -.6., X2), (Xl, X2 + .6.), and

X2 - .6.), at a cost r(x)~. Show by example that this is a bad discretization
of the original problem in the sense that the shortest distance need not approach
the optimal cost of the original problem as ~ -l- 0.

6.13 for

Consider a problem with state space 5, where 5 is a convex subset of iRn
. Suppose

that S = {Yl, ... ,YM} is a finite subset of 5 such that 5 is the convex hull of
S, and consider a one-step lookahead policy based on approximate cost-to-go
functions J0, J l, ... , J N defined as follows:

(6.66)i = 1, ... ,N -1,

F(i) = min [aij + F(j)J
{j/(i,j)is an arc}

where for each i, J i is a nonempty subset of the set of neighbor nodes {j I
(i,j) is an arc}.

(a) Assume that F(i) :s; F(i) for all i = 1, ... , N - 1. Let j(i) attain the
minimum in Eq. (6.66) and consider the graph consisting of the N -1 arcs
(i, j (i)), i = 1, ... , N - 1. Show that this graph contains no cycles and for
each i = 1, ... ,N -1, it contains a unique path Pi starting at i and ending
at N. Show that the length of Pi is less or equal to F(i).

(b) Would the conclusion of part (a) hold if the cycles of the original graph are
assumed to have nonnegative (rather than positive) length?

(c) Let F(i) be the length of some given path from node i to node N with
F(N) = 0, and assume that for the first arc of Pi, say (i,ji), we have
ji E J i . Assume further that

[this is satisfied with equality if Pi consists of arc (i, ji) followed by path
Pji' which is true if the paths Pi form a tree rooted at the destination N;
for example if the paths were obtained by solving some related shortest
path problem]. Show that F(i):S; F(i) for all i = 1, ... ,N-l-

(d) Assume that J i = {j I (i,j) is an arc}. Let Pi be the paths obtained as in
part (a) when the scalars F(i) are generated as in part (c). Interpret Pi
as the result of a rollout algorithm that uses an appropriate heuristic, and
show that for each i, the length of Pi is less or equal to the length of Pi.

(e) Assume that J i = {j I (i,j) is an arc}. Let us view the scalars F(i) as the
node labels of a label correcting method. This method starts with labels
F(i) = 00 for all i =I Nand F(N) = 0, and at each step sets

for some node i =I N for which the above equality is violated (the method
terminates if this equality holds for all i =I N). Show that in the course of
this method, the labels F(i) satisfy the assumptions of part (c) at all times
(at or before termination) for which F(i) < 00 for all i.

v x E 5,

Lookahead with Cost per Stage and Constraint

Jls,crE~t1:zaltlOlnof Convex Problems)

and for k = 1, ... , N - 1,

Jk(x) = min {tAiJk(Yi) I t AiYi ~x, t Ai ~ 1, Ai 2: 0, i = 1, ... , M}'

where Jk (x) is defined by

Jk(x) = min E{gdx,u,Wk) + Jk+l(fk(X,U,Wk)) ~.
UEUk(x) , )

Thus Jk is obtained from J k+l as a "grid-based" convex piecewise linear approx
imation to J k based on the M values

Jk(Yl), ... ,Jk(YlVI).

Assume that the cost functions gk and the system functions fk are such that
the function j k is real-valued and convex over 5 whenever Jk+l is real-valued
and convex over 5. Use Prop. 6.3.1 to show that the cost-to-go functions Jk

corresponding to the one-step lookahead policy satisfy for all x E 5

Jk(x) :s; Jk(x) :s; Jk(x), k = 0,1, ... ,N-1.

Consider a one-step lookahead policy as in Section 6.3, where Jk(xk) is chosen
to be the optimal cost-to-go of a different problem where the costs-per-stage and
control constraint sets are gk (Xk, Uk, Wk) and Uk(Xk), respectively, [rather than

Uk, Wk) and Uk(Xk)]. Assume that for all k, Xk, Uk, Wk, we have

gk(Xk, Uk, Wk) :s; gk(Xk, Uk, Wk), Uk(Xk) c fh(Xk).

Use Prop. 6.3.1 to show that the costs-to-go J k of the one-step lookahead policy
satisfy

]k(Xk) :s; Jk(Xk),

for all Xk and k. Extend this result for the case where gk satisfies instead

gk(Xk, Uk, Wk) :s; gk(Xk, Uk, Wk) + Ok,

where Ok are some scalars that depend only on k.

6.11
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Consider a two-step lookahead policy as in Section 6.3, and assume that for all
Xk and k, we have

where j N gN and for k = 0, ... , N - 1,

Consider the cost-to-go functions] k corresponding to the two-step lookahead
policy that uses Jk and Vk(xk). Show that for all xk and k, we have

Consider the breakthrough problem of Example 6.4.2 with the difference that
instead of the greedy heuristic, we use the random heuristic, which at a given
node selects one of the two outgoing arcs with equal probability. Denote by

the probability of success of the random heuristic in a graph of k stages, and by
Rk the probability of success of the corresponding rollout algorithm. Show that
for all k

and that

+ p(l - Rk-I).

where JIt is the function obtained by two DP iterations starting from Jk+2: Conclude that Rk/Dk increases exponentially with k.

Consider the graph search problem of Section 6.4.1 and let H be a sequentially
improving base heuristic. Suppose that we generate a path (iI, ... , im;) according
to

0.15 with Errors)

6.17

ConsIder the breakthrough problem of Example 6.4.2 with the difference that
there are three outgoing arcs from each node instead of two. Each arc is free
with probability p, independently of other arcs. Derive an equation for the ratio
Rk/Gk, where Gk is the probability of success of the greedy heuristic for a k
stage problem, and R k is the probability of success of the corresponding rollout
algorithm. Verify that the results of Example 6.4.2 still hold in a qualitative
sense, and that Rk/Gk increases linearly with k.

im+1 = arg min H(j),
jEN(im )

m = 1, ... ,m-1,
6.18 (Breakthrough Problem with a J!."''-nl. ..........Ji.F, Horizon Jl~'l.H..l.'l.n.Jl.i.>

(a) Assuming that Ie(j) I :S E for all j, show that the cost of the generated path
is less than or equal to H(i l ) + 2(m 1)E. Hint: Use the relation

(b) Modify the estimate of part (a) for the case where we have 0 :S e(j) :S E

for all j, and for the case where we have -E :S e(j) :S 0 for all j.

(c) Consider the case where H is optimal so that H (j) = J* (j), and derive a
bound on the difference between the cost of the generated path and the
optimal cost starting from i l .

where differs from the cost H(j) of the base heuristic by the error

e(j) = H(j) - H(j).

= min H(j):S min H(j) + E :S H(im ) + Eo
jEN(im ) jEN(im )

Consider the breakthrough problem of Example 6.4.2 and consider a rolling
horizon-type of rollout algorithm that uses a greedy base heuristic with l-step
lookahead. This is the same algorithm as the one described in Example 6.4.2, ex
cept that if both outgoing arcs of the current node at stage k are free, the rollout
algorithm considers the two end nodes of these arcs, and from each of them it
runs the greedy algorithm for min{l, N - k - I} steps. Consider a Markov chain
with l + 1 states, where states i = 0, ... , l -- 1 correspond to the path generated
by the greedy algorithm being blocked after i arcs. State l corresponds to the
path generated by the greedy algorithm being unblocked after l arcs.

(a) Derive the transition probabilities for this Markov chain so that it models
the operation of the rollout algorithm.

(b) Use computer simulation to generate the probability of a breakthrough, and
to demonstrate that for large values of N, the optimal value of l is roughly
constant and much smaller than N (this can also be justified analytically,
by using properties of Markov chains).
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6.19 for Constrained 6.20 (Rollout for Minimax

Consider the deterministic constrained DP problem involving the system

Xk+l = !k(Xk,Uk),

where we want to minimize the cost function
N-I

gJv(XN) + L gUXk, Uk)
k=O

Consider the minimax DP problem, as described in Section 1.6, and a one-step
lookahead policy based on lookahead functions JI, ... , JN, with I N = gN· This
is the policy obtained by minimizing at state Xk the expression

m=2, ... ,M;

m=2, ... ,M.

Jl(X)).

i = 0,1, ... , m - 2,

for all x E X and W E!(X,7l(X),W) EX,

Consider a rollout algorithm where J k are the cost-to-go functions corre
sponding to some base heuristic. Show that the cost-to-go functions]k of
the rollout algorithm satisfy ] k(xk) ::::; Jk(xk) for all Xk and k.

Consider the MPC framework of Section 6.5.2, including disturbances with set
membership description. Let 7l be the policy obtained from MPC.

(a) Use the constrained controllability assumption to show that 7l attains reach
ability of the target tube {X, X, ...} in the sense that

k=O

where K T is the smallest integer k such that Xk E T (with KT = 00 if
X k 1: T for all k), and J (x) is the optimal cost starting at state X E X
of the m-stage minimax control problem solved by MPC. Hint: Argue as
in the case where there are no disturbances. Consider an optimal control
problem that is similar to the one solved at each stage by MPC, but has one
stage less. In particular, given x E X with X 1: T, consider the minimax
control problem of finding a policy flo, [ll, ... , [lm-2 that minimizes

subject to the system equation constraints

m-2

(b) Consider any sequence {xo, Uo, Xl, UI, ...} generated by MPC [i.e., Xo EX,
Xo 1: T, Uk = Jl(Xk), Xk+l = !(Xk, Uk, Wk), and Wk E W(Xk, Uk)]. Show
that

6.21 (MPC with Disturbances)

over Uk E Uk(Xk).

(a) State and prove analogs of Props. 6.3.1 and 6.3.2.

(b)

For each Uk E Uk(Xk) , let Xk+l = !k(Xk, Uk) be the next state, and let J(Xk+l)
and 6 m(Xk+l) be the cost-to-go and values of constraint functions of the base
heuristic starting from Xk+l.

The algorithm starts with the partial trajectory To that consists of just the
initial state xo. For each k = 0, ... , N - 1, and given the current trajectory Tk,
it forms the subset of controls Uk E Uk(Xk) that together with the corresponding
states Xk+l = !k(Xk, Uk) satisfy

Cm(Xk) + gk'(Xk, Uk) + 6 m(Xk+l) ::::; bm, m = 2, ... , M.

The algorithm selects from this set a control Uk and corresponding state Xk+l
such that

g~(Xk'Uk) + J(xk+d

is minimum, and then it forms the trajectory Tk+l by adding (Uk, Xk+l) to Tk.
Formulate analogs of the assumptions of sequential consistency and sequential
improvement of Section 6.4.1, under which the algorithm is guaranteed to gen
erate a feasible state/control trajectory that has no greater cost than the cost
associated with the base heuristic. Note: For a description and analysis of a gen
eralized version of this algorithm, see the author's report "Rollout Algorithms
for Constrained Dynamic Programming," LIDS Report 2646, MIT, April 2005.

Tk = (xo, Uo, Xl,··., Uk-I, Xk)

that starts at the given initial state Xo, and is such that Xi+! = !i (Xi, Ui) and
Ui E Ui(xd for all i = 0,1, ... ,k - 1. For such a trajectory, let Cm(Xk) be the
corresponding values of constraint functions

k-l
Cm(Xk) = L g;n(Xi, Ui),

i=O

subject to the constraints

N-I
gfj(XN) + L gk'(Xk,Uk) ::::; bm,

k=O
cf. Section 2.3.4. We assume that each state Xk takes values in a finite set and
each comrol Uk; values in a finite constraint set Uk(Xk) that depends on Xk.
We describe an extension of the roiiuu~ involving some base heuristic,
which is feasible in the sense that when started from tHe .;iven initial state Xo, it
produces a state/control trajectory that satisfies the constraUi: q of the problem.

Consider a rollout algorithm, which at stage k, maintains a par~iDJ state/con
trol trajectory
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Xi EX, i = 0,1, ... ,n& - 2,

and the terminal state constraint

Xi E T, for some i E [1, n& - 1].

These constraints must be satisfied for all disturbance sequences with

0,1, ... ,n& - 2.

Let J (xo) be the corresponding optimal value, and define J (xo) = 0 for
Xo E T, and J(xo) = 00 for all Xo t/: T for which the problem has no
feasible solution. Show that the control Ii(x) applied by MPC at a state
X E X with X t/: T, minimizes over u E U(x)

max [Xl Qx + u'Ru + J(J(x, u, w))],
wEW(x,u)

and use the fact J(x) :::; J(x) to show that for all X E X with x t/: T, we
have

max [xIQX+Ii(X)'RIi(X) + J(f(x,Ii(X)'W))] :::; J(x).
wEW(x,u)

c

n

Conclude that for all k such that Xk E X with Xk t/: T, we have

where J(Xk+l) = °if Xk+l E T. Add over k = 0,1, ... ,KT - l.

(c) Show that under MPC, the state Xk of the system must belong to T for
all sufficiently large k, provided that minxEx, x'i T x'Qx > 0. Use Example
6.5.3 to show the need for this assumption.

(d) Interpret the policy Ii produced by MPC as a rollout policy with an ap
propriate base heuristic. Hint: View Ii as a one-step lookahead policy with
one-step lookahead approximation function equal to J, defined in the hint
to part (b).
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In this chapter, we provide an introduction to infinite horizon problems.
These problems differ from those considered so far in two respects:

(a) The number of stages is infinite.

(b) The system is stationary, Le., the system equation, the cost per stage,
and the random disturbance statistics do not change from one stage
to the next.

The assumption of an infinite number of stages is never satisfied in practice,
but is a reasonable approximation for problems involving a finite but very
large number of stages. The assumption of stationarity is often satisfied
in practice, and in other cases it approximates well a situation where the
system parameters vary slowly with time.

Infinite horizon problems are interesting because their analysis is el
egant and insightful, and the implementation of optimal policies is often

J..'Vl eXample, are typically stationary, i.e., the
optimal rule for choosing controls does not change from one stage to the
next.

On the other hand, infinite horizon problems generally require more
sophisticated analysis than their finite horizon counterparts, because of
the need to analyze limiting behavior as the horizon tends to infinity. This
analysis is often nontrivial and at times reveals surprising possibilities.
Our treatment will be limited to finite-state problems. A far more detailed
development, together with applications from a variety of fields can be
found in Vol. II of this work.

7.1 AN OVERVIE"V

There are four principal classes of infinite horizon problems. In the first
three classes, we try to minimize the total cost over an infinite number of
stages, given by

J-rr(xo) denotes the cost associated with an initial state Xo and a
policy 1f = {t.LO, j.tl, . .. }, and a is a positive scalar with 0 < a ::; 1, called
the discount factor. The meaning of a < 1 is that future costs matter to
us less than the same costs incurred at the present time. As an example,
think of kth period dollars depreciated to initial period dollars by a factor
of (1 where r is a rate of interest; here a = 1/(1 +r). An important
concern in total cost problems is that the limit in the definition of J-rr(xo) be
finite. In the first two of the following classes of problems, this is guaranteed

through various assumptions on the problem structure and the discount
factor. In the third class, the analysis is adjusted to deal with infinite cost
for some of the policies. In the fourth class, this sum need not be finite for
any policy, and for this reason, the cost is appropriately redefined.

(a) Stochastic shortest path problems. Here, a = 1 but there is a special
cost-free termination state; once the system reaches that state it re
mains there at no further cost. We will assume a problem structure
such that termination is inevitable (this assumption will be relaxed
somewhat in Chapter 2 of Vol. II). Thus the horizon is in effect finite,
but its length is random and may be affected by the policy being
used. These problems will be considered in the next section and their
analysis will provide the foundation for the analysis of the other types
of problems considered in this chapter.

(b) Discounted problems with bounded cost per stage. a < 1 and
the absolute cost per stage Ig (x, u, w) I is bounded from above by
some constant 1\11; this makes the cost J-rr (xo) well defined because
it is the infinite sum of a sequence of numbers that are bounded in
absolute value by the decreasing geometric progression {a k M}. We
will consider these problems in Section 7.3.

(c) D'iscounted and undiscounted problems with unbounded cost per stage.
Here the discount factor a mayor may not be less than 1, and the cost
per stage may be unbounded. These problems require a complicated
analysis because the possibility of infinite cost for some of the policies
is explicitly dealt with. We will not consider these problems here; see
Chapter 3 of Vol. II.

(d) Average cost per problems. Minimization ofthe total cost J-rr(xo)
makes sense only if J-rr(xo) is finite for at least some admissible policies
1f and some initial states xo. Frequently, however, it turns out that
J-rr(xo) = 00 for every policy 1f and initial state Xo (think of the case
where a = 1, and the cost for every state and control is positive).
It turns out that in many such problems the average cost per stage,
defined by

1
. 1
1m - E

N-->oo N Wk
k=O,l, ...

is well defined and finite. We will consider some of these problems in
Section 7.4.

A Preview of Infinite Horizon Results

There are several analytical and computational issues regarding infinite
horizon problems. Many of these revolve around the relation between the
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for all states x. This relation is extremely valuable computationally
and analytically, and, fortunately, it typically holds. In particular, it
holds for the models of the next t~vv sections [categories (a) and (b)
above]. However, there eire some unusual exceptions for problems in
category above, and this illustrates that infinite horizon problems
3hould be approached with some care. This issue is discussed in more
detail in Vol. II.

(2) The following limiting form of the DP algorithm should hold for all
states x,

optimal cost-to-go function J* of the infinite horizon problem and the op
timal cost-to-go functions of the corresponding N-stage problems. In par
ticular, consider the case a = 1 and let IN (x) denote the optimal cost of
the problem involving N stages, initial state x, cost per stage g(x, u, w),
and zero terminal cost. The optimal N-stage cost is generated after N
iterations of the DP algorithm

Jk+1(X)= min E{g(x,u,w) + Jk(J(X,U,w))}, k=O,l, ... (7.1)
uEU(x) w

starting from the initial condition Jo(x) = 0 for all x (note here that we
have reversed the time indexing to suit our purposes). Since the infinite
horizon cost of a given policy is, by definition, the limit of the corresponding
N-stage costs as N ---+ 00, it is natural to speculate that:

(1) The optimal infinite horizon cost is the limit of the corresponding
N-stage optimal costs as N ---+ 00; that is,

for all states i.Jp,(i) = J*(i) = minJ1r (i),
1r

where a is a discount factor with 0 < a :::; 1. In the following two sections,
we will impose assumptions that guarantee the existence of the above limit.
The optimal cost from state i, that is, the minimum of J1r (i) over all ad
missible 1r, is denoted by J * (i). A stationary policy is an admissible policy
of the form 1r = {p" p" •.. }, and its corresponding cost function is denoted
by Jp,(i). For brevity, we refer to {p" p" ... } as the stationary policy p,. We
say that p, is optimal if

Here, we assume that there is no discounting (a = 1), and to make the cost
meaningful, we assume that there is a special cost-free termination state
t. Once the system reaches that state, it remains there at no further cost,
i.e., Ptt(u) = 1 and g(t, u) = 0 for all u E U(t). We denote by 1, ... , n the
states other than the termination state t.

STOCHASTIC SHORTEST PATH PROBLEMS

Total Cost Problem Formulation

Throughout this chapter we assume a controlled finite-state discrete-time
dynamic system whereby, at state i, the use of a control u specifies the
transition probability Pij (u) to the next state j. Here the state 'i is an
element of a finite state space, and the control u is constrained to take
values in a given finite constraint set U(i), which may depend on the current
state i. As discussed in Section 1.1, the underlying system equation is

where Wk is the disturbance. We will generally suppress Wk from the cost to
simplify notation. Thus we will assume a kth stage cost g(Xk' Uk) for using
control Uk at state Xk. This amounts to averaging the cost per stage over
all successor states in our calculations, which makes no essential difference
in the subsequent analysis. Thus, if g( i, u, j) is the cost of using u at state
i and moving to state j, we use as cost per stage the expected cost g(i, u)
given by

g(i, u) = LPij(U)g(i, u,j).
j

The wtal expected cost associated with an initial state i and a policy
1r = {p,o, p,l, ...} is

7.2

(7.2)J*(x) = lim IN(X)
1'1-+00

J * (x) = min E {g (x, u, w) + J* (J (x, u, w) ) } ,
uEU(x) w

as suggested by Eqs. (7.1) and (7.2). This is not really an algorithm,
but rather a system of equations (one equation per state), which has
as solution the costs-to-go of all the states. It can also be viewed as
a functional equation for the cost-to-go function J*, and it is called
Bellman's equat'ion. Fortunately again, an appropriate form of this
equation holds for every type of infinite horizon problem of interest.

(3) If p,(x) attains the minimum in the right-hand side of Bellman's equa
tion for each x, then the policy {p" p" ... } should be optimal. This is
true for most infinite horizon problems of interest and in particular,
for all the models discussed in this chapter.

Most of the analysis of infinite horizon problems revolves around the
above three issues and also around the issue of efficient computation of
J* and an optimal policy. In the next three sections we will provide a
discussion of these issues for some of the simpler infinite horizon problems,
all of which involve a finite state space.
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vVe are interested in problems where reaching the termination state
is inevitable, at least under an optimal policy. Thus, the essence of the
problem is to reach the termination state with minimum expected cost. We
call this problem the stochastic shortest path problem. The deterministic
shortest path problem is obtained as the special case where for each state
control pair (i, u), the transition probability Pij (u) is equal to 1 for a unique
state j that depends on (i, u). The reader may also verify that the finite
horizon problem of Chapter 1 can be obtained as a special case by viewing
as state the pair (Xk, k) (see also Section 3.6 of Vol. II).

Certain conditions are required to guarantee that, at least under an
optimal policy, termination occurs with probability 1. We will make the
following assumption that guarantees eventual termination under all poli
cies:

known. Let

p = maxp1r'1r

Note that P1r depends only on the first m components of the policy 1r.
Furthermore, since the number of controls available at each state is finite
the number of distinct m-stage policies is also finite. It follows that ther~
can be only a finite number of distinct values of P1r so that

p < 1.

vVe therefore have for any 'iT and any initial state i

AE;SUmllJtl.on 7.2.1: There exists an integer m such that regardless of
the policy used and the initial state, there is positive probability that
the termination state will be reached after no more that m stages; that
is, for all admissible policies 'iT we have

P1r = .max P{X m =f- t I Xo = i, 'iT} < 1.
~=1

(7.3)

P{X2m =f- t I XQ = i, 1r} = P{X2m =f- t I X m =f- t, XQ = i, 1r}
. P{xm =f- t I XQ = i,'iT}

5:. p2.

More generally, for each admissible policy 'iT, the probability of not reaching
the termination state after km stages diminishes like pk regardless of the
initial state, that is,

i = 1, ... ,no (7.4)

vVe note, however, that the results to be presented are valid under
more general circumstances. t Furthermore, it can be shown that if there

the property of Assumption 7.2.1, then there also
exists an integer less or equal to n property 7.12). Thus,
we can always use m = n in Assumption 7.2.1, if no smaller value of m is

t Let us call a stationary policy 1f proper if the condition (7.3) is satisfied for
some m, and call1f improper otherwise. It can be shown that Assumption 7.2.1
is equivalent to the seemingly weaker assumption that all stationary policies are
proper (see Vol. II, Exercise 2.3). However, the results of Prop. 7.2.1 can also
be shown under the genuinely weaker assumption that there exists at least one
proper policy, and furthermore, every improper policy results in infinite expected
cost from at least one initial state (see Bertsekas and Tsitsiklis [BeT89], [BeT91],
or Vol. II, Chapter 2). These assumptions, when specialized to deterministic
shortest path problems, are similar to the ones we used in Chapter 2. They
imply that there is at least one path to the destination from every starting node
and that all cycles have positive cost. Still another set of assumptions under
which the results of Prop. 7.2.1 hold is described in Exercise 7.28, where again
improper policies are allowed, but the stage costs g( i, u) are assumed nonnegative,
and the optimal costs J* (i) are assumed finite.

Th11': ~ne limit defining the associated total cost vector J1r exists and is
nnite, since the expected cost incurred in the m periods between km and
(k + l)m 1 is bounded in absolute value by

mpk .max Ig(i, u) I.
~==l, ... ,n
uEUC'i)

In particular, we have

00

IJ1r (i) I 5:. mpk .E1ax Ig(i, u) I=~ .E1&."<: Ig(i, u) I· (7.5)
t-l, ... ,n 1 - P t-l, ... ,n

k=Q uEU(i) uEU(i)

The results of the following proposition are basic and are typical of
many infinite horizon problems. The key idea of the proof is that the "tail"
of the cost series,

00

E{g(Xk' fLk(Xk)) }
k=mK

vanishes as K increases to 00, since the probability that XmK :/= t decreases
like pK [ef. Eq. (7.4)].
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and in fact they are the unique solution of this equation.

(c) For any stationary policy Jl, the costs Jp,(l), ... , Jp,(n) are the
unique solution of the equation

1\11 = m .max I9 (i, u) I.
~==l, ... ,n
uEU(i)

the first mK stages and over the remaining stages

Also, denoting Jo(t) = 0, let us view Jo as a terminal cost function and
bound its expected value under Jr after mK stages. We have

Let lV1 denote the following upper bound on the cost of an m-stage cycle,
assuming termination does not occur during the cycle,

The expected cost during the Kth m-stage cycle [stages Km to (K+1)m-1]
is upper bounded by 1\11pK [ef. Eqs. (7.4) and (7.5)], so that

(7.7)

i = 1, ... ,n,

i = 1, ... ,n,
r .'0 l

......J..1l1 19(i,U) + LPij(U)J*(j)J '
uEU(i) j=l

(7.6)
converges to the optimal cost J*(i) for each i. [Note that, by
reversing the time index this iteration can be viewed as the DP
algorithm for a finite horizon problem with terminal cost function
equal to Jo. In fact, Jk(i) is the optimal cost starting from state i
of a k-stage problem with cost per stage given by 9 and terminal
cost at the end of the k stages given by Jo.]

(b) The optimal costs J*(l), ... , J*(n) satisfy Bellman's equation,

7.2.1 Under Assumption 7.2.1, the following hold for
the stochastic shortest path problem:

(a) Given any initial conditions Jo(l), ... , Jo(n), the sequence Jk(i)
generated by the iteration

Furthermore, given any initial conditions Jo(l), ... , Jo(n), the
sequence Jk(i) generated by the DP iteration

n

Jp,(i) = g(i'Jl(i)) + Pij(Jl(i))Jp,(j),
j=l

n

Jk+1 (i) g(i, Jl( i)) + LPij (Jl( i)) Jk(j),
j=l

i = 1, ... ,no

i = 1, ... ,n,

!E{JO(XmK)}! = ItP(XmK = i IXO,7r)JO(i)1

:; (t P(XmK = i I Xo, Jr)) i~,~.~nIJo(i) I
t=l

:; pK . max jJo(i) I,
t=l, ... ,n

since the probability that XmK =1= t is less or equal to pK for any policy.
Combining the preceding relations, we obtain

converges to the cost Jp,(i) for each i.

(d) A stationary policy Jl is optimal if and only if for every state i,
Jl(i) attains the minimum in Bellman's equation (7.7).

Proof: (a) For every positive integer K, initial state xo, and policy Jr =
{Jlo, !--Ll,·· .}, we break down the cost J7r (xo) into the portions incurred over

(7.8)
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n

i = 1, ... ,no
i ~ 2,

i = 1, ... ,no

i = 1, ... ,no

i = 1, ... , n, u E U(i),

mi = 1 + LPijmj,

j=1

g(i, u) = 1,

Pii P, Pi(i-l) = 1 - 2p, Pi(i-2) = P,

J*(i) = min [1 + tPij(U)J*(j)] ,
uEU(i)

j=1

Example 7.2.2

A spider and a fly move along a straight line at times k = 0,1, ... The initial
positions of the fly and the spider are integer. At each time period, the
fly moves one unit to the left with probability P, one unit to the right with
probability P, and stays where it is with probability 1- 2p. The spider, knows
the position of the fly at the beginning of each period, and will always move
one unit towards the fly if its distance from the fly is more that one unit. If the
spider is one unit away from the fly, it will either move one unit towards the
fly or stay where it is. If the spider and the fly land in the same position at the
end of a period, then the spider captures the fly and the process terminates.
The spider's objective is to capture the fly in minimum expected time.

vVe view as state the distance between spider and fly. Then the problem
can be formulated as a stochastic shortest path problem with states 0, 1, ... ,n,
where n is the initial distance. State 0 is the termination state where the
spider captures the fly. Let us denote Plj (M) and Plj (1\11) the transition
probabilities from state 1 to state j if the spider moves and does not move,
respectively, and let us denote by Pij the transition probabilities from a state
·i ~ 2. We have

In the special case where there is only one control at each state, J* (i) repre
sents the mean first passage time from i to t (see Appendix D). These times,
denoted mi, are the unique solution of the equations

corresponds to a problem where the objective is to terminate as fast as possible
on the average, while the corresponding optimal cost J* (i) is the minimum
expected time to termination starting from state i. Under our assumptions,
the costs J* (i) uniquely solve Bellman's equation, which has the form

Example 7.2.1 (Minimizing Expected Time to

The case where

Part (c) and the above equation imply that JJ-i(i) = J*('i) for all i. Con
versely, if JJ-i (i) = J* (i) for all i, parts (b) and (c) imply the above equation.
Q.E.D.

i = 1, ... ,n,

q= 1, ... ,m,

n

JJ-i(i) = g(i,f-L(i)) + Pij(p,(i))JJ-i(j),
j=l

we see that limK-+00 JmK+q (xo) is the same for all q = 1, ... ,m, so that
we have limk-+oo Jk(XO) = J*(xo).

(b) By taking the limit as k ---7 00 in the DP iteration (7.6) and using the
result of part (a), we see that J*(l), ... , J*(n) satisfy Bellman's equation.
To show uniqueness, observe that if J(l), ... , J(n) satisfy Bellman's equa
tion, then the DP iteration (7.6) starting from J(l), ... , J(n) just repli
cates J(l), ... , J(n). It follows from the convergence result of part (a) that
J(i) J*(i) for all i.

(c) Given the stationary policy f-L, we can consider a modified stochastic
shortest path problem, which is the same as the original except that the
control constraint set contains only one element for each state i, the con
trol f-L(i); that is, the control constraint set is U(i) = {f-L(i)} instead of
U(i). From part (b) we then obtain that JJ-i(l) , ... , JJ-i(n) solve uniquely
Bellman's equation for this modified problem, that is:

Note that the expected value in the middle term of the above inequalities is
the mK-stage cost of policy 1r starting from state Xo, with a terminal cost
JO(;EmK); the minimum of this cost over all1r is equal to the value JmK(XO),
which is generated by the DP recursion (7.6) after mK iterations. Thus,
by taking the minimum over 1r in Eq. (7.8), we obtain for all Xo and K,

pKM
_pK . max jJo(i)! + J*(xo) - --

t=l, ... ,n 1 p

:::; JmK(XO) (7.9)
pKM

:::; pK i~,~nIJo(i)1 + J*(xo) + lP'

and by taking the limit as K ---7 00, we obtain limK-+oo JmK(XO) = J*(xo)
for all xo. Since

and from part (a) it follows that the corresponding DP iteration converges
to JJ-i(i).

(d) We have that f-L(i) attains the minimum in Eq. (7.7) if and only if we
have

J*(i) = min [9U, u) + n
uEU(i) j=l
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where the first and the second expression within the bracket above are asso
ciated with the spider moving and not respectively. By writing Eq.
(7.10) for i 2. we obtain

where J* (0) = 0 by definition. The only state where the spider has a choice
is when it is one unit away from the fly, and for that state Bellman's equation
is given by

Pll (1\II) = 2p, PlO(IvI) = 1 - 2p,

P12(1Vl) = p, Pl1(1\II) = 1 - 2p, PlO(l\!I) = p,

with all other transition probabilities being O.
For states i ?: 2, Bellman's equation is written as

J*(i) = 1 + pJ*(i) + (1- 2p)J*(i - 1) + pJ*(i - 2), i?: 2,

J*(l) = 1 + min [2p]*(1), pJ*(2) + (1- 2p)J*(1)] ,

(7.10)

(7.11)

The solution ofEq. (7.13) is seen to be J*(l) = 1/(1-2p), and by substitution
in Eq. (7.14), we find that this solution is valid when

p 1
<--+--1 - 2p - 1 - p 1 - p'

or equivalently (after some calculation), p :::; 1/3. Thus for p :::; 1/3, it is
optimal for the spider to move when it is one unit away from the fly.

Similarly, the solution of Eq. (7.15) is seen to be J* (1) l/p, and by
substitution in Eq. (7.14), we find that this solution is valid when

') > _P_ + 1-2p
... - 1 - p p(1 - p) ,

or equivalently (after some calculation), p ?: 1/3. Thus, for p ?: it is
optimal for the spider not to move when it is one unit away from the fly.

The minimal expected number of steps for capture when the spider is
one unit away from the fly was calculated earlier to be

J* (2) = 1 + p]* (2) + (1 - 2p)J* (1), J*(l) = {1/(1-2P) ifp:::;1/3,
l/p if p ?: 1/3.

from which
J*(2) = _1_ + (1- 2p)J*(1)

1 p 1- P

Substituting this expression in Eq. (7.11), we obtain

(7.12)
Given the value of J*(l), we can calculate from Eq. (7.12) the minimal ex
pected number of steps for capture when two units away, J*(2), and we can
then obtain the remaining values J* (i), i = 3, ... ,n, from Eq. (7.10).

.1'(1) = 1 min [2pr(I), 1 ~ P + P(I-12P~'(l) + (1- 2p)J' (1)] , Value Iteration and Error Bounds

The DP iteration
or equivalently,

1'(1) = 1 + min [2PJ' (1), + (1 2p) J* (1)] .
-p l-':'p

i = 1, ... ,n, (7.16)

To solve the above equation, we consider the two cases where the first
expression within the bracket is larger and is smaller than the second expres
sion. Thus we solve for J*(l) in the two cases where

J* (1) = 1 + 2pJ* (1),

J*(l) = 1 + _P_ + (1 2p)J*(1)
1-p . 1-p

and

2p]* (1) :::;

2pJ* (1) ?:

+ (1 - 2p)J* (1)
-p 1-p'

(1 - 2p)J* (1)
+ .p 1-p

(7.13)

(7.14)

(7.15)

is called value iteration and is a principal method for calculating the optimal
cost function J*. Generally, value iteration requires an infinite number of
iterations, although there are important special cases where it terminates
finitely (see Vol. Section 2.2). Note that from (7.9) we obtain that
the error

IJmK(i) - J*(i)!

is bounded by a constant multiple of pK.
The value iteration algorithm can sometimes be strengthened with

the use of some error bounds. In particular, it can be shown (see Exercise
7.13) that for all k and j, we have

Jk+l(j) + (N*(j) - 1) f:.k ::; J*(j) ::; J/J>k(j) ::; Jk+l(j) + (Nk(j) - 1) Ck,
(7.17)



Introduction to Infinite Horizon Problems Chap. 7 Sec. 7.2 Stochastic Shortest Path Problems 415

Proof: For any k, consider the sequence generated by the recursionwhere f-Lk is such that f-Lk (i) attains the minimum in the kth value iteration
(7.16) for all 'i, and

N* (j): The average number of stages to reach t starting from j and
using some optimal stationary policy,

Nk(j): The average number of stages to reach t starting from j and
using the stationary policy f-Lk,

n

IN+1(i) =g('i'f-Lk+1(i)) + ~Pij(f-Lk+1(i))JN(j),
j=l

where N = 0,1, ... , and

i = 1, ... ,n,

n

Jo(i) = g(i,{-Lk(i)) + ~Pij(f-Lk(i))Jo(j)
j=l

Ck = . max [Jk+1(i) - Jk(i)].
t=l, ... ,n

Unfortunately, the values N*(j) and Nk(j) are easily computed or approx
imated only in the presence of special problem structure (see for example
the next section). Despite this fact, the bounds (7.17) often provide a use
ful guideline for stopping the value iteration algorithm while being assured
that Jk approximates J* with sufficient accuracy.

Jo(i) = Jf.Lk(i),

From Eqs. (7.18) and (7.19), we have

n

i = 1, ... ,no

Iteration :2: g(i,J1k+1(i)) + ~Pij(J1k+1(i))Jo(j)
j=l

There is an alternative to value iteration, which always terminates finitely.
This algorithm is called policy iteration and operates as follows: we start
with a stationary policy f-Lo, and we generate a sequence of new policies
f-L1, f-L2, ... Given the policy f-Lk, we perform a policy evaluation step, that
computes Jf.Lk (i), i = 1, ... , n, as the solution of the (linear) system of
equations

n

J(i) = g(i,{-Lk(i)) + ~Pij(f-Lk(i))J(j),
j=l

i = 1, ... ,n, (7.18)

for all i. By using the above inequality we obtain (compare with the mono
tonicity property of DP, Exercise 1.23 in Chapter 1)

n

J1(i) = g(i,J1k+1(i)) + Pij(J1k+1(i))Jo(j)
j=l

n

:2: g(i,{-Lk+1(i)) + ~Pij(f-Lk+1(i))J1(j)
j=l

in the n unknowns J(l), ... , J(n) [d. Prop. 7.2.1(c)]. We then perform a
policy improvement step, which computes a new policy f-Lk+1 as

for all i, and by continuing similarly we have

i = 1, ... ,n, k = 0,1, ....

i = 1, ... ,no

i = 1, ... ,n. (7.20)

Since by Prop. 7.2.1(c), IN(i) ---+ Jf.Lk+l (i), we obtain Jo(i) :2: Jf.Lk+l (i) or

Thus the sequence of generated policies is improving, and since the number
of stationary policies is finite, we must after a finite number of iterations,
say k + 1, obtain Jf.Lk (i) = Jp,k+ 1 (i) for all i. Then we will have equality
holding throughout in Eq. (7.20), which means that

i = 1, ... ,no

PJt. ..~ .2.2 7.2.2 Under Assumption 7.2.1, the policy iteration al
gorithm for the stochastic shortest path problem generates an improv
ing sequence of policies [that is, Jp,k+l(i):::; Jp,k(i) for all i and k] and
terminates with an optimal policy.

(7.19)
The process is repeated with f-Lk+1 used in place of f-Lk, unless we have
Jf.Lk+l (i) = Jf.Lk (i) for all i, in which case the algorithm terminates with
the policy f-Lk. The following proposition establishes the validity of policy
iteration.
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7.3 DISCOUNTED PROBLEMS

Figure 7.2.1 Linear program associated with a two-state stochastic shortest
path problem. The constraint set is shaded, and the objective to maximize is
.1(1) + .1(2). Note that because we have .1(i) :::; J*(i) for all i and vectors .1 in
the constraint set, the vector .1* maximizes any linear cost function of the form
I:~=l f3i .1(i) where f3i 2: 0 for all i. If f3i > 0 for all i, then .1* is the unique
optimal solution of the corresponding linear program.

J(1)

J* = (J*(1),J*(2))

J(2)

o

Thus the costs JJ.Lk(l), ... , JJ.Lk(n) solve Bellman's equation, and by Prop.
7.2.1(b), it follows that JJ.Lk(i) = J*(i) and that p,k is optimal. Q.E.D.

The linear system of equations (7.18) of the policy evaluation step
can be solved by standard methods such as Gaussian elimination, but when
the number of states is large, this is cumbersome and time-consuming. A
typically more efficient alternative is to approximate the policy evaluation
step with a few value iterations aimed at solving the corresponding system
(7.18). One can show that the policy iteration method that uses such
approximate policy evaluation yields in the limit the optimal costs and an
optimal stationary policy, even if we evaluate each policy using an arbitrary
positive number of value iterations (see Vol. II, Section 1.3).

Another possibility for approximating the policy evaluation step is to
use simulation, and this is a key idea in the rollout algorithm, discussed in
Section 6.4. Simulation also plays an important role in the neuro-dynamic
programming methodology, discussed in Ch. 2 of Vol. II. In particular, when
the number of states is large, one can try to approximate the cost-to-go
function J k by simulating a large number of trajectories under the policyJ.L
p,k, and perform some form of least fit of using an approxima-
tion architecture Section 6.3.4). These are a number of variations of
this Which are discussed in more detail in Vol. II and in the research
monograph by Bertsekas and Tsitsiklis [BeT96].

Linear

Then we will have Jk (i) ::; Jk+ 1 (i) for all k and i (the monotonicity property
of Exercise 1.23 in Chapter 1). It follows from Prop. 7.2.1(a) that we
will also have Jo(i) :::; J*(i) for all i. Thus J* is the "largest" J that
satisfies the constraint

In particular, J*(l), ... , J'"(n) solve the linear program of maximizing
I:~=l J('i) subject to the above constraint Fig. 7.2.1). Unfortunately,
for large n the dimension of this program can be very large and its solution
can be impractical, particularly in the absence of special structure.

vVe now consider a discounted problem, where there is a discount factor
a < 1. We will show that this problem can be converted to a stochastic
shortest path problem for which the analysis of the preceding section holds.
To see this, let i = 1, ... , n be the states, and consider an associated
stochastic shortest path problem involving the states 1, ... ,n plus an extra
termination state t, with state transitions and costs obtained as follows:
From a state i #- t, when control U is applied, a cost g(i, u) is incurred, and
the next state is j with probability apij (u) and t with probability 1-a; see
Fig. 7.3.1. Note that Assumption 7.2.1 of the preceding section is satisfied
for the associated stochastic shortest path problem.

Suppose now that we use the same policy in the discounted prob
lem and in the associated stochastic shortest path problem. Then, as long
as termination has not occurred, the state evolution in the two problems
is governed by the same transition probabilities. Furthermore, the ex
pected cost of the kth stage of the associated shortest path problem is
g(Xk' P,k(Xk)) multiplied by the probability that state t has not yet been
reached, which is a k . This is also the expected cost of the kth stage for
the discounted problem. We conclude that the cost of any policy starting
from a given state, is the same for the original discounted problem and for
the associated stochastic shortest path problem. Furthermore, value iter
ation produces identical iterates for the two problems. We can thus apply

i = 1, ... ,no

for all·i = 1, ... ,n and U E U(i).
n

J(i) ::; g(i,u) + LPij(U)J(j),
j=l

Suppose that we use value iteration to generate a sequence of vectors
Jk = (Jk(l), ... , Jdn)) starting with an initial condition vector Jo =

(Jo(1), ... , Jo(n)) such that

Jo(i)::; m~n [9(i'U) + 'tPij(U)JO(j)]
'UEU (t) j=l
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Furthermore, given any initial conditions Jo(l), ... , Jo(n), the
sequence Jk(i) generated by the DP iterationetPjj(U)../----_.............."'-'"

n

Jk+l(i) = g(i,f..L(i)) + 0; LPij(f..L(i))JkU),
j=l

i = 1, ... ,n,

Figure 7.3.1 Transition probabilities for an a-discounted problem and its associ
ated stochastic shortest path problem. In the latter problem, the probability that
the state is not t after k stages is a k . The expected cost at each state i = 1, ... , n
is g(i, u) for both problems, but it must be multiplied by a k because of discount
ing (in the discounted case) or because it is incurred with probability a k when
termination has not yet been reached (in the stochastic shortest path case).

converges to the cost Jf.t (i) for each i.

(d) A stationary policy 11, is optimal if and only if for every state i,
f..L(i) attains the minimum in Bellman's equation (7.22).

(e) The policy iteration algorithm given by

the results
following:

the preceding sectlUll vv ~~::.o latter problem and obtain the

.It''r0f.JIOs,ltlon 7.3.1 The following hold for the discounted problem:

(a) The value iteration algorithm

generates an improving sequence of policies and terminates with
an optimal policy.

and in fact they are the unique solution of this equation.

(c) For any stationary policy f..L, the costs Jf.t(l), ... , Jf.t(n) are the
unique solution of the equation

(7.23)

IJk(i) - J*(i)1

is bounded by a constant times o;k. Furthermore, the error bounds (7.17)
become

Bellman's equation (7.22) has a familiar DP interpretation. At state
i, the optimal cost J * (i) is the minimum over all controls of the sum of
the expected current stage cost and the expected optimal cost of all future
stages. The former cost is g(i, u). The latter cost is J* (j), but since this
cost starts accumulating after one stage, it is discounted by multiplication
with 0;.

As in the case of stochastic shortest path problems [see Eq. (7.9) and
the discussion following the proof of Prop. 7.2.1], we can show that the
error

Proof: Parts (a)-(d) and part by applying parts (a)-(d)
of Prop. 7.2.1, and /.2.2, respectively, to the associated stochastic
ShlJ~"Lpst path D"."::Jolem described above.

(7.22)

'i = 1, ... ,no

i = 1, ... ,n,

n

J*(i) = min, [g(i' u) + 0; 'tPij(U)J*U)]
uEU('t) j=l

(7.21)
converges th.e optimal costs ('i), i = 1, ... , n, starting from
arbitrary initial conditions Jo(l), ... ,Jo(n).

The optimal costs J*(l), ... , J*(n) of the discounted problem
satisfy Bellman's equation,

(b)

Jf.t(i) = g(i, f..L(i)) + 0; LPij (f..L(i)) Jf.t(j),
j=l

i = 1, ... ,no where f..lk is such that f..lk (i) attains the minimum in the kth value iteration
(7.21) for all i, and
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J*(i) = lim A(i)
k-+oo

by Prop. 7.3.1(a). Given that J*(i) is monotonically nondecreasing in i, from
Eq. (7.24) we have that if processing a batch of m orders is optimal, that is,

for state n. The first expression within brackets in Eq. (7.24) corresponds
to processing the i unfilled orders, while the second expression corresponds
to leaving the orders unfilled for one more period. When the maximum n
of unfilled orders is reached, the orders must necessarily be processed, as
indicated by Eq. (7.25).

To solve the problem, we observe that the optimal cost J* (i) is mono
tonically nondecreasing in i. This is intuitively clear, and can be rigorously
proved by using the value iteration method. In particular, we can show by
using the (finite horizon) DP algorithm that the k-stage optimal cost func
tions Jk(i) are monotonically nondecreasing in i for all k (Exercise 7.7), and
then argue that the optimal infinite horizon cost function J* (i) is also mono
tonically nondecreasing in i, since

since for the associated stochastic shortest path problem it can be shown
that for every policy and starting state, the expected number of stages to
reach the termination state t is 1/(1- a), so that the terms N*(j) -1 and
Nk(j) 1 appearing in Eq. (7.17) are equal to a/(l - a). We note also
that there are a number of additional enhancements to the value iteration
algorithm for the discounted problem (see Section 1.3 of Vol. II). There are
also discounted cost variants of the approximate policy iteration and linear
programming approaches discussed for stochastic shortest path problems.

~x,ample 7.3.1 (Asset Selling)

Consider an infinite horizon version of the asset selling example of Section
4.4, assuming the set of possible offers is finite. Here, if accepted, the amount
Xk offered in period k, will be invested at a rate of interest r. By depreciating
the sale amount to period 0 dollars, we view (1 + r)-k xk as the reward for
selling the asset in period k at a price Xk, where r > 0 is the rate of interest.
Then we have a total discounted reward problem with discount factor 0: =
1/(1 r). The analysis of the present section is applicable, and the optimal
value function J* is the unique solution of Bellman's equation

for the states i = 0,1, ... ,n - 1, and takes the form

J*(n) K + 0:(1 p)J*(O) + o:pJ*(l) (7.25)

_ E{ J*(w)}
0:= l+r '

which can be calculated as in Section 4.4. An optimal policy is to sell if and
only if the current offer Xk is greater than or equal to 0:.

(see Section
number

* [ E { J* (w) } ]
J (x) = max x, 1 + r '

The optimal reward function is characterized by the critical

K + 0:(1- p)J*(O) + o:pJ*(l) ::; em + 0:(1- p)J*(m) + o:pJ*(m + 1),

then processing a batch of m + 1 orders is also optimal. Therefore a threshold
policy, that is, a policy that processes the orders if their number exceeds some
threshold integer m *, is optimal.

We leave it as Exercise 7.8 for the reader to verify that if we start
the policy iteration algorithm with a threshold policy, every subsequently
generated policy will be a threshold policy. Since there are n + 1 distinct
threshold policies, and the sequence of generated policies is improving, it
follows that the policy iteration algorithm will yield an optimal policy after
at most n iterations.

~x,ample 7.3.2

A manufacturer at each time period receives an order for her product with
probability p and receives no order with probability 1 - p. At any period
she has a choice of processing all the unfilled orders in a batch, or process no
order at all. The cost per unfilled order at each time period is e > 0, and the
setup cost to process the unfilled orders is K > O. The manufacturer wants
to find a processing policy that minimizes the total expected cost, assuming
the discount factor is 0: < 1 and the maximum number of orders that can
remain unfilled is n.

Here the state is the number of unfilled orders at the beginning of each
period, and Bellman's equation takes the form

J*(i) = min[K + 0:(1- p)J*(O) + o:pJ*(l), ei + 0:(1- p)J*(i) + o:pJ*(i + l)J,
(7.24)

7.4 AVERAGE COST PER STAGE PROBLEMS

The methodology of the last two sections applies mainly to problems where
the optimal total expected cost is finite either because of discounting or
because of a cost-free termination state that the system eventually enters.
In many situations, however, discounting is inappropriate and there is no
natural cost-free termination state. In such situations it is often meaningful
to optimize the average cost per stage starting from a state i, which is
defined by
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Let us first argue heuristically that for most problerns of interest the
average cost per stage of a policy and the optimal average cost per stage are
independent of the initial state.

To this end we note that the average cost per stage of a policy pri
marily expresses cost incurred in the long term. Costs incurred in the early
stages do not matter since their contribution to the average cost per stage
is reduced to zero as N -+ 00; that is,

J~oo ~E{t g(Xk' J1k(Xk))} = 0, (7.26)
k=O

for any fixed K. Consider now a stationary policy J1 and two states i and
j such that the system will, under J1, eventually reach j with probability 1
starting from i. Then intuitively, it is clear that the average costs per stage
starting from i and from j cannot be different, since the costs incurred in
the process of reaching j from i do not contribute essentially to the average
cost per stage. More precisely, let Kij (f-L) be the first passage time from i
to j under J1, that is, the first index k for which Xk = j starting from XQ = i
under J1 _ . -L .u.eH Llle average CUt;L JJel rorresponding
vU ~mtlal condition XQ = 'i can be expressed as

J~(i) = Ji!;~ 1 r~_l g(Xk' !'(Xk)) }

+ _J~oo ~E { t g(Xk' J1(Xk))} .
k=J(ij(J-L)

If E { K'ij (J1)} < 00 (which is equivalent to assuming that the system even
tually reaches j starting from i with probability 1; see Appendix D), then
it can be seen that the first limit is zero [cf. Eq. (7.26)], while the second
limit is equal to J J-L (j). Therefore,

JJ-L(i) = JJ-L(j), for all i,j with E{Kij(J1)} < 00.

The preceding argument suggests that the optimal cost J* (i) should
also be independent of the initial state i under normal circumstances. To
see this, assume that for any two states 'i and j, there exists a stationary
policy f-L (dependent on i and j)such that j can be reached from i with
probability 1 under f-L. Then it is impossible that

J* (j) < J* (i),

since when starting from i we can adopt the policy f-L up to the time when
j is first reached and then switch to a policy that is optimal when starting
from j, thereby achieving an average cost starting from i that is equal to
J*(j). Indeed, it can be shown that

J*(i) = J*(j), for all i,j = 1, ... ,n,
under the preceding assumption (see Vol. Section 4.2).

The Associated Stochastic Shortest Path Problem

The results of this section can be proved under a variety of different as
sumptions (see Chapter 4 in Vol. II). we will make the following
assumption, which will allow us to use the stochastic shortest path analy
sis of Section 7.2.

-..;-. 7.4.1: One of the states, by convention state n, is such
that for some integer m > 0, and for all initial states and all policies,
n is visited with positive probability at least once within the first m
stages.

Assumption 7.4.1 can be shown to be equivalent to the assumption
that the special state n is recurrent in the Markov chain corresponding to
each stationary policy (see Appendix D for the definition of a recurrent
state, and Exercise 2.3 of Chapter 2 in Vol. II for a proof of this equiva
lence).

Under Assumption 7.4.1 we will make an important connection of the
average cost problem with an associated stochastic shortest path problem.
To motivate this connection, consider a sequence of generated states, and
divide it into "independent" cycles marked by successive visits to the state
n. The first includes the transitions from the initial state to the first
visit to state n, and the kth cycle, k = 2,3, ... , includes the transitions
from the (k - 1)th to the kth visit to state n. Each of the cycles can be
viewed as a state trajectory of a corresponding stochastic shortest path
problem with the termination state being essentially n.

N10re precisely, this problem is obtained by leaving unchanged all
transition probabilities Pij (u) for j =I- n, by setting all transition proba
bilities Pin (u) to 0, and by introducing an artificial termination state t to
which we move from each state 'i with probability Pin(U); see Fig. 7.4.l.
Note that Assumption 7.4.1 is equivalent to the Assumption 7.2.1 of Sec
tion 7.2 under which the results of Section 7.2 on stochastic shortest path
problems were shown.

We have specified the probabilistic structure of the stochastic shortest
path problem so that its state trajectories replicate the state trajectories
of a single cycle of the average cost problem. We will next argue that if we
fix the expected stage cost incurred at state i to be

g(i,u)-.\*,

where .\* is the optimal average cost per stage starting from the special state
n, then the associated stochastic shortest path problem becomes essentially
equivalent to the original average cost per stage problem. Furthermore,
Bellman's equation for the associated stochastic shortest path problem can
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with equality holding if f.L is optimal. Thus, to attain an optimal f.L, we must
minimize over f.L the expression Cnn(f.L) - Nnn(f.L)A*, which is the expected
cost of f.L starting from n in the associated stochastic shortest path problem
with stage costs

Let us denote by h* (i) the optimal cost of this stochastic shortest path
problem when starting at the nontermination states i = 1, ... ,n. Then by
Prop. 7.2.1(b), h*(l), ... , h*(n) solve uniquely the corresponding Bellman's
equation, which has the form

i = 1, ... ,nog(i,U)-A*,

Artificial Termination State

Pnn(U)

Special
State n

since in the stochastic shortest path problem, the transition probability
from i to j =1= n is Pij (u) and the transition probability from 'i to n is zero
under all u. If f.L* is a stationary policy that minimizes the cycle cost, then
this policy must satisfy,

Figure 7.4.1 Transition probabilities for an average cost problem and its as
sociated stochastic shortest path problem. The latter problem is obtained by
introducing, in addition to 1, ... ,n, an artificial termination state t. The corre
sponding transition probabilities are obtained from the transition probabilities of
the original average cost problem as follows: the probabilities of transition from
the states i i= t to state t are set equal to Pin (u), the probabilities of transition
from all states to state n are set to 0, and all other transition probabilities are
left unchanged.

[

n-1 ]
h*(i) = min g(i,U)-A*+"\:"Pi'(u)h*(j) ,

uEU(i) L.t J
J=l

'i = 1, ... ,n, (7.28)

be viewed as Bellman's equation for the :"/2:'26:::: C',:,c+ ~er stage
problem.

For"" Heuristic argument of why this is so, note that under all station
ary policies there will be an infinite number of cycles marked by successive
visits to state n. From this, it can be conjectured (and it can also be
shown, as will be seen later) that the average cost problem is equivalent to
a minimum cycle cost problem. This is the problem of finding a stationary
policy f.L that minimizes the average cycle cost

and from Eq. (7.27), this policy must also be optimal for the associated
stochastic shortest path problem. Thus, we must have

By using this equation, we can now write Bellman's equation (7.28) as

Cnn(f.L)
~N:nn(f.L) , A* + h*(i) = min, [g(i, u) + tPij(U)h*(j)] , i = 1, ... , n.

UEU(2) j=l
(7.29)

where for a fixed f.L,

Cnn (f.L) : expected cost starting from n up to the first return to n,

Nnn (f.L) : expected number of stages to return to n starting from n.

The intuitive idea here is that the ratio Cnn(f.L)/Nnn(f.L) is equal to the
average cost of f.L, t so the optimal average cost A* is equal to the optimal
cycle cost. Therefore, we have

Equation (7.29), which is really Bellman's equation for the associated
stochastic shortest path problem, will be viewed as Bellman's equation
for the average cost per stage problem. The preceding argument indicates
that this equation has a unique solution as long as we impose the constraint
h*(n) = O. Furthermore, by minimization of its right-hand side we should
obtain an optimal stationary policy. We will now prove these facts formally.

N I , N2, ... , Nm are the corresponding numbers of stages of these cycles, we have

m
===---. limAI-' = lim = lim

m --+ <X) m -+ (X)

(with probability one).

(7.27)for all f.L,

t For a heuristic argument, let AI-' be the average cost per stage corresponding
to a stationary policy j.)" and consider a trajectory of the system under j.)" starting
from state n. If C l , C2 , ... em are the costs incurred in the first m cycles, and
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Bellman's stage cost incurred at state i is

The following proposition provides the main results regarding Bellman's
equation.

g(i, u) i

Then by Prop. 7.2.1(b), the costs h*(I), ... ,h*(n) solve uniquely the cor
responding Bellman's equation

(c) Given a stationary policy f-L with corresponding average cost per
stage Ap" there is a unique vector hp, = {hp,(I), . .. , hp,(n)} such
that hp,(n) = 0 and

Prop,osItlOn 7.4.1 Under Assumption 7.4.1 the following hold for
the average cost per stage problem:

(a) The optimal average cost A* is the same for all initial states
and together with some vector h* { h* (1), ... , h* (n )} satisfies
Bellman's equation

(7.30)
Furthermore, it J-L\ U J ...:."t.qins the minimum in the above equation
for all i, the stationary policy p, ~o _ ~ In addition, out of
all vectors h* satisfying this equation, there is a vector
for which h*(n) = O.

(b) If a scalar A and a vector h = {h(I), ... ,h(n)} satisfy Bellman's
equation, then A is the average optimal cost per stage for each
initial state.

i = 1, ... ,no

(7.34)

(7.33)

(7.32)

i = 1, ... ,no

i = 1, ... ,n,
n

= h*(i),

[

n-l ]
h*(i) = min g(i,u) - ~ + ~Pij(u)h*(j) ,

uEU(i) j=l

(i) = g(i,P,N-k-1(i)) + ~P'ij(P,N-k-1(i))Jk(j),
j=l

(7.35)
Note that lzv(i) is the N-stage cost of 1r when the starting state is i and
the terminal cost function is h*. From (7.34), we have

h*(n) = O.

vVe will show that this relation implies that ~ = A* .
let 1r = {j),o, f-L1, } be any admissible policy, let N be a

positive integer, and for all k = 0, , N -1, define Jk ( i) using the following
recursion

Thus, Eq. (7.32) is written as

~ + h*(i) = min. [9(i' u) + tPij(U)h*(j)] , i = 1, ... , n.
uEU(z) j=l

since the transition probability from i to n is zero in the associated stochas
tic shortest path problem. An optimal stationary policy must minimize the
cost Cnn(f-L) - Nnn(P,)~ and reduce it to zero [in view of Eq. (7.31)], so we
see that

1, ... ,noi

n

Ap, + hp,(i) = g(i,f-L(i)) + Pij(f-L(i))hp,(j),
j=l

A* + h*(i) = min. [9(i' u) + tPij(U)h*(j)]
UEU('L) j=l

n

Proof: (a) Let us denote
~ + h*(i) ~ g(i, f-LN-1(i)) + ~Pij (P,N-1(i))h*(j), i = 1, ... , n,

j=1

"\ _, . Cnn(P,)
/\ - mIn N ()'

p, nn p,
(7.31)

or equivalently, using Eq. (7.35) for k = 0 and the definition of Jo,

i = 1, ... ,no

where Cnn(P,) and Nnn(P,) have been defined earlier, and the minimum is
taken over the finite set of all stationary policies. Note that Cnn (p,) and
Nnn (p,) are finite in view of Assumption 7.4.1 and the results of Section
7.2. Then we have

Cnn(P,) - Nnn(P,)~ ~ 0,

with equality holding for all p, that attain the minimum in (7.31). Con
sider the associated stochastic shortest path problem when the expected

Using this relation, we have

n

g(i,P,N-2(i)) +~+ ~Pij(p,N-2(i))Jo(j)
j=l

n

~ g(i,P,N-2(i)) + (P,N-2(i))J1(j), i = 1, ... ,n.
j=l
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By repeating this argument several times, we obtain

Eq. (7.34) and the definition Jo(j) = h*(j), the left-hand side of the
above inequality is no less than 2'\ + h*(i), while by Eq. (7.35), the right
hand side is equal to J2 (i). vVe thus obtain

[cf. (7.32)]. Consequently, h*(i) has the interpretation of a relative or
differential cost; it is the minimum of the difference between the expected
cost to reach n from i for the first time and the cost that would be incurred
if the cost per stage was the average A*. We note that the relation be
tween optimal policies of the stochastic shortest path and the average cost
problems is clarified in Exercise 7.15.

We finally mention that Prop. 7.4.1 can be shown under considerably
weaker conditions (see Section 4.2 of Vol. II). In particular, Prop. 7.4.1 can
be shown assuming that all stationary policies have a single recurrent class,
even if their corresponding recurrent classes do not have state n in common.
The proof, however, requires a more sophisticated use of the connection
with an associated stochastic shortest path problem. Proposition 7.4.1 can
also be shown assuming that for every pair of states i and j, there exists
a stationary policy under which there is positive probability of reaching
j starting from i. In this case, however, an associated stochastic shortest
path problem cannot be defined and the corresponding connection with the
average cost per stage problem cannot be made. The analysis of Chapter 4
of Vol. II relies on another connection that exists between the average cost
per stage problem and the discounted cost problem, but to establish this
connection and to fully explore its ramifications, a much more sophisticated
analysis is required.

~x:anaple 7.4.1

(7.36)i 1, ... ,no

i = 1, ... ,no

k = 0, ... ,N, i = 1, ... ,n,

and in particular, for k = N,

Furthermore, equality holds in the above relation if J1k (i) attains the min
imum in Eq. (7.34) for all i and k.

Let 1.1f" nnw t81<e the limit as N -7 (X) in Eq. (7.36). The left-hand
side tends to i We claim tll.3t the right-hand side tends to J7r (i), the
average cost per stage of 7r starting <1t stJ,t2i. The reason is that from
the definition (7.35), IN(i) is the N-stage cost of 7r starting .1t i, when the
terminal cost function is h*; when we take the limit of (l/N)JN(i), the
dependence on the terminal cost function h* disappears. Thus, by taking
the limit as N -7 (X) in Eq. (7.36), we obtain

i = 1, ... ,n,

for all admissible 7r, with equality if 7r is a stationary policy J1 such that
J1( i) attains the minimum in Eq. (7.34) for all i and k. It follows that

,\ = min J7r (i) = A*,
7r

i = 1, ... ,n,

Consider the average cost version of the manufacturer's problem of Example
7.3.2. Here, state 0 plays the role of the special state n in Assumption 7.4.l.
Bellman's equation takes the form

),* + h*(i) = min[K -1- \1- p)h*(O) +ph*(l), ci + (1- p)h*(i) + ph*(i + l)J,
(7.37)

and from Eq. (7.34), we obtain the desired Eq. (7.30).
Finally, Eqs. (7.33) and (7.34) are equivalent to' Bellman's equation

(7.32) for the associated stochastic shortest path problem. Since the solu
tion to the latter equation is unique, the same is true for the solution of
Eqs. (7.33) and (7.34).

(b) The proof of this part is obtained by using the argument of the proof
of part (a) following Eq. (7.34).

(c) The proof of this part is obtained by specializing part (a) to the case
where the constraint set at each state i is U(i) = {J1(i)}.

An examination of the preceding proof shows that the unique vector
h* in Bellman's equation (7.30) for which h*(n) = °is the optimal cost vec
tor for the associated stochastic shortest path problem when the expected
stage cost at state i is

for the states i = 0,1, ... ,n - 1, and takes the form

),* + h*(n) = K + (1- p)h*(O) + ph*(l)

for state n. The first expression within brackets in Eq. (7.37) corresponds
to processing the i unfilled orders, while the second expression corresponds
to leaving the orders unfilled for one more period. The optimal policy is to
process i unfilled orders if

K + (1 - p)h*(O) + ph*(l) ~ ci + (1- p)h*(i) + ph*(i + 1).

If we view h*(i), i = 1, ... , n, as differential costs associated with an optimal
policy, it is intuitively clear that h* (i) is monotonically nondecreasing with
i [this can also be proved by interpreting h*(i) as optimal costs-to-go for
the associate stochastic shortest path problem, or by using analysis based
on the theory presented in Vol. II, Section 4.2]. As in Example 7.3.2, the
monotonicity property of h * (i) implies that a threshold policy is optimal.

g(i,U)-A*,
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It is natural to expect that the ratios Jk (i) / k should converge to the optimal
average cost per stage /\* as k -t 00, i.e.,

The most natural version of the value iteration method for the average
cost problem is simply to select arbitrarily a terminal cost function, say Jo,
and to generate successively the corresponding optimal k-stage costs Jk (i),
k = 1,2, ... This can be done by executing the DP algorithm starting with
Jo, that is, by using the recursion

(7.40)i = 1, ... ,no

so that Jk(i)/k converges to A* at the rate of a constant divided by k.
Note that the above proof shows that Jk(i)/k converges to A* under any
conditions that guarantee that Bellman's equation (7.39) holds for some
vector h*.

The value iteration method just described is simple and straightfor
ward, but has two drawbacks. First, since typically some of the compo
nents of Jk diverge to 00 or -00, direct calculation of limk-+oo Jk (i) / k is
numerically cumbersome. Second, this method will not provide us with a
corresponding differential cost vector h*. We can bypass both difficulties
by subtracting the same constant from all components of the vector Jk,
so that the difference, call it hk' remains bounded. In particular, we can
consider the algorithm

(7.38)i = 1, ... ,no

Value Iteration

Using this equation, it can be shown by induction that for all k we have

lim Jk(i) = A*.
k-+oo k

The reason is that Jk (i) and Jk (i) are optimal costs for two k-stage prob
lems that differ only in the corresponding terminal cost functions, which
are Jo and h*, respectively. From the preceding two equations, we see that
for all k,

(7.41)

where s is some fixed state. By using Eq. (7.38), we then obtain

hk+1(i) = Jk+1(i) - Jk+1(S)

= min [9(i' u) + 'tPij(U)Jk(j)]
UEU(i) j=l

u~nU~) [g(S,U) + ~P'j(U)Jk(j)] ,

from which in view of the relation hk(j) = Jk(j) - Jk(S), we have

hk+1(i) = min. [9(i'U) + 'tPij(U)hk(j)]
uEU(~) j=l

- min [g(S' u) + 'tPSj(U)hk(j)] i = 1, ... , n.
uEU(s) j=l

The above algorithm, known as relative value iteration, is mathemat
ically equivalent to the value iteration method (7.38) that generates Jk(i).
The iterates generated by the two methods merely differ by a constant [d.
Eq. (7.40)], and the minimization problems involved in the corresponding
iterations of the two methods are mathematically equivalent. However, un
der Assumption 7.4.1, it can be shown that the iterates hk(i) generated by
the relative value iteration method are bounded, while this is typically not
true for the value iteration method.

It can be seen that if the relative value iteration (7.41) converges to
some vector h, then we have

(7.39)

i = 1, ... ,no

i = 1, ... ,n,

i = 1, ... ,no

i = 1, ... ,no

i = 1, ... ,no

'i = 1, ... ,n,Jo(i) = h*(i),

Jk(i) = kA* + h*(i),

Jk(i)l::; . max IJo(j) - h*(j)l,
J=l, ... ,n

min [9(i, u) + 'tPij (u)Jk(j)] ,
uEU(i) j=l

To show this, let us define the recursion

A* + h*(i) = min [9(i'U) + 'tPij(U)h*(j)] ,
uEU(i) j=l

1Jk ( i) - kA* I ::; .max IJ°(j) - h* (j) I+ .max Ih* (j) I'J=l, ... ,n J=l, ... ,n

On the other hand, it can be seen that for all k,

where h* is a differential cost vector satisfying Bellman's equation

with the initial condition
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where T is a scalar such that 0 < T < 1 1 we obtain
the relative :~enLtlOn (7 . The convergence proof of this algorithm
~u somewhat complicated. It can be found in Section 4.3 of Vol. II.

i = 1, ... ,no

Furthermore, the algorithm terminates, and the policies f-Lk and f-Lk+1
obtained upon termination are optimal.

or else we have

Proposition 7.4.2 Under Assumption 7.4.1, in the policy iteration
algorithm, for each k we either have

If Ak+1 = /\k and hk+1(i) = hk(i) for all i, the algorithm terminates;
otherwise, the process is repeated with f-Lk+1 replacing f-Lk.

To prove that the policy iteration algorithm terminates, it is sufficient
that each iteration makes some irreversible progress towards optimality,
since there are finitely many stationary policies. The type of irreversible
progress that we can demonstrate is described in the following proposition,
which also shows that an optimal policy is obtained upon termination.

(7.42)

), = u~J(,) [9(8, u) + j:/,j(U)h(j)]

By Prop. 7.4.1(b), this implies that A is the optimal average cost per stage
for all initial states, and h is an associated differential cost vector. Unfortu
nately, the convergence of the relative value iteration is not guaranteed un
der Assumption 7.4.1 (see Exercise 7.14 for a counterexample). A stronger
assumption is required. It turns out, however, that there is a simple variant
of the relative value iteration for which convergence is guaranteed under
Assumption 7.4.1. This variant is given by

T)hk(i) + min. [g(i' u) + T'tPij(U)hdj)]
uEU(~) j=l

min 19(5,U)+TJL.=n1PSj(U)hk(j)], i=I, ... ,n,
uEU(s)

where

Iteration Proof: To simplify notation, denote f-Lk = f-L, f-Lk+1 = Ti, Ak = A, Ak+1 A,
hk(i) = hU), hk -i- 1 (i) = Define for N = 1,2, ...

It is possible to use a policy iteration algorithm for the average cost prob
lem. This algorithm operates similar to the policy iteration algorithms of
the preceding sections: given a stationary policy, we obtain an improved
policy by means of a minimization process, and continue until no further
improvement is possible. In particular, at the typical step of the algorithm,
we have a stationary policy f-Lk. We then perform a policy evaluation step;
that is, we obtain corresponding average and differential costs Ak and hk(i)
satisfying

Note that hN(i) is the N-stage cost of policy 7l starting from i when the
terminal cost function is h. Thus we have

n

hN(i) = g(i,Ti(i)) + LP'ij(7l(i))hN-1(j),
j=l

(7.43)

i = 1, ... ,n,

i = 1, ... ,n,

i = 1, ... ,noho(i) = h(i),

- 1
A = J/i(i) = lim NhN(i),

N---+oo

where

i = 1, ... ,n,Ak + hk(i) = g(i,f-Lk(i)) + LPij(f-Lk(i))hk(j),
j=l

n

hk(n) = O.

We subsequently perform a pol'icy improvement step; that is, we find a
stationary policy J.Lk+1, where for all i, J.Lk+1 (i) is such that

n

g(i,f-Lk+l(i)) + LPij(f-Lk+l(i))hk(j)
j=l

u~%~~) [9(i, u) + j:, Pij(U)hk(j)]

since the contribution of the terminal cost to (1/N)hN (i) vanishes when
N -+ 00. By the definition of 7l and Prop. 7.4.1(c), we have for all i

n

h1(i) = g(i,7l(i)) + LPij(7l(i))ho(j)
j=l

n

::; g(i,f-L(i)) + LPij(f-L(i))ho(j))
j=l

= A+ ho(i).
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From the above equation, we also obtain

n

h2 (i) = g(i,TlCi)) + LPij(Tl(i))h1(j)
j=l

n

~ g(i,Tl(i)) + LPij(Tl(i))(A + ho(j))
j=l

n

A+ 9 (i, Tl( i)) + L Pij (Tl( i)) ho(j)
j=l

n

~ A+g(i,p,(i)) + LPij(p,(i))ho(j)
j=l

= 2A + ho(i),

and by proceeding similarly, we see that for all i and N we have

Thus,
1 1
-:-l~lY\'l) ~ A+ Nho(i),
lV

and by the limit as N -+ 00 and using Eq. (7.43), we obtain ~ ~ A.
If "X = A, then it is seen that the iteration that produces p,k+l is a

policy improvement step for the associated stochastic shortest path problem
with cost per stage

g(i, u) - A.

Furthermore, h(i) and h(i) are the optimal costs starting from i and cor
responding to p, and Tl, respectively, in this associated stochastic shortest
path problem. Thus, by Prop. 7.2.2, we must have h(i) ~ h(i) for all i.

In view of the improvement properties just shown, no policy can be
repeated without termination of the algorithm. Since there are only a finite
number of policies, it follows that the algorithm will terminate. Let us now
show that when the algorithm terminates with ~ = A and h(i) = h(i) for
all i, the policies Tl and p, are optimal. Indeed, upon termination we have
for all 'i

A+ h(i) = ~ +h(i)
n

= g(i,Tl(i)) + LPij(Tl(i))h(j)
j=l

n

= 9 (i, Tl( i)) + L Pij (Tl( i)) h(j)
j=l

= min [9(i'U) + tPij(U)h(j)]
uEU(i) j=l

Thus A and h satisfy Bellman's equation, and by Prop. 7.4.1(b), A must be
equal to the optimal average cost. Furthermore, Tl( i) attains the minimum
in the right-hand side of Bellman's equation, so by Prop. 7.4.1(a), Tl is
optimal. Since we also have for all i

n

A+ h(i) = g(i,p,(i)) + Pij(p,(i))h(j),
j=l

the same is true for p,. Q.E.D.

We note that policy iteration can be shown to terminate with an
optimal stationary policy under less restrictive conditions than Assumption
7.4.1 (see Vol. II, Section 4.3).

7.5 SEMI-MARKOV PROBLEMS

have considered so far problems where the cost per stage does not
depend on the time required for transition from one state to the next. Such
problems have a natural discrete-time representation. On the other hand,
there are situations where controls are applied at discrete times but cost
is continuously accumulated. Furthermore, the time between successive
control choices is variable; it may be random or it may depend on the
current state and the choice of control. For example, in queueing systems
state transitions correspond to arrivals or departures of customers, and the
corresponding times of transition are random. In this section, we discuss
continuous-time, infinite horizon problems with a finite number of states.
We will provide a fairly straightforward extension of our earlier infinite
horizon analysis for discrete-time problems.

We assume that there are n states, denoted by 1, ... , n, and that
state transitions and control selections take place at discrete times, but the
length of the time interval from one transition to the next is random. The
state and control at any time t are denoted by x(t) and u(t), respectively,
and stay constant between transitions. We use the following notation:

tk: The time of occurrence of the kth transition. By convention, we
denote to = O.

Xk = X(tk): We have x(t) = Xk for tk ~ t < tk+1'

Uk = U(tk): We have u(t) = Uk for tk ~ t < tk+1.

In place of transition probabilities, we have transition distributions
Qij(r, u), which for a given pair (i, u), specify the joint distribution of the
transition interval and the next state:
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In view of Eq. (7.45), this expected transition time is given by

If Qij (7,11,) is discontinuous and "staircase-like," then 7 is a discrete ran
dom variable, and expected values of functions of 7 can be written as
summations.

We will assume that for each state i and control 11, E U(i), the ex
pected transition time, denoted Ti(U), is nonzero and finite:

Note that the transition distributions specify the ordinary transition prob
abilities via

P'ij(U) = P{Xk+l = j I Xk = i, Uk = U} = )~~ Qij(7,U).

Note also that the conditional cumulative distribution function (CDF) of
7 given i, j, 11, is

. . Qij(7, 11,) ()
- tk :::; 7 I Xk = '/" Xk+l = J, Uk = U} = () 7.44

Pij 11,

[assuming that Pij (11,) > O)'.L Qij (7, 11,) can be viewed as a "scaled
CDF", i.e., a CDF multiplied by Pij'\,-:) (see Fig. 7.4.2).

(7.46)

If Q'ij (7,11,) is continuous and piecewise differentiable with respect to 7, its
partial derivative

Figure 7.4.2 Illustration of the transition distributions Qij (T, u) and the con
ditional CDF of T. Figures (a) and (b) correspond to the cases where T is a
continuous and a discrete random variable, respectively.

P{ transition time interval > 7 I i, 11,} = e-Vi(u)T.

The exponential distribution has the so called memoryless property, which
in our context implies that, for any time t between the transition times tk

where Pij (11,) are transition probabilities, and Vi (u) are given positive scalars,
called the transition rates at the corresponding states i. In this case, if the
system is in state i and control 11, is applied, the next state will be j with
probability Pij (u), and the time interval between the transition to state
i and the transition to the next state is exponentially distributed with
parameter Vi (11,); that is,

Optimal control problems involving continuous-time Markov chains
of the type described above are called semi-Markov problems. The reason
is that, for a given policy, while at a transition time tk the future of the
system probabilistically depends only on the current state, at other times it
may depend in addition on the time elapsed since the preceding transition.
In fact, if we were to allow the control to depend continuously on the time t
(rather than restricting the choice of control to just the transition times tk),
we would obtain a problem where there is genuine benefit to the controller
for knm\Ting the time elapsed since the preceding transition. We would
then have to include this elapsed time as of the state, and we would
obtain a difficult (infinite state space) problem. This type of complication
is avoided in our formulation by restricting the control to change only at
the transition times tk.

We note, however, that there is a special case where the future of the
system depends only on its current state at all times, and there is no benefit
in allowing the control to depend continuously on the time elapsed since
the preceding transition. This is the case where the transition distributions
are exponential, of the form

(7.45)

\
Oij(r,u)

(b)

Pij(U) __ - __ -

\
Oij(r,u)

(a)

Pij(U)

An advantage of working with transition distributions Qij (7,11,) is that
they can be used to model discrete, continuous, and mixed distributions
for the transition time 7. Generally, expected values of functions of 7 can
be written as integrals involving the differential of Qij with respect to 7,

denoted dQij(7, 11,). For example, the conditional expected value of 7 given
i, j, and u is written using the conditional CDF (7.44) as

.. 100
dQij(7,U)

E{71 'l,J,U} = 7 ..()'
o pZJ 11,

.. ( ) _ dQij(7, 11,)
qZJ T, U - d7

can be viewed as a "scaled" density function for 7. Then, dQij (7,11,) may
be replaced by qij (7,11, )d7, and expected values of functions of 7 can be
written in terms of qij(7, 11,). For example, Eq. (7.45) is written as

.. 100
qij(7,U)

E{T I '/"J,U} = 7 .. () d7.
o PZJ 11,
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and , the additional time tk+1 - t needed to effect the next transition
is independent of the time t - tk that the system has been in the current
state. To see this, use the following generic calculation

P{T > r1 + r2}
P{T > r1 + r2 IT> rI} = P{ }

T > r1
e-v(rl +r2)

The cost of an admissible policy 7r = {fLO, ILl, ... } starting from state
'i is given by

This cost can be broken down into the sum of the expected cost of the first
transition, which is G (i, fLo (i)), plus the expected cost-to-go starting from
the next state, discounted by the factor e-(h, where T is the (random) time
when the first transition occurs:

where T1 = t - tk, T2 = tk+1 - t, and v is the trmsition rate. Thus, when
the transition distributions are exponential, the staL,-- pvolves in continuous
time as a J\!larkov process, but this need not be true L'" a more general
distribution.

We assume that for given state i and control u E U(i), thl..- cost that
is incurred in a small time interval dt is g(i, u )dt. Thus, we mo.:' view
gU, u) as cost peT unit time. Based on this generic cost structure, we Wl::
consider analogs of the discounted and average cost per stage problems of
the preceding sections.

Discounted Problems

The last term in the above equation can be calculated as

E{ e-(3T J1q (j) I Xo = 'i, Uo = fLo (i) }

= E{ E{e-(3T I j} J1f1 (j) I Xo = i, Uo = fLo (i) }

= tPij (fLO (i) ) (1= e~~r dQ,; iT' ~oS)))· J1T1 (j)
j=l 0 P~J fLo ~

n

Here the cost function has the form

lim E flT

e-(3tg (x(t)'U(t))dt} ,
T-HXJ l 0

= L m ij(fLo(i))J1T1 (j),
J=l

where for any U E U(i), mij (u) is given by

where ,6 is a given positive discount parameter. Since the cost per unit time,
9 (x(t), u(t)), remains constant between transitions, the expected cost of a
single transition from state i under control u is given by

n

Thus, combining Eqs. (7.47)-(7.49), we see that J1T (i) can be written as

(7.50)

(7.49)

n

J1T (i) = G(i'fLo(i)) +L m ij(fLo(i))J1T1 (j),
j=l

which is similar to the corresponding equation for discounted discrete-time
problems [mij (fLO (i)) replaces apij (fLO (i))].

In analogy with the discrete-time case, we may associate (7.50)
with a stochastic shortest path problem involving an artificial termination
state t. Under control u, from state i the system moves to state j with
probability mij (u) and to the termination state t with probability

1- L mij(u).
j=l

(7.47)

G(i, u) = E {[ e-~tg(i, U)dt}

= g(i, u) E {far e~~tdt}

= g(i,u) {Er {[ e-~tdt Ij}}
= g(i, u) t Pij (u)100 (IT

e-(3tdt) d
Qi

.
j
(: u)

j=l 0 0 P~J ( )

or equivalently, since J; e-(3tdt = (1 - e-(3T)/(3,

n 100 1 _ e-(3T
G(i,u) =g(i,u) dQij(T,U).

j=l 0
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The assumption of a positive expected transition time [d. Eq. (7.46)] im
plies that

n

unfilled order. Let F and N F denote the choices of filling and not filling the
orders, respectively. The transition distributions are

for all 'i, u E U('i),

and

The one-stage expected cost G of Eq. (7.47) is given by

if j = i + 1,
otherwise.

if j = 1,
otherwise,

mij(u) < 1,
j=1

so that the Assumption 7.2.1, which is required for the validity of our
stochastic shortest path analysis of Section 7.2, is satisfied. By using an es
sentially identical approach to the one of Section 7.3, we can derive analogs
of all the discounted cost results of Prop. 7.3.1. In particular, the optimal
cost function J* is the unique solution of Bellman's equation

Bellman's equation has the form [ef. Eq. (7.51)]

where

The scalars ffiij of Eq. (7.49) that are nonzero are

G(i, NF) = rci,

I
Tmax 1 - e-{3T

r = dT.
o {3Tmax

G(i, F) = 0,

where

I
Tmax e-{3T 1 _ e-{3Tmax

00= --dT = -----
o Tmax

J*('i) = min. [GU,U) + 'tmij(U)J*(j)] .
uEU(z) j=1

In addition, there are analogs of the computational methods of Section 7.3,
including value iteration, policy iteration, and linear programming. What
is happening here is that essentially we have the equivalent of a discrete
dme discounted problem where the discount factor depends on 'i and u.

We finally note that in some problems, in addition to th.B cost per
unit time g, there is extY8 (1nstd,maneous) one-stage cost 9U, u) that is
incurred the time the control 'U is chosen at state 'i, and is independent
vi the length of the transition interval. In this case, Bellman's equation
takes the form

As in Example 7.3.2, we can conclude that there exists a threshold i* such
that it is optimal to fill the orders if and only if their number i exceeds i*.

J*U) = min [9U, u) + G(i, u) + n mij(u)J*(j)] ,
uEU(z) j=1

(7.51)

J(i) = min[K + ooJ(l), rci + ooJ(i + l)J, i = 1,2, ....

and the various computational methods are appropriately adjusted. An
other problem variation arises when the cost g depends on the next state
j. Here, once the system goes into state i, a control u E' U(i) is selected,
the next state is determined to be j with probability Pij (u), and the cost
incurred is gU, u, j). In this case, G('i, u) should be defined by

Average Cost Problems

A natural cost function for the continuous-time average cost problem would
be

n foo 1 - e-(3r
G(i,u) = in g('i,u,j) dQij(T,U),

j=1 0

T~ 1 { f g(x(t), u(t) )dt}

However, we will use instead the cost function

(7.52)

Consider the manufacturer's problem of Example 7.3.2, with the only differ
ence that the times between the arrivals of successive orders are uniformly
distributed in a given interval [0, and c is the cost per unit time of an

[cf. Eq. (7
ification.

and the preceding development goes through without mod-

7.5.1

(7.53)

where tN is the completion time of the Nth transition. This cost function
is also reasonable and turns out to be analytically convenient. We note,
however, that the cost functions (7.52) and (7.53) are equivalent under the
conditions of the subsequent analysis, although a rigorous justification of
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vVe next conjecture that the average cost problem is equivalent to the
minimum cycle cost problem of finding a stationary policy f-L that minimizes
the average cycle cost

where for a fixed f-L,

Cnn (f-L) : expected cost starting from n up to the first return to n,

Tnn (f-L) : expected time to return to n starting from n.

An intuitive conjecture is that the optimal average cost A* is equal to the
optimal cycle cost, so it satisfies

this is beyond our scope (see Ross [Ros70], p. 52 and p. 160 for related
discussion) .

For each pair (i, u), we denote by G(i, u) the one-stage expected cost
corresponding to state i and control u. We have

G(i,u) = g(i,U)Ti(U),

where Ti(U) is the expected value of the transition time corresponding to
(i, u). the cost per unit time 9 depends on the next state j, the expected
transition cost G(i, u) should be defined by

n r=
G(i,u) = in g(i,u,j)TdQij(T,u),

j=1 a for all f-L, (7.54)

(7.55)

Let us denote by h* (i) the optimal cost of this stochastic shortest path
problem when starting at state i. Then h*(I), ... ,h*(n) solve uniquely the
corresponding Bellman's equation, which has the form

i = 1, ... ,no

i = 1, ... ,no

with equality holding if f-L is optimal. Thus, to attain an optimal f-L, we must
minimize over f-L the expression Cnn(f-L) - Tnn(f-L)A*, which is the expected
cost of f-L starting from n in the associated stochastic shortest path problem
with stage costs

will see thaI, character of the solution of the problem is de-
termined by the structure of illt embedded Markov chain, which is the
controlled discrete-time :Markov chain whose transition probabilities are

and the following analysis and results go through without modification.]
The cost function of an admissible policy 1r = {f-Lo, f-Ll, ... } is given by

In particular, assuming that the embedded Markov chain satisfies Assump
tion 7.4.1 of Section 7.4, we can show that the costs J * (i) are independent
of i.

It turns out that Bellman's equation for average cost semi-Markov
problems takes the form

If f-L* is ",-::J optimal statioD8.I·y policy, then this policy must satisfy

Cnn(f-L*) - Nnn(f-L*)A* = 0,

and from (7.54), this policy must also be optimal for the associated
stochastic shortest path problem. Thus, we must have

As a special case, when Ti (u) = 1 for all (i, u), we obtain the corresponding
Bellman's equation for discrete-time problems, given in Section 7.4. We
motivate the above form of Bellman's equation with the stochastic shortest
path argument that we used in Section 7.4. We consider a sequence of
gellerate:Cl states, and divide it into cycles marked by successive visits to
the special state n. Each of the cycles can be viewed as a state trajectory
of a corresponding stochastic shortest path problem with the termination
state being essentially n, as in Section 7.4.

By using this equation, we can now write Bellman's equation (7.55) as

h*(i) = min [G(i'U) - A*Ti(U) + tPij(U)h*(j)] , i = 1, ... ,no
uEU0) j=1

(7.56)
If there is an "instantaneous" one-stage cost 9(i, u), the term u) should
be replaced by g(i, u) + G(i, u) in this equation.

Given the correct form of Bellman's equation and the connection with
the associated stochastic shortest path problem, it is possible to essentially
repeat the proof of Prop. 7.4.1 and to obtain analogous results to those for
the discrete-time case.
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Jtjx:alnple 7,5,2 7.6 JLiL,,--,lLJ.J, AND EXERCISES

Consider the average cost version of the manufacturer's problem of Example
7.5.1. Here we have

7.1

EXERCISES

This chapter is only an introduction to infinite horizon problems. There is
an extensive theory for these problems with interesting mathematical and
computational content. Volume II provides a comprehensive treatment and
gives many references to the literature.

The presentation in this chapter is original in that it uses the stochas
tic shortest path problem as the starting point for the analysis of the other
problems. This line of development not only explains intuitively the connec
tions between the various types of problems, but also leads to new solution
methods. For example, an alternative value iteration algorithm for the av
erage cost problem, based on the connection with the stochastic shortest
path problem, is given in Bertsekas [Ber98b], and in Section 4.3 of Vol.
II. On the other hand, there are also important results for undiscounted
and average cost problems that cannot be obtained through the connection
with the stochastic shortest path problem. Some of these alternative lines
of analysis are pursued in Vol. II.

Semi-Markov problems were introduced by Jewell [Jew63] and were
also discussed by Ross [Ros70]. Volume II contains a broader exposition of
Semi-Markov problems, and applications to queueing and related systems.

G(i, N F) = CiT
max

G(i,F) = K,

Consider a person providing a certain type of service to customers. Poten
tial customers arrive according to a Poisson process with rate r; that is, the
customer's interarrival times are independent and exponentially distributed
with parameter r. Each customer offers one of n pairs (m'i' T i ), i = 1, ... ,n,
where mi is the amount of money offered for the service and T i is the aver
age amount of time that will be required to perform the service. Successive
offers are independent and offer (mi' Ti ) occurs with probability pi, where
Z~=l Pi = 1. An offer may be rejected, in which case the customer leaves,
or may be accepted in which case all offers that arrive while the customer is
being served are lost. The problem is to determine the acceptance-rejection
policy that maximizes the service provider's average income per unit time.

Let us denote by i the state corresponding to the offer (mi' Ti ), and let
A and R denote the accept and reject decision, respectively. We have

We leave it as an exercise for the reader to show that there exists a threshold
i* such that it is optimal to fill the orders if and only if i exceeds i* .

where F and N F denote the decisions to fill and not fill the orders, respec
tively. Bellman's equation (7.56) takes the form

where - A* is the optimal average income per unit time.

A tennis player has a Fast serve and a Slow serve, denoted F and S, respectively.
The probability of F (or S) landing in bounds is PF (or ps, respectively). The
probability of winning the point assuming the serve landed in bounds is qF (or
qs, respectively). vVe assume that PF < PS and qF > qs. The problem is to find
the serve to be used at each possible scoring situation during a single game in
order to maximize the probability of winning that game.

(a) Formulate this as a stochastic shortest path problem, argue that Assump
tion 7.2.1 of Section 7.2 holds, and write Bellman's equation.

(b) Computer assignment: Assume that qF 0.6, qs = 0.4, and PS = 0.95.
Use value iteration to calculate and plot (in increments of 0.05) the proba
bility of the server winning a game with optimal serve selection as a function
of PF.

G(i,R) = 0,G(i,

if and only ifaccept offer (i,

1
=Ti +-,

r

Bellman's equation is given by

It follows that an optimal policy is to
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to use S on both serves if

and to use F on the first serve and S on the second otherwise.

7.7

a" you can.(b) Characterize the optim81

Jk+1 (i) = min + a(l- p)Jk(O) + apJk(l),

ci+a(1-p)Jk(i)+apJk(i+1)], O,l, ... ,n 1,

(n) = K + a(l- p)Jk(O) + apJk(l),

where Jo(i) = 0 for all,t. Show by induction that Jk(i) is monotonically nonde
creasing in i.

(c) Use a computer to solve the problem of part (b) by value iteration, with
and without the error bounds (7.23).

(PFqF)/(PSqS) < 1 + PF - Ps,

Consider the value iteration method for the Example 7.3.2:

(a) Show that for a sufficiently small, the optimal policy is to stay in the town
he starts in, and that for a sufficiently close to 1, the optimal policy is to
move to town A (if not starting there) and stay in A for all subsequent
times.

(b) Solve the problem for c = 3, r A = 2, r B = 1, and a = 0.9 using policy
iteration.

For the tennis player's problem (Exercise 7.1), show that it is optimal (regardless
of score) to use F on both serves if

7.6

7.5

A person has an umbrella that she takes from home to office and vice versa. There
is a probability p of rain at the time she leaves home or office independently of
:,?8,rlier weather. If the umbrella is in the place where she is and it rains, she
tan-,'s the umbrella to go to the other place (this involves no cost). If there is no
umbreh2 and it rains, there is a cost TV for getting wet. If the umbrella is in the
place wheI2 she is but it does not rain, she may take the umbrella to go to the
other place (thl...' involves an inconvenience cost V) or she may leave the umbrella
behind (this involves r:o cost). Costs are discounted at a factor a < 1.

(a) Formulate this as an infinite horizon total cost discounted problem. Hint:
Try to use as few states as possible.A computer manufacturer can be in one of two states. In state 1 his product sells

well, while in state 2 his product sells poorly. While in state 1 he can advertise
his product in which case the one-stage reward is 4 units, and the transition
probabilities are Pll = 0.8 and P12 = 0.2. If in state 1, he does not advertise,
the reward is 6 units and the transition probabilities are Pll = P12 = 0.5. While
in state 2, he can do research to improve his product, in which case the one
stage reward is -5 units, and the transition probabilities are P21 = 0.7 and
P22 = 0.3. If in state 2 he does not do research, the reward is -3, and the
transition probabilities are P21 = 0.4 and P22 = 0.6. Consider the infinite horizon,
discounted version of this problem.

(a) Show that when the discount factor a is sufficiently small, the computer
manufacturer should follow the "shortsighted" policy of not advertising (not
doing research) while in state 1 (state 2). By contrast, when a is sufficiently
close to unity, he should follow the "farsighted" policy of advertising (doing
research) while in state 1 (state 2).

(b) For a 0.9 calculate the optimal policy using policy iteration.

(c) For a = 0.99, use a computer to solve the problem by value iteration, with
and without the error bounds (7.23).

7.4

A quarterback can choose between running and passing the ball on any given
play. The number of yards gained by running is integer and is Poisson distributed
with parameter Ar . A pass is incomplete with probability p, is intercepted with
probability q, and is completed with probability 1 - p - q. When completed, a
pass gains an integer number of is Poisson distributed with parameter
Ap . We assume that the probability of scoring a touchdlJ,'n on a single play
starting i yards from the goal is equal to the probability of gainh:! a number of
yards greater than or equal to i. vVe assume also that yardage cannot :':0 lost on
any play and that there are no penalties. The ball is turned over to the ~'+her

team on a fourth down or when an interception occurs.

(a) Formulate the problem as a stochastic shortest path problem, argue that
Assumption 7.2.1 of Section 7.2 holds, and write Bellman's equation.

(b) Computer assignment: Use value iteration to compute the quarterback's
play-selection policy that maximizes the probability of scoring a touchdown
on any single drive for Ar = 3, Ap = 10, p = 0.4, and q = 0.05.

An energetic salesman works every day of the week. He can work in only one of
two towns A and B on each day. For each day he works in town A (or B) his
expected reward is r A (or r B, respectively). The cost for changing towns is c.
Assume that c > r A > r B and that there is a discount factor a < 1.

7.3

7.2
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Consider the policy iteration algorithm for the problem of Example 7.3.2.

(a) Show that if we start the algorithm with a threshold policy, every subse
quently generated policy will be a threshold policy. Note: This requires a
careful argument.

(b) Carry out the algorithm for the case c = 1, K = 5, n = 10, P = 0.5,
a = 0.9, and an initial policy that always processes the unfilled orders.

7.9

Solve the average cost version (a = 1) of the computer manufacturer's problem
by using value iteration and by using policy iteration (Exercise 7.3).

Show the error bounds (7.17). These bounds constitute a generalization to the
stochastic shortest path problem of the bounds (7.23) for the discounted problem,
which have a long history, starting with the work of McQueen [McQ66]. Hint:
Complete the details of the following argument. Let f-Lk (i) attain the minimum
in the value iteration (7.16) for all i. Then, in vector form, we have

Jk+1 = gk + PkJk,

where Jk and gk are the vectors with components Jk(i), i = 1, ... , n, and
gk (i, f-Lk (i) ), i = 1, ... ,n, respectively, and Pk is the matrix whose components

are the transition probabilities Pij (f-Lk (i)). Also from Bellman's equation, we

have
J* ::; gk + Pk J* ,

where the vector inequality above is meant to hold separately for each component.
Let e = (1, ... ,1)'. Using the above two relations, we have

7.10 (7.57)

An unemployed worker receives a job offer at each time period, which she may
accept or reject. The offered salary takes one of n possible values WI, ... ,wn with
given probabilities, independently of preceding offers. If she accepts the offer, she
must keep the job for the rest of her life at the same salary
the offer, she receives unemployment compensation (' fr (;l1e current period ana
is eligible to accept future offers. mcome is discounted by a factor
a<l.

(a) ShOW is a threshold w such that it is optimal to accept an offer
and only if its salary is larger than W, and characterize w.

(b) Consider the variant of the problem where there is a given probability Pi

that the worker will be fired from her job at anyone period if her salary is
Wi. Show that the result of part (a) holds in the case where Pi is the same
for all i. Analyze the case where Pi depends on i.

7.11

Do part (b) of Exercise 7.10 for the case where income is not discounted and the
worker maximizes her average income per period.

7.12

Show that one can always take m = n in Assumption 7.2.1. Hint: For any 1r and
i, let Sk (oi) be the set of states that are reachable with positive probability from
i under 7r in k stages or less. Show that under Assumption 7.2.1, we cannot have
Sk (oi) Sk+1 (i) while t i= Sk (i).

Multiplying this relation with Pk and adding cke, we obtain

Pk(J* - Jk) +Cke ::; P;(J* - Jk) +Ck(I + Pk)e.

Similarly continuing, we have for all r ~ 1

J* - Jk+1 +Cke ::; P~(J* - Jk) +Ck(I + Pk + ... + p~-I)e.

4'or s = 1,2, ... , the ith component of the vector Pf:e is equal to the probability
P {:1" -::/::. t I Xo = i, f-Lk} that t has not been reached a~er s sta~es ~tarting

from i an~ 'Ising the station;:lr~r . Thus, AssumptIOn 7.2.1 ImplIes that

limr-+oo P~ = 0, w:~:le we have

lim (I + Pk + ... + p~-I)e = N
k,

r-+oo

where N k is the vector (Nk(l), ... ,Nk(n))'. Combining the above two relations,

we obtain

proving the desired upper bound. .
The lower bound is proved similarly, by using in place of f-Lk, an optImal

stationary policy f-L*. In particular, in place of Eq. (7.57), we can show that

Jk - J* ::; Jk+1 - J* - f.ke::; P*(Jk - J*) - f.k e,

where P* is the matrix with elements P'ij (f-L * (i) ) . We similarly obtain for all

r~l

Jk+1 - J* - f.ke ::; (p*r (Jk - J*) - f.k (I + P* + ... + (p*r-
I
) e,

from which Jk+1 +f.k(N* e)::; J*, where N* is the vector (N* (1), ... ,N* (n) )'.
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Apply the relative value iteration algorithm (7.41) for the case where there are
two states and only one control per state. The transition probabilities are Pll = E,

P12 = 1 - E, P21 = 1 - E, and P22 = E, where 0 :S E < 1. Show that if 0 < E the
algorithm converges, but if E = 0, the algorithm may not converge. Show also
that the variation (7.42) converges when E = O.

1.15

Consider the average cost problem and its associated stochastic shortest path
problem when the expected cost incurred at state i is 9 (i, u) - A* .

(a) Use Prop. 7.2.1(d) and Prop. 7.4.1(a) to show that if a stationary policy is
optimal for the latter problem it is also optimal for the former.

(b) Show by example that the reverse of part (a) need not be true.

7.16

Consider a problem of operating a machine that can be in anyone of n states,
denoted 1,2, ... ,n. We denote by g(i) the operating cost per period when the
machine is in state i, and we assume that

g(l) :S g(2) :S ... :S g(n).

The implication here is that state i is better than state i + 1, and state 1 cor
responds to a machine being in the best condition. The transition probabilities
during one period of operation satisfy

Consider a person providing a certain type of service to customers. The person
receives at the beginning of each time period with probability Pi a proposal by
a customer of type i, where i = 1,2, ... , n, who offers an amount of money Mi.
We assume that 2:~=1 Pi = 1. The person may reject the offer, in which case the
customer leaves and the person remains idle during that period, or the person
may accept the offer in which case the person spends some random amount of
time with that customer. In particular, we assume that the probability that the
type i customer will leave after k periods (k = 1,2, ...), given that the customer
has already stayed with the person for k - 1 periods is a given scalar f3i E (0,1).
The problem is to determine an acceptance-rejection policy that maximizes

lim :r {Expected payment over N periods}.
N-Hx) lV

(a) Formulate the person's problem as an average cost per stage problem, and
show that the optimal cost is independent of the initial state.

(b) Show that there exists a scalar A and an optimal policy that accepts the
offer of a type i customer if and only if

where Ti is the expected time spent with the type i customer.

7.18

replace if and only if i :::::: i*,

where i* is some integer.

(b) Show that the policy iteration method, when started with a threshold pol
icy, generates a sequence of threshold policies.

Pij = 0 if j i= i, j i= i + 1.

We assume that at the start of each period we know the state of the machine
and we must choose one of the following two options:

(1) Let the machine operate one more period in the state it currently is.

(2) Repair the machine and bring it to the best state 1 at a cost R.

VVe assume that the machine, once repaired, is guaranteed to stay in state 1 for
one period. In subsequent periods, it may deteriorate to states j > 1.

(a) Assume an infinite horizon and a discount factor a E (0,1), and show that
there is an optimal policy which is a threshold policy; that is, it takes the

form

P'i(i+l) > 0 if i < n, A person has an asset to sell for whicil she receives offers that take one of n values
Sj, j = 1, ... , n. The times between successive offers are random, identically
distributed, and independent of preceding times. Let Qj (T) be the probability
that the time between successive offers is less or equal to T and the next offer
is Sj. Find the offer acceptance policy that maximizes E{aT s}, where T is the
time of sale, S is the sale price, and a E (0,1) is a discount factor.

7.19

An unemployed worker receives job offers, which she may accept or reject. The
times between successive offers are independent and exponentially distributed
with parameter r. The offered salary (per unit time) takes one of n possible
values Wi, i = 1, ... , n, with given probabilities pi, independently of preceding
offers. If she accepts an offer at salary Wi, she keeps the job for a random
amount of time that has expected value k If she rejects the offer, she receives
unemployment compensation c (per unit time) and is eligible to accept future
offers. Solve the problem of maximizing the worker's average income per unit
time.
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7.20

Consider a computing system where the interarrival times of the jobs are inde
pendent and exponentially distributed with parameter r. A job may be rejected,
in which case the job is lost, or may be accepted in which case all jobs that
arrive while the job is being processed are lost. There are n types of jobs. Each
arriving job is of type i with probability pi, independently of earlier jobs, and
if processed, is worth a fixed positive benefit bi (i = 1, ... ,n). Jobs of type i
require an average amount of time Ti to complete processing. The problem is to
determine the acceptance-rejection policy that maximizes the system's average

benefit per unit time.

(a) Argue that the analysis of Example 7.5.3 applies for this problem.

(b) Calculate the optimal average benefit per unit time)..* in terms of the given
quantities for the case where there are only two job types.

(c) Suppose that the time to process a job of type i is exponentially distributed
with mean T i . Assume further that the system can process up to a given
number m > 1 of jobs simultaneously (rather than just one). Formulate
the problem as an average benefit per unit time semi-Markov problem, and
write Bellman's equation for the case where m = 2. Why do we need the
exponential distribution assumption?

7.21

decreases monotonically with i. Each found treasure is worth 1 unit.

(a) Formulate the problem as an infinite horizon DP problem.

(b) vVrite Bellman's equation. How do you know that this equation holds and
has a unique solution?

(c) Start policy iteration with the policy that never searches. How many policy
iterations does it take to find an optimal policy, and what is that optimal
policy?

7.23

The latest slot machine model has three arms, labeled 1, 2, and 3. A single play
with arm i, where i = 1,2,3, costs Ci dollars, and has two possible outcomes: a
"win," which occurs with probability pi, and a "loss," which occurs with prob
ability 1 - Pi. The slot machine pays you m dollars each time you complete a
sequence of three successive "wins," with each win obtained using a different arm.

(a) Consider the problem of finding the arm-playing order that minimizes the
expected cost if you are restricted to stop at the first time the machine
pays you. Formulate this problem as a stochastic shortest path problem
where arm-playing orders are identified with stationary policies, and write
Bellman's equation for each stationary policy.

(b) Show that the expected cost of the arm-playing order ABC is

Formulate a semi-Markov version of the stochastic shortest path problem of Sec
tion 7.2. The cost function has the form

C.ii + +
1- PAPBPC

lim E {iT 9(X(t),U(t))dt} ,
T-oo 0

and there is a cost-free and absorbing state. Use the transition distributions Qij

to formulate an assumption that is analogous to Assumption 7.2.1. Under this
assumption, state and justify a result that parallels Prop. 7.2.1.

7.22

A treasure hunter has obtained a lease to search a site that contains n treasures,
and wants to find a searching policy that maximizes his expected gain over an
infinite number of days. At each day, knowing the current number of treasures
not yet found, he may decide to continue searching for more treasures at a cost
c per day, or to permanently stop searching. If he searches on a day when there
are 'i treasures on the site, he finds m E [0, i] treasures with given probability
p(m I i), where we assume that p(O 1 i) < 1 for all i 2:: 1, and that the expected
number of treasures found,

mp(m I i),
m=O

Show that it is optimal to play the arms in order of decreasing ci/(l - Pi)'

(c) Consider the problem of finding the arm-playing order that minimizes the
average expected cost per play, assuming you play infinitely many times.
Formulate this problem as an average cost per stage problem, where arm
playing orders are identified with stationary policies, and write Bellman's
equation for each stationary policy.

(d) Show that the expected cost per play of the arm-playing order ABC is

CA + PACB + PAPBCC - pApBPcm

1 + PAPB

Is it possible that the optimal playing order is different than the one of part
(b)? If this is so, how do you explain it?

7.24

A person has a house that he rents at a fixed amount R per time period. At the
beginning of each period k, the person receives an offer Wk to sell the house. The
amount Wk takes one of m given values WI, ... ,wm

, with corresponding positive
probabilities ql, ... , qm, independently of preceding offers. The person, at the
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beginning of each period, must decide whether to accept the current offer or to
decline the offer and continue to rent the house.

Upon selling the house, the sale amount, call it w, is immediately reinvested
in some way so that it yields at time k a random amount YkW, where Yk takes
one of 8 given values y 1

, ... ,Y s
. The value of Yk evolves according to a Markov

chain with a single recurrent class and given transition probabilities

(d) Formulate the infinite horizon average cost version of this problem with
finite state space and write the corresponding Bellman's equation. State
an assumption under which Bellman's equation holds.

7.26

i, j = 1, ... ,8.

(a) Suppose that at time k the house is sold when Yk is equal to Vi. Let

be the average future yield per unit time. Show that y( i) is equal to a
common value y, independent of i, and derive a Bellman-type equation for
this value.

(b) Suppose that the person's objective is to maximize the average monetary
benefit per time ~. :utSue that an optImal .?olicy is to wait
_"ui! Lile maximum possible offer w = max{wI, ... ,wm

} is receiv<;c4 and
then sell the house, assuming that R/y :s; W. Given this result, discuss
whether the average cost formulation is satisfactory for this problem.

(c) Suppose that the person's objective is to maximize the total discounted
monetary benefit over an infinite horizon, with a discount factor ex < l.
Show that for each i = 1, ... ,8, there is a threshold t(i) such that it is
optimal to sell the house at period k when Yk = yi and the current offer is
larger than t(i).

An engineer has invented a better mouse trap and is interested in selling it for the
right price. At the beginning of each period, he receives a sale offer that takes one
of the values 81,.·., 8 n with corresponding probabilities P1, ... ,pn, independently
of prior offers. If he accepts the offer he retires from engineering. If he refuses the
offer, he may accept subsequent offers but he also runs the risk that a competitor
will invent an even better mouse trap, rendering his own unsaleable; this happens
with probability {3 > 0 at each time period, independently of earlier time periods.
While he is overtaken by the competitor, at each time period, he may choose to
retire from engineering, or he may choose to invest an amount v :::::: 0, in which
case he has a probability I to improve his mouse trap, overtake his competitor,
and start receiving offers as earlier. The problem is to determine the engineer's
strategy to maximize his discounted expected payoff (minus investment cost),
assuming a discount factor ex < l.

(a) Formulate the problem as an infinite horizon discounted cost problem and
write the corresponding Bellman's equation.

(b) Characterize as best as you can an optimal policy.

(c) Assume that there is no discount factor. Does the problem make sense as
an average cost per stage problem?

(d) Assume that there is no discount factor and that the investment cost v
is equal to O. Does the problem make sense as a stochastic shortest path
problem, and what is then the optimal policy?

7.25

to obtain another SSP without self-transitions. Show that the modified
SSP is equivalent to the original in the sense that its stationary policies and
optimal policies have the same cost functions. What is the interpretation of
the transitions of the modified SSP in terms of transitions of the original?

Consider a stochastic shortest path problem (SSP) with termination state t, the
nontermination states 1, ... , n, transition probabilities Pij(U), and expected costs
per stage g(i, u). Let Assumption 7.2.1 hold.

(a) Modify the costs and transition probabilities as follows:

fi..i1:lffilm3..tlng Self-Transitions)

i=l, ... ,n, UEU(i),

i = 1, ... , n, j = 1, ... , n, t, U E U(i),
if j = i,

if j i= i,

g(i, u) = g(i, u)
1- Pii(U) '

7.27
You have just bought your first car, which raises the issue of where to park it.
At the beginning of each day you may either park it in a garage, which costs G
per day, or on the street for free. However, in the latter case, you run the risk
of getting a parking ticket, which costs T, with probability Pj, where j is the
number of consecutive days that the car has been parked on the street (e.g., on
the first day you park on the street, you have probability P1 of getting a ticket, on
the second successive day you park on the street, you have probability P2, etc).
Assume that Pj is monotonically nondecreasing in j, and that you may receive
at most one ticket per day when parked on the street. Assume also that there
exists an integer m such that pmT > G.

(a) Formulate this as an infinite horizon discounted cost problem with finite
state space and write the corresponding Bellman's equation.

(b) Characterize as best as you can the optimal policy.

(c) Let n be the total number of states. Show how to use policy iteration so
that it terminates after no more than n iterations. Hint: Use threshold
policies as in Problem 7.8.
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Hint: To show the first equality, note that for any a < 1, N, and 7f

{/-la, /-l1, .. .}, we have

(b) Fix a policy /-l. Let Jk and Jk be the sequences of cost vectors generated
by value iteration (for the fixed policy) in the original and the modified
SSP, respectively, starting from the same initial vector Jo. Show that value
iteration is faster for the modified SSP in the sense that if Jo :::; J1 , then
Jk :::; J k :::; J* for all k, and if Jo 2: J1 , then Jk 2: J k 2: J* for all k.

Furthermore,

~fI J~(i) = rei), i = 1, ... ,no

7.28 Cost Problems with Nonnegative Costs)
N-1

J7r (i) 2: J7r ,o.(i) 2: L a
k
E{g(ik' /-lk(ik») I i o = i, 7f}.

k=O

(d) Let J be such that 0 :::; J(i) < 00 for all i. Show that if

Take the limit as a -7 1 and then take the limit as N-7 00. For the second
equality, consider a stationary policy /-l and a sequence {am} C (0, 1) with
am -7 1 such that JJl-,o.m = J::'m for all m.

(c) Use Bellman's equation for a < 1, to show that J* satisfies Bellman's
equation for a = 1:

This is a theoretical problem whose purpose is to provide some additional analysis
for un discounted cost problems, including an extension of the results of Section
7.2 for stochastic shorteSt problems. The idea is to use the analysis of Sec
tion 7.3 for discounted problems to I.l...:::ive the basic results for total undiscounted
cost problems under the assumption that ';]'e stage costs are nonnegative and the
optimal costs are finite. These results apply, c..~nong others, to some stochastic
shortest path problems where not all stationary pOlicies are proper and Assump
tion 7.2.1 is violated.

Consider a controlled Markov chain with states i = 1, ... , n, controls u cho
sen from a finite constraint set U (i) for each state i, and transit1V.l.2 probabilities
Pij(U). (The states may include a cost-free and absorbing termination ::>tate, but
this is not relevant for the following analysis.) The cost of the kth stage at sta,~2

i when control u is applied has the form

r(i) = min [9(i'U) +~ Pij (u)J* (j)]
uEU(t) L-.t

j=l
i = 1, ... ,no

where a is a scalar from (0,1]. Our key assumption is that

J.., ••• , U E U(i),
J(i) 2: u~W0)lrg(i'U) + tPij(U)](j)] ,

)=1

i = 1, ... ,n,

O:::;g(i,u), i = 1, ... ,n, u E U(i). then J(i) 2: J* (i) for all i. Show also that if for some stationary policy /-l,
we have

For any policy 7f, let J7r ,o. be the cost function for the a-discounted problem
(a < 1), and let J'-rr be the cost function for the problem where a = 1. Note that
for a 1, we may have J7r (i) = 00 for some 7f and i. However, the limit defining
J7r (i) exists either as a real number or 00, thanks to the assumption 0 :::; g(i, u)
for all i and u. Let J::' (i) and J* (i) be the optimal costs starting from i, when
a < 1 and a = 1, respectively. We assume that

J(i) 2: g(i'/-l(i») + LPij(/-l(i»)J(j),
j=l

then J(i) 2: JJl-(i) for all i. Hint: Argue that

i = 1, ... , n,

(this is true in particular for the case of a stochastic shortest path problem
if there exists a proper stationary policy, Le., a policy under which there is a
positive transition probability path from every state to the termination state).

(a) Show that for all a < 1, we have

use value iteration to show that J 2: J~, and take the limit as a -7 l.

(e) For a = 1, show that if

J* (i) < 00, i = 1, ... ,n,
J(i) 2: min [9(i' u) + a~ Pij(U)JU)]

uEU(t) L-.t
j=l

i = 1, ... ,n,

(b) Show that for any admissible policy 7f, we have

o :::; J~(i) :::; J* (i),

lim J7r 0. (i) = J7r (i),
o.i1 '

i = 1, ... ,no

i = 1, ... ,no

/-l*(i) = argu~J(i) [9(i'U) + tPij(U)J*U)] ,
)=1

then J1 * is optimal. Hint : Use part (d) with J = J*.

i = 1, ... ,n,
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(f) For 0: = 1, show that for the value iteration method, given by

i = 1, ... ,n,

we have Jk(i)·-+ J*(i), i = 1, ... ,n, assuming that

0::; Jo(i) ::; J*(i), i = 1, ... ,no

Give examples showing what may happen when this last assumptioL is
violated. Hint: Prove the result by first assuming that Jo is the zerv

function.

(g) Show that the set of states Z = {i I J* (i) = o} is nonempty. Furthermore,
under an optimal stationary policy p,*, the set of states Z is cost-free and
absorbing, Le., g(i'fL*(i») = 0 and Pij(fL*(i») = 0 for all i.E Z and j tt~.
In addition, is proper in the sense that for every state 'L tt Z, under fL ,
there is a positive probability path that starts at i and ends at a state of

Z.

The purpose of this appendix is to provide a list of mathematical definitions,
notations, and results that are useci frequently in the text. For detailed
expositions, the reader may consult textbooks such as Hoffman and Kunze
[HoK71], Royden [Roy88], Rudin [Rud75], and Strang [Str76].

A.I SETS

If x is a member of the set S, we write xES. vVe write x t/: S if x is not
a member of S. A set S may be specified by listing its elements within
braces. For example, by writing S = {Xl, X2, ... , x n } we mean that the set
8 consists of the elements Xl, X2, ... , X n . A set S may also be specified in
the generic form

8 = {x I x satisfies P}

as the set of elements satisfying property P. For example,

S = {x I x : real, 0 ~ x ~ I}

denotes the set of all real numbers x satisfying 0 ~ x ~ 1.
The union of two sets 8 and T is denoted by BUT and the intersection

of 8 and T is denoted by 8nT. The union and the intersection of a sequence
of sets 81,82 , ... , ... are denoted by Uk=18k and nk=18k, respectively.
If 8 is a subset of T (i.e., if every element of S is also an element of T), we
write 8 c T or T ::) 8.
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A.2

Finite and Countable Sets

A set S is said to be finite if it consists of a finite number of elements. It is
said to be countable if there exists a one-to-one function from S into the set
of nonnegative integers. Thus, according to our definition, a finite set is also
countable but not conversely. A countable set S that is not finite may be
represented by listing its elements xo, Xl, X2, ... (i.e., S = {xo, Xl, X2,"'})'
A countable union of countable sets is countable, that is, if A = {ao, al, ...}
is a countable set and Sao' Sal' ... are each countable sets, then Uk=oSak
is also a countable set.

Sets of Real Numbers

If a and b are real numbers or +00, -00, we denote by [a, b] the set of
numbers X satisfying a ::;; X ::;; b (including the possibility X = +00 or
X = -00). A rounded, instead of square, bracket denotes strict inequality in
the definition. Thus (a, b], [a, b), and (a, b) denote the set of all x satisfying
a < x ::; b, a ::; x < b, and a < x < b, respectively.

If S is a set of real numbers that is bou:LJ.ded above, then there is a
smallest real number y such that x ..s y for all xES. This number is called
the least 'Llpper' be una or supremum of S and is denoted by sup{x I XES} or

I XES}. (This is somewhat inconsistent with normal mathematical
usage, where the use of max in place of sup indicates that the supremum is
attained by some element of S.) Similarly, the greatest real number z such
that z ::; x for all xES is called the greatest lower bound or infimum of
S and is denoted by inf{x I XES} or min{x I XES}. If S is unbounded
above, we write sup{x I XES} = +00, and if it is unbounded below, we
write inf{x I XES} = -00. If S is the empty set, then by convention we
write inf{x I XES} = +00 and sup{x I XES} = -00.

EUCLIDEAN SPACE

The set of all n-tuples x = (Xl, ... , x n ) of real numbers constitutes the
n-dimensional Eudidean space, denoted by 2J(n. The elements of 2J(n are
referred to as n-dimensional vectors or simply vectors when confusion can
not arise. The one-dimensional Euclidean space 2J(1 consists of all the real
numbers and is denoted by 2J(. Vectors in 2J(n can be added by adding their
corresponding components. They can be multiplied by a scalar by multi
plication of each component by a scalar. The inner product of two vectors
x = (Xl, ... , xn ) and y = (Yl,"" Yn) is denoted by x'y and is equal to

XiYi. The norm of a vector x = (Xl, ... ,xn ) E 2J(n is denoted by Ilxll

and is equal to (X l x)l/2 = X;)1/2.

A.3

A set of vectors al, a2, ... ,ak is said to be linearly dependent if there
exist scalars Al, A2, ... , Ak' not all zero, such that

If no such set of scalars exists, the vectors are said to be linearly indepen
dent.

MATRICES

An m x n matrix is a rectangular array of numbers, referred to as elements
or components, which are arranged in m rows and n columns. If m = n
the matrix is said to be square. The element in the ith row and jth column
of a matrix A is denoted by a subscript ij, such as aij, in which case we
write A = [aij]. The n x n identity matrix, denoted by I, is the matrix
with elements aij = 0 for i =I- j and aii = 1, for i = 1, ... , n. The sum
of two m x n matrices A and B is written as A + B and is the matrix
whose elements are the sum of the corresponding elements in A and B.
The of a matrix A and a scalar A, written as AA or AA, is obtained
by multiplying each element of A by A. The product AB of an m x n
matrix A and an n x p matrix B is the m x p matrix C with elements
Cij = L:~=l aikbkj. If b is an n-dimensional column vector and A is an
m x n matrix, then Ab is an m-dimensional column vector.

The transpose of an m x n matrix A is the n x m matrix A' with
elements a~j = aji. The elements of a given row (or column) of A constitute
a vector called a row vector (or column vector, respectively) of A. A square
matrix A is symmetric if A' = A. An n x n matrix A is called nonsingular
or invertible if there is an n x n matrix called the inverse of A and denoted
by A -1, such that A -1 A = I = AA-1, where I is the n x n identity
matrix. An n x n matrix is nonsingular if and only if its n row vectors are
linearly independent or, equivalently, if its n column vectors are linearly
independent. Thus, an n x n matrix A is nonsingular if and only if the
relation Av = 0, where v E 2J(n, implies that v = O.

Rank of a Matrix

The rank of a matrix A is equal to the maximum number of linearly in
dependent row vectors of A. It is also equal to the maximum number of
linearly independent column vectors. Thus, the rank of an m x n matrix
is at most equal to the minimum of the dimensions m and n. An m x n
matrix is said to be of full rank if its rank is maximal, that is, if its rank is
equal to the minimum of m and n. A square matrix is of full rank if and
only if it is nonsingular.



NIathematical Review lm)endlX A Sec. .4..3 NIatrices

Given a square n x n matrix A, the determinant of the matrix r 1 _
where I is the n x n identity matrix and r is a scalar, is an nth degree
polynomial. The n roots of this polynomial are called the eigenvalues of A.
Thus, r is an eigenvalue of A if and only if the matrix r 1 - A is singular,
or equivalently, if and only if there exists a nonzero vector v such that
Av = r v . Such a vector v is called an eigenvector corresponding to f.
The eigenvalues and eigenvectors of A can be complex even if A is real. A
matrix A is singular if and only if it has an eigenvalue that is equal to zero.
If A is nonsingular, then the eigenvalues of A-I are the reciprocals of the
eigenvalues of A. The eigenvalues of A and AI coincide.

If rl, ... ,rn are the eigenvalues of A, then the eigenvalues of c1 +
where c is a scalar and I is the identity matrix, are c + rI, ... ,c + rn. The
eigenvalues of where k is any positive integer, are equal to rf, ... ,r~'
From this it follows that limk-+O Ak = aif and only if all the eigenvalues of
A lie strictly within the unit circle of the complex plane. Furthermore, if
the latter condition holds, the iteration

where b is a given vector, converges to

x = (I - A)-lb,

which is the unique solution of the equation x = Ax + b.
If all the eigenvalues of A are distinct, then their number is exactly

n, and there exists a set of corresponding linearly independent eigenvec
tors. In this case, if rl, ... ,rn are the eigenvalues and VI, ... ,vn are such
eigenvectors, every vector x E !Rn can be decomposed as

n

X = I:~iVi'
i=l

where ~i are some unique (possibly complex) numbers. Furthermore, we
have for all positive integers k,

n

Akx = rf~iVi.

i=l

If A is a transition probability matrix, that is, all the elements of A
are nonnegative and the sum of the elements of each of its rows is equal
to 1, then all the eigenvalues of A lie within the unit circle of the complex
plane. Furthermore, 1 is an eigenvalue of A and the unit vector (1,1, ... , 1)
is a corresponding eigenvector.

Positive Definite and Semidefinite ~'\irm.metnc Matrices

A square symmetric n x n matrix A is said to b~ positiv~ se.midefinite if
Xl Ax > a for all x E !Rn. It is said to be positzve definzte If Xl Ax > a
for all~onzero x E !Rn . The matrix A is said to be negative semidefinite
(definite) if - A is positive semi~efini~e (defini~e). In this boo~, the noti~ns

of positive definiteness and semidefimteness WIll be used only m connectIOn
with symmetric matrices. ., .

A positive definite symmetric matrix is invertible ~~d Its lI:verse. IS
also positive definite symmetric. Also, an invertible pOSItive semidefin.lte
symmetric matrix is positive definite. Analogous results hold for neg~t:ve

definite and semidefinite symmetric matrices. If A and Bare n x n pOSItIve
semidefinite (definite) symmetric matrices, then the matrix .\A+J.LB is al~o

positive semidefinite (definite) symmetric for .all .\ ~ a. and J.L ~ a. If A. IS
an n x n positive semidefinite symmetric matnx and C IS an m x. n ma~r.Ix,

then the matrix CACI is positive semidefinite symmetric. If A IS pOSItive
definite symmetric, and C has rank m (equivalently, m ::; nand C has full
rank), then CACI is positive definite sym~etric. . .

An n x n positive definite symmetnc matnx A can be wntten as
CCI where C is a square invertible matrix. If A is positive semidefinite
symmetric and its rank is m, then it can be written as CC', where C is an
n x m matrix of full rank.

A symmetric n x n matrix A has real eigenvalues and ~ set of n real
linearly indepGlldent eigenvectors, which are orthogonal (the mner pr.od~ct

of all:- pair is a). If A is positive semidefin~t~ (definite) symmetnc, ItS
81genvalues are nonnegative (respectively, pOSItive).

Partitioned Matrices

It is often convenient to partition a matrix into submatrices. For example,
the matrix

may be partitioned into

A = ( All A12 )
A2I A22 '

where

All = (all a12) , A12 = (a13 a14) ,

= (a
21 a22 ) = (a

23 a24 ) .
a31 a32 ' a33 a34
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vVe separate the components of a partitioned matrix by a space, as in (B C),
or by a comma, as in (B, C). The transpose of the partitioned matrix A is

A.4 ANALYSIS

A~l )
A' .

22

Convergence of Sequences

Matrix Inversion Formulas

The equation can be verified by multiplying the right-hand side by

(A + CBC/)-l = A-I - A-1C(B-1 + 0 ' A-1C)-lC'A-I.

Partitioned matrices may be multiplied just as nonpartitioned matrices,
provided the dimensions involved in the partitions are compatible. Thus if

A sequence of vectors xo, Xl, ... , Xk, ... in 3{n, denoted by {xd, is said to
converge to a limit X if jjxk - xii --+ °as k --+ 00 (i.e., if, given any E> 0,
there is an integer N such that for all k :2: N we have Ijxk - xii < E).
If {Xk} converges to x, we write Xk --+ x or limk-+= Xk = x. We have
AXk + BYk --+ Ax + By if Xk --+ x, Yk --+ Y, and A, B are matrices of
appropriate dimension.

A vector x is said to be a limit point of a sequence {xk} if there is
a subsequence of {xk} that converges to x, that is, if there is an infinite
subset lC of the nonnegative integers such that for any E > 0, there is an
integer N such that for all k E lC with k :2: N we have Ilxk - xii < E.

A sequence of real numbers {rk}, which is monotonically nonde
creasing (nonincreasing), that is, satisfies rk ::; rk+1 for all k, must ei
ther converge to a real number or be unbounded above (below). In the
latter case we write limk-+= rk = 00 (-00). Given any bounded se
quence of real numbers {rk}, we may consider the sequence {Sk}, where
Sk = sup{ri j i :2: k}. Since this sequence is monotonically nonincreasing
and bounded, it must have a limit. This limit is called the limit superior
of {rk} and is denoted by lim sUPk-+= rk. The limit inferior of {rk} is
similarly defined and is denoted by liminfk-+= rk. If {rk} is unbounded
above, we write lim sUPk-+= rk 00, and if it is unbounded below, we write
liminfk-+= rk = -00. We also use this notation if rk E [-00,00] for all k.

B = (Bll
B21

A

then
AB = (AllBll + A 12B21 A ll B 12 + A12 B 22)

A21 B ll + A 22 B 21 A 21 B 12 + A22B22 '

provided the dimensions of the submatrices are such that the preceding
products AijBjk , i,j, k = 1,2 can be formed.

Let A and B be square invertible matrices, and let C be a matrix of ap
propriate dimension. Then, if all the following inverses exist, we have

A+OBO' Open, Closed, and Compact Sets

and showing that the product is the identity matrix.
Consider a partitioned matrix 1\1 of the form

Then we have

n{,-l _ ( Q
lVJ - -D-1CQ

-QBD-1 )
D-1 + D-1CQBD-1 ,

A subset S of 3{n is said to be open if for every vector xES one can find an
E> °such that {z Illz - xii < E} C S. A set S is closed if and only if every
convergent sequence {Xk} with elements in S converges to a point that also
belongs to S. A set S is said to be compact if and only if it is both closed
and bounded (i.e., it is closed and for some M > 0 we have jlxll ::; M for all
XES). A set S is compact if and only if every sequence {Xk} with elements
in S has at least one limit point that belongs to S. Another important fact
is that if So, Sl, . .. , Sk, .. . is a sequence of nonempty compact sets in 3{n

such that Sk :) Sk+1 for all k, then the intersection nk=oSk is a nonempty
and compact set.

where
Q = (A - BD-1C)-1, Continuous Functions

provided all the inverses exist. The proof is obtained by multiplying M
with the expression given for M-1 and verifying that the product yields
the identity matrix.

A function f mapping a set Sl into a set S2 is denoted by f : Sl --+ S2. A
function f : 3{n --+ 3{m is said to be continuous if for all x, f (xk) --+ f (x)
whenever Xk --+ x. Equivalently, f is continuous if, given x E 3{n and E > 0,
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there is a 6> 0 such that whenever Ily-xll < 6, we have Ilf(y) - f(x)11 < E.

The function

is continuous for any two scalars aI, a2 and any two continuous functions
h,12 : ~n -7 ~m. If 51, 53 are any sets and h : 51 -752,12 : 52 -7 53
are functions, the function h h : 51 -7 53 defined by (12 . h)(x) =
12 (h (x)) is called "f hand 12. If h : 31n -7 ~m and
12 . 31m -7 ~P are continuous, then 12 . il is also continuous.

If the gradient Yf (x) is itself a differentiable function, then f is said
to be twice differentiable. We denote by y2 f(x) the Hessian matrix of f
at x, that is, the matrix

y2 f (x) = [82
f (x ~ ]

8xt 8xJ

the elements of which are the second partial derivatives of f at x.
Let f : ~k 1---7 ~m and 9 : ~m 1---7 ~n be continuously differentiable

functions, and let h(x) = g(J(x)). The chain rule for differentiation states
that

Derivatives

Let f : ~n 1---7 ~ be some function. For a fixed x E ~n, the first partial
derivative of f at the point x with respect to the ith coordin8. ~e is defined
by

8f(x) = lim f(x + aei) - f(x)
8Xi a""'"0 a '

A.5

Yh(x) = Yf(x)yg(f(x)), for all x E ~k.

For example, if A and B are given matrices, then if h(x) =
Yh(x) = A' and if h(x) = ABx, we have Yh(x) = B'A'.

CONVEX SETS AND FUNCTIONS

we have

where ei is the 'ith unit vector, and we assume that the above limit exists.
If the partial derivatives with respect to all coordinates exist, f is called
differentiable at x and its gradient at x is defined to be the column vector

(

af(x) )aXl

Yf(x) = : .
af(x)
aXn

The function f is called differentiable if it is differentiable at every x E ~n.

If Y f (x) exists for every x and is a continuous function of x, f is said to
be continuously d'ifJerentiable. Such a function admits, for every fixed x,
the first order expansion

f(x + y) = f(x) + y'Y f(x) + o(IIYII),

where o(llylD is a function of y with the property limllyll .......oo(llyll)/llyll = o.
A vector-valued function f : ~n 1---7 ~m is called differentiable (re

spectively, continuously differentiable) if each component fi of f is differ
entiable (respectively, continuously differentiable). The gradient matrix of
f, denoted by Y f (x), is the n x m matrix whose ith column is the gradient
Y fi(X) of fi. Thus,

The transpose of Y f is the Jacobian of f; it is the matrix whose ijth entry
is equal to the partial derivative 8 fil aXj.

A subset 0 of ~n is said to be convex if for every x, yEO and every scalar
a with 0 :s; a :s; 1, we have ax + (1 - a)y E O. In words, 0 is convex if
the line segment connecting any two points in 0 belongs to O. A. function
f : C -7 defined over a convex subset 0 of 31n , is said to be convex if
for every x; y ~ 0 and every scalar a with 0 :s; a :::; 1 we have

f(ax + (1 - a)y) :s; af(x) + (1 - a)f(y).

The function f is said to be concave if (- f) is convex, or equivalently if
for every x, yEO and every scalar a with 0 :s; a :s; 1 we have

f(ax + (1- a)y) 2: af(x) + (1 - a)f(y).

If f : 0 -7 31 is convex, then the sets r), = {x I x E 0, f(x) :s; A} are
convex for every scalar A. An important property is that a real-valued
convex function defined over ~n is continuous.

If h, 12, ... ,f m are convex functions defined over a convex subset
o of ~n and aI, a2, . .. , am are nonnegative scalars, then the function
alh + ... + amfm is also convex over O. If f : ~m -7 ~ is convex, A is
an m x n matrix, and b is a vector in 31m , the function 9 : ~n -7 ~ defined
by 9(x) = f (Ax + b) is also convex. If f : ~n -7 ~ is convex, then the
function g(x) = Ew{f(x + w)}, where w is a random vector in is a
convex function provided the expected value is finite for every x E ~n.

For functions f : ~n -7 ~ that are differentiable, there are alternative
characterizations of convexity. Thus, f is convex if and only if

f(y) 2: f(x) + Y f(x)'(Y - x), for all x, y E ~n.

If f is twice continuously differentiable, then f is convex if and only if
y2 f (x) is a positive semidefinite symmetric matrix for every x E ~n.

For accounts of convexity and its applications in optimization, see
Bertsekas [BN003) and Rockafellar [Roc70).



Sec. B.l Solutions

Note that a minimizing element need not exist. For example, the scalar
functions j (x) = x and j (x) = eX have no minimizing elements over the
set of real numbers. The first function decreases without bound to -00 as
x tends toward -00, while the second decreases toward 0 as x tends toward
-00 but always takes positive values. Given the range of values that j(x)
takes as x ranges over X, that is, the set of real numbers

{j(x) I x EX},

there are two possibilities:

1. The set {j(x) I x E X} is unbounded below (Le., contains arbitrarily
small real numbers) in which case we write

min{j(x) I x E X} = -00 or min j(x) = -00.
xEX

2. The set {j(x) I x E X} is bounded below; that is, there exists a scalar
M such that 1\11 :::; j (x) for all x EX. The greatest lower bound of
{j(x) I x E X} is also denoted by

In either case we call minxEx j(x) the optimal value of problem (B.1).

A maximization problem of the form

The purpose of this appendix is to provide a few definitions and results of
deterministic optimization. For detailed expositions, which include both
convex and nonconvex problems, see textbooks such as Bertsekas [Ber9g],
[BN003], Luenberger [Lue84], and Rockafellar [Roc70].

min{j(x) I x E X} or min j(x).
xEX

B.l OPTIMAL SOLUTIONS

Given a set S, a real-valued function j : S ......-.t 3l:, and a subset XeS, the
optimization problem

maximize j (x)

subject to x E X

may be converted to the minimization problem

minimize j (x)

subject to x E X,
(B.l) minimize - j (x)

subject to x E X,

For any minimizing element x*, we write

x* = arg min j(x).
xEX

is to find an element x* E X (called a minimizing element or an optimal
solut'ion) such that

j(x*) :::; j(x), for all x E X.

in the sense that both problems have the same optimal solutions, and the
optimal value of one is equal to minus the optimal value of the other. The
optimal value for the maximization problem is denoted by maxxEX j (x).

Existence of at least one optimal solution in problem (B.l) is guar
anteed if j : 3l:n ......-.t 3l: is a continuous function and X is a compact subset
of 3l:n . This is the Weierstrass theorem. By a related result, existence of
an optimal solution is guaranteed if j : 3l:n ......-.t 3l: is a continuous function,
X is closed, and j(x) ......-.t 00 if Ilxll ......-.t 00.
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Optimality conditions are available when J is a differentiable function on
ffi:n and X is a convex subset of ffi:n (possibly X ffi:n). In particular, if
x* is an optimal solution of problem (B.1), J : ffi:n -+ ffi: is a continuously
differentiable function on ffi:n, and X is convex, we have

B.2 CONDITIONS

vJ(x*)'(x - x*) 2:: 0, for all x E X, (B.2)

CQ1: The equality constraint gradients vhi(x*), i = 1, ... , m, and the
active inequality constraint gradients v gj (x*), j E are linearly
independent.

CQ2: The equality constraint gradients vhi(x*), i = 1, ... ,m, are linearly
independent, and there exists ayE ffi:n such that

vhi(x*)'y = °for all i = 1, ... , m, vgj(x*)'y < °for all j E A(x*).

minimize J(x)

subject to h1(x) = 0, ... , hm(x) = 0, gl(X) ~ 0, ... , gr(X) ~ 0,

where vJ (x*) denotes the gradient of J at X*. When X = ffi:n (i.e., the
minimization is unconstrained), the necessary condition (B.2) is equivalent
to

\rVhen J is twice continuously differentiable and X = ffi:n, an addi
tional necessary condition is that the Hessian matrix v 2 J (x*) be positive
semidefin'ite at x*. An important fact is that iJ J : ffi:n -+ ffi: is a con
vex Junction and X is convex) then Eq. (B.2) is both a necessary and a
sufficient condition Jor optimality oj x* .

Other types of J , ..AJllmtions deal with the case w:::'::='? the con-
straint set Y ,-,vllS1sts of equality and inequality constraints, i.e., problems
vI the form

MINIMIZATION OF QUADRATIC FORMS

for all j = 1, ... , r.gj(Y) < 0,

Let J : ffi:n -+ ffi: be a quadratic form

Each of the above constraint qualifications implies the existence of at
least one Lagrange multiplier vector associated with x* (unique in the case
of CQ1); see e.g., [Ber99] for a detailed account.

CQ3: The functions hi are linear and the functions gj are concave.

CQ4: The functions hi are linear, the functions gj are convex, and there
exists ayE ffi:n such that

B.3

(B.3)vJ(x*) = 0.

where J, hi, gj are continuously differentiable functions from ffi:n to ffi:.
\rYe say that the vectors A* = (.A)', ... , Ain) and fJ * = (fJ)', ... ,fJ;) are

Lagrange multiplier vectors corresponding to a local minimum x* if they
satisfy the following conditions:

m r

J(x) = ~x'Qx + b'x,

where Q is a symmetric n x n matrix and b E ffi:n. Its gradient is given by

vJ(x) = Qx + b.

vJ(x*) + L.A:vhi(x*) + LfJjvgj(x*) = 0,
i=l j=l

fJj 2:: 0,

fJj = 0,

for all j = 1, ... ,r,

for all j ~ A(x*),

The function J is convex if and only if Q is positive semidefinite. If Q is
positive definite, then J is convex and Q is invertible, so by (B.3), a
vector x* minimizes J if and only if

vJ(x*) Qx* + b = 0,

where is the index set of inequality constraints that are active at x*: or equivalently

A(x*) = {j I gj(x*) = O}.
x* = -Q-1b.

Lagrange multiplier theory revolves around conditions under which
Lagrange multiplier vectors are guaranteed to exist for a given local mini
mum X*. Such conditions are known as constraint qualifications. Some of
the most useful ones are the following:
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(c) A function PC) assigning to each event A a real number P(A), called
the probability oj the event and satisfying:

(1) P(A) 2: 0 for every event A.

(2) P(O) = 1.

(3) P(AI U A2) = P(AI) + P(A2) for every pair of disjoint events
AI, A2.

(4) P(Uk=1 Ak) = 2:~=1 P(Ak) for every sequence of mutually dis
joint events AI, A2, ... , Ak' ...

The function P is referred to as a probability measure.

Convention for Finite and Countable Spaces

This appendix lists selectively some of the basic probabilistic notions that
we will be using. Its main purpose is to familiarize the reader with some of
our terminology. It is not meant to be exhaustive, and the reader should
consult textbooks such as Ash [Ash70], Feller [Fe168], Papoulis [Pap65],
Ross [Ros85], Stirzaker [Sti94], and Bertsekas and Tsitsiklis [BeT02] for
detailed accounts. For fairly accessible treatments of measure theoretic
probability, see Adams and Guillemin [AdG86], and Ash [Ash72].

C.2

The case of a probability space where the set 0 is a countable (possibly
finite) set is encountered frequently in this book. When we specify that
o is finite or countable, we implicitly assume that the associated collec
tion of events is the collection of all subsets of 0 (including 0 and the
empty set). Then, if 0 is a finite set, 0 = {WI,W2, ,wn}, the prob-
ability space is specified by the probabilities Pl,P2, ,Pn, where Pi de-
notes the probability of the event consisting of just Wi. Similarly, if n =
{WI,W2, ... ,Wk, .. .}, the probability space is specified by the corresponding
probabilities PI,P2, ... ,Pk,··· In either case we refer to P2, ... ,Pn) or
(PI, P2, ... ,Pk, ... ) as a probabil'ity distribution over O.

RANDOM VARIABLES

PROBABILITY SPACES

A probab'ility space consists of

(a) A set O.

(b) A collection F of subsets of 0, called events, which includes 0 and
has the following properties:

(1) If A is an event, then the complement if = {w E 0 I W ¢:. A}
is also an event. (The complement of 0 is the empty set and is
considered to be an event.)

C.l

(2) If

(3) If

... ,Ak , . .. are events, then U~lA k is also an event.

.. . are events, then nk=lA k is also an event.

A random var'iable on a probability space (0, F, P) is a function x : 0 -+ 3{

such that for every scalar ,A the set

{wEOlx(w):s;,A}

is an event (i.e., belongs to the collection F). An n-dimensional random
vector x = (Xl, X2, . .. , xn) is an n-tuple of random variables Xl, X2, . .. , X n,
each defined on the same probability space.

We define the distribution junction F : 3i -+ 3i [or cumulative distri
bution junction (CDF for short)] of a random variable X by

F(z) = p({w E 0 I x(w) :S; z});

that is, F(z) is the probability that the random variable takes a value less
than or equal to z. We define the distribution function F : 3{n -+ ?R of a
random vector X = (Xl, X2, ... , xn) by

F(ZI, Z2,·.·, Zn) = p({w E 0 I XI(W) :S; Zl, X2(W) :S; Z2,···, xn(w) :S; Zn}) .
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Given the distribution function of a random vector x = (Xl, ... , x n ),

the (marginal) distribution function of each random variable Xi is obtained
from

The random variables Xl, ... ,Xn are said to be independent if

0.3 CONDITIONAL PROBABILITY

We restrict ourselves to the case where the underlying probability space
o is a countable (possibly finite) set and the set of events is the set of all
subsets of O.

Given two events A and B, we define the conditional pTObability oj B
given A by

{

p(AnB)

P(B IA) = °peA)
if P(A) > 0,
if P(A) = 0.

for all scalars Zl, ... 1 Zn·

The expected value oj a random variable X with distribution function
F is defined by

E{x} = I: zdF(z)

provided the integral is well-defined. The expected value oj a random vector
X (Xl, ... , X n ) is the vector

The CQ1'r;,."~u,ltce matrix of a random vector X = (Xl, ... , X n ) with expected
value E {x} = (Xl, ... ,xn ) is defined to be the n x n positive semidefinite
symmetric matrix

We also use the notation P{B I A} in place of P(B I A). If B l , B2, ... are a
countable (possibly finite) collection of mutually exclusive and exhaustive
events (i.e., the sets Bi are disjoint and their union is 0) and A is an event,
then we have

From the two preceding relations, we obtain the total pTObability theorem:

P(A) = I::P(Bi)P(A IBi ).
i

~vVe thus obtain for every k,

P(Bk)P(A IBk)
L:i P(Bi)P(A IBi ) ,

E {(Xl 'II)(Xn - 'In)}) ,

E{ (X n - xn )2}

assuming that P(A) > O. This relation is referred to as Bayes' rule.
Consider now two random vectors X and y taking values in ~n and

~rn, respectively [i.e., x(w) E ~n, y(w) E ~rn for all w EO]. Given two
subsets X and Y of ~n and ~rn, respectively, we denote

provided the expected values are well-defined.
Two random vectors X and yare said to be uncorrelated if

E{ (x - E{x})(y - E{y})'} = 0,

where (x- E{x}) is viewed as a column vector and (y - E{y})' is viewed
as a row vector.

The random vector X = (Xl, ... , X n ) is said to be characterized by a
pTObab'ility density junction f : ~n -+ ~ if

for every Zl, ... ,Zn.

P(X IY) = p({w I x(w) E X} I {w I y(w) E Y}).

For a fixed vector v E ~n, we define the conditional distribution junction
of x given v by

F(z Iv) = p({w I x(w) :::; z} I {w I y(w) = v}),

and the conditional expectation of x given v by

E{x I v} = r zdF(z I v),
J~n

assuming that the integral is well-defined. Note that E {x Iv} is a function
mapping v into ~n.
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Finally, let us provide Bayes' rule for random vectors. If WI, W2, ...

are the elements of D, denote

i = 1,2, ...

Also, for any vectors z E atn , v E atm , let us denote

P(z) p({wlx(w)=z}), P(v) =p({w I y(w) =v}).

have P(z) = 0 if z =I- Zi, i = 1,2, ... , and P(v) = 0 if v =I- Vi, i = 1,2, ...
Denote alb,--

P(zlv)=p({wlx(w)=z} I {wly(w)=v}),

P(vlz)=p({wly(w)=- .I{wlx(w)=z}).

Then, for all k = 1,2, ... , Bayes' rule yields

if P(v) > 0,

if P(v) = O.

This appendix provides some of the basic probabilistic notions related to
stationary Markov chains with a finite number of states. For detailed
presentations, see Ash [Ash70], Bertsekas and Tsitsiklis [BeT02], Chung
[Chu60], Gallager Kemeny and Snell [KeS60], and Ross [Ros85].

D.l STATIONARY MARKOV CHAINS

A square n x n matrix [Pij] is said to be a stochastic matrix if all its
elements are nonnegative, that is, Pij ~ 0, i, j = 1, ... ,n, and the sum of
the elements of each of its rows is equal to 1, that is, ~]=l Pij = 1 for all
i = 1, ... ,no

Suppose we are given a stochastic n x n matrix P together with a
finite set of states 8 = {I, ... ,n}. The pair (8, P) will be referred to as
a stationary finite-state Markov chain. We associate with (8, P) a process
whereby an initial state XQ E 8 is chosen in accordance with some initial
probability distribution

rQ = (ra, r5,· .. , ro)·
Subsequently, a transition is made from state XQ to a new state Xl E 8 in
accordance with a probability distribution specified by P as follows. The
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Similarly, subsequent transitions produce states X2, X3, ... in accordance
with

probability that the new state will be j is equal to Pij whenever the initial
state is i, i.e.,

The probability that after the kth transition the state Xk will be j, given
that the initial state XQ is i, is denoted by

A straightforward calculation shows that these probabilities are equal to
the elements of the matrix pk (P raised to the kth power), in the sense
that p7j is the element in the ith row and jth column of pk:

2. If'i E Sand j rt-- S, then P~j = 0 for all k.

Then we say that ...9 forms a recurrent class of states.
If 8 forms by itself a recurrent class (i.e., all states communicate with

each other), then we say that the Markov chain is irreducible. It is possible
that there exist several recurrent classes. It can also be proved that at least
one recurrent class must exist. A state that belongs to some recurrent class
is called recurrent; otherwise it is called transient. We have

lim pfi = 0 if and only if i is transient.
k---->=

In other words, if the process starts at a transient state, the probability
of returning to the same state after k transitions diminishes to zero as k
tends to infinity.

The definitions imply that if the process starts within a recurrent
class, it stays within that class. If it starts at a transient state, it eventually
(with probability one) enters a recurrent class after a number of transitions,
and subsequently remains there.

(D.2)

(D.1)i,j = 1, ... , n.

i,j = 1, ... , n.

i,j = 1, ... , n.P(Xl = j I XQ = i) = Pij,

pt = P(Xk = j I XQ = i),

P(Xk+l = j I Xk = i) = Pij,

pk = [pk.]
2) . (D.3)

Given the initial probability distribution PQ of the state XQ (viewed as a row
vector in 3tn ), the probability distribution of the state Xk after k transitions

Given a stationary finite-state Markov chain (8, P), we say that two states
i and j communicate if there exist two positive integers k1 and k2 such that
p~J > 0 and p~l > O. In words, states i and j communicate if one can be
reached from the other with positive probability.

Let S c 8 be a subset of states such that:

1. All states in S communicate.

An important property of any stochastic matrix P is that the matrix P*
defined by

. 1 N-l~.
P* = hm ylc (D.5)

N---->=N
k=Q

exists [in the sense that the sequences of the elements of (liN) ~~::r} pk
converge to the corresponding elements of P*]. A proof of this is given in
Prop. A.1 of Appendix A in Vol. II. The elements pij of P* satisfy

n

pij ? 0, LPij = 1, i,j = 1, ... ,no
j=l

Thus, P* is a stochastic matrix.
Note that the (i, j)th element of the matrix pk is the probability that

the state will be j after k transitions starting from state i. With this in
mind, it can be seen from the definition (D.5) that pij can be interpreted as
the long term fraction of time that the state is j given that the initial state
is i. This suggests that for any two states i and if in the same recurrent
class we have pij = P;, j' and this can indeed be proved. In particular, if a
Markov chain is irreducible, the matrix P* has identical rows. Also, if j is
a transient state, we have

pij = 0, for all i = 1, ... ,n,
so the columns of the matrix P* corresponding to transient states consist
of zeroes.

LIMITING PROBABILITIESD.3

(DA)

n

k = 1,2, ...

n

r~ = P(Xk = j I XQ = i)rb = Lpfjrb·
i=l i=l

CLASSIFICATION OF STATES

This relation follows from Eqs. (D.2) and (D.3) once we write

(viewed again as a

D.2
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D.4 FIRST PASSAGE TIMES

Let us denote by qf· the probability that the state will be j for the first
time after exactly k J?:. 1 transitions given that the initial state is i, that is,

qfj = P(Xk = j, Xm i= j, 1 ::; m < k I XQ = i).

Denote also, for fixed i and j,

K ij = min{k ?:. 1 I Xk = j, XQ = i}.

Then Kij, called the first passage time from i to j, may be viewea uS a
random variable. We have, for every k = 1,2, ... ,

and we write

(Xl

P(Kij = 00) = P(Xk i= j, k = 1,2, ... I XQ = i) = 1 - 2: qfj'
k=l

It may be proved that if i and j belong to the same recurrent class then

In this appendix we present the basic principles of least-squares estima
tion and their application in estimating the state of a linear discrete-time
dynamic system using measurements that are linear in the state variables.

Fundamentally, the problem is the following. There are two random
vectors x and y, which are related through their joint probability distri
bution so that the value of one provides information about the value of
the other. VVe get to know the value of y, and we want to estimate the
value of x so that the average squared error between x and its estimate
is minimized. A related problem is to find the best estimate of x within
the class of all estimates that are linear in the measured vector y. We
will specialize these problems to a case where there is an underlying linear
dynamic system. In particular, we will estimate the state of the system
using measurements that are obtained sequentially in time. By exploiting
the special structure of the problem, the computation of the state estimate
can be organized conveniently in a recursive algorithm the Kalman filter.

i = 1, ... ,n, i i= t;
n

E{K'it} = 1 +

Note that it is possible that I:~=1 qfj < 1. This will occur, for example, if
j cannot be reached from i, in which case qfj = 0 for all k = 1,2, ... The
mean first passage time from i to j is the expected value of Kij:

In fact if there is only one recurrent class and t is a state of that class, the
mean first passage times E{Kit} are the unique solution of the following
linear system of equations

j=l,j#t

see Example 7.2.1. If i and j belong to two different recurrent classes, then
E{K'ij} E{Kjd 00. If i belongs to a recurrent class and j is transient,
we have E{Kij} = 00.

E.1 LEAST-SQUARES ESTIMATION

Consider two jointly distributed random vectors x and y taking values in
3in and 3im , respectively. We view y as a measurement that provides some
information about x. Thus, while prior to knowing your estimate of x may
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The least-squares estimator Ex {x I y} may be a complicated nonlinear
function of y. As a result its practical calculation may be difficult. This
motivates finding optimal estimators within the restricted class of linear
estimators, i.e., estimators of the form

have been the expected value E{x}, once the value of y is known, we want
to form an updated estimate x(y) of the value x. This updated estimate
depends, of course, on the value of y, so we are interested in a rule that
gives us the estimate for each possible value of y, i.e., we are interested in
a function x('), where x(y) is the estimate of x given y. Such a function
x(·) : 2Rrn -----7 2Rrn is called an estimator. We are seeking an estimator that
is optimal in some sense and the criterion we shall employ is based on
minimization of

E.2

x(y) = Ay + b, (EA)

E {llx - x(y)112}.
x,Y

(E.l)
where A is an n x m matrix and b is an n-dimensional vector. An estimator

;; :: JC;J..lULeS tne usual norm III ;r;:Yl == ZIZ for z E ~n). Further-
more, throughout the appendix, we assume that all enCu,lI2.tpred expected
values are finite.

An estimator that minimizes the expected squared error above over
all x(·) : 2Rn -----7 2Rrn is called a least-squares estimator and is denoted by
x*(·). Since

it is clear that x* (.) is a least-squares estimator if x* (y) minimizes the
conditional expectation in the right-hand side above for every y E 2Rrn ,

that is,

where A and bminimize

E {llx - Ay - b11 2 }
x,Y

over all n x m matrices A and vectors b E 2Rn is called a linear least-squares
est1,rnator.

In the special case where x and yare jointly Gaussian random vectors
it turns out that the conditional expectation Ex {x I y} is a linear function
of y (plUS a constant vector), and as a result, a linear least-squares estimator
is also a least-squares estimator. This is shown in the next proposition.

E{ Ilx - x*(y)112 I y} = min E{llx - zl12 I y},
x zEa:crn x

for all y E 2Rrn . (E.2) Proposition E.2: If x, yare jointly Gaussian random vectors, then
the least-squares estimate Ex {x I y} of x given y is linear in y.

By carrying out this minimization, we obtain the following proposition.
Proof: Consider the random vector z E 2Rn +rn

I'J... .. E.1: The least-squares estimator x*(·) is given by

x*(y) = E{x I y},
x

for all y E 2Rm . (E.3)

z = (~)

and assume that z is Gaussian with mean

Proof: We have for every fixed z E 2Rn

E{llx - zl12 I y} = E{llx11
2

1 y} - 2z' E{x I y} + Ilz112.
x x x

setting to zero the derivative with respect to z, we see that the above
expression is minimized by z = Ex {x I y}, and the result follows.

z = E{z} = (~~~~ )

and covariance matrix

~ = E{ (z _ z)(z _ Z)/} = (E{ (x - x)(x - X)/}
E{ (y y)(x - X)/}

( ~xx )
- ~yx ~yy .

(E.5)

E{ (x - x)(y - y)/})
E{ (y - y)(y y)/}

(E.6)
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To our proof we assume that 2:; is a positive definite symmetric
matrix so that it possesses an inverse; the result, however, holds without
this assumption. VVe recall that if z is Gaussian, its probability density
function is of the form

Pi""JJ:- .. E.3: Let x, y be random vectors taking values in ~n

and ~m, respectively, with given joint probability distribution. The
expected values and covariance matrices of x, yare denoted by

where
c = (21r)-(n+m)/2(det 2:;)-1/2

E{x} = x

E{ (x - x)(x - X)/} = :8xx ,

E{ (x - x)(y - y)/} = 2:;xy,

E{y} = y,

E{ (y - y)(y - y)/} =

E{ (y - y)(x - X)/} = :8~y,

(E.g)

(E.IO)

(E.II)

and det:8 denotes the determinant of 2:;. Similarly the probability density
functions of x and yare of the form

1 ( -),,,-1( -)p(x) = c1e-2 x-x ~xx x-x,

and we assume that 2:;yy is invertible. Then the linear least-squares
estimator of x given y is

where C1 and C2 are appropriate constants. By Bayes' rule the conditional
probability density function of x given y is

The corresponding error covariance matrix is given by

E { (x - x(y)) (x - X(y))/} = 2:;xx - 2:;xy2:;;i~yx.
x,y

(E.13)

(E.7) Proof: The linear least-squares estimator is defined as

where b minimize the function f(A, b) = Ex,y{ Ilx - Ay - b11 2} over A
and b. Taking the derivatives of f(A, b) with respect to A and b and setting
them to zero, we obtain the two conditions

It can now be seen that there exist a positive definite symmetric n x n
matrix D, an n x m matrix A, a vector b E ~n, and a scalar s such that

(Z-Z)/2:;-l(Z z)-(y-y)!2:;;i(y-y) = (x-Ay-b)ID-1(x-Ay-b)+s.
(E.8)

This is because by substitution of the expressions for z alld :8 of Eqs. (E.5)
and (E.6), the left-hand side of Eq. (E.8) becomes a quadratic form in x
and y, which can be put in the form indicated in the right-hand side of Eq.
(E.8). In fact, by computing the inverse of 2:; using the partitioned matrix
inversion formula (Appendix A) it can be verified that A, b, D, and s in Eq.
(E.8) have the form

0= ~Af I, _= 2 E {(b + Ay - X)y/},
u A,b x,y

of I A Ao= ~ 'A = 2 E {b + Ay - x}.
ub A,b x,y

The second condition yields

(E.14)

(E.15)

s = o. (E.16)

Now it follows from Eqs. (E.8) and (E.7) that the conditional expectation
Ex {x I y} is of the form Ay + b, where A is some n x m matrix and b E ~n.

We now turn to the characterization of the linear least-squares esti
mator.

and by substitution in the first, we obtain

E {y(A(y -y) - (x -X))/} = o.
x,Y

We have
E {A(y - y) - (x - x)r = 0,
x,y

(E.17)
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so that
A }!YE{A(y-y)-(x-x) =0.

x,y

subtracting Eq. (E.18) from Eq. (E.17), we obtain

E {(y - y)(A(y - y) - (x - x))!} = O.
x,y

Equivalently,

(E.18)
and follows from the first equality and Cor. E.3.1.

Corollary E.3.2 is known as the orthogonal projection principle. It
states a property that characterizes the linear least-squares estimate and
forms the basis for an alternative treatment of least-squares estimation
as a problem of projection in a Hilbert space of random variables (see
Luenberger [Lue69]).

from which E.3.3: Consider in addition to x and y, the random vector
z defined by

z=Cx,

where C is a given p x m matrix. Then the linear least-squares estimate
of z given y is

(E.19)

y),

respectively, we obtain1 q) for bandanaUsing the expressions

WhICh was to be proved. The desired Eq. (E.13) for ttl.., error covariance fol
lows upon substitution of the expression for x(y) obtaineQ c..1'ove. Q.E.D.

iCy) = Cx(y),

and the corresponding error covariance matrix is given by

vVe list some of the properties of the least-squares estimator as COlv~

laries. E {(z - iCy)) (z - iCy))'} = C E {(x - x(y)) (x - x(y))!}C!.
z,y x,y

E.3.1: The linear least-squares estimator is unbiased, i.e.,

E{x(y)} = x.
y

Proof: We have E{z} = z = Cx and

Proof: This follows from Eq. (E.12).

(z - z)(z - z)!} C~xxC!,
Z

~zy = E {(z - z)(y - y)!} = C~xy,
z,y

E.3.2: The estimation error x - x(y) is uncorrelated with
both y and x(y), i.e.,

By Prop. E.3 we have

E {y(x-x(y))!} =0,
x,y

E {x(y)(x - x(y))!} = O.
x,y x~ { (z - .z(y)) (z - iCY))!} =

Proof: The first equality is
as

The second equality can be written

C (~xx - ~xy~:;;J ~yx) c!

=C E {(x-x(y))(x-x(y))'}C"
x,Y

E{(Ay+b)(x-x(y))!} =0
x,y
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Coronary E.3.5: Let
z = Cx+v,

where C is a given m x n matrix, and the random vectors x E 3tn and
v E 3tm are uncorrelated. Denote(E.20)z = Cy+u,

E.3.4: Consider in addition to x and y, an additional
random vector z of the form

where C is a given p x m matrix of rank p and u is a given vector in
3tp. Then the linear least-squares estimate x(z) of x given z is

:l.:ld the corresponding error covarianc,--, 'TIatrix is

E{ (x x)(x - X)/} = :Exx ,

E{ (v - v)(v - V)/} = :Evv ,E{v} = v,

E{x} =x,

and assume further that 'E,vv is a positive definite matrix. Then
(E.21)x(z) =x+

~{(X-X(Z))(X-X(z))/}=

Proof: vVe have

z = E{z} = Cy+u, (E.23a)
Proof: Define

& = (X'V/)' , y = (X'V')/, O=(C 1).

:Ezz = E{ (z z)(z - Z)/} = C:EyyC', (E.23b)
Then we have z = Oy, and Cor. E.3.3,

:Ezx = E{ (z - z)(x - X)/} = C:Eyx , (E.23c) x(z) = (1 O)y(z),

(x x)(z - Z)/} = 'E,xyC'. (E.23d) E{ (x - x(z)) (x- '} = (1 0) E{ (y - y(z))(y - y(Z))/} (~) ,

O=(C 1),

y(z) = y + :EyyO/(O:EyyO/)-l(z - OY),

E{ (y - y(z)) (y - y(Z))/} = 'E,yy - :EyyOI(O:EyyO/)-lO:Eyy.

By using the equations

where y(z) is the linear least-squares estimate of y given z. By applying
Cor. E.3.4 with u = 0 and x = y we obtain

(E.24a)

(E.24b)

x(z) = x + :Exz'E,:;-}(z - z),

where 'E,zz = C'E,yyC' has an inverse, since :Eyy is invertible and C has rank
p. substituting the relations (E.23) into Eqs. (E.24a) and (E.24b) the
result follows.

From Prop. E.3 we have

Frequently we want to estimate a vector of parameters x E 3tn given
a measurement vector z E Rm of the form z = Cx + v, where C is a given
m x n matrix, and v E 3tm is a random measurement error vector. The
following corollary gives the linear least-squares estimate x(z) and its error
covariance.

and by carrying out the straightforward calculation the result follows.

The next two corollaries deal with least-squares estimates involving
multiple measurement vectors that are obtained sequentially. In particular,
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the corollaries show how to modify an existing least-squares estiulate x(y)
to obtain x(y, z) once an additional vector z becomes known. This is a
central operation in Kalman filtering.

and Eq. is proved. The proof of Eq.
relations above and the covariance Eq.

E.3.6: Consider in addition to x and y, an additional
random vector z taking values in ~P, which is uncorrelated with y.
Then the linear least-squares estimate x(y, z) of x given y and z [i.e.,
given the composite vector (y, z)] has the form

Corollary E.3.7: Let z be as in the preceding corollary and assume
that y and z are not necessarily uncorrelated, that is, we may have

~yz = ~~y = E {(y - m(z - z)'} # O.
y,z

and it is assumed that ~zz is invertible.

where x(y) and x(z) are the linear least-squares estimates of x given
y and given z, respectively. Furthermore,

x!5,z { (x - x(y, z)) (x - x(y, z))'} = 2: xx - 2:xy2:yi~yx - ~xz~;zl2:zx,

(E.26)

x(y, z) = x(y) + x(z) - x,
(E.28)x(y, z) = x(y) + x(z - z(y)) - x,

I:xz = E {(x - x)(z - z(y))'},
x,y,z

I: zz = E { (z - z(y))(z - z(y))'},
y,z

I:zx = E {(z - z(y))(x - x)'},
X,Y,z

where

Then

where x(z - z(y)) denotes the linear least-squares estimate of x given
the random vector z-z(y) and z(y) is the linear least-squares estimate
of z given y. Furthermore,

E {(x - x(y, z))(x - x(y, z))'} = 2:xx - ~xy~yi2:yx - I:xzI:;;}I: zx ,
X,Y,z

(E.29)

(E.25)

z = E{z},
z

~zx = E {(z - z)(x - x)'},
X,z

2:zz = E{ (z - z)(z - z)'},
z

E {(x - x)(z - z)'},
x,z

where

(E.12) we have

Proof: Let

(E.27)

Proof: It can be seen that, since z(y) is a linear function of y, the linear
least-squares estimate of x given y and z is the same as the linear least
squares estimate of x given y and z - z(y). By Cor. E.3.2 the random
vectors y and z - z(y) are uncorrelated. Given this observation the result
follows by application of the preceding corollary.

Furthermore

and since y and z are uncorrelated, we have E.3 STATE ESTIMATION - THE KALMAN FILTER

Substituting the above expressions in Eq. (E.27), we obtain
where Xk E ~n and Wk E ~n denote the state and random disturbance
vectors, respectively, and the matrices Ak are known. Consider also the

(E.30)k = 0,1, ... ,N - 1,

Consider now a linear dynamic system of the type considered in Section
5.2 but without a control vector (Uk == 0)

(y y) + ~xz2:;}(z - z) = x(y) + x(z) - x,x(W) =x+
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measurement v'-< ,-'-U>u~vu

k = 0,1, ... ,N - 1, (E.31)

We can thus use Cor. E.3.5, the equations above, and the data of the
problem to compute

where Zk E 318 and Vk E 318 are the observation and observation noise
vectors, respectively.

VVe assume that Xo, Wo, .. . ,WN-l, Vo, ... ,VN-l are independent ran
dom vectors with given probability distributions and that

k = 0,1, ... , N - 1. (E.32)

Let us denote the linear least-squares estimates of Xk+l and Xk given Zk
by Xk+llk and xklk, respectively. We can now obtain xklk = Xk(Zk) and
the corresponding error covariance matrix by using Cor. E.3.3, that is,

We use the notation

S = E{ (a:o - E{xo})(xo - E{xo})'}, Mk = E{WkW~}, Nk = E{VkV~},
(E.33)

and we assume that Nk is positive definite for all k.

E{ (Xk - xklk)(Xk - xklk)'}

= Lk-l E { (rk-l - Tk-l(Zk)) (rk-l - Tk-l(Zk))'}L~_l'

A N onrecursive H--IeaSYG-L)U Estimate
These equations may in turn be used to yield
error covariance again via Cor. E.3.3.

and the corresponding

vVe first give a straightforward but somewhat tedious method to derive the
linear least-squares estimate of Xk+l or Xk given the values of Zo, Zl,·· . ,Zk·
Let us denote The preceding method for obtaining the least-squares estimate of Xk is

cumbersome when the number of measurements is large. Fortunately, the
sequential structure of the problem can be exploited and the computations
can be organized conveniently, as first proposed by Kalman [Ka160]. The
main attractive feature of the Kalman filtering algorithm is that the esti
mate Xk+llk can be obtained by means of a simple equation that involves
the previous estimate xklk-l and the new measurement Zk but does not
involve any of the past measurements Zo, Zl, ... , Zk-l.

Suppose that we have computed the estimate xklk-l together with
the covariance matrix

The Kalman Filtering

is the n x (n(i + 1)) matrixwhere

In this method, we first find the linear least-squares estimate of rk-l given
Zk, and we then obtain the linear least-squares estimate of Xk given Zk
after expressing Xk as a linear function of rk-l·

For each i with 0 ::; i ::; k we have, by using the system equation,

I) .

As a result we may write At time k we receive the additional measurement

is an s(k + 1) x (nk) matrix of the form

where

and

=( Ck-l L k-2
CkLk-l

l}
We may use now Cor. E.3.7 to compute the linear least-squares estimate
of Xk given Zk-l = (zb, z~, ... , z~_l)' and Zk. This estimate is denoted by
xklk and, by Cor. E.3.7, it is given by

(E.35)

where Zk(Zk-l) denotes the linear least-squares estimate of Zk given Zk-l
and Xk (Zk - Zk(Zk-l)) denotes the linear least-squares estimate of Xk given

(Zk - Zk(Zk-d)·
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vVe now calculate the term Xk(Zk -Zk(Zk-l)) in Eq.
by Eqs. (E.31), (E.32), and Cor. E.3.3,

vVe have The error covariance matrix may be computed via Cor. E.3.7 similar
to xklk [ef. Eq. (E.35)]. Thus, we have from Eqs. (E.29), (E.37),

Equations (E.39)-(EA2) with the initial conditions [ef. Eq. (E.33)]

XOI-l = E{xo}, I:OI-1 = 5, (EA3)

constitute the Kalman jiltering algorithm. This algorithm recursively gen
erates the linear least-squares estimates Xk+1lk or xklk together with the
associated error covariance matrices I:k+11k or I: k1k . In particular, given
I:k1k- 1 and xklk-1' Eqs. (E.39) and (E.42) yield I: k1k and xklkl and then
Eqs. (EA1) and (EAO) yield I:k+1I k and Xk+1Ik.

An alternative expression for Eq. (E.39) is
(E.38)

(E.36)

E{ (Zk - Zk(Zk-I)) (Zk - Zk(Zk-l))'} = CkI:klk-1C£ + Nk' (E.37)

E{ Xk (Zk - Zk(Zk-l) )'}

= E{ Xk(Ck(Xk - Xklk-l))'} + E{XkV~}

= E{ (Xk xklk-l)(Xk - xklk-l)'}C£ + E{ xklk-l (Xk - xklk-l)'}C£.

The last term in the right-hand side above is zero by Cor. E.3.2, so by using
Eq. (E.34) we have

E{Xk(Zk Zk(Zk-l))'} I:klk-lC~,

Zk(Zk-l) = CkXk1k-l'

Also we use Cor. E.3.3 to obtain

Using Eqs. (E.36)-(E.38) in Prop. E.3, we obtain

(zk-zdZk-1)) = E{ Xk}+I: k1k - 1C~(CkI:klk-1C~+Nk)-l (Zk-CkXklk-1),

and Eq. (E.35) is written as

where

By using Cor. E.3.3 we also have

which can be obtained from Eqs. (E.39) and (EAO) by using the following
equality

I:klkC~N;;l = I:klk-1C~(CkI:klk-1C~ + Nk)-l. (EA5)

This equality may be verified by using Eq. (EA2) to write

I:klkC~N;;l = (I:k1k- 1 - I:klk-1C£(CkI:klk-1C~ +Nk)-lCkI:klk_l)C~N;;l

= I:k1k_1C£(N;;1 - (CkI:klk-1C~ + Nk)-lCkI:k1k_1C£N;;1),

and then use in the above formula the following calculation

N;;l = (CkI:klk-1C~ + Nk)-l (CkI:klk- 1C~ + Nk)N;;l

= (CkI:klk-lC~ + Nk)-1(CkI:klk_1C~N;;1 + 1).

vVhen the system equation contains a control vector Uk,

Xk+1 = AkXk + Bk'Uk + Wk, k = 0,1, ... ,N - 1,

it is straightforward to show that Eq. (EA4) takes the form

xklk = Ak- 1Xk-llk-1 + Bk-1Uk-1
(EA6)

+ I:klkC£N;;l(Zk - CkAk-1Xk-1Ik-1 - CkBk-1Uk-I),

where x kIk is the linear least-squares estimate of x k given Zo, Zl, ... , Zk and
Uo, U1,···, Uk-I' The equations (EA1)-(EA3) that generateI:k1k remain
unchanged.

(EA1)

(EAO)

Xklk = xklk-l + I:klk- 1Ck(CkI:kl k- 1C£ + Nk)-l(Zk - CkXklk-1)'
(E.39)

Concerning the covariance matrix I:k+1Ik, we have from Eqs. (E.30), (E.32),
and Cor. E.3.3,
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Kalman By using Eq. (E.49), the system equation

Finally we note that Eqs. (EA1) and (EA2) yield

I:k+1I k = Ak (I:kjk - 1 - I:kl k- 1C~(CkI;kjk-lC~ + Nk)-lCkI;klk_l)A~ + Mk'
(EA7)

with the initial condition Z=OI-l = S. This equation is a matrix Riccati
equation of the type considered in Section 4.1. Thus when Ak, Ck, Nk'
and 1\11k are constant matrices,

and the measurement equation

we obtain

k = 0,1, ... ,N - 1,

From the practical point of view it is important that the error equa
tion (E.50) represents a stable system, that is, the matrix

has eigenvalues strictly within the unit circle. This, however, follows by
Prop. 4.4.1 of Section 4.1 under the observability and controllability as
sumptions given earlier, since z= is the unique positive semidefinite sym
metric solution of the algebraic Riccati equation

we have by invoking the proposition proved there, that Z=k+ljk tends to
a positive definite symmetric matrix z= that solves the algebraic Riccati
equation

I; = A(I: - Z=C/(CI;C' + N)-lCZ=)AI + 1\11,

assuming observability of the pair (A, C) and controllability of the pair
(A, D), where M = DD'. Under the same conditions, we have I:kjk -+ ~,

where from Eq. (EA2),

A - AZ=C/(CI;C' + N)-lC (E.51)

E.4

We may then write the Kalman filter recursion [ef. Eq. (EA4)] in the asymp
totic form

This estimator is simple and convenient for implementation.

STABILITY ASPECTS

Let us consider now the stability properties of the steady-state form of the
Kalman filter. From Eqs. (E.39) and (EAO), we have

(EA9)

Let ek denote the "one-step prediction" error

Actually this proposition yields that the transpose of the matrix (E.51)
has eigenvalues strictly within the unit circle, but this is sufficient for our
purposes since the eigenvalues of a matrix are the same as those of its
transpose.

Let us consider also the stability properties of the equation governing
the estimation error

ek = Xk - xklk.

We have by a straightforward calculation

ek = (I - I;C/(CZ=C' + N)-lC)ek - Z=C/(CZ=CI +

By multiplying both sides of Eq. (E.50) by I Z=C/(CZ=CI + lV)-lC and
by using Eq. (E.52), we obtain

ek+l + Z=C/(CZ=CI + N)-lvk+l

= (A - Z=C/(CI:CI + N)-lCA) (ek + I:C/(CI:CI + N)-lVk)

+ (I - Z=C/(CZ=CI + N)-lC) (Wk - AI:C/(CZ=C' + N)--lvk),

or equivalently

ek+l = (A -Z=C/(CZ=CI + N)-lCA)ek

+ (I - I:C/(CZ=CI + N)-lC)Wk - Z=C/(CZ=CI + N)-lVk+l.
(E.53)
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Since the matrix has eigenvalues strictly within the unit circle, the
sequence {ed generated by Eq. (E.50) tends to zero whenever the vectors
Wk and Vk are identically zero for all k. Hence, by Eq. (E.52), the same is
true for the sequence {ek}' It follows from Eq. (E.53) that the matrix

E.5 GAUSS-MARKOV ESTIMATORS

Suppose that we want to estimate a vector x E 3tn given a measurement
vector z E 3tm that is related to x by

A - ~C'(C~C' + N)-lCA (E.54) z = Cx+v, (E.61)

has eigenvalues strictly within the unit circle, and the estimation error
sequence {ek} is generated by a stable system.

Let us finally consider the stability properties of the 2n-dimensional
system of equations with state vector (x~, xU:

where C is a given m x n matrix with rank m, and v is a random measure
ment error vector. Let us assume that v is uncorrelated with x, and has a
known mean and a positive definite covariance matrix

yjC'N-l = ~C'(C~C' + N)-l,

This is the steady-state, asymptotically optimal closed-loop system that
was encountered at the end of Section 5.2.

We assume that the appropriate observability and controllability as
sumptions stated there are in effect. By using the equation

If the a priori probability distribution of x is known, we can obtain
a linear least-squares estimate of x given z by using the theory of Section
E.2 (d. Cor. E.3.5). In many cases, however, the probability distribution
of x is unknown. In such cases we can use the Gauss-Markov estimator,
which is optimal within the class of linear estimators that satisfy certain
restrictions, as described below.

Let us consider an estimator of the form

(E.62)E{(v -v)(v -v)'} = ~vv.E{v}=v,(E.55)

(E.56)

shown earlier, we obtain from Eqs. (E.55) and (E.56) that
X(z) = A(z - v),

where A minimizes

Since we have proved that the matrix (E.54) has eigenvalues strictly within
the unit circle, it follows that

f(A) = E {llx-
X,z

(E.63)

Xk+l = (A + BL)Xk + BL(Xk - Xk). (E.58)

lim (Xk+l Xk+l) = 0,
k-+oo

for arbitrary initial states Xo and xo. From Eq. (E.55) we obtain

(E.57)
over all n x m matrices A. Since x and v are uncorrelated, we have using
Eqs. (E.61)-(E.63)

f(A) = E {llx - ACx - - v)112}
X,v

= E{IIU - AC)xI1 2} + E{ IIA(v - v)112},
x v

Since in accordance with the theory of Section 4.1 the matrix (A + B L)
has eigenvalues strictly within the unit circle, it follows from Eqs. (E.57)
and (E. 58) that we have

lim Xk = 0
k-+oo

(E.59)

where I is the n x n identity matrix. Since f (A) depends on the unknown
statistics of x, we see that the optimal matrix A also depends on these
statistics. We can circumvent this difficulty by requiring that

and hence from Eq. (E.57), AC=I.

lim Xk = O.
k-+oo

(E.60) Then our problem becomes

Since the equations above hold for arbitrary initial states Xo and xo it
follows that the system defined by Eqs. (E.55) and (E.56) is stable.

minimize E{IIA(v - v)112}
v

subject to AC = I.
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E{ x(z)} = E{ A(Cx + v - v)} = ACE{x} = ACx = x.

(E.66)

Finally, let us compare the Gauss-1\!Iarkov estimator with the linear
least-squares estimator of Cor. E.3.5. Assuming that ~xx is invertible, a
straightforward calculation shows that the latter estimator can be written
as

x(z) = x + (~;i + C'~:;;vlC) -lC'~:;;vl(Z - Cx - v). (E.67)

By comparing Eqs. (E.65) and (E.67), we see that the Gauss-Markov esti
mator is obtained from the linear least-squares estimator by setting x = °
and ~;i = 0, i.e., a zero mean and infinite covariance for the unknown
random variable x. Thus, the Gauss-Markov estimator may be viewed as
a limiting form of the linear least-squares estimator. The error covariance
matrix (E.66) of the Gauss-1\!Iarkov estimator is similarly related with the
error covariance matrix of the linear least-squares estimator.

and finally

for all x E 3tn .E{x(z)} =E{x} =x,

To derive the optimal solution A of problem (E.64), let a~ denote the
ith row of A. We have

This can be seen by writing

Note that the requirement AC = I is not only convenient analyti
cally, but also makes sense conceptually. In particular, it is equivalent to
requiring that the estimator x(z) = - v) be unbiased in the sense that

n

= I)v - v)'aia~(v - v)
i=l

n

i=l

Hence, the minimization problem (E.64) can also be written as

E.6 DETERMINISTIC LEAST-SQUARES ESTIMATION

Suppose again that we want to estimate a vector x E 3tn given a measure
ment vector z E 3tm that is related to x by

and finally

where e'i is the ith column of the identity matrix. The minimization can
be carried out separately for each i, yielding

A = (C'~:;;vlC)-lC'~:;;J.

Thus, the Gauss-Markov estimator is given by

where C is a known m x n matrix of rank m. However, we know nothing
about the probability distribution of x and v, and thus we can't use a
statistically-based estimator. Then it is reasonable to select as our estimate
the vector x that minimizes

that is, the estimate that fits best the data in a least-squares sense. We
denote this estimate by x(z).

By setting to zero the gradient of f at x(z), we obtain

vflx(z) = 2C'(Cx(z) - z) = 0,

f(x) = liz - Cx11 2 ,

z = Cx+v,

1, ... ;n,

i = 1, ... ,n,subject to C'ai = ei,

n

minimize L a~~vvai
i=l

(E.65)

Let us also calculate the corresponding error covariance matrix. We have

from which
x(z) = (C'C)-lC'Z. (E.68)

E{ (x - x(z)) (x - x(z))'} = E{ (x - A(z - v)) (x - A(z - v))'}

= E{ A(v - v)(v - v)'A'}

= A~vvA'

= (C'~:;;}C)-lC'~.;;vl~vv~:;;vlC(C'~:;;JC)-l,

An interesting observation is that the estimate (E.68) is the same as
the Gauss-Markov estimate given by Eq. (E.65), provided the measurement
error has zero mean and covariance matrix equal to the identity, i.e., v = 0,
~vv = I. In fact, if instead of liz - Cx11 2 , we minimize

(z - v - Cx)'~:;;J(z - v - Cx),
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then the deterministic least-squares estimate obtained is identical to the
Gauss-Markov estimate. If instead of liz - Cxl1 2 we minimize

(x - x)/I;;l(z - x) + (z - V - Cx)/I;;;(z - V - Cx),

then the estimate obtained is identical to the linear least-squares estimate
given by Eq. (E.67). Thus, we arrive at the interesting conclusion that
the estimators obtained earlier on the basis of a stochastic optimization
framework can also be obtained by minimization of a deterministic measure
of fitness of estimated parameters to the data at hand.

In this appendix we show how controlled linear time-invariant systems with
stochastic inputs can be represented by the ARMAX model used in Section
5.3.

F.l LINEAR SYSTEMS WITH STOCHASTIC INPUTS

Consider a linear system with output {Yk}, control input {ud, and an
additional zero-mean random input {Wk}. vVe assume that {Wk} is a sta
tionary (up to second order) stochastic process. That is, {Wk} is a sequence
of random variables satisfying, for all i, k = 0, ±1, ±2, ... ,

(All references to stationary processes in this section are meant in the
limited sense just described.) By linearity, Yk is the sum of one sequence
{Yk} due to the presence of {Uk} and another sequence {Y~} due to the
presence of {Wk}:

Yk = Yk + Y~' (F.l)

We assume that Yk and Y~ are generated by some filters B I (s) /Al (s) and
B 2 (s) /A 2 (s ), respectively:

(F.2a)
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(F.3)

and D(z) has no roots on the unit circle {z Ilzl = I}.
The following facts are of interest:

(a) If {Vk} is an uncorrelated process with V(O) = (J'2, V(k) = 0 for k I:: 0,
then

are some polynomials with real coeffi-

(F.6a)

(F.6b)

C (z) = 1 + Cl Z + ... + cmzm,

where (J' is a scalar, C(z) and
cients

A(S)Yk = B(S)Uk + Vk,

where A(s) = A1(s)A2(s), 13(s) = A2(S)B1(s), and {Vk}, given by

Vk = Al(S)B2(S)Wk, (FA)

A2(S)Y~ = B2(S)Wk. (F.2b)

Operating on Eqs. (F.2a) and (F.2b) with A2(S) and A1(s), respec
tively, adding, and using Eq. (F.l), we obtain

:;:; '--" .:~rc generally correlated, stationary stochastic process.
We are interested in the ....:.],::;(.> where Uk is a control input applied

after Yk has occurred and has been observt;~j so that in Eq. (F.2a) we have
Bl(O) = O. Then, we may assume that the poly1J.c'TIials A(s) and B(s)
have the form

and clearly {Vk} has rational spectrum.

(b) If {Vk} has rational spectrum Sv given by Eq. (F.5), then Sv can be
written as

for some scalars (i'i and bi , and some positive integer mo.
To summarize, we have constructed a model of the form where 0- is a scalar and C(z), D(z) are unique real polynomials of the

form

F.2

where A(s) and B (s) are polynomials of the preceding form and {Vk} is
some zero-mean, correlated, stationary stochastic process. We now need to
model further the sequence {Vk}.

PROCESSES "VITH RATIONAL SPECTRUM

Given a zero-mean, stationary scalar process {vd, denote by V(k) the
autocorrelation function

such that:

(1) C(z) has all its roots outside or on the unit circle, and if C(z)
has no roots on the unit circle, then the same is true for C(z).

(2) D(z) has all roots strictly outside the unit circle.

These facts are seen by noting that if p I:: 0 is a root of D (z), then
ID(e jA )12 = D(ejA)D(e-jA ) contains a factor

k = 0,±1,±2, ...

00

exists for .\ E [-1T,1T] and can be expressed as

Sv(.\) = L V(k)e- jkA

k=-oo

A little reflection shows that the roots of jj (z) should be p or p-l
depending on whether p is outside or inside the unit circle. Similarly,
the roots of C(z) are obtained from the roots of C(z). Thus the
polynomials C(z) and D(z) as well as 0-2 can be uniquely determined.
We may thus assume without loss of generality that C(z) and D(z)
in Eq. (F.5) have no roots inside the unit circle.

There is a fundamental result here that relates to the realization of
processes with rational spectrum. The proof is hard; see for example, Ash
and Gardner [AsG75, pp. 75-76].

(F.5)

vVe say that {Vk} has rational spectrum if the transform of {V(k)} defined
by
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PrOl!J)OS,Jltlon F .1: If {vd is a zero-mean, stationary stochastic pro
cess with rational spectrum

AE[-1T,1T],

where the polynomials O(s) and D(s) are given by

O(S) = 1 + CIS + ... + cmsm,

and are assumed (without loss of generality) to have no roots inside
the unit circle, then there exists a zero-mean, uncorrelated stationary
process {Ek} with E{E~} = (j2 such that for all k

F.3 THE ARMAX MODEL

for some integer m and scalars a'i, bi, Ci, i = 1, ... ,m. This is the ARMAX
model that we have used in Section 5.3.

Let us now return to the problem of representation of a linear system with
stochastic inputs. We had arrived at the model

o is the set of outcomes of the decision problem,

f is the function that determines which outcome will result from a given
decision and state of nature, i.e., if decision d E '0 is selected and state
of nature n EN prevails, then the outcome f(d, n) E 0 occurs,

A decision problem in one of its simplest and most abstract forms consists
of three nonempty sets '0, N, and 0, a function f : '0 x N 1---* 0, and a
complete and transitive relation ~ on O. Here

'0 is the set of possible decisions,

N indexes the uncertainty in the problem and may be called the set of
"states of nature,"

THE PROBLEM OF DECISION UNDER UNCERTAINTY

In this appendix we discuss various approaches for formulating problems
of decision under uncertainty. After a brief discussion of the min-max
approach, we focus on the expected utility approach, and we show how
this approach can be theoretically justified even if the decision maker is
sensitive to the "variability" or "risk" associated with the results of different
decisions.

G.1

(F.7)

as
where A(s)
we can write

m m, m

Yk + a'iYk-'i = 2: biUk-i + Ek +2: CiEk-i,
i=1 i=1 i=1

If the zero-mean stationary process {Vk} has rational spectrum, the pre
ceding analysis and proposition show that there exists a zero-mean, uncor
related stationary process {Ek} satisfying

D(S)Vk = O(S)Ek,

where O(s) and D(s) are polynomials, and O(s) has no roots inside the
unit circle. Operating on both sides of Eq. (F.7) with D(s) and using the
relation D(S)Vk O(S)Ek, we obtain

A(S)Yk = B(S)Uk + O(S)Ek, (F.8)

D(s)A(s) and B(s) = D(s)B(s). Since A(O) = 1, B(O) = 0,
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::5 is a relation that determines our preference among the outcomes. t
Thus, for 01,02 EO, by 0 1 ::5 02 we mean that outcome 02 is at
least as preferable as outcome 01. By completeness of the relation,
we mean that every two elements of 0 are related, i.e., given any
01,02 EO, there are three possibilities: either 01 ::5 O2 but not
O2 ::5 01, or 02 ::5 01 but not 0 1 ::5 02, or both 01 ::5 02 and
02 ::5 0 1. By transitivity we mean that 01 ::5 02 and 02 ::5 03
implies 0 1 ::5 03 for any three elements 0 1,02,03 EO.

Consider an individual that may bet $1 on the toss of a coin or not bet at all.
If he bets and guesses correctly, he wins $1 and if he does not guess correctly,
he loses $1. Here V consists of three elements

V = {bet on heads, bet on tails, not bet},

where the notation d1 ::5 d2 implies that the decision is at least as
preferable as the decision dl.

It is by no means clear how one should go about determining and
characterizing a ranking among decisions. For example, in the gambling
example above, different people will have different preferences as to accept
ing or refusing the gamble. In fact, the method by which one goes from a
ranking of outcomes to a ranking of decisions is a central issue in decision
theory. There are a number of approaches and viewpoints, and we now
proceed to discuss some of these.

Payoff Functions, U()ITUllJlaJrlt, and N oninferior Decisions

Let us consider the case where it is possible to assign to each element of 0
a real number in a way that the order between elements of 0 agrees with
the usual order of the corresponding numbers. In particular, we assume
that there exists a real-valued function G : 0 1---+ ~ with the property

N consists of two elements
for all 01,02 E O. (G.2)

N = {heads, tails},

and 0 consists of three elements, the three possible final fortunes of the player

0= {$O, $1, $2}.

The preference relation on 0 is the natural one, Le., °=s 1, °=s 2, 1 =s 2, and
the values of the function f are given by

f(H, H) = $2, f(T, H) = $0, f(not bet, H) = $1,

f(H, T) = $0, f(T, T) = $2, f(not bet, T) = $1.

Now the relative order by which we rank outcomes is usually clear
in any given situation. On the other hand, for the decision problem to be
completely formulated, we need a ranking among decisions that is consis
tent in a well-defined sense with our ranking of outcomes. Furthermore,
to facilitate a mathematical or computational analysis, this ranking should
be determined by a numerical function F that maps the set of decisions V
to the set of real numbers ~ and is such that

Such a G does not always exist (see Exercise G.2). However, its existence
can be guaranteed under quite general assumptions. In particular, one may
show that it exists if 0 is a countable set. Also if G exists, it is far from
unique, since if iI> is any monotonically increasing function <I> : ~ 1---+ ~, the
composite function <I>. G [defined by (iI>. G)(O) = <I>(G(O))] has the same
property (C.2) as G. For instance, in the example given earlier, a function
G : {O, 1, 2} 1---+ ~ satisfies Eq. (C.2) if and only if G(O) < G(l) < G(2) and
there is an infinity of such functions.

For any choice of G satisfying Eq. (G.2), we define the function J :
V x N 1---+ ~ by means of

J(d, n) = G(f(d, n))

and call it a payoff function.
Given a payoff function J, it is possible to obtain a complete ranking

of decisions by means of a numerical function in the special case of certainty
(the case where the set N of states of nature consists of a single element
'Pi). By defining

F(d) = J(d, 'Pi),

for all d1 ,d2 E V, (C.1) we have

t The symbol =S in this appendix will be used (somewhat loosely) to denote
a preference relation within either the set of outcomes or the set of decisions.
The precise meaning should be clear from the context, and hopefully the use of
the same symbol to denote different preference relations will create no confusion.

dl ::5 d2 if and only if F(dI):S; F(d2) if and only if f(d1 , 'Pi) ::5 f(d2,'Pi),

and the numerical function F defines a complete ranking of decisions.
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(G.3)

In the case where there is uncertainty, i.e., when N contains more
than one element, the order on 0 induces only a partial order on 'D by
means of the relations

d1 ~ d2 if and only if F(dI) ::; F(d2 ), for all n EN
if and only if f(d1' n) ~ f(d2 , n), for all n EN.

In this partial order, it is not necessary that every two elements of 'D be
related, i.e., for some d, d' E 'D we may have neither d ~ d' nor d' ~ d. If,
however, for two decisions d1, d2 E 'D we have d1 ~ d2 in the sense of Eq.
(G.3), then we can conclude that d2 is at least as preferable as d1 since the
resulting outcome f(d2, n) is at least as preferable as f(d 1,n), regardless
of the state of nature n that will occur.

A decision d* E '0 is called a dominant decision if

The Min-Max

In the min-max (or max-min) approach we take the point of view that
the generalized outcome of a decision d is the set of all possible outcomes
resulting from d:

f(d,N) = {o E 0 I there exists n EN with f(d, n) = O}.

In addition, we adopt a pessimistic attitude and rank the sets f(d,N) on
the basis of their worst possible element. In particular, we introduce a
complete order on the set of all subsets of 0 by means of the relation

0 1 ~ 02 if and only if inf G(0)::; inf G(0), for all 01,02 C 0,
OEOI OE02

where ~ is understood in the sense of the partial order defined by Eq.
(G.3). Naturally such a decision need not exist, but if it does exist, then
it may be viewed as optimal. Unfortunately. in most problems of interest
to an analyst there exists c:.'.:- ,-~ummant decision. For instance, L~ii0 L:: in
the gambEn:.:; :=:Aample G.1, as the reader can easily verify. In fact no two

_~~Lllons are related in the sense of Eq. (G.3) for this example.
In the absence of a dominant decision, one can consider the set 'Dm C

D of all noninferior decisions, where dm E 'Om if for every d E 'D the
relation dm ~ d implies d ~ dm in the sense of the partial order defined by
Eq. (G.3). In terms of a payoff function J, noninferior decisions may be
characterized by

dm E'Dm if and only if there is no d E 'D such that

J(dm , n) ::; J(d, n) for all n EN and

J(dm , n) < J(d, n) for some n EN.

Clearly it makes sense to consider only the decisions in 'Dm as candidates
for optimality since any decision that is not in 'Dm is dominated by one
that belongs to 'Om. Furthermore, it may be proved that the set 'Dm is
nonempty when the set 'D is a finite set, so that at least for this case there
exists at least one noninferior decision. However, in practice the set 'Dm of
noninferior decisions often is either difficult to determine or contains too
many elements. For instance, in the gambling example given earlier, the
reader may verify that every decision is noninferior.

Whenever the partial order ofEq. (G.3) fails to produce a satisfactory
ranking among decisions, one must turn to other approaches to formulate
the decision problem. The approaches that we will examine assume a notion
of a generalized outcome of a decision and introduce a complete order on the
set of these generalized outcomes that is consistent with the original order
on the set of outcomes O. The complete order on the set of generalized
outcomes in turn induces a complete order on the set of decisions.

d ~ d*, for all d E 'D, where 0 1 , O2 is any pair of subsets of (:), and G is a numerical function
consistent with the order on (:) in accordance with Eq. (G.2). From Eq.
(G.4) we have a complete order on the set of decisions 'D by means of

d1 ~ d2 if and only if f(d1,N) ~ f(d2,N)

if and only if inf G(f(d1,n)) ::; inf G(f(d2,n)),
nEN nEN

or in terms of a pJ,yoff function J,

d1 ~ d2 if and only if inf J(d1,n)::; inf J(d2, n).
nEN nEN

Thus, by using the min-max approach, the decision problem is for
mulated concretely in that it reduces to maximizing over 'D the numerical
function

F(d) = inf J(d, n).
nEN

Furthermore, it can be easily shown that the elements of '0 that maximize
F(d) above will not change if J is replaced by 1>. J, where {P : ~ f--7 ~ is any
monotonically increasing function. Nonetheless, the min-max approach is
pessimistic in nature and will often produce an unduly conservative deci
sion. Characteristically, in the gambling example the optimal decision
according to the min-max approach is to refuse the gamble.

We next discuss another approach for formulating decision problems.
This approach is quantifying the likelihood of various states of nature
through probabilities.

G.2 EXPECTED UTILITY THEORY AND RISK

In many decision problems under uncertainty we have additional informa
tion about the mechanism by which states of nature occur. In particular,
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we are often in a position to know that these states occur in accordance
with a given probabilistic mechanism, which may depend on the decision
d adopted. To be specific, assume for convenience that the set of states
of nature N is either a finite set or a countable sett and that for every
decision d E V we know that states of nature occur according to a given
probability law P(· I d) defined on N. Now each decision d E V specifies
the probability of each outcome via the function f (d, .) and the relation

outcomes. This in turn settles the question of ranking decisions in view of
the preceding relation. Furthermore, if there exists a numerical function G
by means of which preferences on the set of lotteries can be expressed,

PdI ::5 P d2 if and only if G(PdJ:::; G(Pd2)'

then decisions can be ranked by means of a numerical function F ,

~x,ample G.2

Consider a problem of allocating one unit of capital between two investment
opportunities A and B. Opportunity A yields $1.5 per dollar invested with
certainty, while opportunity B yields $1 per dollar invested with probability
1/2 and $3 per dollar invested with probability 1/2. the problem is to decide
on the fractions d and (1 - d) of the capital to be invested in opportunities
A and B, respectively, where 0 :::; d:::; l.

In terms of the framework of the decision problem of Section the
set of decisions D consists of the interval [0,1], i.e., the set of values that the
fraction d invested in A can take. The set of states of nature N consists of
two elements nI, n2, where nI: B yields $1 per dollar invested, and n2: B
yields $3 per dollar invested. The set of outcomes 0 may be taken to be
the interval 3], which is the set of possible final fortunes of the investor
resulting from all possible decisions and states of nature. The function f that
determines the outcome corresponding to any decision d and state of nature
n is given by

d1 ::S d2 if and only if F(dI) :::; F(d2 ),

where F(d) = G(Pd) for all d E 1).

The. aspect of this formulation that is analytically very appealing,
howe-:er, IS that the ordering of decisions can be expressed not only by a
functIOn G as above, but also by means of an essentially unique numerical
function called the utility function. This function, denoted maps the
space of outcomes into the set of real numbers and satisfies

d1 :::S d2 if and only if PdI :::S P d2

if and only if E{U(f(d1,n)) I d1} :::; E{ U(f(d2,n)) I d2 }'

(G.5)
w~e.re the expectations are taken with respect to the corresponding prob-
ablhty law P(· I d) on N. The problem of selecting an optimal decision is
thus reduced to the problem of maximizing over 1) the expected value of
the numerical function U.

To clarify the problem formulation based on the approach of this
section and to illustrate the advantages resulting from the introduction of
a utility function, let us consider an example.

if n = nl,
if n = n2.

f(d ) = { 1.5d + (1 - d)
, n l.5d + 3(1 - d)

for all 0 E O.

The fundamental premise of the expected utility approach is to as
sume at the outset that the decision maker has a complete ranking of all
lotteries on the set of outcomes, i.e., the decision maker is in a position
to express his preference between any two probability laws on the set of

t If N is not countable, it is necessary to introduce a probability space
structure on Nand 0 as in Appendix C. Furthermore, it is necessary that the
function f (d, .) satisfy certain (measurability) assumptions.

t The term "lottery" is associated with conceptually convenient device of
viewing outcomes as prizes of some sort and viewing a fixed probabilistic mech
anism for winning a prize as a lottery.

In this relation, Pd (0) denotes the probability that the outcome 0 will
occur when the decision d is adopted. One may view the probability law
Pd associated with each d E 1) as a "probabilistic outcome" (or "generalized
outcome" to use the term of the preceding section) corresponding to d, since
Pd specifies the probabilistic mechanism by which outcomes occur once d
is selected. vVe shall also use the term lotteryt for a probability law on the
set of outcomes. In the example G.l, the deciSIon "bet on heads"
has as a outcome the probability law (or lottery) 0,1/2)

vue set of outcomes 0 = {$O, $1, $2}. The decision "bet on tails" has the
same generalized outcome, while the decision "not bet" has as a generalized
outcome the probability law (0,1,0).

The basic idea of the expected utility approach is the following. We
already have a complete ranking of the outcomes, i.e., the elements of O.
If we had a complete ranking of all lotteries on the set of outcomes (pre
sumably consistent with the original ranking on 0 in the sense that if the
outcome 0 1 is preferable to the outcome O2 , then the lottery assigning
probability 1 to 01 is preferable to the lottery assigning probability 1 to
outcome 02), then we could in turn obtain a complete ranking of all de
cisions in 1). This is true simply because we could rank any two decisions
d1 , d2 E V according to the relative order of their corresponding lotteries
PdI , Pd2 , i.e., by means of the relation
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Note that for 6 < Oi < 8, a positive fraction of the capital is invested in
opportunity A even though it offers a return that is less than the average
return of B.

where a is some scalar. vVe require that 6 < a so that U(0) is increasing in
the interval [0,3]. This is necessary for the original preference relation on the
set of outcomes to be consistent with the one specified by the utility function.
Solution of the maximization problem above yields the optimal decision d*,
where

The preference relation on the set of outcomes is the natural one, i.e., a final
fortune 0 1 is at least as preferable as a final fortune O2 if 01 is numerically
greater than or equal to O2 (i.e., 02 ::S 0 1 if O2 ::.; 0 1 ),

Let us note that since B has a higher expected rate of return, the
decision that maximizes expected value of profit is to invest exclusively in
opportunity B (d* = 0). On the other hand the optimal decision based
on the max-min approach is to invest exclusively in A (d* = 1) since in
this approach one maximizes profit based on the assumption that the most
unfavorable state of nature will occur. Mathematically this can be verified
by noting that d* = 1 maximizes over [0,1] the function F(d) given by

d* _ {O
- (8 - 0i)/5

if 8 ::.; Oi,

if 6 < Oi < 8.

F(d) min{ 1.5d + (1 - d), 1.5d + 3(1 - d)}.

Note that the approach of maximizing expected profit and the max-min ap
proach lead to very different decisions. Yet it is safe to assume that many
decision makers would settle on a decision that differs from both decisions
mentioned above and that invests a positive fraction of the capital in both
opportunities A and B.

Now in the expected utility approach, the fundamental assumption is
that the decision maker has a complete ranking of all lotteries on the set
of outcomes. In other words, given any two probability distributions on the
interval of final fortunes [0,3], the decision maker can express his preference
between the two, in the sense that he can point out the probability distribu
tion in accordance with which he would rather have his final fortune selected.
Now the probability distribution on the set of final fortunes corresponding
to a decision d is the one that assigns probability 1/2 to (1.5d + (1 - d))

and probability 1/2 to (1.5d + 3(1 - d)). According to the expected utility
approach, a decision d is optimal if its corresponding probability distribution
is at least as preferable as all other probability distributions of the type de
scribed above. It should be clear, however, that a mathematical formulation
of the corresponding optimization problem is very cumbersome since it is dif
ficult to visualize or conjecture the form of a numerical function by means of
which these probability distributions can be ranked. On the other hand, let
us assume that a utility function U satisfying Eq. (G.5) .exists (and it does
exist under mild assumptions, as will be indicated shortly). Then an optimal
decision is one that solves the problems

maximize E{ U(J(d,n)) }

subject to 0::'; d ::.; 1.

Substituting the problem data, we have

E{U(J(d,n))} = ~(U(1.5d+(1-d)) +U(1.5d+3(1-d)))

so the maximization problem is conveniently formulated.
As an example, let us assume that the decision maker's utility function

is quadratic of the form

It should be noted, of course, that different decision makers faced with
the same decision problem may have different utility functions, so that be
fore the problem can be numerically solved, the form of the utility function
must be specified. This can be done experimentally if necessary (see Ex
ercise G.3). However, the importance of the notion of a utility function
satisfying Eq. (G.5) lies primarily with the fact that under relatively mild
assumptions, it exists and can serve as the starting point of analysis of the
decision problem. The reason is that important conclusions about optimal
decisions can often be obtained based on either incomplete knowledge of
the utility function or fairly general assumptions on its form.

We provide below the theorem of existence of a utility function for
the case where the set of outcomes 0 is a finite set. For more general cases,
see the book by Fishburn [Fis70].

Consider the set 0 of outcomes and assume that it is a finite set,
o = {Ol, 02, ... ,ON}. Let P be the set of all probability laws P =
(pI,p2,'" ,PN) on 0, where Pi is the probability of outcome Oi, i =
1, ... ,N. For any PI, P2 E P, PI = (pi,··· ,Ph), P2 = (pi,··· ,P'ir), and
any a E [0,1], we use the notation

aPI + (1- a)P2 = (api + (1 - a)pi, ... , aPh + (1 - a)pJy).

Let us make the following assumptions:

A.I There exists a complete and transitive relation :::S on P. (For any
PI, P2 E P, we write PI rv P2 if PI :::S P2 and P2 :::S PI, and we write
PI -< P2 if PI :::S P2 but not P2 :::S Pl.)

A.2 If PI rv P2, then for all a E [0,1] and all PEP

aPI + (1 - a)P rv aP2+ (1 - a)P.

A.3 If PI -< P2, then for all a E (0,1] and all PEP

aPI + (1 - a)P -< aP2+ (1 - a)P.

AA If PI -< P2 -< P3, there exists an a E (0,1) such that

aPI + (1 - a)P3 rv
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(G.g)

(G.7)

for all 0 E O.U*(O) = 31U(0) + 32,

then Assumption A.3 would be contradicted. Similarly, if PI -< P2 rv P3,
then a = °is the unique scalar satisfying Eq. (G.7). Assume now that
PI -< P2 -< P3. Then by Assumption there exists an al E (0,1)
satisfying Eq. (G.7). Assume that al is not unique and there exists another
scalar a2 E (0,1) such that Eq. (G.7) is satisfied, i.e.,

Proposition G.l: Under Assumptions A.I-AA, there exists a real
valued function U : 0 1---+ ~, called utility function, such that for all
Pl,P2 E P,

Let us assume that °< al < a2 < 1. Then we have

where we denote by Ep{·} the expected value with respect to a proba
bility law P. Furthermore, U is unique up to a positive linear transfor
mation, i.e., if U* is another function with the above property, there
exists a positive scalar 31 and a scalar 32, such that

Furthermore, if p~ is such that PI :S P2 :S P~ :S P3 and a l corresponds
to P~ as in Eq. (G.7), then a 2: al.

Indeed if PI rv P2 -< P3 , then a = 1 is the unique scalar satisfying Eq.
(G.7), since if for some a E [0,1) we had

Proof: We first show the following statement:

S If PI -< P3, and P2 is such that PI :S P2 :S P3, then there exists a
unique scalar a E [0,1] such that

concerns an arbitrary preference relation on lotteries on the set of outcomes
and is thus completely decoupled from any decision problem that one may
be considering.

the following game. A pointer is spun in the center of a circle divided in
two regions, say 1 and 2, occupying respective fractions a and (1 - a) of
its circumference. Depending on whether the pointer stops in region 1 or
region 2, the game corresponding to PI and P2 is played and a prize is won
accordingly.

Assumption A.l requires that we are able to state our preference be
tween games such as the above, which correspond to any two probability
laws PI and P2. Furthermore, our preference relation must be transitive,
I.e., if PI :S P2 and P2 :S P3, then PI :S P3. This is the basic assump
tion, which forms the core of the expected utility approach. Assumptions
A.2 and A.3 have obvious interpretations and both seem reasonable. As
sumption A.4 is a continuity assumption requiring that if PI -< P2 -< P3,
one is indifferent to the game associated with P2 and a game whose out
come decides with respective probabilities a and (1- a) whether the game
associated with or P3 will be played. This assumption is inconsistent
with a worst-case viewpoint whereby one ranks lotteries according to the
worst outcome that can occur with positive probability, and has been the
subject of some controversy. For example, consider the extreme situation
where there are three outcomes 0 1 death, O2 = receive nothing, and
0 1 receive $1. Then it appears reasonable that any probability law that
assigns a positive probability to 0 1 (death) cannot be preferable or equiv
alent to any probability law that assigns a zero probability to 0 1 . Yet
Assumption AA requires that for some a with °< a < 1 we are indifferent
between the status quo and a game whereby we receive $1 with probability
(1 - a) and die with probability a. On the other hand, it is possible to
argue that if the probability of death a is extremely close to zero, then this
might actually be the case.

The following theorem is the central result of the expected utility
theory. It states that a preference relation on the set of all lotteries, which
satisfies Assumptions A.I-AA can be characterized numerically by means
of an essentially unique function, the utility function. Note that this result

Before proving the expected utility theorem, let us briefly discuss the
above assumptions. It is convenient for interpretation purposes to view
each of the outcomes 0 1 , 02, ... ,ON as a monetary prize. Consider any
probability law (PI, P2, ... ,PN) on the set of outcomes. Imagine a pointer
that spins in the center of a circle divided into N regions, and assume that
it spins in a way that when it stops it is equally likely to be pointing in
any direction. The region associated with each prize Oi, i = 1, ... , N,
occupies a fraction Pi of the circumference of the circle. Then we associate
with P the game (or lottery) whereby we spin the wheel and win the prize

tv the; \~;itI1i=- ,.,~rl1kh the pointer stops. Now given any
two probability laws PI and P2 and a scalar a E 1] j we can associate
with the probability law
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{
a2 al

a 2P I + (1 - (2)P3 = alPI + (1 - a)
1- al

Since PI -< P3, we have by Assumption A.3 and Eq. (G.g)

}. (G.10) seen that 1\ -< P -< 15N, and thus we can define a (P) to be the unique
scalar in [0, 1] such that

(G.13)

From statement S we obtain for all P, P'

Again, using Assumption A.3 and Eq. (G.10), we have

However, this contradicts Eq. (G.8) and hence the uniqueness of the scalar
a in Eq. (G.7) is proved.

To show that PI ~ P2 :j P~ ~ P3 implies a ~ a', assume the contrary,
i.e., a < a'. Then we have, using Assumption A.3,

P~ rv a'PI + (1 - a')P3

{
a 1- a' }=(l-a+a') Pl+ P3 +(a'-a)P1

1 - a + a' 1 - a + a'

{
a 1- a' }

-«l-a+a') Pl+ + (al-a)Pl
1 - a + a' 1 - a + c/ -'

= aPl + (1 a)P3

Hence P~ -< P2, which contradicts the assumption P2 ~ P~. It follows that
a ~ a.' and statement S is proved.

Now consider the probability laws

P ~ P' if and only if a(P) ~ a(P').

Now from Eq. (G.11), we have

N

P = ~PiPi
i=l

N

rv ~Pi(aiPi+ (1- ai)PN)
i=l

Comparing Eqs. (G.13) and (G.15), we obtain

N

a(P) = ~Piai'
i=1

and from Eq. (G.14),

(G.14)

(G.15)

Assume without loss of generality that PI :j 152 ~ ... :j 15N and assume
further that-< 15N (if PI rv 152 , rv .•• rv 15N, the proof of the proposition
is trivial). Let be any scalars with Al < and define

From Eq. (G.12), we have ai = (AN - Ai)/(AN - AI), and substituting in
Eq. (G.16), we obtain

PI = (1,0, ... ,0), 152 = (0,1, ... ,0), ... , PN = (0,0, ... ,1).
N N

PI ~ P2 if and only if ~p}ai ~ ~p;ai'
i=1 i=l

(G.16)

Let ai, 'i = 1, ... ,n, be the unique scalar a'i E [0,1] such that

N N

PI ~ P2 if and only if 'L: p} Ai ::;~ P; Ai,
i=1 i=l

and define

i = 1, ... ,

i = 1, ... ,N.

(G. 11)

(G.12)

which is equivalent to the desired relation (G.6).
There remains to show that the function U defined by Eq. (G.12) is

unique up to a positive linear transformation. Indeed if U* were another
utility function satisfying Eq. (G.6), then by denoting , i
1, ... , N, we would have from Eqs. (G.ll) and (G.6)

We shall prove that the function U : 0 I---t 3{ defined above has the desired
property (G.6). Indeed for any probability law P = (PI, ... , PN), it is easily
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It follows that The N OUOil of Risk

We have, however,

(G.17)

for every probability distribution P on X for which the expected value
above is finite. In other words, a decision maker is risk averse if he always
prefers the expected value of the lottery over the lottery itself. Such behav
ior characterizes most decision makers. One may show that risk aversion
is equivalent to concavity of the utility function (see Appendix A for the
definition and properties of concave and convex functions.) On the other
hand, we say that the decision maker is risk preferring if the opposite in
equality holds in Eq. (G.17), which is the case of a convex utility function.
A gambler playing an unbiased roulette and receiving no reward or plea
sure from gambling per se is a typical example of a risk preferring decision
maker. Finally, a decision maker having a linear utility function is said to
be risk neutral.

The notion of risk is important since it captures a basic attribute
of the attitudes of the decision maker and often characterizes significant
aspects of his behavior. An important and widely accepted measure of risk
has been proposed by Pratt [Pra64]. He introduced the function

Consider a decision maker possessing a utility function U defined over an
interval X of real numbers. We say that the decision maker is risk averse
if

for all d E D,

AN(AN - Ai)
AN -AI

AN Ai
AN -Ai'

A* -A*
A*= N IA·+A*

t AN _ Al t N

This proves the theorem.

from which

Returning now to the decision problem, once we assume the existence
of a preference relation on the set of lotteries that is characterized by a
utility function, we can rank decisions as follows: Given the probability
law P(· I d) on the set of states of nature N, every decision d E D induces
a probability law (or lottery) Pd on the set of outcomes O. Under the
assumptions of the expected utility theorem, there exists a utility function
U : 0 1-7 ~ such that for any dI , d2 E D

where the expectation on the left is taken with respect to Pd and the
expectation on the right is taken with respect to the probability law P(· I d)
on N. Hence

(G.18)

By ranking decisions d E D in accordance with the ranking of the corre
sponding Pd , i.e.,

dl ::S d2 if and only if Pdl ::S Pd2

if and only if E{ U(f(dI,n)) I dI } :::; E{U(f(d2,n)) I d2}'

where U' and U" denote the first and second derivative of U and it is
assumed that U'(x) i- 0 for all x. This function, called the index ~f absolute
risk aversion, measures locally (at the point x) the risk aversion of the
decision maker. It can be interpreted as follows.

Let x be a gamble over the set of real numbers (Le., a random variable)
with given distribution and expected value x = E{x}. Let us denote by
y the amount of insurance the decision maker is willing to pay in order to
avoid the gamble x, and instead receive the expected value x of the gamble.
In other words, y is such that

we obtain a complete order on the set D induced by the utility function U.
The optimal decision is found by maximization of the numerical function
F : D 1-7 ~, where

U(x - y) = E{U(x)}. (G.19)

F(d) = E{ U(f(d, n)) I d} Intuitively, y provides a natural measure of risk aversion. Using a Taylor
series expansion around x, we have

and the decision problem is formulated in a way that is amenable to math
ematical analysis. U(x - y) = U(x) - yU'(x) + o(y), (G.20)
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from which

d~~O) = E{ (e - s) }UI(sa) > 0.

Now since U I is everywhere positive it follows that if E{ (e - s)} > 0, then
we cannot have x* = °since

E{ (e - s)UII(sa + (e - s)x*(a))(sa + (e S)(dx*(a)jda))} = 0,

(G.22)if x* > 0,

if x* = 0.

dJd:*) = E{ (e - s)U' (sa + (e - s)x*) } = 0,

dJ(x*) < °
dx -,

Hence E { (e - s)} > °implies x* > 0, or in words, a positive amount will
be invested in the risky asset if its expected rate of return is greater than the
rate of return of the secure asset.

Assume now that E { (e - s)} > °and denote by x* (a) the amount
invested in the risky asset when the initial wealth is a. We would like to
investigate the effects of changes in initial wealth a on the amount x* (a)
invested. By differentiating Eq. (G.22) with respect to a we obtain

VVe also assume that the probability distribution of e is such that all ex
pected values appearing below are finite, and furthermore we assume that
the utility function U is such that the maximization problem has a solution
(the necessary and sufficient conditions for this have an interesting economic
interpretation, which is discussed in Bertsekas [Ber74]).

Now given a, the amount x* to be invested in the risky asset is deter
mined from the necessary conditions

E{U(x)} = E{U(x) + (x - x)U'(x) + Hx - X)2UI/(X) + o((x - x)2) }

= U(x) + ~cr2UII(X) + E{o((x - x)2)},

where cr2 is the variance of x. From Eqs. (G.19)-(G.21), we have

yU'(x) = _~cr2UI/(x) + o(y) + E{o((x - x)2) }.

From this equation and Eq. (G.18) it follows that the amount of insurance
or risk premium y that the decision maker is willing to pay is proportional
(up to first order) to the index of absolute risk aversion r(x) at the mean x
of the gamble, thus justifying the use of r as a measure of local risk aversion.
Notice that in the investment Example G.2, we have r(y) = 2/(00 - 2y), so
r(y) tends to decrease as a increases. This fact is reflected in the optimal
investment, where an increasing fraction of the capital is invested in the
risky asset as a is increased.

The index r(x) often plays an important role in the analysis of be
havior of decision makers. It is generally accepted that for most decision
makers, r(x) is a decreasing or at least nonincreasing function of x, i.e.,
the decision maker more readily accepts risk as his wealth is increased. On
the other hand, for the quadratic utility function U(x) = _~x2 + bx + c,
the index r(x) is equal to (b - x) -1 and is an increasing function of x (for
x < b). For this reason the quadratic utility function is often considered in
appropriate or at least accepted with reservation in economics applications,
despite the analytical simplifications resulting from its use.

(G.21)

where by o(y) we denote a quantity that is negligible compared with the
scalar a provided a is close to zero, i.e., lima->o(o(oo)/a) = O. Also we have

~x;ample G.3

An individual with given initial wealth a wishes to invest part of it in a risky
asset offering a rate of return e, and the rest in a secure asset offering rate of
return s > 0. We assume that s is known with certainty while e is a random
variable with known probability distribution P. If x is the amount invested
in the risky asset, then the final wealth of the decision maker is given by

dx*(a) E{(e-s)UII(sa+(e-s)x*(a))}

~ = -- E{ (e - SPUII (sa + (e - s)x*(a)) } .

Since the denominator is always negative and the constant s is positive, the
sign of dx* (a) j da is the same as the sign of

Now assume that r(y) is monotonically decreasing, i.e.,

which using the definition of the index of absolute risk aversion r(y) is equal
to

E{ (e - s)UI'(sa + (e - s)x*(a))},

Yl < Y2·if

f(a) = E{ (e - s)UI(sa + (e - s)x* (a))r (sa + (e - s)x* (a)) }.

The decision to be made by the individual is to choose x so as to maximize

subject to the constraint x :::: 0. We assume that U is a concave, monotonically
increasing, twice continuously differentiable function with negative second
derivative, and with index of absolute risk aversion

UII(y)
r(y) = - UI(y) .

J(x) = E{U(y)} = E{U(sa + (e - s)x) }

y = s(a - x) + ex = sa + (e - s)x.
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Then we have

(e-s)r·(sa+(e-s)x*(a»)::; (e-r)r(sa)

with strict inequality if e =I- s, and from the preceding relations, we obtain

f(a) > -r(sa)E{ (e - s)U I (sa + (e - s)x*(a») }

dJ(x*(a»)
= -r(sa) dx

=0.

Thus we have f(a) > 0 and hence dx*(a)jda > 0 if r(y) is monotoni
cally decreasing. Similarly, we obtain dx* (a) j da < 0 if r(y) is monotonically
increasing. In words, the individual, given more wealth, will invest more (less)
in the risky asset if his utility function has decreasing (increasing) index of
absolute risk aversion. Aside from its intrinsic value, this result illustrates
the important role of the index of risk aversion in shaping significant aspects
of a decision maker's behavior.

In many problems that evolve in time, the input is a time function
or sequence, and there may be a possibility of observing the output y as
it evolves in time. Naturally, this output may provide some information
about the uncertain quantity w, which may be fruitfully taken into account
in choosing the input u by means of a feedback mechanism.

Let us say that a function Jr : Y 1--7 U is a feedback controller (other
wise called policy or decision function) for the system if for each w E TV
the equation

u = Jr ( S(u, w) )

has a unique solution (dependent on w) for u. Thus for any fixed w,
a feedback controller Jr generates a unique input u and hence a unique
output y (see Fig. G.2). In any practical situation, the class of admissible
feedback controllers is further restricted by causality (present inputs should
not depend on future outputs), and possibly other constraints.

STOCHASTIC OPTIMAL CONTROL PROBLEMS

The class of decision problems considered so far in this appendix is very
broad. In this book we are interested in a subclass of decision problems that
involves a dynamic system. Such systems have an input-output description
and furthermore in such systems, inputs are selected sequentially after
observing past outputs. This allows the possibility of feedback. Let us first
give an abstract description of these problems.

Let us consider a system characterized by three sets U, W, and Y,
and a function S : U X W 1--7 Y. We call U the input set, W the uncertainty
set, Y the o'utput set, and S the system function. Thus an input u E U and
an uncertain quantity w E ltV produce an output y = $(u, w) through the
system "function S (see Fig. G.l). Implicit here is the assumption that the
choice of the input u is somehow controlled by a decision maker or device
to be designed, while w is chosen by nature according to some mechanism,
probabilistic or not.

has a unique solution in u.

y = S(u,w)

y

U

u=

0= (U x W x Y).

U=1r(S(U,w))

Figure G.2 Structure of a feedback controller 1r. We require that for each w E W
the equation

Given the system (U, Y, S) and a set of admissible controllers it
is possible to formulate a decision problem in accordance with the theory
of the previous section. We take II as the decision set and W as the set of
states of nature. We take as the set of outcomes the Cartesian product of

W, and Y, i.e.,
y

w

S
u

G.3

Figure G.l Structure of an uncertain system: u is the input, w is the uncertain
state of nature, y is the output, and S is the system function.

Now a feedback controller Jr E II and a state of nature w E W generate
a unique outcome (u, w, y), where u is the unique solution of the equation
u = Jr(S(u,w)) and y = S(u,w). Thus we may write (u,w,y) = f(Jr,w),
where f is some function determined by the system function S.
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If G is a numerical function ordering our preferences on 0, J is the
corresponding payoff function for the decision problem above, and a max
min viewpoint is adopted, then the problem becomes one of finding 1r E II
that maximizes

EXERCISES

min J(1r, w) = min G(u, w, y),
wEW wEW G.l

where u and yare expressed in terms of 1r and w by means of u = 1r ( S (u, w ))
and y = S (u, w) (min here denotes least upper bound over the correspond
ing set VV).

If w is selected in accordance with a known probabilistic mechanism,
i.e., a given probability law that may depend on 1r, and the function Sand
the elements of II satisfy suitable (measurability) assumptions, then it is
possible to use a utility function U to formulate the decision problem as
one of finding 1r E II that mCL"'Cimizes

Show that there exists a function G : 0 I-t ~ satisfying relation (G.2) provided
the set 0 is countable. Show also that if the set of decisions is finite, there exists
at least one noninferior decision.

G.2

Let 0 = [-1, 1]. Define an order on 0 by means of

introduced in Section 1.2, the system input is the control sequence u =

{UO,UI, ... ,UN--I}, the uncertainty is w = {WO,Wl, ... ,WN-r} (perhaps
together with the initial state Xo, if Xo is uncertain), the output is the state
sequence y = {XO, Xl, ... , X N }, and the system function is determined in
the obvious manner from the system equation (G.23). The class II of
admissible feedback controllers is the set of sequences of functions 1r =
{fLO, fLI, ... , fLN-d, where fLk is a function that depends on the output y
exclusively through the state Xk. Furthermore, fLk must satisfy constraints
such as fLk(Xk) E Uk(Xk) for all Xk and k.

~ "" etHel Y are expressed in terms of 1r and w by means of u = 1r (S (u, w) )
andy=S(u,w).

While in the formulations just given, we have reduced the problem
to one of decision under certainty [the problem of maximizing over II the
numerical function F(1r)], this is not an easy problem. The reason is that
due to the feedback possibility, the set II is a set of functions (of the system
output). This renders inapplicable deterministic optimization techniques,
such as those based on linear and nonlinear programming, or Pontryagin's
minimum principle. Dynamic programming offers some possibility of anal
ysis by decomposing the problem of minimizing F(1r) into a sequence of
much simpler optimization problems that are solved backwards in time, as
discussed in Chapter 1.

Finally, let us indicate how to convert the basic problem of Section
1.2 into the general form given in this section. Referring to the discrete
time dynamic system

~);::p«~I'1m~3n1~alMeasurement of U dUty)G.3

0 1 -< O2 if and only if G(Ol) < G(02, for all 0 1 , O2 EO.

where PN-2 is the probability for which one is indifferent between the
lottery {(I - PN-2), 0, ... , 0,PN-2, O} and ON-2 occurring with certainty.

Consider an individual faced with a decision problem with a finite collection of
outcomes 0 1 , O2 , ... ,ON. Assume that the individual has a preference relation
over the set of lotteries on the set of outcomes satisfying Assumptions A.I-AA of
the expected utility theorem, and hence a utility function over the set of outcomes
exists. Suppose also that 0 1 ::5 02 ::5 ... ::5 ON and furthermore that 0 1 --< ON.

(a) Show that the following method will determine a utility function. Define
U(01) = 0, U(ON) = 1. Let Pi with °:::; Pi :::; 1 be the probability for
which one is indifferent between the lottery {(I - P'i), 0, ... ,0, Pi} and Oi
occurring with certainty. Then let U(Oi) = Pi. Try the procedure on
yourself for Oi = 100i with i = 0,1, ... , 10.

(b) Show that the following procedure will also yield a utility function. Deter
mine U(ON-1) as in (a), but set

G(-0) < r(O) < G(O).

Show that if 0 1 f=. O2 , then r(01) f=. r(02)'

Hint: Assume the contrary and associate with every 0 E (0,1) a rational number
r(0) such that

Show that there exists no real-valued function G on 0 such that

(G.23)k = 0,1, ... ,N - 1,
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(c)

G.4

Similarly, set U(Oi) = PiU(OH1), where Pi is the appropriate probability.
Again try this procedure on yourself for Oi = 100i with i = 0,1, ... , 10,
and compare the results with the ones obtained in part (a).

Devise a third procedure whereby the utilities U(Ol), U(Oz) are speci
fied initially and U(Oi), i = 3, ... , N, is obtained from U(Oi-2), U(Oi-l)
through a comparison of the type considered above. Again try this proce
dure on yourself for Oi = 100i with i = 0,1, ... , 10.

ces
Suppose that two persons, A and B, want to make a bet. Person A will pay $1
to person B if a certain event occurs and person B will pay x dollars to person A
if the event does not occur. Person A believes that the probability of the event
occurring is PA with °< PA < 1, while person B believes that this probability is
PB with °< PB < 1. Suppose that the utility functions UA and UB of persons A
and B are strictly increasing functions of monetary gain. Let a, (3 be such that

Show that if a < ,8.
bet.

UB(-(3) = UB(O) - PBUB(l).
i-PB

__ ullY value of x between a and (3 is a mutually satisfactory
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