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"Because the shape of the whole universe is most per­
fect and, in fact, designed by the wisest Creator, nothing 
in all of the world will occur in which no maximum or 
minimum rule is somehow shining forth. " 

Leohard Euler, 1144 
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Preface 

Many systems, physical, chemical, and economical, can be modeled 
by mathematical relations, such as deterministic and/or stochastic dif­
ferential and/or difference equations. These systems then change with 
time or any other independent variable according to the dynamical re­
lations. It is possible to steer these systems from one state to another 
state by the application of some type of external inputs or controls. 
If this can be done at all, there may be different ways of doing the 
same task. If there are different ways of doing the same task, then 
there may be one way of doing it in the "best" way. This best way can 
be minimum time to go from one state to another state, or maximum 
thrust developed by a rocket engine. The input given to the system 
corresponding to this best situation is called "optimal" control. The 
measure of "best" way or performance is called "performance index" 
or "cost function." Thus, we have an "optimal control system," when a 
system is controlled in an optimum way satisfying a given performance 
index. The theory of optimal control systems has enjoyed a flourishing 
period for nearly two decades after the dawn of the so-called "modern" 
control theory around the 1960s. The interest in theoretical and prac­
tical aspects of the subject has sustained due to its applications to such 
diverse fields as electrical power, aerospace, chemical plants, economics, 
medicine, biology, and ecology. 

Aim and Scope 

In this book we are concerned with essentially the control of physical 
systems which are "dynamic" and hence described by ordinary differ­
ential or difference equations in contrast to "static" systems, which are 
characterized by algebraic equations. Further, our focus is on "deter­
ministic" systems only. 

The development of optimal control theory in the sixties revolved 
around the "maximum principle" proposed by the Soviet mathemati­
cian L. S. Pontryagin and his colleagues whose work was published in 
English in 1962. Further contributions are due to R. E. Kalman of the 
United States. Since then, many excellent books on optimal control 
theory of varying levels of sophistication have been published. 

This book is written keeping the "student in mind" and intended 
to provide the student a simplified treatment of the subject, with an 
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appropriate dose of mathematics. Another feature of this book is to 
assemble all the topics which can be covered in a one-semester class. 
A special feature of this book is the presentation of the procedures in 
the form of a summary table designed in terms of statement of the prob­
lem and a step-by-step solution of the problem. Further, MATLAB© 

and SIMULINK© 1 , including Control System and Symbolic Math 
Toolboxes, have been incorporated into the book. The book is ideally 
suited for a one-semester, second level, graduate course in control sys­
tems and optimization. 

Background and Audience 

This is a second level graduate text book and as such the background 
material required for using this book is a first course on control sys­
tems, state space analysis, or linear systems theory. It is suggested that 
the student review the material in Appendices A and B given at the 
end of the book. This book is aimed at graduate students in Electrical, 
Mechanical, Chemical, and Aerospace Engineering and Applied Math­
ematics. It can also be used by professional scientists and engineers 
working in a variety of industries and research organizations. 
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Chapter 1 

Introduction 

In this first chapter, we introduce the ideas behind optimization and 
optimal control and provide a brief history of calculus of variations and 
optimal control. Also, a brief summary of chapter contents is presented. 

1.1 Classical and Modern Control 
The classical (conventional) control theory concerned with single input 
and single output (8180) is mainly based on Laplace transforms the­
ory and its use in system representation in block diagram form. From 
Figure 1.1, we see that 

Reference 
Input 

R(s) + 

Error 
Signal 

- E(s) 

Y(s) 
R(s) 

G(s) 
1 + G(s)H(s) 

c ompensator ant 
Control B PI 

Input ... G (s) .. Gc(s) 
U(s) p 

Feedback 

H(s) ... 

(1.1.1) 

Output 

yes) 

Figure 1.1 Classical Control Configuration 
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where s is Laplace variable and we used 

(1.1.2) 

Note that 

1. the input u(t) to the plant is determined by the error e(t) and 
the compensator, and 

2. all the variables are not readily available for feedback. In most 
cases only one output variable is available for feedback. 

The modern control theory concerned with multiple inputs and multi­
ple outputs (MIMO) is based on state variable representation in terms 
of a set of first order differential (or difference) equations. Here, the 
system (plant) is characterized by state variables, say, in linear, time­
invariant form as 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

(1.1.3) 

(1.1.4) 

where, dot denotes differentiation with respect to (w.r.t.) t, x(t), u(t), 
and y( t) are n, r, and m dimensional state, control, and output vectors 
respectively, and A is nxn state, B is nxr input, Cis mxn output, and D 
is mxr transfer matrices. Similarly, a nonlinear system is characterized 
by 

x(t) = f(x(t), u(t), t) 

y(t) = g(x(t), u(t), t). 

(1.1.5) 

(1.1.6) 

The modern theory dictates that all the state variables should be fed 
back after suitable weighting. We see from Figure 1.2 that in modern 
control configuration, 

1. the input u( t) is determined by the controller (consisting of er­
ror detector and compensator) driven by system states x(t) and 
reference signal r ( t ) , 

2. all or most of the state variables are available for control, and 

3. it depends on well-established matrix theory, which is amenable 
for large scale computer simulation. 
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Plant 

Control Output 
Input .. p .. 

u(t) y(t) 

State 

R eference 
x(t) 

Input 
C .. 

'" 
r(t) 

Controller 

Figure 1.2 Modern Control Configuration 

The fact that the state variable representation uniquely specifies the 
transfer function while there are a number of state variable representa­
tions for a given transfer function, reveals the fact that state variable 
representation is a more complete description of a system. 

Figure 1.3 shows components of a modern control system. It shows 
three components of modern control and their important contributors. 
The first stage of any control system theory is to obtain or formulate 
the dynamics or modeling in terms of dynamical equations such as dif­
ferential or difference equations. The system dynamics is largely based 
on the Lagrangian function. Next, the system is analyzed for its perfor­
mance to find out mainly stability of the system and the contributions 
of Lyapunov to stability theory are well known. Finally, if the system 
performance is not according to our specifications, we resort to design 
[25, 109]. In optimal control theory, the design is usually with respect 
to a performance index. We notice that although the concepts such as 
Lagrange function [85] and V function of Lyapunov [94] are old, the 
techniques using those concepts are modern. Again, as the phrase mod­
ern usually refers to time and what is modern today becomes ancient 
after a few years, a more appropriate thing is to label them as optimal 
control, nonlinear control, adaptive control, robust control and so on. 
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I Modem Control System I 
~ 

~r ~ r 

System Dynamics System Analysis System Synthesis 
(Modeling) (Perfonnance) (Design) 

r r ~ 

State Function of V Function of H Function of 
Lagrange Lyapunov Pontraygin 

(1788) (1892) (1956) 

Figure 1.3 Components of a Modern Control System 

1.2 Optimization 
Optimization is a very desirable feature in day-to-day life. We like to 
work and use our time in an optimum manner, use resources optimally 
and so on. The subject of optimization is quite general in the sense 
that it can be viewed in different ways depending on the approach (al­
gebraic or geometric), the interest (single or multiple), the nature of the 
signals (deterministic or stochastic), and the stage (single or multiple) 
used in optimization. This is shown in Figure 1.4. As we notice that 
the calculus of variations is one small area of the big picture of the op­
timization field, and it forms the basis for our study of optimal control 
systems. Further, optimization can be classified as static optimization 
and dynamic optimization. 

1. Static Optimization is concerned with controlling a plant under 
steady state conditions, i.e., the system variables are not chang­
ing with respect to time. The plant is then described by algebraic 
equations. Techniques used are ordinary calculus, Lagrange mul­
tipliers, linear and nonlinear programming. 

2. Dynamic Optimization concerns with the optimal control of 
plants under dynamic conditions, i.e., the system variables are 
changing with respect to time and thus the time is involved in 
system description. Then the plant is described by differential 
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(or difference) equations. Techniques used are search techniques, 
dynamic programming, variational calculus (or calculus of varia­
tions) and Pontryagin principle. 

1.3 Optimal Control 

The main objective of optimal control is to determine control signals 
that will cause a process (plant) to satisfy some physical constraints 
and at the same time extremize (maximize or minimize) a chosen per­
formance criterion (performance index or cost function). Referring to 
Figure 1.2, we are interested in finding the optimal control u*(t) (* in­
dicates optimal condition) that will drive the plant P from initial state 
to final state with some constraints on controls and states and at the 
same time extremizing the given performance index J. 

The formulation of optimal control problem requires 

1. a mathematical description (or model) of the process to be con­
trolled (generally in state variable form), 

2. a specification of the performance index, and 

3. a statement of boundary conditions and the physical constraints 
on the states and/or controls. 

1.3.1 Plant 

For the purpose of optimization, we describe a physical plant by a set of 
linear or nonlinear differential or difference equations. For example, a 
linear time-invariant system is described by the state and output rela­
tions (1.1.3) and (1.1.4) and a nonlinear system by (1.1.5) and (1.1.6). 

1.3.2 Performance Index 

Classical control design techniques have been successfully applied to lin­
ear, time-invariant, single-input, single output (8180) systems. Typical 
performance criteria are system time response to step or ramp input 
characterized by rise time, settling time, peak overshoot, and steady 
state accuracy; and the frequency response of the system characterized 
by gain and phase margins, and bandwidth. 

In modern control theory, the optimal control problem is to find a 
control which causes the dynamical system to reach a target or fol-
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low a state variable (or trajectory) and at the same time extremize a 
performance index which may take several forms as described below. 

1. Performance Index for Time-Optimal Control System: 
We try to transfer a system from an arbitrary initial state x(to) to 
a specified final state x( t f) in minimum time. The corresponding 
performance index (PI) is 

it! 
J = dt = t f - to = t*. 

to 
(1.3.1 ) 

2. Performance Index for Fuel-Optimal Control System: Con­
sider a spacecraft problem. Let u(t) be the thrust of a rocket 
engine and assume that the magnitude I u( t) I of the thrust is pro­
portional to the rate of fuel consumption. In order to minimize 
the total expenditure of fuel, we may formulate the performance 
index as 

it! 
J = lu(t)ldt. 

to 
(1.3.2) 

For several controls, we may write it as 

(1.3.3) 

where R is a weighting factor. 

3. Performance Index for Minimum-Energy Control Sys­
tem: Consider Ui (t) as the current in the ith loop of an electric 
network. Then 2:i!1 u;(t)ri (where, ri is the resistance of the ith 
loop) is the total power or the total rate of energy expenditure of 
the network. Then, for minimization of the total expended energy, 
we have a performance criterion as 

(1.3.4) 

or in general, 

it! 
J = u'(t)Ru(t)dt 

to 
(1.3.5) 
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where, R is a positive definite matrix and prime (') denotes trans­
pose here and throughout this book (see Appendix A for more 
details on definite matrices). 

Similarly, we can think of minimization of the integral of the 
squared error of a tracking system. We then have, 

it! 
J = x/(t)Qx(t)dt 

to 
(1.3.6) 

where, Xd(t) is the desired value, xa(t) is the actual value, and 
x(t) = xa(t) - Xd(t), is the error. Here, Q is a weighting matrix, 
which can be positive semi-definite. 

4. Performance Index for Terminal Control System: In a ter­
minal target problem, we are interested in minimizing the error 
between the desired target position Xd (t f) and the actual target 
position Xa (t f) at the end of the maneuver or at the final time t f. 
The terminal (final) error is x ( t f) = Xa ( t f) - Xd ( t f ). Taking care 
of positive and negative values of error and weighting factors, we 
structure the cost function as 

(1.3.7) 

which is also called the terminal cost function. Here, F is a positive 
semi-definite matrix. 

5. Performance Index for General Optimal Control System: 
Combining the above formulations, we have a performance index 
in general form as 

it! 
J = x/(tf)Fx(tf) + [X/(t)QX(t) + u/(t)Ru(t)]dt 

to 
(1.3.8) 

or, 

it! 
J = S(x(tf),tf) + V(x(t),u(t),t)dt 

to 
(1.3.9) 

where, R is a positive definite matrix, and Q and F are positive 
semidefinite matrices, respectively. Note that the matrices Q and 
R may be time varying. The particular form of performance index 
(1.3.8) is called quadratic (in terms of the states and controls) 
form. 
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The problems arising in optimal control are classified based on the 
structure of the performance index J [67]. If the PI (1.3.9) contains 
the terminal cost function S(x(t), u(t), t) only, it is called the Mayer 
problem, if the PI (1.3.9) has only the integral cost term, it is called 
the Lagrange problem, and the problem is of the Bolza type if the PI 
contains both the terminal cost term and the integral cost term as in 
(1.3.9). There are many other forms of cost functions depending on our 
performance specifications. However, the above mentioned performance 
indices (with quadratic forms) lead to some very elegant results in 
optimal control systems. 

1.3.3 Constraints 

The control u( t) and state x( t) vectors are either unconstrained or 
constrained depending upon the physical situation. The unconstrained 
problem is less involved and gives rise to some elegant results. From the 
physical considerations, often we have the controls and states, such as 
currents and voltages in an electrical circuit, speed of a motor, thrust 
of a rocket, constrained as 

(1.3.10) 

where, +, and - indicate the maximum and minimum values the vari­
ables can attain. 

1.3.4 Formal Statement of Optimal Control System 

Let us now state formally the optimal control problem even risking rep­
etition of some of the previous equations. The optimal control problem 
is to find the optimal control u*(t) (* indicates extremal or optimal 
value) which causes the linear time-invariant plant (system) 

x(t) = Ax(t) + Bu(t) (1.3.11) 

to give the trajectory x* (t) that optimizes or extremizes (minimizes or 
maximizes) a performance index 

J = x'(tf)Fx(tf) + J.tJ 
[x'(t)Qx(t) + u'(t)Ru(t)]dt (1.3.12) 

to 

or which causes the nonlinear system 

x(t) = f(x(t), u(t), t) (1.3.13) 
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to give the state x*(t) that optimizes the general performance index 

itf 
J = S(x(tj), tf) + V(x(t), u(t), t)dt 

to 
(1.3.14) 

with some constraints on the control variables u( t) and/or the state 
variables x(t) given by (1.3.10). The final time tf may be fixed, or free, 
and the final (target) state may be fully or partially fixed or free. The 
entire problem statement is also shown pictorially in Figure 1.5. Thus, 

Optimal Control System I 
+ .. • 

Plant I Cost Function II Constraints 

, , 

J J ~ 

.. ~ 
J* ... ~ 

J* 
.. 

u*(t) u(t) 
r 

u*(t) u(t) 

(a) Minimum (b) Maximum 

Figure 1.5 Optimal Control Problem 

we are basically interested in finding the control u*(t) which when 
applied to the plant described by (1.3.11) or (1.3.13), gives an optimal 
performance index J* described by (1.3.12) or (1.3.14). 

The optimal control systems are studied in three stages. 

1. In the first stage, we just consider the performance index of the 
form (1.3.14) and use the well-known theory of calculus of varia­
tions to obtain optimal functions. 

2. In the second stage, we bring in the plant (1.3.11) and try to 
address the problem of finding optimal control u*(t) which will 
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drive the plant and at the same time optimize the performance 
index (1.3.12). Next, the above topics are presented in discrete­
time domain. 

3. Finally, the topic of constraints on the controls and states (1.3.10) 
is considered along with the plant and performance index to ob­
tain optimal control. 

1.4 Historical Tour 
We basically consider two stages of the tour: first the development of 
calculus of variations, and secondly, optimal control theory [134, 58, 
99, 28]1. 

1.4.1 Calculus oj Variations 

According to a legend [88], Tyrian princess Dido used a rope made 
of cowhide in the form of a circular arc to maximize the area to be 
occupied to found Carthage. Although the story of the founding of 
Carthage is fictitious, it probably inspired a new mathematical dis­
cipline, the calculus of variations and its extensions such as optimal 
control theory. 

The calculus of variations is that branch of mathematics that deals 
with finding a function which is an extremum (maximum or minimum) 
of a functional. A functional is loosely defined as a function of a func­
tion. The theory of finding maxima and minima of functions is quite 
old and can be traced back to the isoperimetric problems considered 
by Greek mathematicians such as Zenodorus (495-435 B.C.) and by 
Poppus (c. 300 A.D.). But we will start with the works of Bernoulli. In 
1699 Johannes Bernoulli (1667-1748) posed the brachistochrone prob­
lem: the problem of finding the path of quickest descent between two 
points not in the same horizontal or vertical line. This problem which 
was first posed by Galileo (1564-1642) in 1638, was solved by John, 
his brother Jacob (1654- 1705), by Gottfried Leibniz (1646-1716), and 
anonymously by Isaac Newton (1642-1727). Leonard Euler (1707-1783) 
joined John Bernoulli and made some remarkable contributions, which 
influenced Joseph-Louis Lagrange (1736-1813), who finally gave an el-

IThe permission given by Springer-Verlag for H. H. Goldstine, A History of the Calculus 
of Variations, Springer-Verlag, New York, NY, 1980, is hereby acknowledged. 
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egant way of solving these types of problems by using the method 
of (first) variations. This led Euler to coin the phrase calculus of vari­
ations. Later this necessary condition for extrema of a functional 
was called the Euler - the Lagrange equation. Lagrange went on to 
treat variable end - point problems introducing the multiplier method, 
which later became one of the most powerful tools-Lagrange (or Euler­
Lagrange) multiplier method-in optimization. 

The sufficient conditions for finding the extrema of functionals in cal­
culus of variations was given by Andrien Marie Legendre (1752-1833) 
in 1786 by considering additionally the second variation. Carl Gustav 
Jacob Jacobi (1804-1851) in 1836 came up with a more rigorous anal­
ysis of the sufficient conditions. This sufficient condition was later on 
termed as the Legendre-Jacobi condition. At about the same time Sir 
William Rowan Hamilton (1788-1856) did some remarkable work on 
mechanics, by showing that the motion of a particle in space, acted 
upon by various external forces, could be represented by a single func­
tion which satisfies two first-order partial differential equations. In 1838 
Jacobi had some objections to this work and showed the need for only 
one partial differential equation. This equation, called Hamilton-Jacobi 
equation, later had profound influence on the calculus of variations and 
dynamic programming, optimal control, and as well as on mechanics. 

The distinction between strong and weak extrema was addressed by 
Karl Weierstrass (1815-1897) who came up with the idea of the field 
of extremals and gave the Weierstrass condition, and sufficient condi­
tions for weak and strong extrema. Rudolph Clebsch (1833-1872) and 
Adolph Mayer proceeded with establishing conditions for the more gen­
eral class of problems. Clebsch formulated a problem in the calculus of 
variations by adjoining the constraint conditions in the form of differ­
ential equations and provided a condition based on second variation. 
In 1868 Mayer reconsidered Clebsch's work and gave some elegant re­
sults for the general problem in the calculus of variations. Later Mayer 
described in detail the problems: the problem of Lagrange in 1878, and 
the problem of Mayer in 1895. 

In 1898, Adolf Kneser gave a new approach to the calculus of varia­
tions by using the result of Karl Gauss (1777-1855) on geodesics. For 
variable end-point problems, he established the transversality condi­
tion which includes orthogonality as a special case. He along with 
Oskar Bolza (1857-1942) gave sufficiency proofs for these problems. 
In 1900, David Hilbert (1862-1943) showed the second variation as a 
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quadratic functional with eigenvalues and eigenfunctions. Between 1908 
and 1910, Gilbert Bliss (1876-1951) [23] and Max Mason looked in 
depth at the results of Kneser. In 1913, Bolza formulated the problem 
of Bolza as a generalization of the problems of Lagrange and Mayer. 
Bliss showed that these three problems are equivalent. Other notable 
contributions to calculus of variations were made by E. J. McShane 
(1904-1989) [98], M. R. Hestenes [65], H. H. Goldstine and others. 
There have been a large number of books on the subject of calculus 
of variations: Bliss (1946) [23], Cicala (1957) [37], Akhiezer (1962) [1], 
Elsgolts (1962) [47], Gelfand and Fomin (1963) [55], Dreyfus (1966) 
[45], Forray (1968) [50], Balakrishnan (1969) [8], Young (1969) [146], 
Elsgolts (1970) [46], Bolza (1973) [26], Smith (1974) [126], Weinstock 
(1974) [143], Krasnov et al. (1975) [81], Leitmann (1981) [88], Ew­
ing (1985) [48], Kamien and Schwartz (1991) [78], Gregory and Lin 
(1992) [61], Sagan (1992) [118], Pinch (1993) [108], Wan (1994) [141], 
Giaquinta and Hildebrandt (1995) [56, 57], Troutman (1996) [136], and 
Milyutin and Osmolovskii (1998) [103]. 

1.4.2 Optimal Control Theory 

The linear quadratic control problem has its origins in the celebrated 
work of N. Wiener on mean-square filtering for weapon fire control dur­
ing World War II (1940-45) [144, 145]. Wiener solved the problem of 
designing filters that minimize a mean-square-error criterion (perfor­
mance measure) of the form 

(1.4.1) 

where, e( t) is the error, and E {x} represents the expected value of the 
random variable x. For a deterministic case, the above error criterion 
is generalized as an integral quadratic term as 

J = 10
00 

e'(t)Qe(t)dt (1.4.2) 

where, Q is some positive definite matrix. R. Bellman in 1957 [12] 
introduced the technique of dynamic programming to solve discrete­
time optimal control problems. But, the most important contribution 
to optimal control systems was made in 1956 [25] by L. S. Pontryagin 
(formerly of the United Soviet Socialistic Republic (USSR)) and his as­
sociates, in development of his celebrated maximum principle described 
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in detail in their book [109]. Also, see a very interesting article on the 
"discovery of the Maximum Principle" by R. V. Gamkrelidze [52], one 
of the authors of the original book [109]. At this time in the United 
States, R. E. Kalman in 1960 [70] provided linear quadratic regulator 
(LQR) and linear quadratic Gaussian (LQG) theory to design optimal 
feedback controls. He went on to present optimal filtering and estima­
tion theory leading to his famous discrete Kalman filter [71] and the 
continuous Kalman filter with Bucy [76]. Kalman had a profound ef­
fect on optimal control theory and the Kalman filter is one of the most 
widely used technique in applications of control theory to real world 
problems in a variety of fields. 

At this point we have to mention the matrix Riccati equation that 
appears in all the Kalman filtering techniques and many other fields. 
C. J. Riccati [114, 22] published his result in 1724 on the solution for 
some types of nonlinear differential equations, without ever knowing 
that the Riccati equation would become so famous after more than two 
centuries! 

Thus, optimal control, having its roots in calculus of variations de­
veloped during 16th and 17th centuries was really born over 300 years 
ago [132]. For additional details about the historical perspectives on 
calculus of variations and optimal control, the reader is referred to some 
excellent publications [58, 99, 28, 21, 132]. 

In the so-called linear quadratic control, the term "linear" refers to 
the plant being linear and the term "quadratic" refers to the perfor­
mance index that involves the square or quadratic of an error, and/or 
control. Originally, this problem was called the mean-square control 
problem and the term "linear quadratic" did not appear in the litera­
ture until the late 1950s. 

Basically the classical control theory using frequency domain deals 
with single input and single output (SIS0) systems, whereas modern 
control theory works with time domain for SISO and multi-input and 
multi-output (MIMO) systems. Although modern control and hence 
optimal control appeared to be very attractive, it lacked a very impor­
tant feature of robustness. That is, controllers designed based on LQR 
theory failed to be robust to measurement noise, external disturbances 
and unmodeled dynamics. On the other hand, frequency domain tech­
niques using the ideas of gain margin and phase margin offer robustness 
in a natural way. Thus, some researchers [115, 95], especially in the 
United Kingdom, continued to work on developing frequency domain 
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approaches to MIMO systems. 
One important and relevant field that has been developed around 

the 1980s is the Hoo-optimal control theory. In this framework, the 
work developed in the 1960s and 1970s is labeled as H2-optimal control 
theory. The seeds for Hoo-optimal control theory were laid by G. Zames 
[148], who formulated the optimal Hoo-sensitivity design problem for 
SISO systems and solved using optimal N evanilina-Pick interpolation 
theory. An important publication in this field came from a group of four 
active researchers, Doyle, Glover, Khargonekar, and Francis[44], who 
won the 1991 W. R. G. Baker Award as the best IEEE Transactions 
paper. There are many other works in the field of Hoo control ([51, 96, 
43, 128, 7, 60, 131, 150, 39, 34]). 

1.5 About This Book 
This book, on the subject of optimal control systems, is based on the 
author's lecture notes used for teaching a graduate level course on this 
subject. In particular, this author was most influenced by Athans and 
Falb [6], Schultz and Melsa [121], Sage [119], Kirk [79], Sage and White 
[120], Anderson and Moore [3] and Lewis and Syrmos [91], and one 
finds the footprints of these works in the present book. 

There were a good number of books on optimal control published 
during the era of the "glory of modern control," (Leitmann (1964) [87], 
Tou (1964) [135], Athans and Falb (1966) [6], Dreyfus (1966) [45], Lee 
and Markus (1967) [86], Petrov (1968) [106], Sage (1968) [119], Citron 
(1969) [38], Luenberger (1969) [93], Pierre (1969) [107], Pun (1969) 
[110], Young (1969) [146], Kirk (1970) [79], Boltyanskii [24], Kwaker­
naak and Sivan (1972) [84], Warga (1972) [142], Berkovitz (1974) [17], 
Bryson and Ho (1975) [30]), Sage and White (1977) [120], Leitmann 
(1981) [88]), Ryan (1982) [116]). There has been renewed interest with 
the second wave of books published during the last few years (Lewis 
(1986) [89], Stengal (1986) [127], Christensen et al. (1987) [36] Ander­
son and Moore (1990) [3], Hocking (1991) [66], Teo et al. (1991) [133], 
Gregory and Lin (1992) [61], Lewis (1992) [90], Pinch (1993) [108], Do­
rato et al. (1995) [42], Lewis and Syrmos (1995) [91]), Saberi et al. 
(1995) [117], Sima (1996) [124], Siouris [125], Troutman (1996) [136] 
Bardi and Dolcetta (1997) [9], Vincent and Grantham (1997) [139], 
Milyutin and Osmolovskii (1998) [103], Bryson (1999) [29], Burl [32], 
Kolosov (1999) [80], Pytlak (1999) [111], Vinter (2000) [140], Zelikin 
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(2000) [149], Betts (2001) [20], and Locatelli (2001) [92]. 
The optimal control theory continues to have a wide variety of appli­

cations starting from the traditional electrical power [36] to economics 
and management [16, 122, 78, 123]. 

1.6 Chapter Overview 
This book is composed of seven chapters. Chapter 2 presents opti­
mal control via calculus of variations. In this chapter, we start with 
some basic definitions and a simple variational problem of extremizing 
a functional. We then bring in the plant as a conditional optimization 
problem and discuss various types of problems based on the bound­
ary conditions. We briefly mention both Lagrangian and Hamiltonian 
formalisms for optimization. Next, Chapter 3 addresses basically the 
linear quadratic regulator (LQR) system. Here we discuss the closed­
loop optimal control system introducing matrix Riccati differential and 
algebraic equations. We look at the analytical solution to the Riccati 
equations and development of MATLAB© routine for the analytical 
solution. Tracking and other problems of linear quadratic optimal con­
trol are discussed in Chapter 4. We also discuss the gain and phase 
margins of the LQR system. 

So far the optimal control of continuous-time systems is described. 
Next, the optimal control of discrete-time systems is presented in Chap­
ter 5. Here, we start with the basic calculus of variations and then touch 
upon all the topics discussed above with respect to the continuous-time 
systems. The Pontryagin Principle and associated topics of dynamic 
programming and Hamilton-Jacobi-Bellman results are briefly covered 
in Chapter 6. The optimal control of systems with control and state 
constraints is described in Chapter 7. Here, we cover topics of control 
constraints leading to time-optimal, fuel-optimal and energy-optimal 
control systems and briefly discuss the state constraints problem. 

Finally, the Appendices A and B provide summary of results on ma­
trices, vectors, matrix algebra and state space, and Appendix C lists 
some of the MATLAB© files used in the book. 
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1. 7 Problems 

Problem 1.1 A D.C. motor speed control system is described by a 
second order state equation, 

:h (t) = 25x2(t) 

X2(t) = -400Xl(t) - 200X2(t) + 400u(t) , 

where, Xl(t) = the speed of the motor, and X2(t) = the current in 
the armature circuit and the control input u( t) = the voltage input 
to an amplifier supplying the motor. Formulate a performance index 
and optimal control problem to keep the speed constant at a particular 
value. 

Problem 1.2 [83] In a liquid-level control system for a storage tank, 
the valves connecting a reservoir and the tank are controlled by gear 
train driven by a D. C. motor and an electronic amplifier. The dynamics 
is described by a third order system 

Xl(t) = -2Xl(t) 

X2(t) = X3(t) 

X3(t) = -10X3(t) + 9000u(t) 

where, Xl(t) = is the height in the tank, X2(t) = is the angular posi­
tion of the electric motor driving the valves controlling the liquid from 
reservoir to tank, X3(t) = the angular velocity of the motor, and u(t) = 

is the input to electronic amplifier connected to the input of the motor. 
Formulate optimal control problem to keep the liquid level constant at 
a reference value and the system to act only if there is a change in the 
liquid level. 

Problem 1.3 [35] In an inverted pendulum system, it is required to 
maintain the upright position of the pendulum on a cart. The linearized 
state equations are 

Xl(t) = X2(t) 

X2(t) = -X3(t) + O.2u(t) 

X3(t) = X4(t) 

X4(t) = 10x3(t) - O.2u(t) 
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where, Xl (t) = is horizontal linear displacement of the cart, X2(t) = is 
linear velocity of the cart, X3(t) = is angular position of the pendulum 
from vertical line, X4(t) = is angular velocity, and u(t) = is the horizon­
tal force applied to the cart. Formulate a performance index to keep 
the pendulum in the vertical position with as little energy as possible. 

Problem 1.4 [101J A mechanical system consisting of two masses and 
two springs, one spring connecting the two masses and the other spring 
connecting one of the masses to a fixed point. An input is applied to 
the mass not connected to the fixed point. The displacements (XI(t) 
and X2 (t)) and the corresponding velocities (X3 (t) and X4 (t)) of the two 
masses provide a fourth-order system described by 

XI(t) = X3(t) 

X2(t) = X4(t) 

X3(t) = -4XI(t) + 2X2(t) 

X4(t) = XI(t) - X2(t) + u(t) 

Formulate a performance index to minimize the errors in displacements 
and velocities and to minimize the control effort. 

Problem 1.5 A simplified model of an automobile suspension system 
is described by 

mx(t) + kx(t) = bu(t) 

where, x(t) is the position, u(t) is the input to the suspension system 
(in the form of an upward force), m is the mass of the suspension 
system, and k is the spring constant. Formulate the optimal control 
problem for minimum control energy and passenger comfort. Assume 
suitable values for all the constants. 

Problem 1.6 [112J Consider a continuous stirred tank chemical reac­
tor described by 

XI(t) = -O.lXI(t) - 0.12x2(t) 
X2(t) = -0.3XI(t) - 0.012x2(t) - 0.07u(t) 

where, the normalized deviation state variables of the linearized model 
are Xl (t) = reaction variable, X2 (t) = temperature and the control 
variable u(t) = effective cooling rate coefficient. Formulate a suitable 
performance measure to minimize the deviation errors and to minimize 
the control effort. 



Chapter 2 

Calculus of Variations 
and Optimal Control 

Calculus of variations (Co V) or variational calculus deals with finding 
the optimum (maximum or minimum) value of a functional. Varia­
tional calculus that originated around 1696 became an independent 
mathematical discipline after the fundamental discoveries of L. Euler 
(1709-1783), whom we can claim with good reason as the founder of 
calculus of variations. 

In this chapter, we start with some basic definitions and a simple 
variational problem of extremizing a functional. We then incorporate 
the plant as a conditional optimization problem and discuss various 
types of problems based on the boundary conditions. We briefly men­
tion both the Lagrangian and Hamiltonian formalisms for optimization. 
It is suggested that the student reviews the material in Appendices A 
and B given at the end of the book. This chapter is motivated by 
[47, 79, 46, 143, 81, 48]1. 

2.1 Basic Concepts 
2.1.1 Function and Functional 

We discuss some fundamental concepts associated with functionals along 
side with those of functions. 
(a) Function: A variable x is a function of a variable quantity t, (writ-

IThe permission given by Prentice Hall for D. E. Kirk, Optimal Control Theory: An Intro­
duction, Prentice Hall, Englewood Cliffs, NJ, 1970, is hereby acknowledged. 
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ten as x(t) = !(t)), if to every value of t over a certain range of t there 
corresponds a value x; i.e., we have a correspondence: to a number t 
there corresponds a number x. Note that here t need not be always 
time but any independent variable. 

Example 2.1 

Consider 

x(t) = 2t2 + 1. (2.1.1 ) 

For t = 1, x = 3, t = 2, x = 9 and so on. Other functions are 
x(t) = 2t; X(tb t2) = tt + t§. 

N ext we consider the definition of a functional based on that of a 
function. 
(b) Functional: A variable quantity J is a functional dependent on a 
function ! (x), written as J = J (f (x) ), if to each function f (x), there 
corresponds a value J, i.e., we have a correspondence: to the function 
f (x) there corresponds a number J. Functional depends on several 
functions. 

Example 2.2 

Let x(t) = 2t2 + 1. Then 

{I (I 2 5 
J(x(t)) = io x(t)dt = io (2t2 + l)dt = 3 + 1 = 3 (2.1.2) 

is the area under the curve x(t). If v(t) is the velocity of a vehicle, 
then 

l
ti 

J ( v ( t )) = v ( t ) dt 
to 

(2.1.3) 

is the path traversed by the vehicle. Thus, here x(t) and v(t) are 
functions of t, and J is a functional of x(t) or v(t). 

Loosely speaking, a functional can be thought of as a "function of a 
function." 

2.1.2 Increment 

We consider here increment of a function and a functional. 
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(a) Increment of a Function: In order to consider optimal values 
of a function, we need the definition of an increment [47, 46, 79]. 

DEFINITION 2.1 The increment of the function I, denoted by ~/, is 
defined as 

~/~/(t + ~t) - I(t). (2.1.4) 

It is easy to see from the definition that ~I depends on both the 
independent variable t and the increment of the independent variable 
~t, and hence strictly speaking, we need to write the increment of a 
function as ~/(t, ~t). 

Example 2.3 

If 

find the increment of the function I ( t) . 

Solution: The increment ~I becomes 

~I ~ I(t + ~t) - I(t) 

= (tl + ~iI + t2 + ~t2? - (tl + t2)2 
= (tl + ~tl)2 + (t2 + ~t2)2 + 2(iI + ~h)(t2 + ~t2) -

(tI + t§ + 2tlt2) 
= 2(tl + t2)~tl + 2(tl + t2)~t2 + (~tl)2 + (~t2)2 

(2.1.5) 

+2~tl~t2. (2.1.6) 

(b) Increment of a Functional: Now we are ready to define the 
increment of a functional. 

DEFINITION 2.2 The increment of the functional J, denoted by ~J, is 
defined as 

I ~J~J(x(t) + 8x(t)) - J(x(t))·1 (2.1. 7) 

Here 8x(t) is called the variation of the function x(t). Since the in­
crement of a functional is dependent upon the function x(t) and its 
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variation 8x(t), strictly speaking, we need to write the increment as 
ilJ(x(t),8x(t)). 

Example 2.4 

Find the increment of the functional 

(2.1.8) 

Solution: The increment of J is given by 

ilJ ~ J(x(t) + 8x(t)) - J(x(t)), 

= it! [2(x(t) + 8x(t))2 + 1] dt _it! [2x2(t) + 1] dt, 
to to 

it! 
= [4x(t)8x(t) + 2(8x(t) )2] dt. (2.1.9) 

to 

2.1.3 Differential and Variation 

Here, we consider the differential of a function and the variation of a 
functional. 
(a) Differential of a Function: Let us define at a point t* the 
increment of the function J as 

ilf~J(t* + ilt) - J(t*). (2.1.10) 

By expanding J (t* + ilt) in a Taylor series about t*, we get 

Af = f(t') + (:), At + :, (~n, (At)2 + ... - f(t*). (2.1.11) 

Neglecting the higher order terms in ilt, 

Af = (:) * At = j(t*)At = df. (2.1.12) 

Here, df is called the differential of J at the point t*. j(t*) is the 
derivative or slope of J at t*. In other words, the differential dJ is 
the first order approximation to increment ilt. Figure 2.1 shows the 
relation between increment, differential and derivative. 
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f(t) 

f(t* +~t) ....... '. . .. ... . ......... ' 

[(to) ~:~~~ ~ [ ... :. : ::t ~ .. .1~. 
. ~t 
:~ . 

o t* t*+~t t 

Figure 2.1 Increment fl.j, Differential dj, and Derivative j of a 
Function j ( t) 

Example 2.5 

Let j(t) = t2 + 2t. Find the increment and the derivative of the 
function j ( t). 

Solution: By definition, the increment fl.j is 

fl.j £ j(t + fl.t) - j(t), 

= (t + fl.t)2 + 2(t + fl.t) - (t2 + 2t), 
= 2tfl.t + 2fl.t + ... + higher order terms, 
= 2(t + l)fl.t, 
= j(t)fl.t. 

Here, j(t) = 2(t + 1). 

(2.1.13) 

(b) Variation of a Functional: Consider the increment of a func­
tional 

fl.J£J(x(t) + 8x(t)) - J(x(t)). (2.1.14) 



24 Cbapter 2: Calculus of Variations and Optimal Control 

Expanding J(x(t) + 8x(t)) in a Taylor series, we get 

{)J 1 {)2 J 
jj.J = J(x(t)) + -{) 8x(t) + -, {) 2 (8x(t))2 + ... - J(x(t)) 

x 2. x 
{)J 1 {)2J 2 

= {)x 8x(t) + 2! {)x2 (8x(t)) + ... 

= 8 J + 82 J + ... , (2.1.15) 

where, 

{)J 
8J = {)x 8x(t) and (2.1.16) 

are called the first variation (or simply the variation) and the second 
variation of the functional J, respectively. The variation 8 J of a func­
tional J is the linear (or first order approximate) part (in 8x(t)) of the 
increment jj.J. Figure 2.2 shows the relation between increment and 
the first variation of a functional. 

J(x(t» 

J(x*(t)+Ox(t» . . . . . . . . . .. ... . ......... , 

. J(x*(t» ... .:. : J ~~ .. .1~. 
:.. ~ 

: ox(t): 

o x*(t) x*(t)+ Ox(t) x(t) 

Figure 2.2 Increment jj.J and the First Variation 8J of the 
Functional J 
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Example 2.6 

Given the functional 

it! 
J(x(t)) = [2x2(t) + 3x(t) + 4]dt, 

to 
(2.1.17) 

evaluate the variation of the functional. 

Solution: First, we form the increment and then extract the vari­
ation as the first order approximation. Thus 

~J ~ J(x(t) + 8x(t)) - J(x(t)), 

it! 
= [2(x(t) + 8x(t))2 + 3(x(t) + 8x(t)) + 4) 

to 

-(2x2(t) + 3x(t) + 4)] dt, 

it! 
= [4x(t)8x(t) + 2(8x(t))2 + 38x(t)] dt. 

to 
(2.1.18) 

Considering only the first order terms, we get the (first) variation 
as 

it! 
8J(x(t),8x(t)) = (4x(t) + 3)8x(t)dt. 

to 
(2.1.19) 

2.2 Optimum of a Function and a Functional 
We give some definitions for optimum or extremum (maximum or min­
imum) of a function and a functional [47, 46, 79]. The variation plays 
the same role in determining optimal value of a functional as the dif­
ferential does in finding extremal or optimal value of a function. 

DEFINITION 2.3 Optimum of a Function: A function f (t) is said 
to have a relative optimum at the point t* if there is a positive parameter E 

such that for all points t in a domain V that satisfy It - t* I < E, the increment 
of f(t) has the same sign (positive or negative). 

In other words, if 

~f = f(t) - f(t*) 2:: 0, (2.2.1) 
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Figure 2.3 (a) Minimum and (b) Maximum of a Function f (t) 

then, f(t*) is a relative local minimum. On the other hand, if 

b.f = f(t) - f(t*) ~ 0, (2.2.2) 

then, f (t*) is a relative local maximum. If the previous relations are 
valid for arbitrarily large E, then, f(t*) is said to have a global absolute 
optimum. Figure 2.3 illustrates the (a) minimum and (b) maximum of 
a function. 

It is well known that the necessary condition for optimum of a func­
tion is that the (first) differential vanishes, i.e., df = O. The sufficient 
condition 
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1. for minimum is that the second differential is positive, 
i.e., d2 f > 0, and 

2. for maximum is that the second differential is negative, 
i.e., d2 f < 0. 

If d2 f = 0, it corresponds to a stationary (or inflection) point. 

27 

DEFINITION 2.4 Optimum of a Functional: A functional J is 
said to have a relative optimum at x* if there is a positive E such that for all 
functions x in a domain n which satisfy Ix - x* I < E, the increment of J has 
the same sign. 

In other words, if 

!1J = J(x) - J(x*) ~ 0, (2.2.3) 

then J(x*) is a relative minimum. On the other hand, if 

!1J = J(x) - J(x*) ~ 0, (2.2.4) 

then, J(x*) is a relative maximum. If the above relations are satisfied 
for arbitrarily large E, then, J(x*) is a global absolute optimum. 

Analogous to finding extremum or optimal values for functions, in 
variational problems concerning functionals, the result is that the vari­
ation must be zero on, an optimal curve. Let us now state the result in 
the form of a theorem, known as fundamental theorem of the calculus 
of variations, the proof of which can be found in any book on calculus 
of variations [47, 46, 79]. 

THEOREM 2.1 
For x*(t) to be a candidate for an optimum, the (first) variation of J must 

be zero on x*(t), i.e., 6J(x*(t), 6x(t)) = ° for all admissible values of 6x(t). 
This is a necessary condition. As a sufficient condition for minimum, the 
second variation 62 J > 0, and for maximum 62 J < 0. 

2.3 The Basic Variational Problem 
2.3.1 Fixed-End Time and Fixed-End State System 

We address a fixed-end time and fixed-end state problem, where both 
the initial time and state and the final time and state are fixed or given 
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a priori. Let x(t) be a scalar function with continuous first derivatives 
and the vector case can be similarly dealt with. The problem is to find 
the optimal function x* (t) for which the functional 

it! 
J(x(t)) = V(x(t), x(t), t)dt 

to 
(2.3.1) 

has a relative optimum. It is assumed that the integrand V has con­
tinuous first and second partial derivatives w.r.t. all its arguments; to 
and t f are fixed (or given a priori) and the end points are fixed, i.e., 

x(t = to) = Xo; x(t = tf) = xf' (2.3.2) 

We already know from Theorem 2.1 that the necessary condition for 
an optimum is that the variation of a functional vanishes. Hence, in 
our attempt to find the optimum of x(t), we first define the increment 
for J, obtain its variation and finally apply the fundamental theorem 
of the calculus of variations (Theorem 2.1). 

Thus, the various steps involved in finding the optimal solution to 
the fixed-end time and fixed-end state system are first listed and then 
discussed in detail. 

• Step 1: Assumption of an Optimum 

• Step 2: Variations and Increment 

• Step 3: First Variation 

• Step 4: Fundamental Theorem 

• Step 5: Fundamental Lemma 

• Step 6: Euler-Lagrange Equation 

• Step 1: Assumption of an Optimum: Let us assume that x*(t) is 
the optimum attained for the function x(t). Take some admissible 
function xa(t) = x*(t) + 8x(t) close to x*(t), where 8x(t) is the 
variation of x*(t) as shown in Figure 2.4. The function xa(t) 
should also satisfy the boundary conditions (2.3.2) and hence it 
is necessary that 

(2.3.3) 
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x(t) 

xo ..... . 

o 

Figure 2.4 Fixed-End Time and Fixed-End State System 

• Step 2: Variations and Increment: Let us first define the incre­
ment as 

6.J(x*(t), 8x(t)) ~ J(x*(t) + 8x(t), x*(t) + 8x(t), t) 

-J(x*(t), x*(t), t) 

I
t! 

= V (x*(t) + 8x(t), x*(t) + 8x(t), t) dt 
to 

I
t! 

- V(x*(t), x*(t), t)dt. 
to 

(2.3.4) 

which by combining the integrals can be written as 

I
t! 

6.J(x*(t), 8x(t)) = [V (x*(t) + 8x(t), x*(t) + 8x(t), t) 
to 

- V(x* (t), x*(t), t)] dt. (2.3.5) 

where, 

x(t) = d:~t) and 8x(t) = :t {8x(t)} (2.3.6) 

Expanding V in the increment (2.3.5) in a Taylor series about 
the point x*(t) and x*(t), the increment 6.J becomes (note the 



30 Chapter 2: Calculus of Variations and Optimal Control 

cancelation of V(x*(t), x*(t), t)) 

~J = ~J(x*(t), 8x(t)) 

= l' [8V(X*(~~X*(t), t) 6x(t) + 8V(X*(~~ x*(t), t) 6x(t) 

~ {82
V( ... ) (8 ())2 8

2
V( ... ) (8· ( ))2 + 2! 8x2 x t + 8x2 X t + 

+ 2~:~~·) 6x (t)6x (t) } + .. -] dt. (2.3.7) 

Here, the partial derivatives are w.r.t. x(t) and x(t) at the opti­
mal condition (*) and * is omitted for simplicity . 

• Step 3: First Variation: Now, we obtain the variation by retain­
ing the terms that are linear in 8x(t) and 8x(t) as 

8J(x*(t),8x(t)) = it! [8V(X*(t), x*(t), t) 8x(t) 
to 8x 
8V(x*(t), x*(t), t)8· ( )] d + 8x x t t. (2.3.8) 

To express the relation for the first variation (2.3.8) entirely in 
terms containing 8x(t) (since 8x(t) is dependent on 8x(t)), we 
integrate by parts the term involving 8x(t) as (omitting the ar­
guments in V for simplicity) 

1:' (~~) * 6x(t)dt = 1:' (~~) * ! (6x(t))dt 

= 1:' (~~) * d(6x(t)), 

= [( ~~) * 6X(t{: 

_it! 8x(t)~ (8~) dt. 
to dt 8x * 

(2.3.9) 

In the above, we used the well-known integration formula J udv = 

uv - J vdu where u = 8V/8X and v = 8x(t)). Using (2.3.9), the 
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relation (2.3.8) for first variation becomes 

8J(x*(t),6x(t)) = {' (~:) * 6x(t)dt + [( ~~) * 6X(t)[ 

_ rtf !i (a~) 8x(t)dt, 
lto dt ax * 

= rtf [(av) _!i (a~) ]8x(t)dt 
lto ax * dt ax * 

+ [( ~~) * 6x(t)] I:: . (2.3.10) 

Using the relation (2.3.3) for boundary variations in (2.3.10), we 
get 

8J(x*(t),6x(t)) = 1:' [( ~:) * - :t (~~) .l6X(t)dt. (2.3.11) 

• Step 4: Fundamental Theorem: We now apply the fundamental 
theorem of the calculus of variations (Theorem 2.1), i.e., the vari­
ation of J must vanish for an optimum. That is, for the optimum 
x*(t) to exist, 8J(x*(t),8x(t)) = O. Thus the relation (2.3.11) 
becomes 

rtf [(av) _!i (a~) ]8X(t)dt = O. 
lto ax * dt ax * 

(2.3.12) 

Note that the function 8x(t) must be zero at to and tf, but for 
this, it is completely arbitrary . 

• Step 5: Fundamental Lemma: To simplify the condition ob­
tained in the equation (2.3.12), let us take advantage of the fol­
lowing lemma called the fundamental lemma of the calculus of 
variations [47, 46, 79]. 

LEMMA 2.1 

If for every function g(t) which is continuous, 

l
tf 

g(t)8x(t)dt = 0 
to 

(2.3.13) 
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where the function 8x(t) is continuous in the interval [to, tf]' then the 
function 9 ( t) must be zero everywhere throughout the interval [to, t f] . 
(see Figure 2.5.) 

Proof: We prove this by contradiction. Let us assume that g(t) is 
nonzero (positive or negative) during a short interval [ta, tb]. Next, let 
us select 8x(t), which is arbitrary, to be positive (or negative) through­
out the interval where 9 ( t) has a nonzero value. By this selection 
of 8x(t), the value of the integral in (2.3.13) will be nonzero. This 
contradicts our assumption that g( t) is non-zero during the interval. 
Thus g( t) must be identically zero everywhere during the entire inter­
val [to, tf] in (2.3.13). Hence the lemma. 

get) 

t 

8x(t) 

Figure 2.5 A Nonzero g(t) and an Arbitrary 8x(t) 

• Step 6: Euler-Lagrange Equation: Applying the previous lemma 
to (2.3.12), a necessary condition for x*(t) to be an optimal of 
the functional J given by (2.3.1) is 

(
av(x*(t),x*(t),t)) _ ~ (av(x*(t),.x*(t),t)) = 0 (2.3.14) 

ax * dt ax * 
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or in simplified notation omitting the arguments in V, 

(aV) _!i (aV) = 0 
ax * dt ax * 

(2.3.15) 

for all t E [to, tf]. This equation is called Euler equation, first 
published in 1741 [126]. 

A historical note is worthy of mention. 

Euler obtained the equation (2.3.14) in 1741 using an elab­
orate and cumbersome procedure. Lagrange studied Euler's 
results and wrote a letter to Euler in 1755 in which he ob­
tained the previous equation by a more elegant method of 
"variations" as described above. Euler recognized the sim-
plicity and generality of the method of Lagrange and intro­
duced the name calculus of variations. The all important 
fundamental equation (2.3.14) is now generally known as 
Euler-Lagrange (E.-L') equation after these two great math­
ematicians of the 18th century. Lagrange worked further 
on optimization and came up with the well-known Lagrange 
multiplier rule or method. 

2.3.2 Discussion on Euler-Lagrange Equation 

We provide some comments on the Euler-Lagrange equation [47,46]. 

1. The Euler-Lagrange equation (2.3.14) can be written in many 
different forms. Thus (2.3.14) becomes 

d 
V - - (V·) = 0 

x dt x 
(2.3.16) 

where, 

Vx = ~: = Vx(x*(t), ±*(t), t); Vi; = ~~ = Vi;(X*(t), x*(t), t). 

(2.3.17) 

Since V is a function of three arguments x*(t), x*(t), and t, and 
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that x*(t) and x*(t) are in turn functions of t, we get 

Combining (2.3.16) and (2.3.18), we get an alternate form for 
the EL equation as 

(2.3.19) 

2. The presence of -it and/or x*(t) in the EL equation (2.3.14) means 
that it is a differential equation. 

3. In the EL equation (2.3.14), the term aV(x*(~i:x*(t),t) is in general 
a function of x*(t), x*(t), and t. Thus when this function is 
differentiated w.r.t. t, x*(t) may be present. This means that the 
differential equation (2.3.14) is in general of second order. This is 
also evident from the alternate form (2.3.19) for the EL equation. 

4. There may also be terms involving products or powers of x* (t), 
x*(t), and x*(t), in which case, the differential equation becomes 
nonlinear. 

5. The explicit presence of t in the arguments indicates that the 
coefficients may be time-varying. 

6. The conditions at initial point t = to and final point t = t f leads 
to a boundary value problem. 

7. Thus, the Euler-Lagrange equation (2.3.14) is, in general, a non­
linear, time-varying, two-point boundary value, second order, or­
dinary differential equation. Thus, we often have a nonlinear 
two-point boundary value problem (TPBVP). The solution of the 
nonlinear TPBVP is quite a formidable task and often done us­
ing numerical techniques. This is the price we pay for demanding 
optimal performance! 
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8. Compliance with the Euler-Lagrange equation is only a necessary 
condition for the optimum. Optimal may sometimes not yield 
either a maximum or a minimum; just as inflection points where 
the derivative vanishes in differential calculus. However, if the 
Euler-Lagrange equation is not satisfied for any function, this 
indicates that the optimum does not exist for that functional. 

2.3.3 Different Cases for Euler-Lagrange Equation 

We now discuss various cases of the EL equation. 
Case 1: V is dependent of x(t), and t. That is, V = V(x(t), t). Then 
Vx = O. The Euler-Lagrange equation (2.3.16) becomes 

This leads us to 

d 
dt (Vx) = o. 

V
x
' = oV(x*(t), t) = C 

ox 

where, C is a constant of integration. 

(2.3.20) 

(2.3.21) 

Case 2: V is dependent of x(t) only. That is, V = V(x(t)). Then 
Vx = O. The Euler-Lagrange equation (2.3.16) becomes 

d 
dt (Vx) = 0 ~ Vx = C. (2.3.22) 

In general, the solution of either (2.3.21) or (2.3.22) becomes 

(2.3.23) 

This is simply an equation of a straight line. 
Case 3: V is dependent of x(t) and x(t). That is, V = V(x(t), x(t)). 
Then vtx = O. Using the other form of the Euler-Lagrange equation 
(2.3.19), we get 

Vx - Vxxx*(t) - Vxxx*(t) = O. (2.3.24) 

Multiplying the previous equation by x*(t), we have 

x*(t) [Vx - Vxxx*(t) - Vxxx*(t)] = o. (2.3.25) 

This can be rewritten as 

! (V - x*(t)Vx) = 0 ~ V - x*(t)Vx = C. (2.3.26) 
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The previous equation can be solved using any of the techniques such 
as, separation of variables. 
Case 4: V is dependent of x(t), and t, i.e., V = V(x(t), t). Then, 
Vi; = 0 and the Euler-Lagrange equation (2.3.16) becomes 

8V(x*(t), t) = 0 
ax . (2.3.27) 

The solution of this equation does not contain any arbitrary constants 
and therefore generally speaking does not satisfy the boundary con­
ditions x(to) and x(tf). Hence, in general, no solution exists for this 
variational problem. Only in rare cases, when the function x(t) satisfies 
the given boundary conditions x(to) and x(tf), it becomes an optimal 
function. 

Let us now illustrate the application of the EL equation with a very 
simple classic example of finding the shortest distance between two 
points. Often, we omit the * (which indicates an optimal or extremal 
value) during the working of a problem and attach the same to the final 
solution. 

Example 2.7 

Find the minimum length between any two points. 

Solution: It is well known that the solution to this problem is a 
straight line. However, we like to illustrate the application of Euler­
Lagrange equation for this simple case. Consider the arc between 
two points A and B as shown in Figure 2.6. Let ds be the small arc 
length, and dx and dt are the small rectangular coordinate values. 
Note that t is the independent variable representing distance and 
not time. Then, 

(2.3.28) 

Rewriting 

ds = VI + x2(t)dt, where x(t) = ~~. (2.3.29) 

N ow the total arc length S between two points x (t = to) and x (t = 
t f) is the performance index J to be minimized. Thus, 

S = J = J ds = rtf VI + x2 (t)dt = rtf V(x(t))dt (2.3.30) 
Jto Jto 
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x(t) 

xo ... 'A:: 

o 

Figure 2.6 Arc Length 

where, V(x(t)) = Jl + x2 (t). Note that V is a function of x(t) 
only. Applying the Euler-Lagrange equation (2.3.22) to the perfor­
mance index (2.3.30), we get 

x*(t) _ C 

VI + X*2(t) - . 

Solving this equation, we get the optimal solution as 

x*(t) = C1t + C2 . 

(2.3.31) 

(2.3.32) 

This is evidently an equation for a straight line and the constants 
C1 and C2 are evaluated from the given boundary conditions. For 
example, if x(O) = 1 and x(2) = 5, C1 = 2 and C2 = 1 the straight 
line is x*(t) = 2t + 1. 

Although the previous example is a simple one, 

1. it illustrates the formulation of a performance index from a given 
simple specification or a statement, and 

2. the solution is well known a priori so that we can easily verify 
the application of the Euler-Lagrange equation. 

In the previous example, we notice that the integrand V in the func­
tional (2.3.30), is a function of x(t) only. Next, we take an example, 
where, V is a function of x(t), x(t) and t. 
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Example 2.8 

Find the optimum of 

J = l [:i;2(t) - 2tX(t)] dt 

that satisfy the boundary (initial and final) conditions 

x(O) = 1 and x(2) = 5. 

(2.3.33) 

(2.3.34) 

Solution: In the EL equation (2.3.19), we first identify that V = 
x2(t) - 2tx(t). Then applying the EL equation (2.3.15) to the 
performance index (2.3.33) we get 

av _ ~ (av) = 0 ----+ -2t - ~ (2x(t)) = 0 ax dt ax dt 
----+ x(t) = t. 

Solving the previous simple differential equation, we have 

t 3 

x*(t) ="6 + CIt + C2 

(2.3.35) 

(2.3.36) 

where, C1 and C2 are constants of integration. Using the given 
boundary conditions (2.3.19) in (2.3.36), we have 

4 
x(O) = 1 ----+ C2 = 1, x(2) = 5 ----+ C1 = 3' (2.3.37) 

With these values for the constants, we finally have the optimal 
function as 

t 3 4 
x*(t) = "6 + "3 t + 1. (2.3.38) 

Another classical example in the calculus of variations is the brachis­
tochrone (from brachisto, the shortest, and chrones, time) problem and 
this problem is dealt with in almost all books on calculus of variations 
[126]. 

Further, note that we have considered here only the so-called fixed­
end point problem where both (initial and final) ends are fixed or given 
in advance. Other types of problems such as free-end point problems 
are not presented here but can be found in most of the books on the 
calculus of variations [79, 46, 81, 48]. However, these free-end point 
problems are better considered later in this chapter when we discuss 
the optimal control problem consisting of a performance index and a 
physical plant. 
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2.4 The Second Variation 
In the study of extrema of functionals, we have so far considered only 
the necessary condition for a functional to have a relative or weak ex­
tremum, i.e., the condition that the first variation vanish leading to 
the classic Euler-Lagrange equation. To establish the nature of opti­
mum (maximum or minimum), it is required to examine the second 
variation. In the relation (2.3.7) for the increment consider the terms 
corresponding to the second variation [120], 

8
2 
J = f :! [( ~~) . (8x(t))2 + (~:~) • (8X(t))2 

+ 2 (::;x) * 8X(t)8X(t)] dt. (2.4.1) 

Consider the last term in the previous equation and rewrite it in terms 
of 8x(t) only using integration by parts (f udv = uv - f vdu where, 

u = :;¥X8x(t) and v = 8x(t)). Then using 8x(to) = 8x(tf) = 0 for 
fixed-end conditions, we get 

82 J = ~ rtf [{ (82V) _!i ( 8
2V.) } (8x(t))2 

2 ltD 8x2 dt 8x8x 
* * 

+ (~:~). (8X(t))2] dt. (2.4.2) 

According to Theorem 2.1, the fundamental theorem of the calculus of 
variations, the sufficient condition for a minimum is 82 J > O. This, for 
arbitrary values of 8x(t) and 8x(t), means that 

(8
2V) d (82V) 

8x2 * - dt 8x8x * > 0, 
(2.4.3) 

(8
2V) 

8x2 * > O. (2.4.4) 

For maximum, the signs of the previous conditions are reversed. Al­
ternatively, we can rewrite the second variation (2.4.1) in matrix form 
as 

2 1 tf . 8x2 8x8± 8x(t) 

[ 
82V 82V] 

8 J = 210 [8x(t) 8x(t)] ::rx ~:'; * [8X(t) ] dt 

1 rtf . [8X(t)] = "2 ltD [8x(t) 8x(t)]II 8x(t) dt (2.4.5) 
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where, 

(2.4.6) 

If the matrix II in the previous equation is positive (negative) definite, 
we establish a minimum (maximum). In many cases since 8x(t) is 
arbitrary, the coefficient of (8x(t))2, i.e., 82V /8x2 determines the sign 
of 82 J. That is, the sign of second variation agrees with the sign of 
82V / 8x2. Thus, for minimization requirement 

(2.4.7) 

For maximization, the sign of the previous equation reverses. In the 
literature, this condition is called Legendre condition [126]. 

In 1786, Legendre obtained this result of deciding whether a 
given optimum is maximum or minimum by examining the 
second variation. The second variation technique was fur­
ther generalized by Jacobi in 1836 and hence this condition 
is usually called Legendre-Jacobi condition. 

Example 2.9 

Verify that the straight line represents the minimum distance be­
tween two points. 

Solution: This is an obvious solution, however, we illustrate the 
second variation. Earlier in Example 2.7, we have formulated a 
functional for the distance between two points as 

(2.4.8) 

and found that the optimum is a straight line x*(t) = Clt + C2. To 
satisfy the sufficiency condition (2.4.7), we find 

x*(t) 1 
3/2

. (2.4.9) 
[1+x*2(t)] 

Since x*(t) is a constant (+ve or -ve) , the previous equation satisfies 
the condition (2.4.7). Hence, the distance between two points as 
given by x*(t) (straight line) is minimum. 
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Next, we begin the second stage of optimal control. We consider op­
timization (or extremization) of a functional with a plant, which is 
considered as a constraint or a condition along with the functional. In 
other words, we address the extremization of a functional with some 
condition, which is in the form of a plant equation. The plant takes 
the form of state equation leading us to optimal control of dynamic 
systems. This section is motivated by [6, 79, 120, 108]. 

2.5 Extrema of Functions with Conditions 
We begin with an example of finding the extrema of a function under 
a condition (or constraint). We solve this example with two methods, 
first by direct method and then by Lagrange multiplier method. Let us 
note that we consider this simple example only to illustrate some basic 
concepts associated with conditional extremization [120]. 

Example 2.10 

A manufacturer wants to maximize the volume of the material 
stored in a circular tank subject to the condition that the mate­
rial used for the tank is limited (constant). Thus, for a constant 
thickness of the material, the manufacturer wants to minimize the 
volume of the material used and hence part of the cost for the tank. 

Solution: If a fixed metal thickness is assumed, this condition im­
plies that the cross-sectional area of the tank material is constant. 
Let d and h be the diameter and the height of the circular tank. 
Then the volume contained by the tank is 

V(d, h) = wd2h/4 (2.5.1) 

and the cross-sectional surface area (upper, lower and side) of the 
tank is 

A(d, h) = 2wd2 /4 + wdh = Ao. (2.5.2) 

Our intent is to maximize V(d, h) keeping A(d, h) = Ao, where Ao 
is a given constant. We discuss two methods: first one is called the 
Direct Method using simple calculus and the second one is called 
Lagrange Multiplier Method using the Lagrange multiplier method. 

1 Direct Method: In solving for the optimum value directly, we 
eliminate one of the variables, say h, from the volume relation 
(2.5.1) using the area relation (2.5.2). By doing so, the condition is 
embedded in the original function to be extremized. From (2.5.2), 

h 
= Ao - wd2/2 

7rd . (2.5.3) 
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Using the relation (2.5.3) for height in the relation (2.5.1) for vol­
ume 

(2.5.4) 

Now, to find the extrema of this simple calculus problem, we dif­
ferentiate (2.5.4) w.r.t. d and set it to zero to get 

~o _ ~7rd2 = O. (2.5.5) 

Solving, we get the optimal value of d as 

d* = J2Ao . 
37r 

(2.5.6) 

By demanding that as per the Definition 2.3 for optimum of a 
function, the second derivative of V w.r.t. d in (2.5.4) be neg­
ative for maximum, we can easily see that the positive value of 
the square root function corresponds to the maximum value of the 
function. Substituting the optimal value of the diameter (2.5.6) in 
the original cross-sectional area given by (2.5.2), and solving for 
the optimum h *, we get 

h* = J2AO
• 

37r 
(2.5.7) 

Thus, we see from (2.5.6) and (2.5.7) that the volume stored by a 
tank is maximized if the height of the tank is made equal to its 
diameter. 

2 Lagrange Multiplier Method: Now we solve the above prob­
lem by applying Lagrange multiplier method. We form a new func­
tion to be extremized by adjoining a given condition to the original 
function. The new adjoined function is extremized in the normal 
way by taking the partial derivatives w.r. t. all its variables, making 
them equal to zero, and solving for these variables which are ex­
tremals. Let the original volume relation (2.5.1) to be extremized 
be rewritten as 

f(d, h) = 7rd2h/4 

and the condition (2.5.2) to be satisfied as 

g(d, h) = 27rd2/4 + 7rdh - Ao = O. 

(2.5.8) 

(2.5.9) 

Then a new adjoint function £, (called Lagrangian) is formed as 

£'(d, h, -\) = f(d, h) + -\g(d, h) 

= 7rd2h/4 + -\(27rd2/4 + 7rdh - Ao) (2.5.10) 
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where, A, a parameter yet to be determined, is called the Lagrange 
multiplier. Now, since the Lagrangian C is a function of three 
optimal variables d, h, and A, we take the partial derivatives of 
£(d, h, A) w.r.t. each of the variables d, h and A and set them to 
zero. Thus, 

ac 
ad = 7rdh/2 + A(7rd + 7rh) = 0 

ac 
ah = 7rd

2
/4 + A(7rd) = 0 

ac 2 
aA = 27rd /4 + 7rdh - Ao = o. 

(2.5.11 ) 

(2.5.12) 

(2.5.13) 

Now, solving the previous three relations (2.5.11) to (2.5.13) for 
the three variables d*, h *, and A *, we get 

d* = J2A
O; h* = J2AO

; ,X* = -J Ao . 
37r 37r 247r 

(2.5.14) 

Once again, to maximize the volume of a cylindrical tank, we need 
to have the height (h *) equal to the diameter (d*) of the tank. Note 
that we need to take the negative value of the square root function 
for A in (2.5.14) in order to satisfy the physical requirement that 
the diameter d obtained from (2.5.12) as 

d = -4A (2.5.15) 

is a positive value. 

Now, we generalize the previous two methods. 

2.5.1 Direct Method 

N ow we generalize the preceding method of elimination using differen­
tial calculus. Consider the extrema of a function f(XI, X2) with two 
interdependent variables Xl and X2, subject to the condition 

(2.5.16) 

As a necessary condition for extrema, we have 

af af 
df = -a dXI + -a dX2 = o. 

Xl X2 
(2.5.17) 

However, since dXI and dX2 are not arbitrary, but related by the con­
dition 

ag ag 
dg = -a dXI + -a dX2 = 0, 

Xl X2 
(2.5.18) 
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it is not possible to conclude as in the case of extremization of functions 
without conditions that 

and (2.5.19) 

in the necessary condition (2.5.17). This is easily seen, since if the 
set of extrema conditions (2.5.19) is solved for optimal values xi and 
x2' there is no guarantee that these optimal values, would, in general 
satisfy the given condition (2.5.16). 

In order to find optimal values that satisfy both the condition (2.5.16) 
and that of the extrema conditions (2.5.17), we arbitrarily choose one 
of the variables, say Xl, as the independent variable. Then X2 becomes 
a dependent variable as per the condition (2.5.16). Now, assuming that 
8g/8x2 i- 0, (2.5.18) becomes 

{
8g/ 8XI} 

dX2 = - 8g/8x 2 dXI (2.5.20) 

and using (2.5.20) in the necessary condition (2.5.17), we have 

(2.5.21) 

As we have chosen dXI to be the independent, we now can consider it 
to be arbitrary, and conclude that in order to satisfy (2.5.21), we have 
the coefficient of dXI to be zero. That is 

(%:J (%:J -(%:J (%:J = o. (2.5.22) 

Now, the relation (2.5.22) and the condition (2.5.16) are solved simul­
taneously for the optimal solutions xi and x2' Equation (2.5.22) can 
be rewritten as 

=0. (2.5.23) 

This is also, as we know, the Jacobian of f and 9 w.r.t. Xl and X2. 
This method of elimination of the dependent variables is quite tedious 
for higher order problems. 
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2.5.2 Lagrange Multiplier Method 

We now generalize the second method of solving the same problem of 
extrema of functions with conditions. Consider again the extrema of 
the function f(Xl, X2) subject to the condition 

(2.5.24) 

In this method, we form an augmented Lagrangian function 

(2.5.25) 

where, A, a parameter (multiplier) yet to be determined, is the La­
grange multiplier. Let us note that using the given condition (2.5.24) 
in the Lagrangian (2.5.25), we have 

(2.5.26) 

and therefore a necessary condition for extrema is that 

df = d£ = O. (2.5.27) 

Accepting the idea that the Lagrangian (2.5.25) is a better represen­
tation of the entire problem than the equation (2.5.26) in finding the 
extrema, we have from the Lagrangian relation (2.5.25) 

d£ = df + Adg = O. (2.5.28) 

Using (2.5.17) and (2.5.18) in (2.5.28), and rearranging 

[ 
8 f 8g 1 [ 8 f 89 1 
8Xl + A 8Xl dXl + 8X2 + A 8X2 dX2 = O. (2.5.29) 

Now dXl and dX2 are both not independent and hence cannot immedi­
ately conclude that each of the coefficients of dXl and dX2 in (2.5.29) 
must be zero. Let us choose dXl to be independent differential and then 
dX2 becomes a dependent differential as per (2.5.18). Further, let us 
choose the multiplier A, which has been introduced by us and is at our 
disposal, to make one of the coefficients of dXl or dX2 in (2.5.29) zero. 
For example, let A take on the value A * that makes the coefficient of 
the dependent differential dX2 equal zero, that is 

(2.5.30) 
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With (2.5.30), the equation (2.5.29) reduces to 

(2.5.31) 

Since, dXl is the independent differential, it can be varied arbitrarily. 
Hence, for (2.5.31) to be satisfied for all dxl, the coefficient of dXl must 
be zero. That is 

oj +A* og =0. 
OXl OXl 

(2.5.32) 

Now from (2.5.25), note that 

(2.5.33) 

yields the constraint relation (2.5.16). Combining the results from 
(2.5.32), (2.5.30), and (2.5.33), we have 

o£ = oj + A* 8g = 0 
OXl OXl OXl 

(2.5.34) 

o£ = oj + A* og = 0 
OX2 OX2 8X2 

(2.5.35) 

o£ (* *) OA = 9 xl,x2 = o. (2.5.36) 

The preceding three equations are to be solved simultaneously to obtain 
xi, x2' and A*. By eliminating A* between (2.5.34) and (2.5.35) 

(::J (::J -(::J (::J = 0 (2.5.37) 

which is the same condition as (2.5.22) obtained by the direct method, 
thus indicating that we have the same result by Lagrange multiplier 
method. 

Let us note that the necessary conditions (2.5.34) and (2.5.35) are 
just the same equations which would have been obtained from consid­
ering the differentials dXl and dX2 as though they were independent 
in (2.5.29). Introduction of the multiplier A has allowed us to treat 
all the variables in the augmented function £(Xl' X2, A) as though each 
variable is independent. Thus, the multiplier A has acted like a catalyst, 
appearing in the intermediate stage only. 



2.5 Extrema of Functions with Conditions 47 

Summarizing, the extrema of a function f(xl, X2) subject to the con­
dition (or constraint) g(XI' X2) = 0 is equivalent to extrema of a single 
augmented function £(XI, X2, A) = f(xl, X2) + Ag(xl, X2) as though 
Xl, X2 and A are independent. We now generalize this result. 

THEOREM 2.2 
Consider the extrema of a continuous, real-valued function f(x) 
f(xl, X2, ... ,xn ) subject to the conditions 

gl(X) = gl(XI,X2,··· ,xn ) = 0 

g2(X) = g2(XI, X2, ... ,xn ) = 0 

(2.5.38) 

where, f and g have continuous partial derivatives, and m < n. Let 
AI, A2, ... ,Am be the Lagrange multipliers corresponding to m conditions, 
such that the augmented Lagrangian function is formed as 

£(x, A) = f(x) + A'g(X), (2.5.39) 

where, A' is the transpose of A. Then, the optimal values x* and A * are the 
solutions of the following n + m equations 

a £ = a f + A' ag = 0 
ax ax ax (2.5.40) 

a£ 
aA = g(x) = o. (2.5.41 ) 

Features of Lagrange Multiplier: The Lagrange multiplier method 
is a powerful one in finding the extrema of functions subject to condi­
tions. It has the following attractive features: 

1. The importance of the Lagrange multiplier technique lies on the 
fact that the problem of determining the extrema of the function 
f(x) subject to the conditions g(x) = 0 is embedded within the 
simple problem of determining the extrema of the simple aug­
mented function £(x, A) = f(x) + A'g(X). 

2. Introduction of Lagrange multiplier allows us to treat all the vari­
ables x and A in the augmented function £(x, A) as though each 
were independent. 
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3. The multiplier A acts like a catalyst in the sense that it is intro­
duced to perform a certain duty as given by item 2. 

4. The increased dimensionality (n + m) which is characteristic of 
the Lagrange multiplier method, is generally more than compen­
sated by the relative simplicity and systematic procedure of the 
technique. 

The multiplier method was given by Lagrange in 1788. 

2.6 Extrema of Functionals with Conditions 
In this section, we extend our ideas to functionals based on those de­
veloped in the last section for functions. First, we consider a functional 
with two variables, use the results of the previous section on the Co V, 
derive the necessary conditions and then extend the same for a general 
nth order vector case. Consider the extremization of the performance 
index in the form of a functional 

subject to the condition (plant or system equation) 

with fixed-end-point conditions 

XI(tO)=XlO; 

XI(tj) = Xlj; 

X2(tO) = X20 

X2(tj) = X2j' 

Now we address this problem under the following steps. 

• Step 1: Lagrangian 

• Step 2: Variations and Increment 

• Step 3: First Variation 

• Step 4: Fundamental Theorem 

• Step 5: Fundamental Lemma 

• Step 6: Euler-Lagrange Equation 

(2.6.2) 

(2.6.3) 
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• Step 1: Lagrangian: We form an augmented functional 

(2.6.4) 

where, A(t) is the Lagrange multiplier, and the Lagrangian £, is 
defined as 

£, = £'(Xl(t),X2(t),Xl(t),X2(t),A(t),t) 

= V(Xl(t), X2(t), Xl(t), X2(t), t) 

+A(t)g(Xl(t), X2(t), Xl(t), X2(t)) (2.6.5) 

Note from the performance index (2.6.1) and the augmented per­
formance index (2.6.4) that Ja = J if the condition (2.6.2) is 
satisfied for any A(t). 

• Step 2: Variations and Increment: Next, assume optimal values 
and then consider the variations and increment as 

Xi(t) = xi(t) + 8Xi(t), Xi(t) = xi(t) + 8Xi(t), i = 1,2 

~Ja = Ja(xi(t) + 8Xi(t), xi(t) + 8Xi(t), t) - Ja(xi(t), xi(t), t), 

(2.6.6) 

for i = 1,2. 

• Step 3: First Variation: Then using the Taylor series expansion 
and retaining linear terms only, the first variation of the func­
tional J a becomes 

(2.6.7) 

As before in the section on Co V, we rewrite the terms containing 
8Xl(t) and 8X2(t) in terms of those containing 8Xl(t) and 8X2(t) 



50 Chapter 2: Calculus of Variations and Optimal Control 

only (using integration by parts, J udv = uv - J vdu). Thus 

Using the above, we have the first variation (2.6.7) as 

Since this is a fixed-final time and fixed-final state problem as 
given by (2.6.3), no variations are allowed at the final point. This 
means 

(2.6.10) 

Using the boundary variations (2.6.10) in the augmented first 
variation (2.6.9), we have 

Ma= 1:1 [(:~). -! (:~)J8Xl(t)dt 
+ {I [(:~). _ ! (:~) J 8X2(t)dt. (2.6.11) 

• Step 4: Fundamental Theorem: Now, we proceed as follows. 

1. We invoke the fundamental theorem of the calculus of vari­
ations (Theorem 2.1) and make the first variation (2.6.11) 
equal to zero. 
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2. Remembering that both 8Xl(t) and 8X2(t) are not indepen­
dent, because Xl(t) and X2(t) are related by the condition 
(2.6.2), we choose 8X2(t) as the independent variation and 
8Xl(t) as the dependent variation. 

3. Let us choose the multiplier A*(t) which is arbitrarily intro­
duced and is at our disposal, in such a way that the coef­
ficient of the dependent variation 8Xl(t) in (2.6.11) vanish. 
That is 

( 8C) _ ~ ( 8C) = 0 
8Xl * dt 8Xl * . 

(2.6.12) 

With these choices, the first variation (2.6.11) becomes 

f [(:~). -! (:~) J 8X2(t)dt = O. (2.6.13) 

• Step 5: Fundamental Lemma: Using the fundamental lemma of 
CoY (Lemma 2.1) and noting that since 8X2(t) has been chosen 
to be independent variation and hence arbitrary, the only way 
(2.6.13) can be satisfied, in general, is that the coefficient of 8Xl(t) 
also vanish. That is 

( 8C) _ ~ ( 8C) = 0 
8X2 * dt 8X2 * . 

(2.6.14) 

Also, from the Lagrangian(2.6.5) note that 

(8C) = 0 
8A * 

(2.6.15) 

yields the constraint relation (2.6.2) . 

• Step 6: Euler-Lagrange Equation: Combining the various rela­
tions (2.6.12), (2.6.14), and (2.6.15), the necessary conditions for 
extremization of the functional (2.6.1) subject to the condition 
(2.6.2) (according to Euler-Lagrange equation) are 

( 8C) _ ~ ( 8C) = 0 
8Xl * dt 8Xl * 

(2.6.16) 

( 8C) _ ~ ( 8C) = 0 
8X2 * dt 8X2 * 

(2.6.17) 

(8C) _ ~ (8C) = 0 
8A * dt 8.\ * . 

(2.6.18) 



52 Chapter 2: Calculus of Variations and Optimal Control 

Let us note that these conditions are just the ones that would have 
been obtained from the Lagrangian (2.6.5), as if both 8Xl(t) and 
8X2(t) had been independent. Also, in (2.6.18), the Lagrangian £ 
is independent of ~(t) and hence the condition (2.6.18) is really 
the given plant equation (2.6.2). 

Thus, the introduction of the Lagrange multiplier A( t) has en­
abled us to treat the variables Xl(t) and X2(t) as though they 
were independent, in spite of the fact that they are related by the 
condition (2.6.2). The solution of the two, second-order differ­
ential equations (2.6.16) and (2.6.17) and the condition relation 
(2.6.2) or (2.6.18) along with the boundary conditions (2.6.3) give 
the optimal solutions xi(t), x2(t), and A*(t). 

Now, we generalize the preceding procedure for an nth order system. 
Consider the extremization of a functional 

it! 
J = V(x(t), x(t), t)dt 

to 
(2.6.19) 

where, x(t) is an nth order state vector, subject to the plant equation 
( condition) 

gi(X(t), x(t), t) = 0; i = 1,2, ... ,m (2.6.20) 

and boundary conditions, x(O) and x(tf). We form an augmented 
functional 

it! 
Ja = £(x(t), x(t), A(t), t)dt 

to 
(2.6.21) 

where, the Lagrangian £ is given by 

I£(x(t), x(t), A(t), t) = V(x(t), x(t), t) + A'(t)gi(X(t), x(t), t) I (2.6.22) 

and the Lagrange multiplier A(t) = [Al(t), A2(t), ... , Am(t)]'. We now 
apply the Euler-Lagrange equation on Ja to yield 

(8£) _ ~ (8£) = 0 
8x * dt 8x * ' 

(2.6.23) 

( 8£) d (8£) . ~ * - di 8I * = 0 ~ 9i(X(t), x(t), t) = o. (2.6.24) 
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Note that from (2.6.22), the Lagrangian £ is independent of ~(t) and 
hence the Euler-Lagrange equation (2.6.24) is nothing but the given 
relation regarding the plant or the system (2.6.20). Thus, we solve 
the Euler-Lagrange equation (2.6.23) along with the given boundary 
conditions. Let us now illustrate the preceding method by a simple 
example. 

Example 2.11 

Minimize the performance index 

(2.6.25) 

with boundary conditions 

x(O) = 1; x(l) = 0 (2.6.26) 

subject to the condition (plant equation) 

x(t) = -x(t) + u(t). (2.6.27) 

Solution: Let us solve this problem by the two methods, i.e., the 
direct method and the Lagrange multiplier method. 

1 Direct Method: Here, we eliminate u(t) between the perfor­
mance index (2.6.25) and the plant (2.6.27) to get the functional 
as 

J = t [x2(t) + (x(t) + x(t))2]dt 

= t [2x2(t) + x2(t) + 2x(t)x(t)]dt. (2.6.28) 

Now, we notice that the functional (2.6.28) absorbed the condition 
(2.6.27) within itself, and we need to consider it as a straight for­
ward extremization of a functional as given earlier. Thus, applying 
the Euler-Lagrange equation 

(OV) _ ~ (OV) = 0 
ax * dt ax * 

(2.6.29) 

to the functional (2.6.28), where, 

(2.6.30) 
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we get 

4x*(t) + 2x*(t) - :t (2x*(t) + 2x*(t)) = O. (2.6.31) 

Simplifying the above 

x*(t) - 2x*(t) = 0 (2.6.32) 

the solution (see later for use of MATLAB©) of which gives the 
optimal as 

(2.6.33) 

where, the constants C1 and C2, evaluated using the given bound­
ary conditions (2.6.26), are found to be 

(2.6.34) 

Finally, knowing the optimal x* ( t ), the optimal control u * ( t ) is 
found from the plant (2.6.27) to be 

u*(t) = x*(t) + x*(t) 

= C1 (1 - V2)e-V2t + C2 (1 + V2)eV2t . (2.6.35) 

Although the method appears to be simple, let us note that it is 
not always possible to eliminate u(t) from (2.6.25) and (2.6.27) 
especially for higher-order systems. 

2 Lagrange Multiplier Method: Here, we use the ideas devel­
oped in the previous section on the extremization of functions with 
conditions. Consider the optimization of the functional (2.6.25) 
with the boundary conditions (2.6.26) under the condition describ­
ing the plant (2.6.27). First we rewrite the condition (2.6.27) as 

g(x(t), x(t), u(t)) = x(t) + x(t) - u(t) = o. (2.6.36) 

Now, we form an augmented functional as 

J = l [x2(t) + u2(t) + A(t){X(t) + x(t) - u(t)} 1 dt 

= l C(x(t), x(t), u(t), A(t))dt (2.6.37) 

where, A(t) is the Lagrange multiplier, and 

C(x(t), x(t), u(t), A(t)) = x2(t) + u2(t) 
+A(t) {x(t) + x(t) - u(t)} (2.6.38) 
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is the Lagrangian. Now, we apply the Euler-Lagrange equation to 
the previous Lagrangian to get 

(~~) * - :t (~~) * = 0 -----> 2x*(t) + ). *(t) - ~ *(t) = 0 (2.6.39) 

(~~) * - :t (~) * = 0 -----> 2u*(t) - ).*(t) = 0 (2.6.40) 

(~~) * - :t (!f) * = 0 -----> x*(t) + x*(t) - u*(t) = 0 (2.6.41) 

and solve for optimal x*(t), u*(t), and A*(t). We get first from 
(2.6.40) and (2.6.41) 

A*(t) = 2u*(t) = 2(x*(t) + x*(t)). (2.6.42) 

Using the equation (2.6.42) in (2.6.39) 

2x*(t) + 2(x*(t) + x*(t)) - 2(x*(t) + x*(t)) = O. (2.6.43) 

Solving the previous equation, we get 

x*(t) - 2x*(t) = 0 -----+ x*(t) = C1e-v'2t + C2ev'2t. (2.6.44) 

Once we know x*(t), we get A*(t) and hence u*(t) from (2.6.42) as 

u* (t) = i;* (t) + x* (t) 

= C1(1 - V2)e-v'2t + C2(1 + V2)ev'2t. (2.6.45) 

Thus, we get the same results as in direct method. The constants 
C1 and C2, evaluated using the boundary conditions (2.6.26) are 
the same as given in (2.6.34). 

The solution for the set of differential equations {2.6.32} with 
the boundary conditions (g. 6. 26) for Example 2.11 using Symbolic 
Toolbox of the MATLAIi9, Version 6, is shown below. 
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******************************************************** 
x=dsolve('D2x-2*x=O','x(O)=1,x(1)=O') 

x = 

-(exp(2A(1/2))A2+1)/(exp(2 A(1/2))A2-1)*sinh(2 A(1/2)*t)+ 
cosh(2A(1/2)*t) 

1/2 2 
(exp(2 ) 

1/2 
+ 1) sinh(2 t) 1/2 

- ----------------------------- + cosh(2 t) 

u = 

1/2 2 
exp(2 ) - 1 

-(exp(2A(1/2))A2+1)/(exp(2A(1/2))A2-1)*cosh(2A(1/2)*t)*2A(1/2)+ 
sinh(2A(1/2)*t)*2A(1/2)-(exp(2A(1/2))A2+1)/(exp(2A(1/2))A2_ 
1)*sinh(2A(1/2)*t)+cosh(2A(1/2)*t) 

1/2 2 
(exp(2 ) 

1/2 1/2 
+ 1) cosh(2 t) 2 

1/2 2 
exp(2 ) - 1 

1/2 

1/2 1/2 
+ sinh(2 t) 2 

1/2 2 
(exp(2 ) + 1) sinh(2 t) 1/2 

- ----------------------------- + cosh(2 t) 

1/2 2 
exp(2 ) - 1 

********************************************************* 

It is easy to see that the previous solution for optimal x*(t) is the 
same as given in (2.6.33) and (2.6.34). 

Let us note once again that the Lagrange multiplier ..\(t) helped us to 
treat the augmented functional (2.6.38) as if it contained independent 
variables x(t) and u(t), although they are dependent as per the plant 
equation (2.6.36). 
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2.7 Variational Approach to Optimal Control 
Systems 

In this section, we approach the optimal control system by variational 
techniques, and in the process introduce the Hamiltonian function, 
which was used by Pontryagin and his associates to develop the fa­
mous Minimum Principle [109]. 

2.7.1 Terminal Cost Problem 

Here we consider the optimal control system where the performance 
index is of general form containing a final (terminal) cost function in 
addition to the integral cost function. Such an optimal control problem 
is called the Bolza problem. Consider the plant as 

x(t) = f(x(t), u(t), t), (2.7.1) 

the performance index as 

itf 
J(u(t)) = S(x(tf), tf) + V(x(t), u(t), t)dt 

to 
(2.7.2) 

and given boundary conditions as 

x(to) = xo; x( t f) is free and t f is free (2.7.3) 

where, x(t) and u(t) are n- and r- dimensional state and control vectors 
respectively. This problem of Bolza is the one with the most general 
form of the performance index. 

The Lagrange problem was first discussed in 1762, Mayer 
considered his problem in 1878, and the problem of Bolza 
was formulated in 1913. 

Before we begin illustrating the Pontryagin procedure for this problem, 
let us note that 

rtf dS(:(t) , t) dt = S(x(t), t)I~~ = S(x(tf), tf) - S(x(to), to). (2.7.4) 
lto t 

Using the equation (2.7.4) in the original performance index (2.7.2), we 
get 

J2(U(t» = 1:' [V(x(t), u(t), t) + ~~] dt 

= rf 
V(x(t), u(t), t)dt + S(x(tf), tf) - S(x(to), to). (2.7.5) 

lto 
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Since S(x(to), to) is a fixed quantity, the optimization of the original 
performance index J in (2.7.2) is equivalent to that of the performance 
index J2 in (2.7.5). However, the optimal cost given by (2.7.2) is dif­
ferent from the optimal cost (2.7.5). Here, we are interested in finding 
the optimal control only. Once the optimal control is determined, the 
optimal cost is found using the original performance index J in (2.7.2) 
and not J2 in (2.7.5). Also note that 

d[S(x(t), t)] = (as)' . () as 
dt ax x t + at' (2.7.6) 

We now illustrate the procedure in the following steps. Also, we first 
introduce the Lagrangian and then, a little later, introduce the Hamil­
tonian. Let us first list the various steps and then describe the same in 
detail. 

• Step 1: Assumption of Optimal Conditions 

• Step 2: Variations of Control and State Vectors 

• Step 3: Lagrange Multiplier 

• Step 4: Lagrangian 

• Step 5: First Variation 

• Step 6: Condition for Extrema 

• Step 7 : Hamiltonian 

• Step 1: Assumptions of Optimal Conditions: We assume opti­
mum values x*(t) and u*(t) for state and control, respectively. 
Then 

J(u*(t)) = 1:1 
[V(x*(t), u*(t), t) + dS(x;?), t)] dt 

ic*(t) = f(x*(t), u*(t), t). (2.7.7) 

• Step 2: Variations of Controls and States: We consider the 
variations (perturbations) in control and state vectors as (see 
Figure 2.7) 

x(t) = x*(t) + 8x(t); u(t) = u*(t) + 8u(t). (2.7.8) 
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x(t) 

x*(t)+ ox(t) 

~ __ .......... : ...... : ... ~ ...... T .. 

t 

Figure 2.7 Free-Final Time and Free-Final State System 

Then, the state equation (2.7.1) and the performance index (2.7.5) ': 
become 

x*(t) + 6x(t) = f(x*(t) + 6x(t), u*(t) + 6u(t), t) 

[tf+
6t

f [ dS] J(u(t)) = ito V(x*(t) + 6x(t), u*(t) + 6u(t), t) + dt dt 

(2.7.9) 

• Step 3: Lagrange Multiplier: Introducing the Lagrange multi­
plier vector .x(t) (also called costate vector) and using (2.7.6), 
we introduce the augmented performance index at the optimal 
condition as 

[4 (8S)' (8S) Ja(u*(t)) = lto [V(x*(t), u*(t), t) + 8x * x*(t) + 8t * 

+.x'(t) {f(x*(t), u*(t), t) - x*(t)}]dt (2.7.10) 
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and at any other (perturbed) condition as 

l
tf+8tf 

Ja(u(t)) = [V(x*(t) + 8x(t), u*(t) + 8u(t), t) 
to 

(8S)' (8S) + ax * [x*(t) + 8x(t)] + at * 

+A'(t) [f(x*(t) + 8x(t), u*(t) + 8u(t), t) 

- {x*(t) + 8x(t)}]]dt. (2.7.11) 

• Step 4: Lagrangian: Let us define the Lagrangian function at 
optimal condition as 

£ = £(x*(t), x*(t), u*(t), A(t), t) 

= V(x*(t), u*(t),t) + (~:)~ x*(t) + c;: 
+A'(t) {f(x*(t), u*(t), t) - x*(t)} (2.7.12) 

and at any other condition as 

£8 = £8(x*(t) +8x(t),x*(t) +8x(t),u*(t) +8U(t),A(t),t) 

= V(x*(t) + 8x(t), u*(t) + 8u(t), t) 

+ (:) ~ [x*(t) + 8x(t)] + (c;:) * 
+A'(t) [f(x*(t) + 8x(t), u*(t) + 8u(t), t) 

- {x*(t) + 8x(t)}] . (2.7.13) 

With these, the augmented performance index at the optimal and 
any other condition becomes 
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Using mean-value theorem and Taylor series, and retaining the 
linear terms only, we have 

(2.7.15) 

• Step 5: First Variation: Defining increment fl.J, using Taylor 
series expansion, extracting the first variation 8 J by retaining 
only the first order terms, we get the first variation as 

~J = Ja(u(t)) - Ja(u*(t)) 

it' 
= (£6 - £)dt + £It 8tf 

to I 

{t I { (a £ ) I (a £) I (a £ ) I } 
8J = ito ax * 8x(t) + ax * 8x(t) + au * 8u(t) dt 

+ £It, 8tf. (2.7.16) 

Considering the 8x(t) term in the first variation (2.7.16) and in­
tegrating by parts (using J udv = uv - J vdu), 

f (~): 6x(t)dt = {' (~;): :t (6x(t» dt 

= [(~»X(t)JC 
- {' [:t (~) J 6x(t)dt. (2.7.17) 
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Also note that since x(to) is specified, 8x(to) = O. Thus, using 
(2.7.17) the first variation 8J in (2.7.16) becomes 

oj = 1:' [(~). -:t (~) J ox(t)dt 

+ f (~)~ ou(t)dt 

+ Cit! ot, + [(~»X(t)] L (2.7.18) 

• Step 6: Condition for Extrema: For extrema of the functional J, 
the first variation 8 J should vanish according to the fundamental 
theorem (Theorem 2.1) of the CoV. Also, in a typical control 
system such as (2.7.1), we note that 8u(t) is the independent 
control variation and 8x(t) is the dependent state variation. First, 
we choose A(t) = A*(t) which is at our disposal and hence £* such 
that the coefficient of the dependent variation 8x(t) in (2.7.18) be 
zero. Then, we have the Euler-Lagrange equation 

(8£) _!i (8£) = 0 
8x * dt 8x * 

(2.7.19) 

where the partials are evaluated at the optimal (*) condition. 
Next, since the independent control variation 8u(t) is arbitrary, 
the coefficient of the control variation 8u(t) in (2.7.18) should be 
set to zero. That is 

(8£) = O. 
8u * 

(2.7.20) 

Finally, the first variation (2.7.18) reduces to 

(2.7.21) 

Let us note that the condition (or plant) equation (2.7.1) can be 
written in terms of the Lagrangian (2.7.12) as 

(8£) = O. 
8A * 

(2.7.22) 
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Figure 2.8 Final-Point Condition with a Moving Boundary B(t) 

In order to convert the expression containing 8x(t) in (2.7.21) 
into an expression containing 8xf (see Figure 2.8), we note that 
the slope of x*(t) + 8x(t) at tf is aI?proximated as 

(2.7.23) 

which is rewritten as 

8Xf = 8x(tf) + {x*(t) + 8x(t)} 8tf (2.7.24) 

and retaining only the linear (in 8) terms in the relation (2.7.24), 
we have 

(2.7.25) 

Using (2.7.25) in the boundary condition (2.7.21), we have the 
general boundary condition in terms of the Lagrangian as 

(2.7.26) 

• Step 7: Hamiltonian: We define the Hamiltonian 1l* (also called 
the Pontryagin 1l function) at the optimal condition as 

11l* = V(x*(t), u*(t), t) + A*' (t)f(x*(t), u*(t), t), I (2.7.27) 
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where, 

'H* = 'H* (x* (t), u* (t), A * (t), t). 

Then from (2.7.12) the Lagrangian £* in terms of the Hamiltonian 
'H* becomes 

£* = £*(x*(t), x*(t), u*(t), A*(t), t) 

= 'H*(x*(t), u*(t), A*(t), t) 

+ (~:) ~ x*(t) + (~~) * - >.*' (t)x*(t). (2.7.28) 

Using (2.7.28) in (2.7.20), (2.7.19), and (2.7.22) and noting that 
the terminal cost function S = S (x( t), t), we have the control, 
state and costate equations, respectively expressed in terms of 
the Hamiltonian. Thus, for the optimal control u*(t), the relation 
(2.7.20) becomes 

(2.7.29) 

for the optimal state x* ( t), the relation (2.7.19) becomes 

(8£) _ ~ (8£*) = 0 ~ 8x* dt 8x* 
(81t) (828)' (828) d {(88)' } - + - x*(t)+ - -- - -A*(t) =O~ 8x * &2 8x8t dt 8x * 

* * 

(81t) (828)' ( 828) [(828)' ( 828) . * 1 8x * + 8x2 * x*(t) + 8x8t * - 8x2 * x*(t) + 8x8t * - A (t) = 0 
leading to 

( 8'H) = -'\*(t) 
ax * 

(2.7.30) 

and for the costate A * ( t), 

(8£) = 0 -----+ (8'H) = X*(t). 
8A * 8A * 

(2.7.31) 

Looking at the similar structure of the relation (2.7.30) for the 
optimal costate A*(t) and (2.7.31) for the optimal state x*(t) it 
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is clear why .x(t) is called the costate vector. Finally, using the 
relation (2.7.28), the boundary condition (2.7.26) at the optimal 
condition reduces to 

(2.7.32) 

This is the general boundary condition for free-end point system 
in terms of the Hamiltonian. 

2. 7.2 Different Types of Systems 

We now obtain different cases depending on the statement of the prob­
lem regarding the final time tf and the final state x(tf) (see Figure 2.9). 

• Type (a): Fixed-Final Time and Fixed-Final State System: Here, 
since tf and x(tf) are fixed or specified (Figure 2.9(a», both 8tf 
and 8xf are zero in the general boundary condition (2.7.32), and 
there is no extra boundary condition to be used other than those 
given in the problem formulation. 

• Type (b): Free-Final Time and Fix ed-Final State System: Since 
tf is free or not specified in advance, 8tf is arbitrary, and since 
X(tf) is fixed or specified, 8xf is zero as shown in Figure 2.9(b). 
Then, the coefficient of the arbitrary 8t f in the general boundary 
condition (2.7.32) is zero resulting in 

(2.7.33) 

• Type (c): Fixed-Final Time and Free-Final State System: Here 
tf is specified and x(tf) is free (see Figure 2.9(c». Then 8tf is 
zero and 8x f is arbitrary, which in turn means that the coefficient 
of oXf in the general boundary condition (2.7.32) is zero. That 
is 

( as _ -x*(t») = 0 ----+ -X*(tf) = (as) 
ax *tfax *tf 

(2.7.34) 
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Figure 2.9 Different Types of Systems: (a) Fixed-Final Time and 
Fixed-Final State System, (b) Free-Final Time and Fixed-Final State 

System, (c) Fixed-Final Time and Free-Final State System, (d) 
Free-Final Time and Free-Final State System 
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• Type (d): Free-Final Time and Dependent Free-Final State Sys­
tem: If t f and x( t f) are related such that x( t f) lies on a moving 
curve 8(t) as shown in Figure 2.8, then 

(2.7.35) 

Using (2.7.35), the boundary condition (2.7.32) for the optimal 
condition becomes 

Since t f is free, 8t f is arbitrary and hence the coefficient of 8t f 
in (2.7.36) is zero. That is 

• Type (e): Free-Final Time and Independent Free-Final State: 
If t f and x( t f) are not related, then 8t f and 8x f are unrelated, 
and the boundary condition (2.7.32) at the optimal condition 
becomes 

(2.7.38) 

(2.7.39) 

2.7.3 Sufficient Condition 

In order to determine the nature of optimization, i.e., whether it is 
minimum or maximum, we need to consider the second variation and 
examine its sign. In other words, we have to find a sufficient condition 
for extremum. Using (2.7.14), (2.7.28) and (2.7.37), we have the second 
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variation in (2.7.16) and using the relation (2.7.28), we get 

For the minimum, the second variation 82 J must be positive. This 
means that the matrix II in (2.7.40) 

(2.7.41) 

must be positive definite. But the important condition is that the 
second partial derivative of 1t* w.r.t. u(t) must be positive. That is 

(2.7.42) 

and for the maximum, the sign of (2.7.42) is reversed. 

2. 7.4 Summary of Pontryagin Procedure 

Consider a free-final time and free-final state problem with general cost 
function (Bolza problem), where we want to minimize the performance 
index 

i t! 
J = S(x(tf), tf) + V(x(t), u(t), t)dt 

to 
(2.7.43) 

for the plant described by 

x(t) = f(x(t), u(t), t) (2.7.44) 

with the boundary conditions as 

x(t = to) = Xo; t = tf is free and x(tf) is free. (2.7.45) 
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Table 2.1 Procedure Summary of Pontryagin Principle for Bolza 
Problem 

A. Statement of the Problem 
Given the plant as 
x(t) = f(x(t), u(t), t), 
the performance index as 

J = S(x(tf), tf) + Jt~ V(x(t), u(t), t)dt, 
and the boundary conditions as 
x(to) = Xo and tf and x(tf) = xf are free, 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin 1i function 

1i(x(t), u(t), A(t), t) = V(x(t), u(t), t) + A' (t)f(x(t), u(t), t). 
Step 2 Minimize 1i w.r.t. u(t) 

(~~t = 0 and obtain u*(t) = h(x*(t), A*(t), t). 

Step 3 U sing the results of Step 2 in Step 1, find the optimal 1i* 
1i*(x*(t), h(x*(t), A*(t), t), A*(t), t) = 1i*(x*(t), A*(t), t). 

Step 4 Solve the set of 2n differential equations 

x* (t) = + (~~) * and'\ * (t) = - (~":.) * 
with initial conditions Xo and the final conditions 

[1i* + ~~]tf 8tf + [(~~t - A*(t)]:f 8xf = O. 
Step 5 Substitute the solutions of x* (t), A" (t) from Step 4 

into the expression for the optimal control u*(t) of Step 2. 
C. Types of Systems 

a . Fixed-final time and fixed-final state system, Fig. 2.9(a) 
b). Free-final time and fixed-final state system, Fig. 2.9(b) 
c . Fixed-final time and free-final state system, Fig. 2.9(c) 
d). Free-final time and dependent free-final state system, Fig. 2.9(d). 
e . Free-final time and independent free-final state system 
Type Substitutions Boundary Conditions 

(a) 8tf = 0,8xf = 0 x(to) = xo, x(tf) = xf 

(b) 8tf =1= 0, 8xf = 0 x( to) = Xo, x( t f) = x f' l1i* + Ft J t f = 0 

(c) 8tf = 0, 8xf =1= 0 x( to) = xo, A * (t f) = (~tt f 

(d) 8xf = 6(tf )8tf x(to) = Xo, x(tf) = 6(tf) 

[H* + ~~ + { ( ~~) * - A * (t)} I 6( t) L f = 0 

(e) 8tf =1= 0 8x(to) = Xo 

8xf =1= 0 [1i*+as] =0 [(as) -A*(t)] =0 at tf 'ax * tf 

69 
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Here, x(t) and u(t) are n- and r- dimensional state and control vec­
tors respectively. Let us note that u( t) is unconstrained. The entire pro­
cedure (called Pontryagin Principle) is now summarized in Table 2.1. 

Note: From Table 2.1 we note that the only difference in the proce­
dure between the free-final point system without the final cost function 
(Lagrange problem) and free-final point system with final cost function 
(Bolza problem) is in the application of the general boundary condition. 

To illustrate the Pontryagin method described previously, consider 
the following simple examples describing a second order system. Specif­
ically, we selected a double integral plant whose analytical solutions for 
the optimal condition can be obtained and the same verified by using 
MATLAB©. 

First we consider the fixed-final time and fixed-final state problem 
(Figure 2.9(a), Table 2.1, Type (a)). 

Example 2.12 

Given a second order (double integrator) system as 

Xl(t) = X2(t) 
X2(t) = u(t) 

and the performance index as 

(2.7.46) 

(2.7.47) 

find the optimal control and optimal state, given the boundary 
(initial and final) conditions as 

x(O) = [1 2]'; x(2) = [1 0]'. (2.7.48) 

Assume that the control and state are unconstrained. 

Solution: We follow the step-by-step procedure given in Table 2.1. 
First, by comparing the present plant (2.7.46) and the PI (2.7.47) 
with the general formulation of the plant (2.7.1) and the PI (2.7.2), 
we identify 

1 
V(x(t), u(t), t) = V(u(t)) = "2u2(t) 

f(x(t), u(t), t) = [fl, f2]', 

where, fl = X2(t), f2 = u(t). 

(2.7.49) 
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• Step 1: Form the Hamiltonian function as 

H = H(XI(t), X2(t), u(t), AI(t), A2(t)) 
= V(u(t)) + -X'(t)f(x(t) , u(t)) 

1 
= 2u2(t) + Al (t)X2(t) + A2(t)U(t). 
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(2.7.50) 

• Step 2: Find u*(t) from 

aH 
au = 0 ~ u*(t) + A2(t) = 0 ~ u*(t) = -A2(t). (2.7.51) 

• Step 3: Using the results of Step 2 in Step 1, find the optimal 
H*as 

H* (xi(t) , X2(t), Ai(t) , A2(t)) = ~A22 (t) + Ai (t)X2(t) - A22 (t) 

= Ai(t)x2(t) - ~A22(t). (2.7.52) 

• Step 4: Obtain the state and costate equations from 

xi(t) = + (:) * = x2(t) 

x:;(t) = + (:) * = -A;(t) 

. (aH) Ai(t) = - aXI * = 0 

A;(t) = - (:) * = -Ai(t). (2.7.53) 

Solving the previous equations, we have the optimal state and 
costate as 

* C3 3 C4 2 Xl (t) = tit - 2t + C2t + C1 

X2(t) = ~3t2 - C4t + C2 

Ai(t) = C3 
A2(t) = -C3t + C4. (2.7.54) 

• Step 5: Obtain the optimal control from 

u*(t) = -A2(t) = C3t - C4 (2.7.55) 
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Optimal u*(t) J x2*(t) J x1*(Q 
Controller 

Figure 2.10 Optimal Controller for Example 2.12 

where, 01, O2 , 0 3 , and 0 4 are constants evaluated using the given 
boundary conditions (2.7.48). These are found to be 

01 = 1, O2 = 2, 03 = 3, and 04 = 4. (2.7.56) 

Finally, we have the optimal states, costates and control as 

xi(t) = 0.5t3 - 2t2 + 2t + 1, 

X2(t) = 1.5t2 
- 4t + 2, 

Ai(t) = 3, 
A2(t) = -3t + 4, 
u*(t) = 3t - 4. (2.7.57) 

The system with the optimal controller is shown in Figure 2.10. 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions C2.7.48} for Example 2.12 using Symbolic 
Toolbox of the MATLA~, Version 6, is shown below. 

************************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% MATLAB Version 6.0 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=0,Dlambda2=-lambdal, ... 
xl(0)=1,x2(0)=2,xl(2)=1,x2(2)=0') 
S.xl 
S.x2 
S.lambdal 
S.lambda2 

S = 

S.xl 

lambdal: [lxl symJ 
lambda2: [lxl symJ 

xl: [lxl symJ 
x2: [lxl symJ 

ans= 
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S.x2 

ans= 
2-4*t+3/2*t-2 

S.lambdal 

ans= 
3 
S.lambda2 

ans= 

Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O: .02: 2 
t=sym(tp); 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k:') 
xlabel ('t') 
gtext('x_l(t) ') 
gtext (' x_2(t) ') 
gtext ('u(t) ') 
********************************************************* 
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It is easy to see that the previous solutions for xi(t) , x1(t) , Ai(t) , 
A2(t), and u*(t) = -A2(t) obtained by using MATLAB© are the 
same as those given by the analytical solutions (2.7.571 The op­
timal control and state are plotted (using MATLAB©) in Fig­
ure 2.11. 

Next, we consider the fixed-final time and free-final state case (Fig-
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Figure 2.11 Optimal Control and States for Example 2.12 

ure 2.9(b), Table 2.1, Type (c)) of the same system. 

Example 2.13 

Consider the same Example 2.12 with changed boundary conditions 
as 

x(O) = [1 2]'; xl(2) = 0; x2(2) is free. (2.7.58) 

Find the optimal control and optimal states. 

Solution: Following the procedure illustrated in Table 2.1 (Type 
( c) ), we get the same optimal states, costates, and control as given 
in (2.7.54) and (2.7.55) which are repeated here for convenience. 

* 0 3 3 04 2 X1(t) = (ft - 2:t +02t + Cl, 

X2(t) = ~3t2 - 04t + C2, 

Ai(t) = 0 3 , 

A2(t) = -03t + 0 4, 
u*(t) = -A2(t) = C3t - 0 4. (2.7.59) 

The only difference is in solving for the constants C1 to C4. First 
of all, note that the performance index (2.7.47) does not contain 
the terminal cost function S. From the given boundary conditions 



2.7 Variational Approach to Optimal Control Systems 75 

(2.7.58), we have tf specified to be 2 and hence 8tf is zero in the 
general boundary condition (2.7.32). 

Also, since x2(2) is free, 8X2j is arbitrary and hence the corre-
sponding final condition on the costate becomes 

(2.7.60) 

(since S = 0). Thus we have the four boundary conditions as 

With these boundary conditions substituted in (2.7.59), the con­
stants are found to be 

01 = 1; 02 = 2; 03 = 15/8; 04 = 15/4. (2.7.62) 

Finally the optimal states, costates and control are given from 
(2.7.59) and (2.7.62) as 

* 5 3 15 2 
xl (t) = 16 t - 8 t + 2t + 1, 

* 15 2 15 
x2 (t) = -t - -t + 2 

16 4 ' 

*( ) 15 
Al t = 8' 
* 15 15 

A2(t) = -8t + 4' 
* 15 15 

u (t) = 8 t - 4· 
(2.7.63) 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions {2. 7. 58} for Example 2.13 using Symbolic 
Toolbox of the MATLAdS) , Version 6, is shown below. 

*************************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% MATLAB Version 6.0 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=0,Dlambda2=-lambdal, 
xl(0)=1,x2(0)=2,xl(2)=0,lambda2(2)=0') 

S = 
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lambdal: [lxl sym] 
lambda2: [lxl sym] 

xl: [lxl sym] 
x2: [lxl sym] 

S.xl 

ans= 

S.x2 

ans= 

S.lambdal 

ans= 

15/8 

S.lambda2 

ans= 

-15/8*t+15/4 

%% Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O:.02:2 
t=sym(tp); 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k: ') 
xlabel ( , t ' ) 
gtext ('x_l (t) ') 
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gtext ('x_2(t)') 

gtext ('u(t) ') 

******************************************************* 

It is easy to see that the previous solutions for xi (tj, x2 (t), Ai (t), A2 (t), 
and u*(t) = -A2(t) obtained by using MATLAB© are the same as 
those given by (2.7.63) obtained analytically. The optimal control 
and states for Example 2.13 are plotted in Figure 2.12. 
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Figure 2.12 Optimal Control and States for Example 2.13 

Next, we consider the free-final time and independent free-final state 
case (Figure 2.9(e), Table 2.1, Type (e)) of the same system. 

Example 2.14 

Consider the same Example 2.12 with changed boundary conditions 
as 

Find the optimal control and optimal state. 

Solution: Following the procedure illustrated in Table 2.1 (Type 
(e)), we get the same optimal control, states and costates as given 
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in (2.7.54) and (2.7.55) which are repeated here for convenience. 

* C3 3 C4 2 
X1(t) = 6 t - 2t + C2t + C1, 

X2(t) = ~3t2 - C4t + C2, 

Ai(t) = C3, 
A2(t) = -C3t + C4, 
U*(t) = -A2(t) = C3t - C4. (2.7.65) 

The only difference is in solving for the constants C1 to C4 and the 
unknown t f. First of all, note that the performance index (2.7.47) 
does not contain the terminal cost function S, that is, S = O. From 
the given boundary conditions (2.7.64), we have tf unspecified and 
hence otf is free in the general boundary condition (2.7.32) leading 
to the specific final condition 

(2.7.66) 

Also, since X2 (t f) is free, OX2 f is arbitrary and hence the general 
boundary condition (2.7.32) becomes 

>'2(tf) = (:!) = 0 (2.7.67) 

where ~ is given by (2.7.52). Combining (2.7.64), (2.7.66) and 
(2.7.67), we have the following 5 boundary conditions for the 5 
unknowns (4 constants of integration C1 to C4 and 1 unknown t f) 
as 

x1(0)=I; X2(0) =2; X1(tf) =3; 

A2(tf) = 0; A1(tf)X2(tf) - 0.5A~(tf) = o. (2.7.68) 

Using these boundary conditions along with (2.7.65), the constants 
are found to be 

C1 = 1; C2 = 2; C3 = 4/9; C4 = 4/3; tf = 3. (2.7.69) 

Finally, the optimal states, costates, and control are given from 
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(2.7.65) and (2.7.69) as 

(2.7.70) 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions C2. 7.68} for Example 2.14 using Symbolic 
Toolbox of the MATLA~, Version 6 is shown below. 

******************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% of MATLAB Version 6 
%% 
clear all 
S=dsolve('Dx1=x2,Dx2=-lam2,Dlaml=O,Dlam2=-lam1,xl(0)=l, 

x2(0)=2,x1(tf)=3,lam2(tf)=0') 
t='tf' ; 
eq1=subs(S.x1)-'x1tf'; 
eq2=subs(S.x2)-'x2tf'; 
eq3=S.lam1-'lam1tf'; 
eq4=subs(S.lam2)-'lam2tf'; 
eq5='lamltf*x2tf-0.5*lam2tf A 2'; 
S2=solve(eq1,eq2,eq3,eq4,eq5,'tf,x1tf,x2tf,lam1tf, 

lam2tf','lam1tf<>0') 
%% lam1tf<>0 means lam1tf is not equal to 0; 
%% This is a condition derived from eq5. 
%% Otherwise, without this condition in the above 
%% SOLVE routine, we get two values for tf (1 and 3 in this case) 
%% 
tf=S2.tf 
xltf=S2.xltf; 
x2tf=S2.x2tf; 
clear t 
x1=subs(S.xl) 
x2=subs(S.x2) 
lam1=subs(S.lam1) 
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lam2=subs(S.lam2) 
%% Convert the symbolic values to 
%% numerical values as shown below. 
j=l; 
tf=double(subs(S2.tf)) 
%% coverts tf from symbolic to numerical 
for tp=O:O.05:tf 
t=sym(tp); 
%% coverts tp from numerical to symbolic 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lam2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l ; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k:') 
xlabel('t' ) 
gtext (' x_l (t) ') 
gtext ( , x_2 ( t) , ) 
gtext ('u(t) ') 

******************************************************* 

The optimal control and states for Example 2.14 are plotted in 
Figure 2.13. 

Finally, we consider the fixed-final time and free-final state system 
with a terminal cost (Figure 2.9 (b), Table 2.1, Type (b)). 

Example 2.15 

We consider the same Example 2.12 with changed performance 
index 

1 2 1 2 1102 
2 J = -[xl(2) - 4] + -[x2(2) - 2] + -2 u dt 

220 
(2.7.71) 

and boundary conditions as 

x(O) = [1 2]; x(2) = is free. (2.7.72) 

Following the procedure illustrated in Table 2.1 (Type (b)), we get 
the same optimal control, states and costates as given in (2.7.54) 
and (2.7.55), which are reproduced here for ready reference. Thus 
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Figure 2.13 Optimal Control and States for Example 2.14 

we have 

* C3 3 C4 2 X1(t) = (it - 2t + C2t + C1, 

X2(t) = ~3t2 - C4t + C2, 

Ai(t) = C3, 
A2(t) = -C3t + C4, 
U*(t) = -A2(t) = C3t - C4. (2.7.73) 

The only difference is in solving for the constants C1 to C4 using the 
given and obtained boundary conditions. Since t f is specified as 2, 
6t f is zero and since x(2) unspecified, 6xf is free in the boundary 
condition (2.7.32), which now reduces to 

(2.7.74) 

where, 

(2.7.75) 
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Thus, (2.7.74) becomes 

AHtf) = (a as ) ~ AH2) = xl(2) - 4 
Xl tf 

A2(tf) = (a as ) ~ A2(2) = x2(2) - 2. 
X2 tf 

(2.7.76) 

Now, we have two initial conditions from (2.7.72) and two final 
conditions from (2.7.76) to solve for the four constants as 

(2.7.77) 

Finally, we have the optimal states, costates and control given as 

* 1 3 2 2 
Xl (t) = 14 t -"7 t + 2t + 1, 

*( ) 3 2 4 x2 t = -t - -t + 2 
14 7 ' 

Ai(t) = ~, 

A2(t) = -~t + ~, 
u*(t) = ~t - i. 

7 7 
(2.7.78) 

The previous results c~ also obtained using Symbolic Math 
Toolbox of the MATLAB\9, Version 6, as shown below. 

*************************************************************** 
%% Solution Using Symbolic Math Toolbox (STB) in 
%% MATLAB Version 6 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=O,Dlambda2=-lambdal, 
xl(O)=1,x2(O)=2,lambdal(2)=x12-4,lambda2(2)=x22-2') 
t='2' ; 
S2=solve(subs(S.xl)-'x12',subs(S.x2)-'x22','x12,x22'); 
%% solves for xl(t=2) and x2(t=2) 
x12=S2.x12; 
x22=S2.x22; 
clear t 

S = 
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lambdal: [lxl sym] 
lambda2: [lxl sym] 

xl: [lxl sym] 
x2: [lxl sym] 

xl=subs(S.xl) 

xl = 

x2=subs(S.x2) 

x2 = 

lambdal=subs(S.lambdal) 

lambdal 

3/7 

lambda2=subs(S.lambda2) 

lambda2 = 

4/7-3/7*t 

%% Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O: .02:2 
t=sym(tp); 
xlp(j)=double(subs(S.xl»; 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2»; 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2»; 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 

83 
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plot(t1,x1p, 'k' ,t1,x2p, 'k' ,t1,up, 'k: ') 
xlabel ('t') 
gtext (' x_1 (t) ') 
gtext (' x_2 (t) ') 
gt ext ( 'u ( t) , ) 

*************************************************************** 

It is easy to see that the previous solutions for xi(t)~2(t), Ai (t), A2(t), 
and u*(t) = -A2(t) obtained by using MATLAB\0 are the same 
as those given by (2.7.78) obtained analytically. 

The optimal control and states for Example 2.15 are plotted in 
Figure 2.14. 

4 

3 

2 

o 

-1~--~--~--~--~--~--~--~--~~--~~ o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Figure 2.14 Optimal Control and States for Example 2.15 

2.8 Summary of Variational Approach 
In this section, we summarize the development of the topics covered so 
far in obtaining optimal conditions using the calculus of variations. The 
development is carried out in different stages as follows. Also shown is 
the systematic link between various stages of development. 
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2.8.1 Stage I: Optimization of a Functional 

Consider the optimal of 

it! 
J = V(x(t), x(t), t)dt 

to 

with the given boundary conditions 

x(to) fixed and x(tj) free. 
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(2.8.1) 

(2.8.2) 

Then, the optimal function x* (t) should satisfy the Euler-Lagrange 
equation 

(8V) _ ~ (8V) _ 0 
8x * dt 8x * - . 

(2.8.3) 

The general boundary condition to be satisfied at the free-final point 
is given by [79] 

(2.8.4) 

This boundary condition is to be modified depending on the nature 
of the given t j and x( t j ). Although the previous general boundary 
condition is not derived in this book, it can be easily seen to be similar 
to the general boundary condition (2.7.26) in terms of the Lagrangian 
which embeds a performance index and a dynamical plant into a single 
augmented performance index with integrand C. 

The sufficient condition for optimum is the Legendre condition given 
by 

(82V) 
8x2 * > 0 

for minimum (2.8.5) 

and 

(82V) 
8x2 * < 0 

for maximum. (2.8.6) 
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2.8.2 Stage II: Optimization of a Functional with 
Condition 

Consider the optimization of a functional 

l
tf 

J = V(x(t), x(t), t)dt 
to 

(2.8.7) 

with given boundary values as 

x(to) fixed and x(t,) free, (2.8.8) 

and the condition relation 

g(x(t), x(t), t) = O. (2.8.9) 

Here, the condition (2.8.9) is absorbed by forming the augmented func­
tional 

l
tf 

Ja = £(x(t), x(t), .x(t), t)dt 
to 

(2.8.10) 

where, .x(t) is the Lagrange multiplier (also called the costate function), 
and £ is the Lagrangian given by 

I £(x(t), x(t), .x(t), t) = V(x(t), x(t), t) + .x'(t)g(x(t), x(t), t)., 

(2.8.11) 

Now, we just use the results of the previous Stage I for the augmented 
functional (2.8.10) except its integrand is £ instead of V. For optimal 
condition, we have the Euler-Lagrange equation (2.8.3) for the aug­
mented functional (2.8.10) given in terms of x(t) and .x(t) as 

(8£) _ ~ (8£) = 0 state equation and 
8x * dt 8x * 

(8£) _ ~ (8£) _ 0 costate equation. 8.x * dt 8>.. *-

(2.8.12) 

(2.8.13) 

Let us note from (2.8.11) that the Lagrangian £ is independent of 
>.. * (t) and that the Euler-Lagrange equation (2.8.13) for the costate .x(t) 
is nothing but the constraint relation (2.8.9). The general boundary 
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condition (2.8.4) to be satisfied at the free-final point (in terms of £) 
is given by 

(2.8.14) 

This boundary condition is to be modified depending on the nature of 
the given tf and x(tf)· 

2.8.3 Stage III: Optimal Control System with 
Lagrangian Formalism 

Here, we consider the standard control system with a plant described 
by [56] 

x(t) = f(x(t), u(t), t), (2.8.15) 

the given boundary conditions as 

x(to) is fixed and x(tf) is free, (2.8.16) 

and the performance index as 

it! 
J(u(t)) = V(x(t), u(t), t)dt. 

to 
(2.8.17) 

Now, we rewrite the plant equation (2.8.15) as the condition relation 
(2.8.9) as 

g(x(t), x(t), u(t), t) = f(x(t), u(t), t) - x(t) = o. (2.8.18) 

Then we form the augmented functional out of the performance index 
(2.8.17) and the condition relation (2.8.18) as 

it! 
Ja(u(t)) = £(x(t), x(t), u(t), A(t), t)dt 

to 
(2.8.19) 

where, the Lagrangian £ is given as 

£ = £(x(t), x(t), u(t), A(t), t) 

= V(x(t), u(t), t) + A'(t) {f(x(t), u(t), t) - x(t)}. (2.8.20) 
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Now we just use the previous results of Stage II. For optimal condition, 
we have the set of Euler-Lagrange equations (2.8.12) and (2.8.13) for 
the augmented functional (2.8.19) given in terms of x(t), '\(t), and u(t) 
as 

( 0£) _ ~ (0£) = 0 state equation, (2.8.21) ox * dt Ox * 

( 0£) _ ~ (0£) _ 0 costate equation, and (2.8.22) 
0'\ * dt {)~ *-

( 0£) _ ~ (8£) = 0 control equation. (2.8.23) ou * dt ou * 

Note from (2.8.20) that the Lagrangian £ is independent of ~ * (t) and 
u*(t) and that the Euler-Lagrange equation (2.8.22) is the same as the 
constraint relation (2.8.18). The general boundary condition (2.8.14) 
to be satisfied at the free-final point becomes 

[c - x'(t) (~) L Otf + (~)~t OX! = O. 
f f 

(2.8.24) 

This boundary condition is to be modified depending on the nature of 
the given tf and x(tf). 

2.8.4 Stage IV: Optimal Control System with 
Hamiltonian Formalism: Pontryagin Principle 

Here, we just transform the previous Lagrangian formalism to Hamil­
tonian formalism by defining the Hamiltonian as [57] 

H(x(t), u(t), '\(t), t) = V(x(t), u(t), t) + ,\'(t)f(x(t), u(t), t) (2.8.25) 

which in terms of the Lagrangian (2.8.20) becomes 

£(x(t), x(t), u(t), '\(t), t) = H(x(t), u(t), '\(t), t) - '\'(t)x(t). (2.8.26) 

Now using (2.8.26), the set of Euler-Lagrange equations (2.8.21) to 
(2.8.23) which are in terms of the Lagrangian, are rewritten in terms 
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of the Hamiltonian as 

(aH) _ ~(-A*) = 0 
ax * dt 

(2.8.27) 

(aH) _ x*(t) - ~(O) = 0 
aA * dt 

(2.8.28) 

(aH) _ ~(O) = 0 
8u * dt 

(2.8.29) 

which in turn are rewritten as 

:ic*(t) = + (~) * state equation, (2.8.30) 

,,*(t) ___ (8H) " costate equation, and ax * 
(2.8.31) 

10 -_+(88
H
U)*1 . . control equation. (2.8.32) 

Similarly using (2.8.26), the boundary condition (2.8.24) is rewritten 
in terms of the Hamiltonian as 

[H - A'(t)X(t) - X'(t)(-A(t))] I*tj 8tf + [-A'(t)] I*tj 8xf = 0 (2.8.33) 

which becomes 

(2.8.34) 

The sufficient condition is 

(~) * > 0 for minimum and (2.8.35) 

( ~:~) * < 0 for maximum. (2.8.36) 

The state, costate, and control equations (2.8.30) to (2.8.32) are solved 
along with the given initial condition (2.8.16) and the final condition 
(2.8.34) leading us to a two-point boundary value problem (TPBVP). 
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Free-Final Point System with Final Cost Function 

This problem is an extension of the problem in Stage IV, with the 
addition of final cost function. We summarize the result risking the 
repetition of some of the equations. Let the plant be described as 

x(t) = f(x(t), u(t), t) (2.8.37) 

and the performance index be 

l
tf 

J(u(t)) = S(x(tf), tf) + V(x(t), u(t), t)dt 
to 

(2.8.38) 

along with the boundary conditions 

x(to) is fixed and x(tf) is free. (2.8.39) 

Now, if we rewrite the performance index (2.8.38) to absorb the final 
cost function S within the integrand, then the results of Stage III can 
be used to get the optimal conditions. Thus we rewrite (2.8.38) as 

rtf [ (8S)' 8S] J1(u(t)) = lto V(x(t), u(t), t) + 8x x(t) + at dt. (2.8.40) 

N ow we repeat the results of Stage III except for the modification of the 
final condition equation (2.8.34). Thus the state, costate and control 
equations are 

x*(t) = + (~~)* state equation (2.8.41 ) 

. * (81-l) A (t) = - -
8x * 

costate equation (2.8.42) 

control equation (2.8.43) 

and the final boundary condition is 

(2.8.44) 
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The sufficient condition for optimum is 

(~) * > 0 for minimum and 

(~) * < 0 for maximum. 
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(2.8.45) 

(2.8.46) 

The state, costate, and control equations (2.8.41) to (2.8.43) are solved 
along with the given initial condition (2.8.39) and the final condition 
(2.8.44), thus this formulation leads us to a TPBVP. 

2.8.5 Salient Features 

We now discuss the various features of the methodology used so far 
in obtaining the optimal conditions through the use of the calculus of 
variations [6, 79, 120, 108]. Also, we need to consider the problems 
discussed above under the various stages of development. So we refer 
to the appropriate relations of, say Stage III or Stage IV during our 
discussion. 

1. Significance of Lagrange Multiplier: The Lagrange multiplier A(t) 
is also called the costate (or adjoint) function. 

(a) The Lagrange multiplier A(t) is introduced to "take care 
of" the constraint relation imposed by the plant equation 
(2.8.15). 

(b) The costate variable A(t) enables us to use the Euler-Lagrange 
equation for each of the variables x(t) and u(t) separately 
as if they were independent of each other although they are 
dependent of each other as per the plant equation. 

2. Lagrangian and Hamiltonian: We defined the Lagrangian and 
Hamiltonian as 

£ = £(x(t), x(t), A(t), u(t), t) 

= V(x(t), u(t), t) 
+A'(t) {f(x(t), u(t), t) - x(t)} 

1t = 1t(x(t) , u(t), A(t), t) 

= V(x(t), u(t), t) 

+A'(t)f(x(t), u(t), t). 

(2.8.47) 

(2.8.48) 
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In defining the Lagrangian and Hamiltonian we use extensively 
the vector notation, still it should be noted that these £ and 1t 
are scalar functions only. 

3. Optimization of Hamiltonian 

(a) The control equation (2.8.32) indicates the optimization of 
the Hamiltonian w.r.t. the control u(t). That is, the opti­
mization of the original performance index (2.8.17), which is 
a functional subject to the plant equation (2.8.15), is equiv­
alent to the optimization of the Hamiltonian function w.r.t. 
u( t). Thus, we "reduced" our original functional optimiza­
tion problem to an ordinary function optimization problem. 

(b) We note that we assumed unconstrained or unbounded con­
trol u(t) and obtained the control relation 81t/8u = O. 

( c) If u( t) is constrained or bounded as being a member of the 
set U, i.e., u(t) E U, we can no longer take 81t/8u = 0, 
since u( t), so calculated, may lie outside the range of the 
permissible region U. In practice, the control u(t) is always 
limited by such things as saturation of amplifiers, speed of 
a motor, or thrust of a rocket. The constrained optimal 
control systems are discussed in Chapter 7. 

(d) Regardless of any constraints on u(t), Pontryagin had shown 
that u(t) must still be chosen to minimize the Hamiltonian. 
A rigorous proof of the fact that u( t) must be chosen to op­
timize 1t function is Pontryagin's most notable contribution 
to optimal control theory. For this reason, the approach is 
often called Pontryagin Principle. So in the case of con­
strained control, it is shown that 

min 1t(x*(t), .x*(t), u(t), t) = 1t(x*(t), .x*(t), u*(t), t) 
uEU 

(2.8.49) 

or equivalently 

11t(x*(t), .x*(t), u*(t), t) :::; 1t(x*(t), .x*(t), u(t), t).1 

(2.8.50) 

4. Pontryagin Maximum Principle: Originally, Pontryagin used a 
slightly different performance index which is maximized rather 
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than minimized and hence it is called Pontryagin Maximum Prin­
ciple. For this reason, the Hamiltonian is also sometimes called 
Pontryagin H-function. Let us note that minimization of the per­
formance index J is equivalent to the maximization of -J. Then, 
if we define the Hamiltonian as 

H(x(t), u(t), A(t), t) = - V(x(t), u(t), t) + 5..' (t)f(x(t), u(t), t) 

(2.8.51) 

we have Maximum Principle. Further discussion on Pontryagin 
Principle is given in Chapter 6. 

5. Hamiltonian at the Optimal Condition: At the optimal condition 
the Hamiltonian can be written as 

H* = H* (x* (t), u* (t), A * (t), t) 
dH* dH* 

dt dt 

= (~~) ~ x*(t) + (:)~ i*(t) + (~~)~ u*(t) 

+ (a;:) * . (2.8.52) 

Using the state, costate and control equations (2.8.30) to (2.8.32) 
in the previous equation, we get 

(2.8.53) 

We observe that along the optimal trajectory, the total derivative 
of H w.r.t. time is the same as the partial derivative of H w.r.t. 
time. If H does not depend on t explicitly, then 

~I=o 
~ 

(2.8.54) 

and 1i is constant w.r. t. the time t along the optimal trajectory. 

6. Two-Point Boundary Value Problem (TPBVP): As seen earlier, 
the optimal control problem of a dynamical system leads to a 
TPBVP. 
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Open-Loop u*(t) 
Plant 

x*(t) 
Optimal Controller 

.. .. 

Figure 2.15 Open-Loop Optimal Control 

(a) The state and costate equations (2.8.30) and (2.8.32) are 
solved using the initial and final conditions. In general, these 
are nonlinear, time varying and we may have to resort to 
numerical methods for their solutions. 

(b) We note that the state and costate equations are the same 
for any kind of boundary conditions. 

( c) For the optimal control system, although obtaining the state 
and costate equations is very easy, the computation of their 
solutions is quite tedious. This is the unfortunate feature 
of optimal control theory. It is the price one must pay for 
demanding the best performance from a system. One has to 
weigh the optimization of the system against the computa­
tional burden. 

7. Open-Loop Optimal Control: In solving the TPBVP arising due 
to the state and costate equations, and then substituting in the 
control equation, we get only the open-loop optimal control as 
shown in Figure 2.15. Here, one has to construct or realize an 
open-loop optimal controller (OLOC) and in many cases it is 
very tedious. Also, changes in plant parameters are not taken 
into account by the OLOC. This prompts us to think in terms 
of a closed-loop optimal control (CLOC), i.e., to obtain optimal 
control u*(t) in terms of the state x*(t) as shown in Figure 2.16. 
This CLOC will have many advantages such as sensitive to plant 
parameter variations and simplified construction of the controller. 
The closed-loop optimal control systems are discussed in Chap­
ter 7. 
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u*(t) .. Plant x*(t) 
r/ • 
~ -

Closed-Loop +-
Optimal Controller 

Figure 2.16 Closed-Loop Optimal Control 
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2.9 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 2.1 Find the extremal of the following functional 

with the initial condition as x(O) = 0 and the final condition as x(2) = 

5. 

Problem 2.2 Find the extremal of the functional 

to satisfy the boundary conditions x( -2) = 3, and x(O) = O. 

Problem 2.3 Find the extremal for the following functional 

with x(l) = 1 and x(2) = 10. 

Problem 2.4 Consider the extremization of a functional which is de­
pendent on derivatives higher than the first derivative x(t) such as 

i t! 
J(x( t), t) = V(x( t), x( t), i(t), t)dt. 

to 

with fixed-end point conditions. Show that the corresponding Euler­
Lagrange equation is given by 
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Similarly, show that, in general, for extremization of 

i
t! 

J = V ( x ( t ), ± ( t) , x ( t), ... , x (r) ( t), t) dt 
to 

with fixed-end point conditions, the Euler-Lagrange equation becomes 

Problem 2.5 A first order system is given by 

±(t) = ax(t) + bu(t) 

and the performance index is 

lint! J = - (qx2 (t) + ru2 (t))dt 
2 0 

where, x(to) = Xo and x(tf) is free and tf being fixed. Show that the 
optimal state x* (t) is given by 

*( ) _ sinh(3(tf - t) 
x t - Xo . h(3 , 

S'ln tf 

Problem 2.6 A mechanical system is described by 

x(t) = u(t) 

find the optimal control and the states by minimizing 

J = ~ r5 
u2(t)dt 

2 10 
such that the boundary conditions are 

x(t = 0) = 2; x(t = 5) = 0; ±(t = 0) = 2; ±(t = 5) = O. 

Problem 2.7 For the first order system 

dx 
dt = -x(t) + u(t) 

find the optimal control u* (t) to minimize 

J = If [x2 (t) + u2 (t)]dt 

where, tf is unspecified, and x(O) = 5 and x(tf) = o. Also find tf· 
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Problem 2.8 Find the optimal control u* (t) of the plant 

Xl(t)=X2(t); Xl(O) =3, xl(2)=0 

X2(t) = -2Xl(t) + 5u(t); X2(0) = 5, x2(2) = 0 

which minimizes the performance index 

J = ~ l [xM + u2
(t)] dt. 

Problem 2.9 A second order plant is described by 

Xl(t) =X2(t) 

X2(t) = -2Xl(t) - 3X2(t) + 5u(t) 

and the cost function is 

J = f" [xi(t) + u2(t)Jdt. 

Find the optimal control, when Xl(O) = 3 and X2(0) = 2. 

Problem 2.10 For a second order system 

Xl(t) = X2(t) 

X2(t) = -2Xl(t) + 3u(t) 

with performance index 

(7r/2 
J = 0.5xi(1T/2) + io 0.5u2(t)dt 

and boundary conditions x(O) = [0 1]' and x(t j) is free, find the opti­
mal control. 

Problem 2.11 Find the optimal control for the plant 

Xl(t)=X2(t) 

X2(t) = -2Xl(t) + 3u(t) 

with performance criterion 

121 2 
J = "2Fll [Xl(tj) - 4] + "2F22 [X2(tj) - 2] 

1 rtf [ ] +"2 io xi(t) + 2x~(t) + 4u2(t) dt 

and initial conditions as x(O) = [1 2]'. The additional conditions are 
given below. 



2.9 Problems 99 

1. Fixed-final conditions Fn = 0, F22 = 0, t f = 2, x(2) = [4 6]'. 

2. Free-final time conditions Fn = 3, F22 = 5, x(tf) = [4 6]' and tf 
is free. 

3. Free-final state conditions, Fn 
x2(2) = 6. 

0, Xl (2) is free and 

4. Free-final time and free-final state conditions, Fn = 3, F22 = 5 
and the final state to have xI(tf) = 4 and x2(tf) to lie on 8(t) = 

-5t + 15. 

Problem 2.12 For the D.C. motor speed control system described 
in Problem 1.1, find the open-loop optimal control to keep the speed 
constant at a particular value and the system to respond for any dis­
turbances from the regulated value. 

Problem 2.13 For the liquid-level control system described in Prob­
lem 1.2, find the open-loop optimal control to keep the liquid level 
constant at a reference value and the system to act only if there is a 
change in the liquid level. 

Problem 2.14 For the inverted pendulum control system described in 
Problem 1.3, find the open-loop, optimal control to keep the pendulum 
in a vertical position. 

Problem 2.15 For the mechanical control system described in Prob­
lem 1.4, find the open-loop, optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

Problem 2.16 For the automobile suspension control system described 
in Problem 1.5, find the open-loop, optimal control to provide minimum 
control energy and passenger comfort. 

Problem 2.17 For the chemical control system described in Prob­
lem 1.6, find the open-loop, optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

@@@@@@@@@@@@@@@ 





Chapter 3 

Linear Quadratic Optimal 
Control Systems I 

In this chapter, we present the closed-loop optimal control of linear 
plants or systems with quadratic performance index or measure. This 
leads to the linear quadratic regulator (LQR) system dealing with state 
regulation, output regulation, and tracking. Broadly speaking, we are 
interested in the design of optimal linear systems with quadratic per­
formance indices. It is suggested that the student reviews the material 
in Appendices A and B given at the end of the book. This chapter is 
inspired by [6, 3, 89]1. 

3.1 Problem Formulation 
We discuss the plant and the quadratic performance index with par­
ticular reference to physical significance. This helps us to obtain some 
elegant mathematical conditions on the choice of various matrices in 
the quadratic cost functional. Thus, we will be dealing with an opti­
mization problem from the engineering perspective. 

Consider a linear, time-varying (LTV) system 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) 

(3.1.1) 

(3.1.2) 

IThe permissions given by John Wiley for F. L. Lewis, Optimal Control, John Wiley & 
Sons, Inc., New York, NY, 1986, and McGraw-Hill for M. Athans and P. L. Falb, Optimal 
Control: An Introduction to the Theory and Its Applications, McGraw-Hill Book Company, 
New York, NY, 1966, are hereby acknowledged. 
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with a cost functional (CF) or performance index (PI) 

J(u(t)) = J(x(to), u(t), to) 

1 I ] ="2 [z(tf) - y(tf)] F(tf) [z(tf) - y(tf) 

11tf +- [[z(t) - y(t)]' Q(t) [z(t) - y(t)] + u'(t)R(t)u(t)] dt 
2 to 

(3.1.3) 

where, x(t) is nth state vector, y(t) is mth output vector, z(t) is mth ref­
erence or desired output vector (or nth desired state vector, if the state 
x(t) is available), u(t) is rth control vector, and e(t) = z(t) - y(t) (or 
e(t) = z(t) - x(t), if the state x(t) is directly available) is the mth 
error vector. A(t) is nxn state matrix, B(t) is nxr control matrix, 
and C(t) is mxn output matrix. We assume that the control u(t) is 
unconstrained, 0 < m :::; r :::; n, and all the states and/or outputs are 
completely measurable. The preceding cost functional (3.1.3) contains 
quadratic terms in error e(t) and control u(t) and hence called the 
quadratic cost functional2 . We also make certain assumptions to be de­
scribed below on the various matrices in the quadratic cost functional 
(3.1.3). Under these assumptions, we will find that the optimal control 
is closed-loop in nature, that is, the optimal control u(t) is a function of 
the state x(t) or the output y(t). Also, depending on the final time tf 
being finite (infinite), the system is called finite- (infinite-) time horizon 
system. Further, we have the following categories of systems. 

1. If our objective is to keep the state x(t) near zero (i.e., z(t) 
o and C = I), then we call it state regulator system. In other 
words, the objective is to obtain a control u(t) which takes the 
plant described by (3.1.1) and (3.1.2) from a nonzero state to 
zero state. This situation may arise when a plant is subjected 
to unwanted disturbances that perturb the state (for example, 
sudden load changes in an electrical voltage regulator system, 
sudden wind gust in a radar antenna positional control system). 

2. If our interest is to keep the output y(t) near zero (i.e., z(t) = 0), 
then it is termed the output regulator system. 

2See Appendix A for more details on Quadratic Forms and Definiteness and other related 
topics. 



3.1 Problem Formulation 103 

3. If we try to keep the output or state near a desired state or output, 
then we are dealing with a tracking system. We see that in both 
state and output regulator systems, the desired or reference state 
is zero and in tracking system the error is to be made zero. For 
example, consider again the antenna control system to track an 
aircraft. 

Let us consider the various matrices in the cost functional (3.1.3) and 
their implications. 

1. The Error Weighted Matrix Q(t): In order to keep the error e(t) 
small and error squared non-negative, the integral of the expres­
sion ~e/(t)Q(t)e(t) should be nonnegative and small. Thus, the 
matrix Q (t) must be positive semidefinite. Due to the quadratic 
nature of the weightage, we have to pay more attention to large 
errors than small errors. 

2. The Control Weighted Matrix R(t): The quadratic nature of the 
control cost expression ~u/(t)R(t)u(t) indicates that one has to 
pay higher cost for larger control effort. Since the cost of the 
control has to be a positive quantity, the matrix R( t) should be 
positive definite. 

3. The Control Signal u(t): The assumption that there are no con­
straints on the control u(t) is very important in obtaining the 
closed loop optimal configuration. 

Combining all the previous assumptions, we would like on one 
hand, to keep the error small, but on the other hand, we must 
not pay higher cost to large controls. 

4. The Terminal Cost Weighted Matrix F(tf): The main purpose of 
this term is to ensure that the error e(t) at the final time tf is 
as small as possible. To guarantee this, the corresponding matrix 
F( t f) should be positive semidefinite. 

Further, without loss of generality, we assume that the weighted 
matrices Q(t), R(t), and F(t) are symmetric. The quadratic cost 
functional described previously has some attractive features: 

(a) It provides an elegant procedure for the design of closed-loop 
optimal controller. 
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(b) It results in the optimal feed-back control that is linear in 
state function. 

That is why we often say that the "quadratic performance index 
fits like a glove" [6]. 

5. Infinite Final Time: When the final time t f is infinity, the termi­
nal cost term involving F(tf) does not provide any realistic sense 
since we are always interested in the solutions over finite time. 
Hence, F(tf) must be zero. 

3.2 Finite-Time Linear Quadratic Regulator 
Now we proceed with the linear quadratic regulator (LQR) system, 
that is, to keep the state near zero during the interval of interest. For 
the sake of completeness we shall repeat the plant and performance 
index equations described in the earlier section. Consider a linear, 
time-varying plant described by 

x(t) = A(t)x(t) + B(t)u(t) 

with a cost functional 

J(u) = J(x(to), u(t), to) 

= ~ x' (t f ) F ( t f )x ( t f ) 

11tf +- [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt 
2 to 

= ~ x' ( t f ) F ( t f ) x( t f ) 

+~ rtf [X'(t) u'(t)] [Q(t) 0 ] [X(t)] dt 
2 lto 0 R(t) u(t) 

(3.2.1) 

(3.2.2) 

where, the various vectors and matrices are defined in the last section. 
Let us note that here, the reference or desired state z(t) = 0 and hence 
the error e(t) = 0 - x(t) itself is the state, thereby implying a state 
regulator system. We summarize again various assumptions as follows. 

1. The control u( t) is unconstrained. However, in many physical 
situations, there are limitations on the control and state and the 
case of unconstrained control is discussed in a later chapter. 
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2. The initial condition x(t = to) = Xo is given. The terminal time 
t f is specified, and the final state x( t f) is not specified. 

3. The terminal cost matrix F(tf) and the error weighted matrix 
Q(t) are nxn positive semidefinite matrices, respectively; and the 
control weighted matrix R( t) is an rxr positive definite matrix. 

4. Finally, the fraction ~ in the cost functional (3.2.2) is associated 
mainly to cancel a 2 that would have otherwise been carried on 
throughout the result, as seen later. 

We follow the Pontryagin procedure described in Chapter 2 (Table 2.1) 
to obtain optimal solution and then propose the closed-loop configu­
ration. First, let us list the various steps under which we present the 
method. 

• Step 1: Hamiltonian 

• Step 2: Optimal Control 

• Step 3: State and Costate System 

• Step 4: Closed-Loop Optimal Control 

• Step 5: Matrix Differential Riccati Equation 

Now let us discuss the preceding steps in detail. 

• Step 1: Hamiltonian: Using the definition of the Hamiltonian 
given by (2.7.27) in Chapter 2 along with the performance index 
(3.2.2), formulate the Hamiltonian as 

1 1 
H(x(t), u(t), A(t)) = "2x'(t)Q(t)x(t) + "2u'(t)R(t)u(t) 

+A' (t) [A(t)x(t) + B(t)u(t)] (3.2.3) 

where, A(t) is the costate vector of nth order. 

• Step 2: Optimal Control: Obtain the optimal control u*(t) using 
the control relation (2.7.29) as 

~~ = 0 ----+ R(t)u*(t) + B'(t)A*(t) = 0 (3.2.4) 

leading to 

u*(t) = _R-l(t)B'(t)A*(t) (3.2.5) 
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where, we used 

:u Gul(t)R(t)U(t)} = R(t)u(t) and 

:u {A' (t)B(t)u(t)} = B' (t)A(t). 

Similar expressions are used throughout the rest of the book. 
Further details on such relations are found in Appendix A. We 
immediately notice from (3.2.5) the need for R(t) to be positive 
definite and not positive semidefinite so that the inverse R-l(t) 
exists . 

• Step 3: State and Costate System: Obtain the state and costate 
equations according to (2.7.30) and (2.7.31) as 

x*(t) = + (~~) * ---> x*(t) = A(t)x*(t) + B(t)u*(t) (3.2.6) 

j,*(t) = - (~~) * ---> j, *(t) = -Q(t)x*(t) - A'(t)A*(t). (3.2.7) 

Substitute the control relation (3.2.5) in the state equation (3.2.6) 
to obtain the (state and costate) canonical system (also called 
Hamiltonian system) of equations 

[
x*(t)] [A(t) -E(t)] [x*(t)] 
.,\ * (t) = - Q (t) - A' (t) A * (t) (3.2.8) 

where E(t) = B(t)R-l(t)B'(t). The general boundary condition 
given by the relation (2.7.32) is reproduced here as 

[1i* + ~~Lf i5tf + [(~~) * - A*(t{ i5xf = 0 (3.2.9) 

where, S equals the entire terminal cost term in the cost func­
tional (3.2.2). Here, for our present system tf is specified which 
makes 8tf equal to zero in (3.2.9), and x(tf) is not specified which 
makes 8xf arbitrary in (3.2.9). Hence, the coefficient of 8xf in 
(3.2.9) becomes zero, that is, 

A*(tf) = (:~f)) * 
a [~x' (t f )F( t f )x( t f)] * 

= 8x(tf) = F(tf)x (tf)· (3.2.10) 
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This final condition on the costate ,x * (t f) together with the initial 
condition on the state Xo and the canonical system of equations 
(3.2.8) form a two-point, boundary value problem (TPBVP). The 
state-space representation of the set of relations for the state and 
costate system (3.2.8) and the control (3.2.5) is shown in Fig­
ure 3.1. 

u*(t) J x*(t) 

State 
A(t) 

-1 
R (t) -Q(t) 

B'(t) 
').,*(1) 

Costate 

Figure 3.1 State and Costate System 

• Step 4: Closed-Loop Optimal Control: The state space repre­
sentation shown in Figure 3.1 prompts us to think that we can 
obtain the optimal control u*(t) as a function (negative feedback) 
of the optimal state x*(t). Now to formulate a closed-loop opti­
mal control, that is, to obtain the optimal control u*(t) which is a 
function of the costate ,x*(t) as seen from (3.2.5), as a function of 
the state x*(t), let us examine the final condition on ,x*(t) given 
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by (3.2.10). This in fact relates the costate in terms of the state 
at the final time t f. Similarly, we may like to connect the costate 
with the state for the complete interval of time [to, t f]. Thus, let 
us assume a transformation [113, 102] 

A*(t) = P(t)x*(t) (3.2.11) 

where, P(t) is yet to be determined. Then, we can easily see that 
with (3.2.11), the optimal control (3.2.5) becomes 

u*(t) = -R-1(t)B'(t)P(t)x*(t) (3.2.12) 

which is now a negative feedback of the state x*(t). Note that this 
negative feedback resulted from our "theoretical development" or 
"mathematics" of optimal control procedure and not introduced 
intentionally [6]. 

Differentiating (3.2.11) w.r.t. time t, we get 

.x*(t) = P(t)x*(t) + P(t)x*(t). (3.2.13) 

Using the transformation (3.2.11) in the control, state and costate 
system of equations (3.2.5), (3.2.6) and (3.2.7), respectively, we 
get 

x*(t) = A(t)x*(t) - B(t)R-l(t)B'(t)P(t)x*(t), 

.x*(t) = -Q(t)x*(t) - A'(t)P(t)x*(t). 

(3.2.14) 

(3.2.15) 

Now, substituting state and costate relations (3.2.14) and (3.2.15) 
in (3.2.13), we have 

-Q(t)x*(t) - A'(t)P(t)x*(t) = P(t)x*(t) + 
P(t) [A(t)x*(t) - B(t)R-1(t)B'(t)P(t)x*(t)] ~ 

[P(t) + P(t)A(t) + A'(t)P(t) + Q(t)-

P(t)B(t)R-1(t)B'(t)P(t)] x*(t) = 0 (3.2.16) 

Essentially, we eliminated the costate function A * (t) from the 
control (3.2.5), the state (3.2.6) and the costate (3.2.7) equations 
by introducing the transformation (3.2.11) . 

• Step 5: Matrix Differential Riccati Equation: Now the relation 
(3.2.16) should be satisfied for all t E [to, t f 1 and for any choice of 
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the initial state x*(to). Also, P(t) is not dependent on the initial 
state. It follows that the equation (3.2.16) should hold good for 
any value of x*(t). This clearly means that the function P(t) 
should satisfy the matrix differential equation 

P(t) + P(t)A(t) + A' (t)P(t) + Q(t) -

P(t)B(t)R-1(t)B'(t)P(t) = O. (3.2.17) 

This is the matrix differential equation of the Riccati type, and 
often called the matrix differential Riccati equation (DRE). Also, 
the transformation (3.2.11) is called the Riccati transformation, 
P(t) is called the Riccati coefficient matrix or simply Riccati ma­
trix or Riccati coefficient, and (3.2.12) is the optimal control (feed­
back) law. The matrix DRE (3.2.17) can also be written in a 
compact form as 

P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)E(t)P(t) (3.2.18) 

where E(t) = B(t)R-l(t)B'(t). 

Comparing the boundary condition(3.2.10) and the Riccati trans­
formation (3.2.11), we have the final condition on P(t) as 

>..*(tf) = P(tf)x*(tf) = F(tf)x*(tf) ---+ 

\ P(tf) = F(tf)'\ (3.2.19) 

Thus, the matrix DRE (3.2.17) or (3.2.18) is to be solved backward 
in time using the final condition (3.2.19) to obtain the solution 
P ( t) for the entire interval [to, t f ] . 

3.2.1 Symmetric Property of the Riccati Coefficient Ma-
trix 

Here, we first show an important property of the Riccati matrix P(t). 
The fact that the nxn matrix P(t) is symmetric for all t E [to, tf]' i.e., 
P (t) = P' (t) can be easily shown as follows. First of all, let us note that 
from the formulation of the problem itself, the matrices F(tf), Q(t), 
and R(t) are symmetric and therefore, the matrix B(t)R-l(t)B'(t) 
is also symmetric. Now transposing both sides of the matrix DRE 
(3.2.18), we notice that both P(t) and P'(t) are solutions of the same 
differential equation and that both satisfy the same final condition 
(3.2.19). 
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3.2.2 Optimal Control 

Is the optimal control u*(t) a minimum? This can be answered by 
considering the second partials of the Hamiltonian (3.2.3). Let us recall 
from Chapter 2 that this is done by examining the second variation of 
the cost functional. Thus, the condition (2.7.41) (reproduce~ here for 
convenience) for examining the nature of optimal control is that the 
matrix 

(3.2.20) 

must be positive definite (negative definite) for minimum (maximum). 
In most of the cases this reduces to the condition that 

(
8

21i) 
ou2 

* 

(3.2.21 ) 

must be positive definite (negative definite) for minimum (maximum). 
Now using the Hamiltonian (3.2.3) and calculating the various partials, 

(3.2.22) 

Substituting the previous partials in the condition (3.2.20), we have 

[
Q(t) 0 ] 

II= 0 R(t) . (3.2.23) 

Since R(t) is positive definite, and Q(t) is positive semidefinite, it fol­
lows that the preceding matrix (3.2.23) is only positive semidefinite. 
However, the condition that the second partial of 1i w.r.t. u*(t), which 
is R( t), is positive definite, is enough to guarantee that the control 
u*(t) is minimum. 

3.2.3 Optimal Performance Index 

Here, we show how to obtain an expression for the optimal value of the 
performance index. 
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THEOREM 3.1 
The optimal value of the PI (3.2.2) is given by 

J*(x*(t), t) = ~x*'(t)P(t)x*(t). (3.2.24) 

Proof: First let us note that 

it! d 1 
- (x*'(t)P(t)x*(t)) dt = --x*'(to)P(to)x*(to) 

~ & 2 

+~x*'(tj)P(tj)x*(tj). (3.2.25) 

Substituting for ~x*'(tj )P(tj )x*(tj) from (3.2.25) into the PI (3.2.2), and 

noting that P(tj) = F(tj) from (3.2.19) we get 

J* (x* (to), to) = ~x*' (to)P( to)x* (to) 

lit! +- [x*'(t)Q(t)x*(t) + u*'(t)R(t)u*(t) 
2 to 

+ :t (x*'(t)P(t)x*(t)) 1 dt 

= ~x*'(to)P(to)x(to) 
lit! +- [x*'(t)Q(t)x*(t) + u*'(t)R(t)u*(t) 
2 to 

+ x*'(t)P(t)x*(t) + x*'(t)P(t)x*(t) 

+ x*'(t)P(t)x*(t)] dt. (3.2.26) 

Now, using the state equation (3.2.14) for x*(t), we get 

J* (x* (to), to) = ~x*' (to)P( to)x* (to) 

lit! +- x*'(t) [Q(t) + A'(t)P(t) + P(t)A(t) 
2 to 

- P(t)B(t)R-1(t)B'(t)P(t) + P(t)] x*(t)dt. (3.2.27) 

Finally, using the matrix DRE (3.2.18) in the previous relations, the integral 

part becomes zero. Thus, 

J*(x(to),to) = ~x*'(to)P(to)x*(to). (3.2.28) 



112 Chapter 3: Linear Quadratic Optimal Control Systems I 

Now, the previous relation is also valid for any x* (t). Thus, 

1 
J* (x* (t), t) = "2x*' (t)P( t)x* (t). (3.2.29) 

In terms of the final time t f' the previous optimal cost becomes 

(3.2.30) 

Since we are normally given the initial state x( to) and the Riccati coefficient 
P(t) is solved for all time t, it is more convenient to use the relation (3.2.28). 

3.2.4 Finite-Time Linear Quadratic Regulator: 
Time- Varying Case: Summary 

Given a linear, time-varying plant 

x(t) = A(t)x(t) + B(t)u(t) 

and a quadratic performance index 

J = ~ x' ( t f) F ( t f ) x( t f ) 

11t! +"2 to [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt 

(3.2.31) 

(3.2.32) 

where, u( t) is not constrained, t f is specified, and x( t f) is not specified, 
F(tf) and Q(t) are nxn symmetric, positive semidefinite matrices, and 
R(t) is TXT symmetric, positive definite matrix, the optimal control is 
given by 

I u*(t) = -R-1(t)B'(t)P(t)x*(t) = -K(t)x*(t) I (3.2.33) 

where K(t) = R-1(t)B'(t)P(t) is called Kalman gain and P(t), the nxn 
symmetric, positive definite matrix (for all t E [to, tfD, is the solution 
of the matrix differential Riccati equation (DRE) 

I P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)B(t)R-1(t)B'(t)P(t) I 
(3.2.34) 

satisfying the final condition 

(3.2.35) 
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Table 3.1 Procedure Summary of Finite-Time Linear Quadratic Regulator 
System: Time-Varying Case 

A. Statement of the Problem 
Given the plant as 
x(t) = A(t)x(t) + B(t)u(t), 
the performance index as 

J = ~x'(tf )F(tf )x(tf) + ~ It; [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, 
and the boundary conditions as 
x(to) = xo, t f is fixed, and x( t f) is free, 
find the optimal control, state and performance index. 

B. Solution of the Problem 
Step 1 Solve the matrix differential Riccati equation 

P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)B(t)R-1(t)B'(t)P(t) 
with final condition P(t = tf) = F(tf). 

Step 2 Solve the optimal state x* (t) from 
x*(t) = [A(t) - B(t)R-1 (t)B'(t)P(t)] x*(t) 
with initial condition x(to) = Xo. 

Step 3 Obtain the optimal control u*(t) as 
u*(t) = -K(t)x*(t) where, K(t) = R-1(t)B'(t)P(t). 

Step 4 Obtain the optimal performance index from 
J* = ~x*'(t)P(t)x*(t). 

the optimal state is the solution of 

I x*(t) = [A(t) - B(t)R-1 (t)B'(t)P(t)] x*(t) I (3.2.36) 

and the optimal cost is 

1 
J* = -x*'(t)P(t)x*(t) 2 . (3.2.37) 

The optimal control u*(t), given by (3.2.33), is linear in the optimal 
state x*(t). The entire procedure is now summarized in Table 3.l. 
Note: It is simple to see that one can absorb the! that is associated 
with J by redefining a performance measure as 

J2 = 2J = x'(tf )F(tf )x(tf) 

l.tJ 
+ [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, 

to 
(3.2.38) 
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get the corresponding matrix differential Riccati equation for J2 as 

P2(t) = _ P2(t) A(t) _ A'(t) P2(t) _ Q(t) 
222 

+ P2(t)B(t)R-1(t)B'(t)P2(t) 
2 2 

with final condition 

(3.2.39) 

(3.2.40) 

Comparing the previous DRE for J 2 with the corresponding DRE 
(3.2.34) for J, we can easily see that P2(t) = 2P(t) and hence the 
optimal control becomes 

u*(t) = -R-1(t)B'(t)P2(t)x*(t) = _ K 2(t)x*(t) 
2 2 

= -R-1(t)B'(t)P(t)x*(t) = -K(t)x*(t). (3.2.41) 

Thus, using J 2 without the ~ in the performance index, we get the 
same optimal control (3.2.41) for the original plant (3.2.31), but the 
only difference being that the Riccati coefficient matrix P 2 (t) is twice 
that of P(t) and J2 is twice that of J(for example, see [3, 42]). 

However, we will retain the ~ in J throughout the book due to the ob­
vious simplifications in obtaining the optimal control, state and costate 
equations (3.2.4), (3.2.6) and (3.2.7), respectively. Precisely, the factor 
~ in the PI (3.2.2) and hence in the Hamiltonian (3.2.3) gets eliminated 
while taking partial derivatives of the Hamiltonian w.r.t. the control, 
state and costate functions. 

3.2.5 Salient Features 

We next discuss the various salient features of the state regulator sys­
tem and the matrix differential Riccati equation. 

1. Riccati Coefficient: The Riccati coefficient matrix P(t) is a time­
varying matrix which depends upon the system matrices A(t) 
and B (t), the performance index (design) matrices Q (t), R( t) 
and F(tf), and the terminal time tf, but P(t) does not depend 
upon the initial state x( to) of the system. 

2. P(t) is symmetric and hence it follows that the nxn order ma­
trix DRE (3.2.18) represents a system of n(n + 1)/2 first order, 
nonlinear, time-varying, ordinary differential equations. 
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3. Optimal Control: From (3.2.21), we see that the optimal control 
u*(t) is minimum (maximum) if the control weighted matrix R(t) 
is positive definite (negative definite). 

4. Optimal State: Using the optimal control (3.2.12) in the state 
equation (3.2.1), we have 

I x*(t) = [A(t) - B(t)R-1(t)B'(t)P(t)] x*(t) = G(t)x*(t) I 

(3.2.42) 

where 

G(t) = A(t) - B(t)R-1(t)B'(t)P(t). (3.2.43) 

The solution of this state differential equation along with the ini­
tial condition x(to) gives the optimal state x*(t). Let us note 
that there is no condition on the closed-loop matrix G(t) regard­
ing stability as long as we are considering the finite final time (t f) 
system. 

5. Optimal Cost: It is shown in (3.2.29) that the minimum cost J* 
is given by 

J* = ~x*'(t)P(t)x*(t) for all t E [to,tf] (3.2.44) 

where, P(t) is the solution of the matrix DRE (3.2.18), and x*(t) 
is the solution of the closed-loop optimal system (3.2.42). 

6. Definiteness of the Matrix P(t): Since F(tf) is positive semidefi­
nite, and P(tf) = F(tf), we can easily say that P(tf) is positive 
semidefinite. We can argue that P (t) is positive definite for all 
t E [to, t f). Suppose that P (t) is not positive definite for some 
t = ts < tf, then there exists the corresponding state x*(ts ) such 
that the cost function ~x*'(ts)P(ts)x*(ts) ::; 0, which clearly vi­
olates that fact that minimum cost has to be a positive quantity. 
Hence, P(t) is positive definite for all t E [to, tf). Since we al­
ready know that P(t) is symmetric, we now have that P(t) is 
positive definite, symmetric matrix. 

7. Computation of Matrix DRE: Under some conditions we can get 
analytical solution for the nonlinear matrix DRE as shown later. 
But in general, we may try to solve the matrix DRE (3.2.18) by 
integrating backwards from its known final condition (3.2.19). 
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8. Independence of the Riccati Coefficient Matrix P(t): The matrix 
P (t) is independent of the optimal state x* (t), so that once the 
system and the cost are specified, that is, once we are given the 
system/plant matrices A(t) and B(t), and the performance index 
matrices F(tf), Q(t), and R(t), we can independently compute 
the matrix P (t) before the optimal system operates in the forward 
direction from its initial condition. Typically, we compute (off­
line) the matrix P(t) backward in the interval t E [tf, to] and store 
them separately, and feed these stored values when the system is 
operating in the forward direction in the interval t E [to, t f] . 

9. Implementation of the Optimal Control: The block diagram im­
plementing the closed-loop optimal controller (CLOC) is shown 
in Figure 3.2. The figure shows clearly that the CLOC gets its 
values of P(t) externally, after solving the matrix DRE backward 
in time from t = t f to t = to and hence there is no way that 
we can implement the closed-loop optimal control configuration 
on-line. 

It is to be noted that the optimal control u*(t) can be solved and 
implemented in open-loop configuration by using the Pontryagin 
procedure given in Chapter 2. In that case, the open-loop optimal 
controller (OLOC) is quite cumbersome compared to the equiv­
alent closed-loop optimal controller as will be illustrated later in 
this chapter. 

10. Linear Optimal Control: The optimal feedback control u*(t) given 
by (3.2.12) is written as 

I u*(t) = -K(t)x*(t) I (3.2.45) 

where, the Kalman gain K(t) = R-1(t)B'(t)P(t). Or alterna­
tively, we can write 

u*(t) = -K~(t)x*(t) (3.2.46) 

where, Ka(t) = P(t)B(t)R-l(t). The previous optimal control is 
linear in state x* (t). This is one of the nice features of the optimal 
control of linear systems with quadratic cost functionals. Also, 
note that the negative feedback in the optimal control relation 
(3.2.46) emerged from the theory of optimal control and was not 
introduced intentionally in our development. 
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Figure 3.2 Closed-Loop Optimal Control Implementation 

11. Controllability: Do we need the controllability condition on the 
system for implementing the optimal feedback control? No, as 
long as we are dealing with a finite time (t f) system, because 
the contribution of those uncontrollable states (which are also 
unstable) to the cost function is still a finite quantity only. How­
ever, if we consider an infinite time interval, we certainly need 
the controllability condition, as we will see in the next section. 

A historical note is very appropriate on the Riccati equation [22, 132]. 

The matrix Riccati equation has its origin in the scalar ver­
sion of the equation 

x(t) = ax2 (t) + bx(t) + c (3.2.47) 

with time varying coefficients, proposed by Jacopo Franceso 
Riccati around 1715. Riccati (1676-1754) gave the methods 
of solutions to the Riccati equation. However, the original 
paper by Riccati was not published immediately because he 
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had the "suspicion" that the work was already known to 
people such as the B ernoullis. 

The importance of the Riccati equation, which has been 
studied in the last two centuries by an extensive number 
of scientists and engineers, need not be overstressed. The 
matrix Riccati equation, which is a generalization in matrix 
form of the original scalar equation, plays a very important 
role in a range of control and systems theory areas such as 
linear quadratic optimal control, stability, stochastic filter­
ing and control, synthesis of passive networks, differential 
games and more recently, Hoo-control and robust stabiliza­
tion and control. 

Did Riccati ever imagine that his equation, proposed more 
than a quarter millennium ago, would play such an impor­
tant and ubiquitous role in modern control engineering and 
other related fields? 

3.2.6 LQR System for General Performance Index 

In this subsection, we address the state regulator system with a more 
general performance index than given by (3.2.2). Consider a linear, 
time-varying plant described by 

x(t) = A(t)x(t) + B(t)u(t), (3.2.48) 

with a cost functional 

1 
J(u) = 2X' (t f )F(t f )x(t f) 

1 rtf +2 ito [x/(t)Q(t)x(t) + 2X/(t)SU(t) + u/(t)R(t)u(t)] dt 

= ~ X' ( t f ) F ( t f ) x ( t f ) 

1 rtf [, ,] [Q(t) S(t)] [X(t)] +2 ito x (t) u (t) S/(t) R(t) u(t) dt, (3.2.49) 

where, the various vectors and matrices are defined in earlier sections 
and the nxr matrix S(t) is only a positive definite matrix. 
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Using the identical procedure as for the LQR system, we get the 
matrix differential Riccati equation as 

P(t) = -P(t)A(t) - A' (t)P(t) - Q(t) 

+ [P ( t) B ( t) + S ( t)] R -1 ( t ) [B I ( t ) P ( t) + S I ( t) ] (3.2.50) 

with the final condition on P(t) as 

(3.2.51 ) 

The optimal control is then given by 

u(t) = _R-1(t)B/(t) [S/(t) + P(t)] x(t). (3.2.52) 

Obviously, when S(t) is made zero in the previous analysis, we get the 
previous results shown in Table 3.1. 

3.3 Analytical Solution to the Matrix 
Differential Riccati Equation 

In this section, we explore an analytical solution for the matric dif­
ferential Riccati equation (DRE). This material is based on [138, 89]. 
Let us rewrite the Hamiltonian system (3.2.8) of the state and costate 
equations for the time-invariant case as (omitting * for the sake of 
simplicity) 

[
X(t)] [A -E] [X(t)] 
A(t) = -Q -A' A(t) (3.3.1) 

where, E = BR-1B/. Let 

[ A -E] ~ = -Q -A' . (3.3.2) 

Let us also recall that by the transformation .\(t) = P(t)x(t), we get 
the differential matrix Riccati equation (3.2.18), rewritten for (time­
invariant matrices A, B, Q and R) as 

P(t) = -P(t)A - A/p(t) - Q + P(t)BR -lB/p(t), (3.3.3) 

with the final condition 

(3.3.4) 
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The solution P(t) can be obtained analytically (in contrast to numer­
ical integration) in terms of the eigenvalues and eigenvectors of the 
Hamiltonian matrix ~. In order to find analytical solution to the dif­
ferential Riccati equation (3.3.3), it is necessary to show that if /1 is an 
eigenvalue of the Hamiltonian matrix ~ in (3.3.2), then it implies that 
-/1 is also the eigenvalue of ~ [89, 3]. For this, let us define 

r = [ 0 I] 
-10 

(3.3.5) 

so that r-1 = -r. Then by a simple pre- and post-multiplication with 
r we get 

~ = r~/r = -r~/r-l. (3.3.6) 

Now, if /1 is an eigenvalue of ~ with corresponding eigenvector v, 

~v = /1V (3.3.7) 

then 

f ~/rv = 1.J,v, ~/rv = - /1fv (3.3.8) 

where, we used f-1 = -f. Rearranging 

(3.3.9) 

Next, rearranging the eigenvalues of ~ as 

(3.3.10) 

where, M( -M) is a diagonal matrix with right-half-plane (left-half 
plane) eigenvalues. Let W, the modal matrix of eigenvectors corre­
sponding to D, be defined as 

W = [Wn W12] , 
W21 W22 

(3.3.11) 

where, [Wn W 21]' are the n eigenvectors of the left-half-plane (stable) 
eigenvalues of ~. Also, 

(3.3.12) 
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Let us now define a state transformation 

[
X(t)] = w [W(t)] = [Wl1 W12] [W(t)] . 
A(t) z(t) W 21 W22 z(t) 

(3.3.13) 

Then, using (3.3.12) and (3.3.13), the Hamiltonian system (3.3.1) be­
comes 

[~~~)] = W-
1 [~i!n = W-l~ [~i!n = W-l~ W [~g)] 

= D [ :i!\ ] . (3.3.14) 

Solving (3.3.14) in terms of the known final conditions, we have 

[~~~)] = [e-M~-tf) eM(?-t/)] [~~~)] . 
Rewriting (3.3.15) 

Next, from (3.3.13) and using the final condition (3.3.4) 

A(tf) = W 21W(tf) + W22 Z(tf) 

= Fx(tf) 

= F [Wl1w(tf) + W12Z(tf)] . 

Solving the previous relation for z( t f) in terms of w( t f) 

z(tf) = T(tf )w(tf), where 

(3.3.15) 

(3.3.16) 

(3.3.17) 

T(tf) = - [W22 - FW12]-1 [W21 - FWl1]. (3.3.18) 

Again, from (3.3.16) 

z(t) = e-M(tf-t)z(tf) 

= e-M(tf-t)T( t f )w( t f) 

= e-M(tf-t)T(tf )e-M(tf-t)w(t). (3.3.19) 

Rewriting the previous relation as 

z(t) = T(t)w(t), where, 
T(t) = e-M(tf-t)T(tf)e-M(tf-t). (3.3.20) 
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Finally, to relate P(t) in (3.3.3) to the relation (3.3.20) for T(t), let us 
use (3.3.13) to write 

..\(t) = W21W(t) + W22Z(t) 

= P(t)x(t) 

= P(t) [WllW(t) + W 12Z(t)] 

and by (3.3.20), the previous relation can be written as 

(3.3.21) 

[W21 + W22T(t)] w(t) = P(t) [Wll + W12T(t)] w(t). (3.3.22) 

Since the previous relation should hold good for all x(to) and hence for 
all states w(t), it implies that the analytical expression to the solution 
of P(t) is given by 

(3.3.23) 

3.3.1 MATLAB© Implementation oj Analytical 
Solution to Matrix DRE 

The solution of the matrix DRE (3.2.34) is not readily available with 
MATLAB and hence a MATLAB-based program was developed for 
solving the matrix DRE based on the analytical solution of matrix 
DRE [138] described earlier. The MATLAB solution is illustrated by 
the following example. 

Example 3.1 

Let us illustrate the previous procedure with a simple second order 
example. Given a double integral system 

Xl(t)=X2(t), xl(0)=2 
X2(t) = -2Xl(t) + X2(t) + u(t), X2(0) = -3, (3.3.24) 

and the performance index (PI) 

J = ~ [xi(5) + xl(5)X2(5) + 2x~(5)] 
1 (5 

+2 io [2xi(t) + 6Xl(t)X2(t) + 5x~(t) + 0.25u2(t)] dt, 

(3.3.25) 

obtain the feedback control law. 
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Solution: Comparing the present plant (3.3.24) and the PI (3.3.25) 
of the problem with the corresponding general formulations of the 
plant (3.2.31) and the PI (3.2.32), respectively, let us first identify 
the various quantities as 

A(t) = [ ~2 ~ ] ; 

Q(t) = [~~] ; 

B(t) = [~]; F(tf) = [0~5 025] 
1 

R(t) = r(t) = 4; to = 0; tf = 5. 

It is easy to check that the system (3.3.24) is unstable. Let P(t) 
be the 2x2 symmetric matrix 

P(t) = [Pl1(t) P12(t)] . 
P12(t) P22(t) 

(3.3.26) 

Then, the optimal control (3.2.33) is given by 

u*(t) = -4 [0 1] [Pl1(t) P12(t)] [Xi(t)] 
P12(t) P22(t) X2(t) 

= -4[P12(t)xi(t) + P22(t)X;(t)] (3.3.27) 

where, P(t), the 2x2 symmetric, positive definite matrix, is the 
solution of the matrix DRE (3.2.34) 

[
Pl1(t) P12(t)] [Pl1(t) P12(t)] [ ° 1] 
P12(t) P22(t) = - P12(t) P22(t) -2 1 

_ [0 -2] [Pl1(t) P12(t)] 
1 1 P12(t) P22(t) 

+ [Pl1 (t) P12(t)] [0] 4 [0 1] [Pl1 (t) P12(t)] 
P12(t) P22(t) 1 P12(t) P22(t) 

- [~~] (3.3.28) 

satisfying the final condition (3.2.35) 

[
Pl1 (5) P12 (5)] _ [ 1 0.5] 
P12(5) P22(5) - 0.5 2 . 

(3.3.29) 
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Simplifying the matrix DRE (3.3.28), we get 

pn(5) = 1, 
P12(t) = -pn(t) - P12(t) + 2p22(t) + 4P12 (t)p22(t) - 3, 

P12(5) = 0.5 

P22(t) = -2p12(t) - 2p22(t) + 4P~2(t) - 5, 
P22(5) = 2. 

(3.3.30) 

Solving the previous set of nonlinear, differential equations back­
ward in time with the given final conditions, one can obtain the 
numerical solutions for the Riccati coefficient matrix P(t). How­
ever, here the solutions are obtained using the analytical solution 
as given earlier in this section. The solutions for the Riccati coef­
ficients are plotted in Figure 3.3. Using these Riccati coefficients, 
the closed-loop optimal control system is shown in Figure 3.4. Us­
ing the optimal control u*(t) given by (3.3.27), the plant equations 
(3.3.24) are solved forward in time to obtain the optimal states 
xi(t) and x2(t) as shown in Figure 3.5 for the initial conditions 
[2 - 3]'. Finally, the optimal control u*(t) is shown in Figure 3.6. 
The previous resJlJ.ts are obtained using Control System Toolbox 
of the MATLAB\9, Version 6 as shown below. 

The following MATLAB© m file for Example 3.1 requires two 
additional MATLAB© files lqrnss. m which itself requires lqrnssf. m 
given in Appendix C. 

**************************************************** 
%% Solution using Control System Toolbox of 
%% the MATLAB. Version 6 
%% The following file example.m requires 
%% two other files lqrnss.m and lqrnssf.m 
%% which are given in Appendix 
clear all 
A= [0. ,1. ; -2. ,1.] ; 
B= [0. ; 1.] ; 
Q= [2. ,3. ; 3. ,5.] ; 
F=[1. ,0.5;0.5,2.]; 
R= [. 25] ; 
tspan=[05]; 
xO=[2. ,-3.]; 
[x,u,K]=lqrnss(A,B,F,Q,R,xO,tspan); 
****************************************************** 
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3.4 Infinite-Time LQR System I 

5 

In this section, let us make the terminal (final) time t f to be infinite 
in the previous linear, time-varying, quadratic regulator system. Then, 
this is called the infinite-time (or infinite horizon) linear quadratic reg­
ulator system [6, 3]. 

Consider a linear, time-varying plant 

x(t) = A(t)x(t) + B(t)u(t), (3.4.1) 

and a quadratic performance index 

J = ~ tx) [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, 
2 ito (3.4.2) 

where, u(t) is not constrained. Also, Q(t) is nxn symmetric, positive 
semidefinite matrix, and R(t) is an rxr symmetric, positive definite 
matrix. Note, it makes no engineering sense to have a terminal cost 
term with terminal time being infinite. 

This problem cannot always be solved without some special condi­
tions. For example, if anyone of the states is uncontrollable and/or un­
stable, the corresponding performance measure J will become infinite 
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Figure 3.4 Closed-Loop Optimal Control System for Example 3.1 

and makes no physical sense. On the other hand, with the finite-time 
system, the performance measure is always finite. Thus, we need to 
impose the condition that the system (3.4.1) is completely controllable. 

U sing results similar to the previous case of finite final time t f (see 
Table 3.1), the optimal control for the infinite-horizon linear regulator 
system is obtained as 

u*(t) = _R-l(t)B'(t)P(t)x*(t), (3.4.3) 

where, 

P(t) = lim {P(t)} , 
tf--+oo 

(3.4.4) 

the nxn symmetric, positive definite matrix (for all t E [to, tf]) is the 
solution of the matrix differential Riccati equation (DRE) 

P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)B(t)R-1 (t)B'(t)P(t), 

(3.4.5) 
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satisfying the final condition 

(3.4.6) 

The optimal cost is given by 

1 A 

J* = -x*'(t)P(t)x*(t) 2 . (3.4.7) 

The proofs for the previous results are found in optimal control text 
specializing in quadratic methods [3]. Example 3.1 can be easily solved 
for t f -+ 00 and F = o. 

3.4.1 Infinite-Time Linear Quadratic Regulator: Time­
Varying Case: Summary 

Consider a linear, time-varying plant 

x(t) = A(t)x(t) + B(t)u(t), (3.4.8) 

and a quadratic performance index 

1100 

J = - [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, 
2 to 

(3.4.9) 

where, u(t) is not constrained and x(tf), tf -+ 00 is not specified. Also, 
Q(t) is nxn symmetric, positive semidefinite matrix, and R(t) is rxr 
symmetric, positive definite matrix. Then, the optimal control is given 
by 

I u*(t) = -R-1(t)B'(t)P(t)x*(t) I (3.4.10) 

where, P(t), the nxn symmetric, positive definite matrix (for all t E 

[to, t f], is the solution of the matrix differential Riccati equation (DRE) 

I P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)B(t)R-1 (t)B'(t)P(t) I 
(3.4.11) 

satisfying the final condition 

P(t = tf -+ (0) = O. (3.4.12) 
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Table 3.2 Procedure Summary of Infinite-Time Linear Quadratic 
Regulator System: Time-Varying Case 

A. Statement of the Problem 
Given the plant as 
x(t) = A(t)x(t) + B(t)u(t), 
the performance index as 

J = ~ ftC; [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, 

and the boundary conditions as 
x(to) = Xo; x( (0) is free, 
find the optimal control, state and performance index. 

B. Solution of the Problem 
Step 1 ~olve the matrix differential Riccati equation (DRE) 

129 

P(t) = -P(t)A(t) - A'(t)P(t) - Q(t) + P(t)B(t)R- 1 (t)B'(t)P(t) 
with final condition P(t = t f) = O. 

Step 2 Solve the optimal state x*(t) from 

x*(t) = [A(t) - B(t)R- 1(t)B'(t)P(t)] x*(t) 

with initial condition x(to) = Xo. 
Step 3 Obtain the optimal control u*(t) from 

u*(t) = -R-1 (t)B'(t)P(t)x*(t). 
Step 4 Obtain the optimal performance index from 

J* = ~x*'(t)P(t)x*(t). 

The optimal state is the solution of 

I x*(t) = [A(t) - B(t)R-1(t)B'(t)P(t)] x*(t) I (3.4.13) 

and the optimal cost is 

1 A 

J* = "2x*'(t)P(t)x*(t). (3.4.14) 

The optimal control u*(t) given by (3.4.10) is linear in the optimal 
state x*(t). The entire procedure is now summarized in Table 3.2. 

3.5 Infinite-Time LQR System II 
In this section, we examine the state regulator system with infinite time 
interval for a linear time-invariant (LTI) system. Let us consider the 
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plant as 

x(t) = Ax(t) + Bu(t) (3.5.1) 

and the cost functional as 

11000 

J = - [x'(t)Qx(t) + u'(t)Ru(t)] dt 
2 0 

(3.5.2) 

where, x(t) is nth order state vector; u(t) is rth order control vec­
tor; A is nxn-order state matrix; B is rxr-order control matrix; Q 
is nxn-order, symmetric, positive semidefinite matrix; R is rxr-order, 
symmetric, positive definite matrix. First of all, let us discuss some of 
the implications of the time-invariance and the infinite final-time. 

1. The infinite time interval case is considered for the following rea­
sons: 

(a) We wish to make sure that the state-regulator stays near 
zero state after the initial transient. 

(b) We want to include any special case of large final time. 

2. With infinite final-time interval, to include the final cost function 
does not make any practical sense. Hence, the final cost term 
involving F(tf) does not exist in the cost functional (3.5.2). 

3. With infinite final-time interval, the system (3.5.1) has to be com­
pletely controllable. Let us recall that this controllability condi­
tion of the plant (3.5.1) requires that the controllability matrix 
(see Appendix B) 

(3.5.3) 

must be nonsingular or contain n linearly independent column 
vectors. The controllability requirement guarantees that the op­
timal cost is finite. On the other hand, if the system is not control­
lable and some or all of those uncontrollable states are unstable, 
then the cost functional would be infinite since the control inter­
val is infinite. In such situations, we cannot distinguish optimal 
control from the other controls. Alternatively, we can assume 
that the system (3.5.1) is completely stabilizable. 
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As before in the case of finite final-time interval, we can proceed and 
obtain the closed-loop optimal control and the associated Riccati equa­
tion. Still P (t) must be the solution of the matrix differential Riccati 
equation (3.2.34) with boundary condition P(tf) = O. It was shown 
that the assumptions of [70] 

1. controllability and 

imply that 

(3.5.4) 

where, P is the nxn positive definite, symmetric, constant matrix. If P 
is constant, then P is the solution of the nonlinear, matrix, algebraic 
Riccati equation (ARE), 

dP = 0 = -P A - A'P + PBR-1B'P - Q. 
dt 

Alternatively, we can write (3.5.5) as 

PA + A'P + Q - PBR-1B'P = o. 

(3.5.5) 

(3.5.6) 

Note, for a time-varying system with finite-time interval, we have the 
differential Riccati equation (3.2.34), whereas for a linear time-invariant 
system with infinite-time horizon, we have the algebraic Riccati equa­
tion (3.5.6). 

A historical note on R.E. Kalman is appropriate (from SIAM News, 
6/94 - article about R.E. Kalman). 

Rudolph E. Kalman is best known for the linear filtering 
technique that he and Richard Bucy [31] developed in 1960-
1961 to strip unwanted noise out of a stream of data [71, 
74, 76]. The Kalman filter, which is based on the use of 
state-space techniques and recursive algorithms, revolution­
ized the field of estimation. The Kalman filter is widely used 
in navigational and guidance systems, radar tracking, sonar 
ranging, and satellite orbit determination (for the Ranger, 
Apollo, and Mariner missions, for instance), as well as in 
fields as diverse as seismic data processing, nuclear power 
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plant instrumentation, and econometrics. Among Kalman's 
many outstanding contributions were the formulation and 
study of most fundamental state-space notions [72, 73, 77j 
including controllability, observability, minimality, realiz­
ability from input and output data, matrix Riccati equa­
tions, linear-quadratic control [70, 75, 75j, and the sepa­
ration principle that are today ubiquitous in control. While 
some of these concepts were also encountered in other con­
texts, such as optimal control theory, it was Kalman who 
recognized the central role that they play in systems analy­
sis. 

Born in Hungary, Kalman received BS and MS degrees from 
the Massachusetts Institute of Technology (MIT) and a DSci 
in engineering from Columbia University in 1957. In the 
early years of his career he held research positions at In­
ternational Business Machines (IBM) and at the Research 
Institute for Advanced Studies (RIAS) in Baltimore. From 
1962 to 1971, he was at Stanford University. In 1971, he 
became a graduate research professor and director of the 
Center for Mathematical System Theory at the University 
of Florida, Gainesville, USA, and later retired with emeri­
tus status. Kalman's contributions to control theory and to 
applied mathematics and engineering in general have been 
widely recognized with several honors and awards. 

3.5.1 Meaningful Interpretation of Riccati Coefficient 

Consider the matrix differential Riccati equation (3.2.34) with final 
condition P(tf) = O. Now consider a simple time transformation T = 

t f - t. Then, in T scale we can think of the final time t f as the "starting 
time," P(tf) as the "initial condition," and P as the "steady-state 
solution" of the matrix DRE. As the time t f ---+ 00, the "transient 
solution" is pushed to near t f which is at infinity. Then for most of 
the practical time interval the matrix P (t) becomes a steady state, 
i.e., a constant matrix P, as shown in Figure 3.7 [6]. Then the optimal 
control is given by 

u*(t) = -R-1B'Px*(t) = -Kx*(t), (3.5.7) 
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P(t)= P 

1---------------------4) , 

O~.-.steady-state interval-----·~ ~--- transient interval---~tf --+ t 
i :' 0 +-1 
f 

Figure 3.7 Interpretation of the Constant Matrix P 

where, K = R -1 B'P is called the Kalman gain. Alternatively, we can 
write 

u*(t) = -K~x*(t) (3.5.8) 

where, Ka = PBR -1. The optimal state is the solution of the system 
obtained by using the control (3.5.8) in the plant (3.5.1) 

x*(t) = [A - BR-1B'P] x*(t) = Gx*(t), (3.5.9) 

where, the matrix G = A - BR -1 B'P must have stable eigenvalues so 
that the closed-loop optimal system (3.5.9) is stable. This is required 
since any unstable states with infinite time interval would lead to an in­
finite cost functional J*. Let us note that we have no constraint on the 
stability of the original system (3.5.1). This means that although the 
original system may be unstable, the optimal system must be definitely 
stable. 

Finally, the minimum cost (3.2.29) is given by 

1 , -
J* - -x* (t)Px*(t) -2 . (3.5.10) 

3.5.2 Analytical Solution of the Algebraic 
Riccati Equation 

The next step is to find the analytical expression to the steady-state 
(limiting) solution of the differential Riccati equation (3.3.3). Thus, we 
are interested in finding the analytical solution to the algebraic Riccati 
equation (3.5.5). Obviously, one can let the terminal time t f tend to 
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00 in the solution (3.3.23) for P(tf). As tf ---t 00, e-M(tf-t ) goes to 
zero, which in turn makes T(t) tend to zero. Thus, under the usual 
conditions of (A, B) being stabilizable and (A, v'Q) being reachable, 
and T = 0, we have from (3.3.23) 

I tJ~oo P(t, tt) = P = W 21 W 11·1 (3.5.11) 

Thus, the solution to the ARE is constructed by using the stable eigen­
vectors of the Hamiltonian matrix. For further treatment on this topic, 
consult [3] and the references therein. 

3.5.3 Infinite-Interval Regulator System: 
Time-Invariant Case: Summary 

For a controllable, linear, time-invariant plant 

x(t) = Ax(t) + Bu(t), (3.5.12) 

and the infinite interval cost functional 

1 tx) 
J = "210 [x'(t)Qx(t) + u'(t)Ru(t)] dt, (3.5.13) 

the optimal control is given by 

I u*(t) = -R-1B'Px*(t) I (3.5.14) 

where, P, the nxn constant, positive definite, symmetric matrix, is the 
solution of the nonlinear, matrix algebraic Riccati equation (ARE) 

/-PA - A'P + PBR-1B'P - Q = 0 I (3.5.15) 

the optimal trajectory is the solution of 

(3.5.16) 

and the optimal cost is given by 

1 -
J* = -x*'(t)Px*(t) 2 . (3.5.17) 

The entire procedure is now summarized in Table 3.3 and the imple­
mentation of the closed-loop optimal control (CLOC) is shown in Fig­
ure 3.8 
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Figure 3.8 Implementation of the Closed-Loop Optimal Control: 
Infinite Final Time 

Next, an example is given to illustrate the infinite interval regulator 
system and the associated matrix algebraic Riccati equation. Let us 
reconsider the same Example 3.1 with final time t f ----* 00 and F = O. 

Example 3.2 

Given a second order plant 

~h(t)=X2(t), Xl(O) =2 
X2(t) = -2Xl(t) + X2(t) + u(t), X2(O) = -3 (3.5.18) 

and the performance index 

obtain the feedback optimal control law. 

Solution: Comparing the plant (3.5.18) and PI (3.5.19) of the 
present system with the corresponding general formulation of plant 
(3.5.12) and PI (3.5.13), respectively, let us first identify the various 
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Table 3.3 Procedure Summary of Infinite-Interval Linear 
Quadratic Regulator System: Time-Invariant Case 

A. Statement of the Problem 
Given the plant as 
x(t) = Ax(t) + Bu(t), 
the performance index as 

J = ~ Iooo [x'(t)Qx(t) + u'(t)Ru(t)] dt, 
and the boundary conditions as 
x(to) = Xo; x(oo) = 0, 
find the optimal control, state and index. 

B. Solution of the Problem 
Step 1 Solve the matrix algebraic Riccati equation (ARE) 

-PA - A'P - Q + PBR-1B'P = 0 .. 
Step 2 Solve the optimal state x* (t) from 

x*(t) = [A - BR-1B'P] x*(t) 

with initial condition x(to) = Xo. 
Step 3 Obtain the optimal control u * ( t) from 

u*(t) = -R-1B'Px*(t). 
Step 4 Obtain the optimal performance index from 

J* = ~x*'(t)Px*(t). 

matrices as 

A = [~2 ~] ; 
Q= [;;]; 

1 
R=r =-' 4' to = 0; 

Let P be the 2x2 symmetric matrix 

P = [~11 ~12] . 
P12 P22 

Then, the optimal control ( 3.5.14) is given by 

u*(t) = -4 [0 1] [~1l ~12] [XI(t)] , 
P12 P22 x2(t) 

= -4(jh2xi(t) + P22x ;(t)], 

(3.5.20) 

(3.5.21 ) 

(3.5.22) 

(3.5.23) 
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where, f>, the 2x2 symmetric, positive definite matrix, is the solu­
tion of the matrix algebraic Riccati equation (3.5.15) 

[ 0 0] = _ [~11 ~12] [ ° 1] _ [0 -2] [~11 ~12] + ° ° P12 P22 - 2 1 1 1 P12 P22 

[ ~11 ~12] [0] 4 [0 1] [~11 ~12] _ [23] . 
P12 P22 1 P12 P22 3 5 

Simplifying the equation (3.5.24), we get 

4PI2 + 4P12 - 2 = ° 
-P11 - P12 + 2P22 + 4P12P22 - 3 = ° 

-2P12 - 2P22 + 4P~2 - 5 = 0. 

(3.5.24) 

(3.5.25) 

Solving the previous equations for positive definiteness of f> is easy 
in this particular case. Thus, solve the first equation in (3.5.25) 
for P12, using this value of P12 in the third equation solve for P22 
and finally using the values of P12 and P22 in the second equation, 
solve for P11. In general, we have to solve the nonlinear algebraic 
equations and pick up the positive definite values for f>. Hence, we 
get 

f> = [1.7363 0.3660] 
0.3660 1.4729 . 

(3.5.26) 

Using these Riccati coefficients (gains), the closed-loop optimal 
control (3.5.23) is given by 

u*(t) = -4[0.366xi(t) + 1.4729x2(t)] 
= -[1.464xi(t) + 5.8916x2(t)]. (3.5.27) 

Using the closed-loop optimal control u*(t) from (3.5.27) in the 
original open-loop system (3.5.18), the closed-loop optimal system 
becomes 

xi(t) = X2(t) 
X2(t) = -2xi(t) + x;(t) - 4[0.366xi(t) + 1.4729x;(t)] (3.5.28) 

and the implementation of the closed-loop optimal control is shown 
in Figure 3.9. 

U sing the initial conditions and the Riccati coefficient matrix 
(3.5.26), the optimal cost (3.5.17) is obtained as 

J* = ~ '(O)f> (0) = ~ [2 -3] [1.73630.3660] [ 2 ] 
2

x 
x 2 0.3660 1.4729 -3' 

= 7.9047. (3.5.29) 
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Figure 3.9 Closed-Loop Optimal Control System 

The previous results can also easily obtained using Control System 
Toolbox of the MATLABC9, Version 6 as shown below. 

********************************************* 
%% Solution using Control System Toolbox in 
%% The MATLAB. Version 6 
%% For Example:4-3 
%% 

x10=2; %% initial condition on state x1 
x20=-3; %% initial condition on state x2 
XO=[x10;x20]; 
A=[O 1;-2 1]; %% system matrix A 
B=[O;1]; %% system matrix B 
Q=[2 3;3 5]; %% performance index weighted matrix 
R=[O.25]; %% performance index weighted matrix 
[K,P,EV]=lqr(A,B,Q,R) %% K = feedback matrix; 

%% P = Riccati matrix; 
%% EV = eigenvalues of closed loop system A - B*K 
K = 
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1.4641 
p 

1.7363 
0.3660 

EV = 
-4.0326 
-0.8590 

5.8916 

0.3660 
1.4729 

BIN=[O;O]; % dummy BIN for "initial" command 
C= [1 1]; 
D= [1] ; 
tfinal=10; 
t=0:0.05:10; 
[Y,X,t]=initial(A-B*K,BIN,C,D,XO,tfinal); 
x1t=[1 O]*X'; %% extracting xi from vector X 
x2t=[0 1]*X'; %% extracting x2 from vector X 
ut=-K*X' ; 
plot(t,x1t, 'k' ,t,x2t, 'k') 
xlabel ( , t ' ) 
gtext ('x_1 (t)') 
gtext ('x_2(t)') 
plot (t , ut , ' k ' ) 
xlabel ('t') 
gt ext ( , u ( t) , ) 

************************************************** 
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Using the optimal control u*(t) given by (3.5.23), the plant equations 
(3.5.18) are solved using MATLAB© to obtain the optimal states xi(t) 
and x2(t) and the optimal control u*(t) as shown in Figure 3.10 and 
Figure 3.11. Note that 

1. the values of P obtained in the example, are exactly the steady­
state values of Example 3.1 and 

2. the original plant (3.5.18) is unstable (eigenvalues at 2 ± j1) 
whereas the optimal dosed-loop system (3.5.28) is stable (eigen­
values at -4.0326, -0.8590). 

3.5.4 Stability Issues of Time-Invariant Regulator 

Let us consider the previous result for linear time-invariant system with 
infinite-time horizon from relations (3.5.12) to (3.5.17) and Table 3.3. 
We address briefly some stability remarks of the infinite-time regulator 
system [3, 89]. 
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Figure 3.10 Optimal States for Example 3.2 

1. The closed-loop optimal system (3.5.16) is not always stable espe­
cially when the original plant is unstable and these unstable states 
are not weighted in the PI (3.5.13). In order to prevent such a sit­
uation, we need the assumption that the pair [A, C] is detectable, 
where C is any matrix such that C'C = Q, which guarantees the 
stability of closed-loop optimal system. This assumption essen­
tially ensures that all the potentially unstable states will show up 
in the x'(t)Qx(t) part of the performance measure. 

2. The Riccati coefficient matrix P is positive definite if and only if 
[A, C] is completely observable. 

3. The detectability condition is necessary for stability of the closed­
loop optimal system. 

4. Thus both detectabilityand stabilizability conditions are necessary 
for the existence of a stable closed-loop system. 
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Figure 3.11 Optimal Control for Example 3.2 

3.5.5 Equivalence of Open-Loop and Closed-Loop 
Optimal Controls 

141 

Next, we present a simple example to show an interesting property that 
an optimal control system can be solved and implemented as an open­
loop optimal control (OLOC) configuration or a closed-loop optimal 
control (CLOC) configuration. We will also demonstrate the simplicity 
of the CLOC. 

Example 3.3 

Consider a simple first order system 

x(t) = -3x(t) + u(t) (3.5.30) 

and the cost function (CF) as 

(3.5.31 ) 

where, x(O) = 1 and the final state x( (0) = O. Find the open-loop 
and closed-loop optimal controllers. 
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Solution: (a) Open-Loop Optimal Control: We use the Pon­
tryagin procedure given in Chapter 2 (see Table 2.1). First of all, 
comparing the given plant (3.5.30) and the CF (3.5.31) with the 
general formulations (see Table 2.1), identify that 

V(x(t), u(t)) = x2(t) + u2(t), 
f(x(t), u(t)) = -3x(t) + u(t). (3.5.32) 

Now, we use the step-by-step procedure given in Table 2.1. 

• Step 1: Formulate the Hamiltonian as 

1t = V(x(t), u(t)) + A(t)f(x(t), u(t)) 

= x2(t) + u2(t) + A(t)[-3x(t) + u(t)]. (3.5.33) 

• Step 2: The optimal control u*(t) is obtained by minimizing the 
previous Hamiltonian w.r.t. u as 

~1t = 0 ---+ 2u*(t) + A*(t) = 0 ---+ u*(t) = -~A*(t). (3.5.34) 
uu 2 

• Step 3: Using optimal control (3.5.34) in the Hamiltonian func­
tion (3.5.33), find the optimal Hamiltonian function as 

2 1 2 
1t* = x* (t) - 4A* (t) - 3A*(t)x*(t). (3.5.35) 

• Step 4: Using the previous optimal 1t*, obtain the set of state 
and costate equations 

x*(t) = a:;;* ---+ x*(t) = -~A*(t) - 3x*(t), (3.5.36) 

. a1t*· 
A*(t) = - ax ---+ A*(t) = -2x*(t) + 3A*(t), (3.5.37) 

yielding 

x*(t) - 10x*(t) = 0, (3.5.38) 

the solution of which becomes 

x*(t) = CleViOt + C2e-ViOt. (3.5.39) 

Using the optimal state (3.5.39) in (3.5.36), we have the costate 
as 

A*(t) = 2 [-x*(t) - 3x*(t)] 

= -2C1(ViO + 3)eViOt + 2C2 (ViO - 3)e-ViOt. (3.5.40) 
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Using the initial condition x(O) = 1 in the optimal state (3.5.39), 
and the final condition (for 8 x f being free) ).. ( t f = 00) = 0 in the 
optimal costate (3.5.40), we get 

x(O) = 1 ----* C1 + C2 = 1 
)..(00) = 0 ----* C1 = O. (3.5.41 ) 

Then, the previous optimal state and costate are given as 

x*(t) = e-v'IOt; )..*(t) = 2(v'lO - 3)e-v'IOt. (3.5.42) 

• Step 5: Using the previous costate solution (3.5.34) of Step 2, 
we get the open-loop optimal control as 

(3.5.43) 

(b) Closed-Loop Optimal Control: Here, we use the matrix 
algebraic Riccati equation (ARE) to find the closed-loop optimal 
control, as summarized in Table 3.3. First of all, comparing the 
present plant (3.5.30) and the PI (3.5.31) with the general formu­
lation of the plant (3.5.12) and the PI (3.5.13), respectively, we 
identify the various coefficients and matrices as 

A = a = -3; B = b = 1; 

Q = q = 2; R = r = 2; f> = p. (3.5.44) 

Note the PI (3.5.31) does not contain the factor 1/2 as in the 
general PI (3.5.13) and accordingly, we have Q = q = 2 and R = 
r = 2. 

• Step 1: With the previous values, the ARE (3.5.15) becomes 

1 
p(-3) + (-3)p - p(l)("2)(l)p+ 2 = 0----* 

p2 + 12p - 4 = 0, (3.5.45) 

the solution of which is 

p = -6 ± 2v'lO. (3.5.46) 

• Step 2: Using the positive value of the Riccati coefficient (3.5.46), 
the closed-loop optimal control (3.5.14) becomes 

1 
u*(t) = -r-1bpx*(t) = -"2(-6 + 2v'lO)x*(t) 

= -( -3 + v'lO)x*(t). (3.5.47) 
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• Step 3: Using the optimal control (3.5.47), the optimal state is 
solved from (3.5.16) as 

x(t) = -3x*(t) - (-3 + v'lO)x*(t) = -v'lOx*(t). (3.5.48) 

Solving the previous along with the initial condition x(O) = 1, 
we get the optimal state as 

x*(t) = e-v'IOt (3.5.49) 

with which the optimal control (3.5.47) becomes 

(3.5.50) 

Thus, we note that the optimal control (3.5.50) and optimal state 
(3.5.49) obtained from using the closed-loop optimal control are 
identical to those of (3.5.43) and (3.5.42), respectively. We can 
easily extend this analysis for the general case. Intuitively, this 
equivalence should exist as the optimal control being unique should 
be same by any method. 

The implementation of this open-loop optimal controller (OLOC) 
is shown in Figure 3.12(a), and that of the closed-loop optimal 
controller (CLOC) is shown in Figure 3.12(b). 

From the previous example, it is clear that 

1. from the implementation point of view, the closed-loop optimal 
controller (v'IO - 3) is much simpler than the open-loop optimal 
controller (( v'IO-3)e-v'IOt) which is an exponential time function 
and 

2. with a closed-loop configuration, all the advantages of conven­
tional feedback are incorporated. 

3.6 Notes and Discussion 
We know that linear quadratic optimal control is concerned with lin­
ear plants, performance measures quadratic in controls and states, and 
regulation and tracking errors. In particular, the resulting optimal 
controller is closed-loop and linear in state. Note that linear quadratic 
optimal control is a special class of the general optimal control which 
includes nonlinear systems and nonlinear performance measures. There 
are many useful advantages and attractive features of linear quadratic 
optimal control systems which are enumerated below [3]. 
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Figure 3.12 (a) Open-Loop Optimal Controller (OLOC) and (b) 
Closed-Loop Optimal Controller (CLOC) 

1. Many engineering and physical systems operate in linear range 
during normal operations. 

2. There is a wealth of theoretical results available for linear systems 
which can be useful for linear quadratic methods. 

3. The resulting optimal controller is linear in state and thus easy 
and simple for implementation purposes in real application of the 
LQ results. 

4. Many (nonlinear) optimal control systems do not have solutions 
which can be easily computed. On the other hand, LQ optimal 
control systems have easily computable solutions. 

5. As is well known, nonlinear systems can be examined for small 
variations from their normal operating conditions. For example, 



146 Chapter 3: Linear Quadratic Optimal Control Systems I 

assume that after a heavy computational effort, we obtained an 
optimal solution for a nonlinear plant and there is a small change 
from an operating point. Then, one can easily use to a first 
approximation a linear model and obtain linear optimal control 
to drive the original nonlinear system to its operating point. 

6. Many of the concepts, techniques and computational procedures 
that are developed for linear optimal control systems in many 
cases many be carried on to nonlinear optimal control systems. 

7. Linear optimal control designs for plants whose states are mea­
surable possess a number of desirable robustness properties (such 
as good gain and phase margins and a good tolerance to nonlin­
earities) of classical control designs. 
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3.7 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 3.1 A first order system is given by 

±(t) = x(t) + u(t). 

(a) Find the unconstrained optimal control law which minimizes the 
performance index 

such that the final time t f is fixed and the final state x(t f) is free. 
(b) Find the optimal control law as t f -* 00. 

Problem 3.2 A system is described by 

x(t) + x(t) = u(t) 

with initial conditions x(O) = 0 and ±(O) = 1 and the performance 
index 

Find the closed-loop optimal control in terms of x and x and the optimal 
cost function. 

Problem 3.3 A first order system is described by 

±(t) = ax(t) + bu(t) 

with performance index 
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and with a fixed initial state x(O) and final state x(tf) = 0, where tf is 
fixed. Show that the solution of the Riccati equation is given by 

r 
p(t) = b2 [a - ;3coth{;3(t - tf)}] 

and the solution of the optimal state x* (t) is given by 

*( ) _ ()sinh{(3(tf - t)} 
x t - x 0 . h(3 

S'ln 

where, (3 = Ja2 + b2q/r. 

Problem 3.4 Find the optimal feedback control for the plant 

XI(t) = X2(t) 

X2(t) = -2XI(t) + 4X2(t) + 5u(t) 

with performance criterion 

121 2 
J = 2f11 [xI(tf) - 4] + 2f22 [x2(tf) - 2] + 

~ If [5xi(t) + 2x~(t) + 4u2 (t)] dt 

and initial conditions as x(O) = [1 2]' and the final state x(tf) is free, 
where t f is specified. 

Problem 3.5 Find the closed-loop, unconstrained, optimal control for 
the system 

Xl (t) = X2(t) 

X2(t) = -2XI (t) - 3X2 (t) + u(t) 

and the performance index 

J = 1000 

[xi(t) + x~(t) + u2(t)]dt. 

Problem 3.6 Find the optimal feedback control law for the plant 

;.h(t) = X2(t) + u(t) 

X2(t) = -XI(t) - X2(t) + u(t) 

and the cost function 

J = 1000 

[2xi(t) + 4x~(t) + O.5u2(t)]dt. 
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Problem 3.7 Consider a second order system 

x(t) + bx(t) + cx(t) = u(t) 

and the performance index to be minimized as 

Determine the closed-loop optimal control in terms of the state x(t) 
and its derivative x(t). 

Problem 3.8 Given a third order plant, 

Xl(t) = X2(t) 

X2(t) = X3(t) 

X3(t) = -5Xl(t) + -7X2(t) -10X3(t) + 4u(t) 

and the performance index 

for 

1. ql1 = q22 = q33 = 1, r = 1, 

2. ql1 = 10, q22 = 1, q33 = 1, r = 1, and 

3. ql1 = q22 = q33 = 1, r = 10, 

find the positive definite solution for Riccati coefficient matrix f>, op­
timal feedback gain matrix K and the eigenvalues of the closed-loop 
system matrix A - BK. 

Problem 3.9 Determine the optimal feedback coefficients and the op­
timal control law for the multi-input, multi-output (MIMO) system 

. [01] [11] x(t) = 11 x(t) + 0 1 u(t) 

and the cost function 

J = foCXJ [2xr(t) + 4x~(t) + 0.5ur(t) + 0.25u~(t)]dt. 
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Problem 3.10 For the D.C. motor speed control system described in 
Problem 1.1, find the closed-loop optimal control to keep the speed 
constant at a particular value and the system to respond for any dis­
turbances from the regulated value. 

Problem 3.11 For the liquid-level control system described in Prob­
lem 1.2, find the closed-loop optimal control to keep the liquid level 
constant at a reference value and the system to act only if there is a 
change in the liquid level. 

Problem 3.12 [35] For the inverted pendulum control system described 
in Problem 1.3, find- the closed-loop optimal control to keep the pen­
dulum in a vertical position. 

Problem 3.13 For the mechanical control system described in Prob­
lem 1.4, find the closed-loop optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

Problem 3.14 For the automobile suspension system described in 
Problem 1.5, find the closed-loop optimal control to keep the system 
at equilibrium condition and act only if there is a disturbance. 

Problem 3.15 For the chemical control system described in Prob­
lem 1.6, find the closed-loop optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

@@@@@@@@@@@@@ 



Chapter 4 

Linear Quadratic Optimal 
Control Systems II 

In the previous chapter, we addressed the linear quadratic regulator 
system, where the aim was to obtain the optimal control to regulate 
(or keep) the state around zero. In this chapter, we discuss linear 
quadratic tracking (LQT) systems, and some related topics in linear 
quadratic regulator theory. It is suggested that the student reviews the 
material in Appendices A and B given at the end of the book. This 
chapter is based on [6, 89, 3] 1. 

Trajectory Following Systems 
In tracking (trajectory following) systems, we require that the output 
of a system track or follow a desired trajectory in some optimal sense. 
Thus, we see that this is a generalization of regulator system in the 
sense that the desired trajectory for the regulator is simply the zero 
state. 

IThe permissions given by John Wiley for F. L. Lewis, Optimal Control, John Wiley & 
Sons, Inc., New York, NY, 1986 and McGraw-Hill for M. Athans and P. L. Falb, Optimal 
Control: An Introduction to the Theory and Its Applications, McGraw-Hill Book Company, 
New York, NY, 1966, are hereby acknowledged. 
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4.1 Linear Quadratic Tracking System: Finite­
Time Case 

In this section, we discuss the linear quadratic tracking (LQT)system 
to maintain the output as close as possible to the desired output with 
minimum control energy [6]. We are given a linear, observable system 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) (4.1.1) 

where, x(t) is the nth order state vector, u(t) is the rth order control 
vector, and y(t) is the mth order output vector. Let z(t) be the mth 
order desired output and the various matrices A(t), B(t) and C(t) be 
of appropriate dimensionality. Our objective is to control the system 
(4.1.1) in such a way that the output y(t) tracks the desired output 
z(t) as close as possible during the interval [to, tf] with minimum ex­
penditure of control effort. For this, let us define the error vector as 

e(t) = z(t) - y(t) 

and choose the performance index as 

1 , 
J = 2e (tf)F(tf)e(tf) 

lit! +-2 [e'(t)Q(t)e(t) + u'(t)R(t)u(t)] dt 
to 

(4.1.2) 

(4.1.3) 

with t f specified and x( t f) not specified. In this way we are dealing 
with free-final state system. Also, we assume that F(tf) and Q(t) are 
mxm symmetric, positive semidefinite matrices, and R( t) is rxr sym­
metric, positive definite matrix. We now use the Pontryagin Minimum 
Principle in the following order. 

• Step 1 : Hamiltonian 

• Step 2: Open-Loop Optimal Control 

• Step 3: State and Costate System 

• Step 4: Riccati and Vector Equations 

• Step 5: Closed-Loop Optimal Control 

• Step 6: Optimal State 
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• Step 7: Optimal Cost 

Now we discuss these steps in detail. Also, note that we heavily draw 
upon the results of the previous Chapters 2 and 3. First of all, let us 
note from (4.1.1) and (4.1.2) that the error e(t) can be expressed as a 
function of z(t) and x(t) as 

e(t) = z(t) - C(t)x(t). (4.1.4) 

• Step 1: Hamiltonian: Formulate the Hamiltonian as (see Ta­
ble 3.1) 

1 
1t(x(t), u(t), ,X(t)) = "2 [z(t) - C(t)x(t)]' Q(t) [z(t) - C(t)x(t)] 

1 +"2 u' ( t ) R ( t ) u ( t) 

+,X' (t) [A(t)x(t) + B(t)u(t)] . (4.1.5) 

• Step 2: Open-Loop Optimal Control: Using the Hamiltonian 
(4.1.5), obtain the control equation from 

~~ = 0 --> R(t)u(t) + B'(t),\(t) = 0 (4.1.6) 

from which we have the optimal control as 

I u*(t) = -R-1(t)B'(t),X*(t)·1 (4.1.7) 

Since the second partial of 1t in (4.1.5) w.r.t. u*(t) is just R(t), 
and we chose R( t) to be positive definite, we are dealing with a 
control which minimizes the cost functional (4.1.3). 

• Step 3: State and Costate System: The state is given in terms of 
the Hamiltonian (4.1.5) as 

x(t) = ~~ = A(t)x(t) + B(t)u(t) (4.1.8) 

and with the optimal control (4.1.7), the optimal state equation 
(4.1.8) becomes 

x*(t) = A(t)x*(t) - B(t)R-l(t)B'(t),X*(t). (4.1.9) 
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Using the Hamiltonian (4.1.5), the optimal costate equation be­
comes 

. * 81t 
A (t) = - ax 

= -C'(t)Q(t)C(t)x*(t) - A'(t)A*(t) 

+C'(t)Q(t)z(t). (4.1.10) 

For the sake of simplicity, let us define 

E(t) = B(t)R-l(t)B'(t), 

W(t) = C'(t)Q(t). 

V(t) = C' (t)Q(t)C(t), 

(4.1.11) 

Using the relation (4.1.11) and combining the state (4.1.8) and 
costate (4.1.10) equations, we obtain the Hamiltonian canonical 
system as 

[
x*(t)] [A(t) -E(t)] [X*(t)] [0] 
'-\*(t) = -V(t) -A'(t) A*(t) + W(t) z(t). (4.1.12) 

This canonical system of 2n differential equations is linear, time­
varying, but nonhomogeneous with W(t)z(t) as forcing function. 
The boundary conditions for this state and costate equations are 
given by the initial condition on the state as 

x(t = to) = x(to) (4.1.13) 

and the final condition on the costate (for the final time t f spec­
ified and state x(tf) being free) given by (3.2.10), which along 
with (4.1.4) become 

A(tf l = &X~t f l [~e'(tf )F(tf le(tf l] 

= ax~tfl [~[z(tfl - C(tflx(tfl]'F(tfl[z(tfl - C(tflX(tflJ] 

= C'(tf)F(tf)C(tf)x(tf) - C'(tf)F(tf)z(tf). (4.1.14) 

• Step 4: Riccati and Vector Equations: The boundary condition 
(4.1.14) and the solution of the system (4.1.12) indicate that the 
state and costate are linearly related as 

A*(t) = P(t)x*(t) - g(t) (4.1.15) 
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where, the nxn matrix P(t) and n vector g(t) are yet to be de­
termined so as to satisfy the canonical system (4.1.12). This is 
done by substituting the linear (Riccati) transformation (4.1.15) 
in the Hamiltonian system (4.1.12) and eliminating the costate 
function A * (t). Thus, we first differentiate (4.1.15) to get 

'\*(t) = P(t)x*(t) + P(t)x*(t) - g(t). (4.1.16) 

Now, substituting for x*(t) and '\*(t) from (4.1.12) and eliminat­
ing A*(t) with (4.1.15), we get 

-V(t)x*(t) - A'(t) [P(t)x*(t) - g(t)] + W(t)z(t) = P(t)x*(t) 
+P(t) [A(t)x(t) - E(t) {P(t)x*(t) - g(t)}] - g(t). (4.1.17) 

Rearranging the above, we get 

[P(t) + P(t)A(t) + A'(t)P(t) - P(t)E(t)P(t) + V(t)] x*(t) -

[g(t) + A'(t)g(t) - P(t)E(t)g(t) + W(t)z(t)] = O. 

(4.1.18) 

Now, this relation (4.1.18) must satisfy for all x* (t), z (t) and 
t, which leads us to the nxn matrix P (t) to satisfy the matrix 
differential Riccati equation (DRE) 

I P(t) = -P(t)A(t) - A'(t)P(t) + P(t)E(t)P(t) - V(t) I 
( 4.1.19) 

and the n vector g( t) to satisfy the vector differential equation 

I g(t) = [P(t)E(t) - A'(t)] g(t) - W(t)z(t).1 (4.1.20) 

Since P(t) is nxn symmetric matrix, and g(t) is of n vector, 
the equations (4.1.19) and (4.1.20) are a set of n(n + 1)/2 + 
n first-order differential equations. The boundary conditions are 
obtained from (4.1.15) as 

(4.1.21) 

which compared with the boundary condition (4.1.14) gives us 
for all x(tf) and z(tf), 

1 P ( t f) = C' ( t f ) F ( t f) C ( t f ), 1 

1 g ( t f) = C' ( t f ) F ( t f ) Z ( t f ) ·1 

( 4.1.22) 

(4.1.23) 
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Thus, the matrix DRE (4.1.19) and the vector equation (4.1.20) 
are to be solved backward using the boundary conditions (4.1.22) 
and (4.1.23). 

• Step 5: Closed-Loop Optimal Control: The optimal control (4.1.7) 
is now given in terms of the state using the linear transformation 
( 4.1.15) 

u*(t) = -R -l(t)B' (t) [P(t)x* (t) - g(t)] 

= -K(t)x*(t) + R-l(t)B'(t)g(t) 

where, K(t) = R-1(t)B'(t)P(t), is the Kalman gain. 

( 4.1.24) 

• Step 6: Optimal State: Using this optimal control u*(t) from 
(4.1.24) in the original plant (4.1.1), we have the optimal state 
obtained from 

x*(t) = [A(t) - B(t)R-1(t)B'(t)P(t)] x*(t) 

+B(t)R -l(t)B' (t)g(t) 

= [A(t) - E(t)P(t)]x*(t) + E(t)g(t). (4.1.25) 

• Step 7: Optimal Cost: The optimal cost J*(t) for any time t can 
be obtained as (see [6]) 

1 , I 

J*(t) = 2x* (t)P(t)x*(t) - x* (t)g(t) + h(t) (4.1.26) 

where, the new function h(t) satisfies [3, 6] 

.1 1 1 
h(t) = -2g'(t)B(t)R- (t)B'(t)g(t) - 2z'(t)Q(t)z(t) 

1 1 
= -2g'(t)E(t)g(t) - 2z'(t)Q(t)z(t) (4.1.27) 

with final condition 

(4.1.28) 

For further details on this, see [3, 6, 89, 90]. We now summarize the 
tracking system. 
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f 
x*(t) 

C(t) 
y* t) 

A(t) 

Plant 

Closed-Loop Optimal Controller 

P(t)x*(t) 

+ 

g(t) 

Off-Line Simulation of P(t) and g(t) 

Desired z( t) 
I ............................................................................................................................................................ I 

Figure 4.1 Implementation of the Optimal Tracking System 

4.1.1 Linear Quadratic Tracking System: Summary 

Given the linear, observable system (see Figure 4.1) 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) ( 4.1.29) 

the desired output z(t), the error e(t) = z(t) - y(t), and the perfor­
mance index 

1 lit! J = -e'(tf)F(tf)e(tf) + - [e'(t)Q(t)e(t) + u'(t)R(t)u(t)] dt 
2 2 to 

(4.1.30) 
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then the optimal control u*(t) is given by 

u*(t) = -R-1 (t)B'(t) [P(t)x*(t) - g(t)] 

= -K(t)x*(t) + R-1 (t)B'(t)g(t) (4.1.31) 

where, the nxn symmetric, positive definite matrix P(t) is the solution 
of the nonlinear, matrix differential Riccati equation (DRE) 

P(t) = -P(t)A(t) - A'(t)P(t) + P(t)E(t)P(t) - V(t) (4.1.32) 

with final condition 

(4.1.33) 

and the nth order g(t) is the solution of the linear, nonhomogeneous 
vector differential equation 

g(t) = - [A(t) - E(t)P(t)]' g(t) - W(t)z(t) (4.1.34) 

with final condition 

(4.1.35) 

where, E(t), V(t) and W(t) are defined in (4.1.11), the optimal state 
(trajectory) is the solution of the linear state equation 

x*(t) = [A(t) - E'(t)P(t)] x*(t) + E(t)g(t), ( 4.1.36) 

and the optimal cost J* 

J*(to) = ~x*' (to)P(to)x*(to) - x*(to)g(to) + h(to). (4.1.37) 

The implementation of the tracking system is shown in Figure 4.1. 
The entire procedure is now summarized in Table 4.1. 

4.1.2 Salient Features of Tracking System 

1. Riccati Coefficient Matrix P(t): We note that the desired output 
z(t) has no influence on the matrix differential Riccati equation 
(4.1.32) and its boundary condition (4.1.33). This means that 
once the problem is specified in terms of the final time t f' the 
plant matrices A(t), B(t), and C(t), and the cost functional ma­
trices F(tf), Q(t), and R(t), the matrix function P(t) is com­
pletely determined. 
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Table 4.1 Procedure Summary of Linear Quadratic Tracking 
System 

A. Statement of the Problem 
Given the plant as 
x(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t), e(t) = z(t) - y(t), 
the performance index as 

J = ~e'(tf )F(tf )e(tf) + ~ ftd [e'(t)Q(t)e(t) + u'(t)R(t)u(t)] dt, 
and the boundary conditions as 
x(to) = Xo, x(tj) is free, 
find the optimal control, state and performance index. 

B. Solution of the Problem 
Step 1 Solve the matrix differential Riccati equation 

P(t) = -P(t)A(t) - A'(t)P(t) + P(t)E(t)P(t) - V(t), 
with final condition P(tj) = C'(tj )F(tj )C(tj), 
and the non-homogeneous vector differential equation 
g(t) = - [A(t) - E(t)P(t)]' g(t) - W(t)z(t), 
with final condition g( t j) = C' (t j )F( t j )z( t j) where 
E(t) = B(t)R-1(t)B'(t), V(t) = C'(t)Q(t)C(t), 
W(t) = C'(t)Q(t). 

Step 2 Solve the optimal state x* (t) from 
x*(t) = [A(t) - E(t)P(t)] x*(t) + E(t)g(t) 
with initial condition x(to) = Xo. 

Step 3 Obtain optimal control u*(t) from 
u*(t) = -K(t)x*(t) + R -1 (t)B' (t)g(t), 
where, K(t) = R-1(t)B'(t)P(t). 

Step 4 The optimal cost J* (to) is 
J*(to) = ~x*'(to)P(to)x*(to) - x*(to)g(to) + h(to) 
where h(t) is the solution of 
b.(t) = - ~g' (t)E(t)g( t) - ~z' (t)Q( t)z(t) 
with final condition h(tj) = -z'(tj )P(tj )z(tj). 
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2. Closed Loop Eigenvalues: From the costate relation (4.1.36), we 
see the closed-loop system matrix [A(t) - B(t)R-I(t)B'(t)P(t)] 
is again independent of the desired output z(t). This means the 
eigenvalues of the closed-loop, optimal tracking system are inde­
pendent of the desired output z(t). 

3. Tracking and Regulator Systems: The main difference between 
the optimal output tracking system and the optimal state regulator 
system is in the vector g(t). As shown in Figure 4.1, one can 
think of the desired output z(t) as the forcing function of the 
closed-loop optimal system which generates the signal g(t). 

4. Also, note that if we make C(t) = I(t), then in (4.1.11), V(t) = 

Q(t). Thus, the matrix DRE (4.1.19) becomes the same matrix 
DRE (3.2.34) that was obtained in LQR system in Chapter 3. 

Let us consider a second order example to illustrate the linear quadratic 
tracking system. 

Example 4.1 

A second order plant 

::h (t) = X2(t), 
X2(t) = -2XI(t) - 3X2(t) + u(t) 
y(t) = x(t) 

is to be controlled to minimize the performance index 

(4.1.38) 

(4.1.39) 

The final time t f is specified at 20, the final state x( tJ) is free and 
the admissible controls and states are unbounded. It is required 
to keep the state XI(t) close to 1. Obtain the feedback control 
law and plot all the time histories of Riccati coefficients, g vector 
components, optimal states and control. 

Solution: The performance index indicates that the state Xl (t) is 
to be kept close to the reference input Zl(t) = 1 and since there is 
no condition on state X2(t), one can choose arbitrarily as Z2(t) = o. 
Now, in our present case, with e(t) = z(t) - Cx(t), we have el(t) = 
Zl(t) - XI(t), e2(t) = Z2(t) - X2(t) and C = I. 
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Next, let us identify the various matrices in the present tracking 
system by comparing the state (4.1.38) and the PI (4.1.39) of the 
present system (note the absence of the factor 1/2 in PI) with the 
corresponding state (4.1.29) and the PI (4.1.30), respectively, of 
the general formulation of the problem, we get 

A = [ ~2 _~ ]; B = [~]; C = I; z(t} = [~] ; 

Q = [~~] = F(tf}; R = r = 0.004. (4.1.40) 

Let P(t) be the 2x2 symmetric matrix and g(t) be the 2x1 vector 
as 

P(t) - [Pl1 (t) P12 (t)]. 
- P12(t) P22(t) , 

g ( t) = [gl ( t) ]. 
g2(t) 

Then, the optimal control given by (4.1.31) becomes 

u*(t) = -250 [P12xi(t) + P22X2(t) - g2(t)] 

(4.1.41) 

(4.1.42) 

where, P(t), the positive definite matrix, is the solution of the 
matrix differential Riccati equation (4.1.32) 

[
Pll(t) P12(t)] [Pll(t) P12(t)] [0 1] 
P12(t) P22(t) = - P12(t) P22(t) -2 -3 

_ [0 -2] [Pl1 ( t ) P12 ( t ) ] 
1 -3 P12(t) P22(t) 

+ [Pll (t) P12(t)] [0] 1 [0 1] 
P12(t) P22(t) 1 0.004 x 

[
Pll(t) P12(t)] _ [20] 
P12(t) P22(t) 00 (4.1.43) 

and g(t), is the solution of the nonhomogeneous vector differential 
equation obtained from (4.1.34) as 



162 Chapter 4: Linear Quadratic Optimal Control Systems II 

Simplifying the equations (4.1.43) and (4.1.44), we get 

Pn (t) = 250PI2(t) + 4pI2(t) - 2 
PI2(t) = 250PI2(t)P22(t) - pn(t) + 3PI2(t) + 2p22(t) 

P22(t) = 250p~2(t) - 2pI2(t) + 6p22(t) (4.1.45) 

with final condition (4.1.33) as 

( 4.1.46) 

and 

[/1(t) = [250PI2(t) + 2] g2(t) - 2 
92(t) = -gl(t) + [3 + 250P22 (t)] g2(t) (4.1.47) 

with final condition 

( 4.1.48) 

Note: One has to try various values of the matrix R in order to 
get a better tracking of the states. Solutions for the functions 
Pn(t),PI2(t), andp22(t) (Figure 4.2), functions gl(t) and g2(t) (Fig­
ure 4.3), optimal states (Figures 4.4) and control (Figure 4.5) for 
initial conditions x(O) = f-=:-0.5 0] and the final time t f = 20 are 
obtained using MATLAB© routines given in Appendix C under 
continuous-time tracking system. 

Example 4.2 

Consider the same Example 4.1 with a different PI as 

(4.1.49) 

where, t f is specified and x( t f) is free. Find the optimal control 
in order that the state Xl (t) track a ramp function Zl (t) = 2t and 
without much expenditure of control energy. Plot all the variables 
(Riccati coefficients, optimal states and control) for initial condi­
tions x(O) = [-1 0]'. 

Solution: The performance index (4.1.49) indicates that the state 
Xl (t) is to be kept close to the reference input Zl (t) = 2t and since 
there is no condition on state X2 (t), one can choose arbitrarily as 
Z2(t) = O. Now, in our present case, with e(t) = z(t) ~ Cx(t), 
we have el(t) = Zl(t) - XI(t), e2(t) = Z2(t) - X2(t) and C = I. 
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Figure 4.2 Riccati Coefficients for Example 4.1 

Next, let us identify the various matrices in the present tracking 
system by comparing the state (4.1.38) and the PI (4.1.39) of the 
present problem (note the absence of the factor 1/2 in PI) with 
the corresponding state (4.1.29) and the PI (4.1.30), respectively, 
of the general formulation of the problem, we get 

A = [ ~2 _!]; B = [~] ; C = I; z(t) = [~] ; 

Q = [~~] R = r = 0.04. (4.1.50) 

Let P(t) be the 2x2 symmetric matrix and g(t) be the 2x1 vector 
as 

P(t) = [Pl1(t) P12(t)] . 
P12(t) P22(t) , 

g ( t) = [91 ( t )] . 
92(t) 

Then, the optimal control given by (4.1.31) becomes 

(4.1.51) 

(4.1.52) 

where, P(t), the positive definite matrix, is the solution of the 
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Figure 4.5 Optimal Control for Example 4.1 

matrix differential Riccati equation (4.1.32) 

[
Pll(t) P12(t)] [Pll(t) P12(t)] [0 1] 
P12(t) P22(t) = - P12(t) P22(t) -2 -3 

_ [0 -2] [Pll(t) P12(t)] 
1 -3 P12(t) P22(t) 

+ [Pll(t) P12(t)] [0]_1 [01] 
P12(t) P22(t) 1 0.04 . 

[
Pll (t) P12(t)]_ [2 0] 
P12(t) P22(t) 00 (4.1.53) 

and g(t), is the solution of the nonhomogeneous vector differential 
equation obtained from (4.1.34) as 

[ !~ i ~ n = - { [ ~ 2 - ~ ] 
- [~] O_~4 [

0 
1] [:~~m :~~m] r [:~i~i] -[~ n [~~][ ~]- (4_1.54) 
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Simplifying the equations (4.1.53) and (4.1.54), we get 

PH(t) = 25Pi2(t) + 4p12(t) - 2 
P12(t) = 25p12(t)P22(t) - PH (t) + 3p12(t) + 2p22(t) 

P22(t) = 25p~2(t) - 2p12(t) + 6p22(t) (4.1.55) 

with final condition (4.1.33) as 

and 

[
PH (t f) P12 (t f) ] = [0 0] 
P12 ( t f) P22 (t f) 0 0 

iJ1(t) = [25p12(t) + 2] g2(t) - 4t 
i}2(t) = -gl(t) + [3 + 25p22(t)] g2(t) 

with final condition 

[~~i:~ n = [~] . 

(4.1.56) 

(4.1.57) 

(4.1.58) 

See the plots of the Riccati coefficients PH(t),P12(t) and P22(t) in 
Figure 4.6 and coefficients gl(t) and g2(t) in Figure 4.7. Also see 
the plots of the optimal control u*(t) in Figure 4.9 and optimal 
states xi(t) and x2(t) in Figure 4.8. 

4.2 LQT System: Infinite-Time Case 
In Chapter 3, in the case of linear quadratic regulator system, we ex­
tended the results of finite-time case to infinite-time (limiting or steady­
state) case. Similarly, we now extend the results of finite-time case of 
the linear quadratic tracking system to the case of infinite time [3]. 
Thus, we restrict our treatment to time-invariant matrices in the plant 
and the performance index. Consider a linear time-invariant plant as 

The error is 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t). 

e(t) = z(t) - y(t), 

and choose the performance index as 

lim J = lim ~ roo [e'(t)Qe(t) + u'(t)Ru(t)] dt 
tr-+oo tj->oo 2 io 

(4.2.1) 
(4.2.2) 

(4.2.3) 

( 4.2.4) 
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Figure 4.6 Riccati Coefficients for Example 4.2 

to track the desired signal z(t). Also, we assume that Q is an nxn 
symmetric, positive semidefinite matrix, and R is a rxr symmetric, 
positive definite matrix. Note that there is no terminal cost function 
in the PI (4.2.4) and hence F = O. 

An obvious way of getting results for infinite-time (steady-state) case 
is to write down the results of finite-time case and then simply let 
tf ---+ 00. Thus, as tf ---+ 00, the matrix function P(t) in (4.1.19) tends 
to the steady-state value P as the solution of 

J-PA - A'P + PBR-1B'P - C'QC = 0.1 (4.2.5) 

Also, the vector function g(t) in (4.1.20) tends to a finite function g(t) 
as the solution of 

g(t) = [PE - A'] g(t) - Wz(t) (4.2.6) 

where, E 
becomes 

BR-1B' and W = C'Q. The optimal control (4.1.31) 

I u(t) = -R -1 B' [Px(t) - g(t)] .1 (4.2.7) 

Further details on this are available in Anderson and Moore [3]. 
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Figure 4.9 Optimal Control and States for Example 4.2 

4.3 Fixed-End-Point Regulator System 
In this section, we discuss the fixed-end-point state regulator system, 
where the final state x( t f) is zero and the final time t f is fixed [5]. This 
is different from the conventional free-end-point state regulator system 
with the final time t j being free, leading to the matrix Riccati differen­
tial equation that was discussed in Chapter 3. Following the procedure 
similar to the free-end-point system, we will arrive at the same matrix 
differential Riccati equation (3.2.18). But, if we use the earlier trans­
formation (3.2.11) to find the corresponding boundary condition for 
(3.2.18), we see that 

(4.3.1) 

and for the fixed final condition x( t f) = 0, and for arbitrary >..( t f), we 
have 

(4.3.2) 

This means that for the fixed-end-point regulator system, we solve the 
matrix DRE (3.2.18) using the final condition (4.3.2). In practice, we 
may start with a very large value of P(tj) instead of 00. 

Alternatively, we present a different procedure to find closed-loop 
optimal control for the fixed-end-point system [5]. In fact, we will use 
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what is known as inverse Riccati transformation between the state and 
costate variables and arrive at matrix inverse Riccati equation. 

As before, consider a linear, time-varying system 

x(t) = A(t)x(t) + B(t)u(t) (4.3.3) 

with a cost functional 

1 rtf 
J(u) = "2 Jto [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt ( 4.3.4) 

where, x(t) is nth state vector, u(t) is rth control vector, A(t) is nxn 
state matrix, and B(t) is nxr control matrix. We assume that the 
control is unconstrained. The boundary conditions are given as 

x(t = to) = Xo; (4.3.5) 

where, t f is fixed or given a priori. Here, we can easily see that for fixed 
final condition, there is no meaning in having a terminal cost term in 
the cost function (4.3.4). 

We develop the procedure for free-end-point regulator system under 
the following steps (see Table 2.1). 

• Step 1 : Hamiltonian 

• Step 2: Optimal Control 

• Step 3: State and Costate System 

• Step 4: Closed-Loop Optimal Control 

• Step 5: Boundary Conditions 

Now, we address these steps in detail. 

• Step 1: Hamiltonian: Formulate the Hamiltonian as 

1 1 
H(x(t), u(t), A(t)) = "2 x '(t)Q(t)x(t) + "2u'(t)R(t)u(t) 

+A'(t) [A(t)x(t) + B(t)u(t)] (4.3.6) 

• Step 2: Optimal Control: Taking the partial of H w.r.t. u, we 
have 

BaH = 0 ---+ R(t)u(t) + B'(t)A(t) = 0 
u 

(4.3.7) 

which gives optimal control u*(t) as 

u*(t) = _R-l(t)B'(t)A*(t). (4.3.8) 
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• Step 3: State and Costate System: Obtain the state and costate 
equations as 

x*(t) = + ~~ -+ x*(t) = A(t)x*(t) + B(t)u*(t), (4.3.9) 

5..*(t) = - r::: ---> 5..*(t) = -Q(t)x*(t) - A'(t)A*(t). (4.3.10) 

Eliminating control u* (t) from (4.3.8) and (4.3.9) to obtain the 
canonical system of equations 

[
x*(t)] [A(t) -E(t)] [x*(t)] 
,\ * (t) = -Q(t) -A' (t) A* (t) (4.3.11) 

where, E(t) = B(t)R-l(t)B'(t). This state and costate system, 
along with the given boundary conditions (4.3.5), constitutes a 
two-point boundary value problem (TPBVP), which when solved 
gives optimal state x*(t) and costate A*(t) functions. This op­
timal costate function A*(t) substituted in (4.3.8) gives optimal 
control u*(t). This leads us to open-loop optimal control as dis­
cussed in Chapter 2. But our interest here is to obtain closed-loop 
optimal control for the fixed-end-point regulator system . 

• Step 4: Closed-Loop Optimal Control: Now if this were a free­
end-point system (x(tf) free), using transversality conditions, we 
would be able to obtain a final condition on the costate A( t f) ,which 
lets us assume a Riccati transformation between the state and 
costate function as 

A*(t) = P(t)x*(t). (4.3.12) 

In the absence of any knowledge on the final condition of the 
costate function A * (t), we are led to assume a kind of inverse 
Riccati transformation as [104, 113] 

x* (t) = M(t)A * (t) ( 4.3.13) 

where, the nxn matrix M(t) is yet to be determined. Note the dif­
ference between the transformations (4.3.12) and (4.3.13). Now 
as before in the case of free-end-point system, by simple manipu­
lation of the state and costate system (4.3.11) and (4.3.13) (that 
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is, eliminating x*(t)), we obtain 

x* (t) = M(t).\* (t) + M(t),X * (t) ~ 
[M(t) - A(t)M(t) - M(t)A'(t) - M(t)Q(t)M(t) + 

B(t)R-1B'(t)] .\*(t) = O. (4.3.14) 

Now, if the previous equation should be valid for all t E [to, tf]' 
and for any arbitrary .\ * (t), we then have 

I M(t) = A(t)M(t) + M(t)A'(t) + M(t)Q(t)M(t) - B(t)R-1B'(t)·1 

( 4.3.15) 

Let us call this the inverse matrix differential Riccati equation 
(DRE) just to distinguish from the normal DRE (3.2.34) . 

• Step 5: Boundary Conditions: Now the boundary condition for 
(4.3.15) is obtained as follows. Here, we have different cases to 
be discussed. 

1. x(tf) = 0 and x(to) # 0: We know from the given boundary 
conditions (4.3.5) that x(tf) = 0 and using this in (4.3.13), 
we get 

x(tf) = 0 = M(tf).\(tf)· 

For arbitrary .\(tf), (4.3.16) becomes 

IM(tf)=O·1 

( 4.3.16) 

(4.3.17) 

2. x(tf) # 0 and x(to) = 0: Here, at t = to, (4.3.13) becomes 

x(to) = 0 = M(to).\(to) 

and for arbitrary .\(to), (4.3.18) becomes 

I M(to) = 0·1 

(4.3.18) 

(4.3.19) 

Thus, we solve the inverse matrix DRE (4.3.15) backward 
using the final condition (4.3.17) or forward using the initial 
condition( 4.3.19). 

The optimal control (4.3.8) with the transformation (4.3.13) 
becomes 

I u*(t) = -R-1(t)B'(t)M-1(t)x*(t)·1 ( 4.3.20) 
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3. General Boundary Conditions: x(to) =1= 0 and x(tJ) =1= O. 
Here, both the given boundary conditions are not zero, and 
we assume a transformation as 

x*(t) = M(t)A * (t) + v(t). ( 4.3.21) 

As before, we substitute the transformation (4.3.21) in the 
state and costate system (4.3.11) and eliminate x*(t) to get 

x*(t) = M(t)A*(t) + M(t)~*(t) + v(t) (4.3.22) 

leading to 

A ( t) [M ( t) A * ( t) + v ( t)] - B ( t ) R -1 ( t ) B' ( t) A * ( t ) 

= M(t)A*(t) + M(t) [-Q(t) [M(t)A*(t) + v(t)] 

-A'(t)A*(t)] +v(t) (4.3.23) 

further leading to 

[M(t) - A(t)M(t) - M(t)A'(t) - M(t)Q(t)M(t) + 

B(t)R-1(t)B'(t)] A*(t) + 

[v(t) - M(t)Q(t)v(t) - A(t)v(t)] = O. 

( 4.3.24) 

This should be valid for any orbit ray value of A*(t), which 
leads us to a set of equations 

M(t) = A(t)M(t) + M(t)A'(t) + M(t)Q(t)M(t) 

-B(t)R-1 (t)B'(t) (4.3.25) 

v(t) = M(t)Q(t)v(t) + A(t)v(t). (4.3.26) 

At t = to, (4.3.21) becomes 

x*(to) = M(tO)A*(tO) + v(to). (4.3.27) 

Since A*(tO) is arbitrary, (4.3.27) gives us 

M(to) = 0; v(to) = x(to). ( 4.3.28) 

At t = t J, (4.3.21) becomes 

x*(tJ) = M(tJ )A*(tJ) + v(tf)· ( 4.3.29) 
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Again, since A*(tj) is arbitrary, (4.3.29) becomes 

( 4.3.30) 

Thus, the set of the equations (4.3.25) and (4.3.26) are solved 
using either the initial conditions (4.3.28) or final conditions 
(4.3.30). 

Finally, using the transformation (4.3.21) in the optimal control 
(4.3.8), the closed-loop optimal control is given by 

u*(t) = -R-1(t)B'(t)M-1(t)[x*(t) - v(t)] ( 4.3.31) 

where, it is assumed that M(t) is invertible. 

N ow to illustrate the previous method and to be able to get analytical 
solutions, we present a first order example. 

Example 4.3 

Given the plant as 

x(t) = ax(t) + bu(t), 

and the performance index as 

lit! J = - [qx2 (t) + ru2 (t)]dt, 
2 to 

and, the boundary conditions as 

x(t=O)=xo; x(t=tj)=O, 

find the closed-loop optimal control. 

( 4.3.32) 

( 4.3.33) 

( 4.3.34) 

Solution: Follow the procedure of the inverse matrix DRE de­
scribed in the last section. We see that with the boundary con­
ditions (4.3.34), we need to use the scalar version of the inverse 
matrix DRE (4.3.15) having the boundary condition (4.3.17). The 
optimal control (4.3.20) is given by 

u*(t) = -r-1bm-1(t)x*(t) 

where, m(t) is the solution of the scalar DRE (4.3.15) 

b2 
m(t) = 2am(t) + m 2 (t)q - -

r 

( 4.3.35) 

(4.3.36) 
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with the boundary condition (4.3.17) as m( t f) = O. Solving (4.3.36) 
with this boundary condition, we get 

(4.3.37) 

where, (3 = Ja2 + q~. Then the optimal control (4.3.35) becomes 

4.4 LQR with a Specified Degree of Stability 
In this section, we examine the state regulator system with infinite time 
interval and with a specified degree of stability for a time-invariant 
system [3, 2]. Let us consider a linear time-invariant plant as 

x(t) = Ax(t) + Bu(t); x(t = to) = x(O), (4.4.1) 

and the cost functional as 

1100 

J = - e2at [x'(t)Qx(t) + u'(t)Ru(t)] dt 
2 to 

( 4.4.2) 

where, a is a positive parameter. Here, we first assume that the pair 
[A + aI, B] is completely stabilizable and Rand Q are constant, sym­
metric, positive definite and positive semidefinite matrices, respectively. 
The problem is to find the optimal control which minimizes the perfor­
mance index (4.4.2) under the dynamical constraint (4.4.1). 

This can be solved by modifying the previous system to fit into the 
standard infinite-time regulator system discussed earlier in Chapter 3. 
Thus, we make the following transformations 

( 4.4.3) 

Then, using the transformations (4.4.3), it is easy to see that the mod­
ified system becomes 

ic.(t) = !£{eatx(t)} = aeatx(t) + eatx(t) 
dt 

= ax(t) + eat [Ax(t) + Bu(t)] 

ic.(t) = (A + aI)x(t) + Bu(t). (4.4.4) 



176 Chapter 4: Linear Quadratic Optimal Control Systems II 

We note that the initial conditions for the original system (4.4.1) and 
the modified system (4.4.4) are simply related as i(to) = eatox(to) 
and in particular, if to = 0 the initial conditions are the same for the 
original and modified systems. Also, using the transformations (4.4.3), 
the original performance measure (4.4.2) can be modified to 

1 [00 
j = 2 ito [x'(t)Qx(t) + ft'(t)Rft(t)] dt. ( 4.4.5) 

Considering the minimization of the modified system defined by (4.4.4) 
and (4.4.5), we see that the optimal control is given by (see Chapter 3, 
Table 3.3) 

ft*(t) = -R-1B'Pi*(t) = -Ki*(t) ( 4.4.6) 

where, K = R -1 B'P and the matrix P is the positive definite, sym­
metric solution of the algebraic Riccati equation 

P(A + aI) + (A' + aI)P - PBR-1B'P + Q = O. (4.4.7) 

Using the optimal control (4.4.6) in the modified system (4.4.4), we get 
the optimal closed-loop system as 

ic*(t) = (A + aI - BR-1B'P)i*(t). ( 4.4.8) 

Now, we can simply apply these results to the original system. Thus, 
using the transformations (4.4.3) in (4.4.6), the optimal control of the 
original system (4.4.1) and the associated performance measure (4.4.2) 
is given by 

u*(t) = e-atft*(t) = -e-atR-IB'Peatx*(t) 

= -R-1B'Px*(t) = -Kx*(t). ( 4.4.9) 

Interestingly, this desired (original) optimal control (4.4.9) has the same 
structure as the optimal control (4.4.6) of the modified system. The 
optimal performance index for original system or modified system is 
the same and equals to 

j* = ~x*'(to)Px*(to) 
2 

J* = ~e2atox*'(to)Px*(to). (4.4.10) 

We see that the closed-loop optimal control system (4.4.8) has eigen­
values with real parts less than -a. In other words, the state x*(t) 
approaches zero at least as fast as e-at . Then, we say that the closed­
loop optimal system (4.4.8) has a degree of stability of at least a. 
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4.4.1 Regulator System with Prescribed Degree of 
Stability: Summary 

For a controllable, linear, time-invariant plant 

x(t) = Ax(t) + Bu(t), (4.4.11) 

and the infinite interval cost functional 

J = - e2at [x'(t)Qx(t) + u'(t)Ru(t)] dt, 1100 

2 to 
(4.4.12) 

the optimal control is given by 

u*(t) = -R-1B'Px*(t) = -Kx*(t) (4.4.13) 

where, K = R -1 B'P and P, the nxn constant, positive definite, sym­
metric matrix, is the solution of the nonlinear, matrix algebraic Riccati 
equation (ARE) 

P(A + aI) + (A' + aI)P - PBR-1B'P + Q = 0, (4.4.14) 

the optimal trajectory is the solution of 

x*(t) = (A - BR-1B'P) x*(t), 

and the optimal cost is given by 

J* = !e2ato x*'(to)Px*(to). 
2 

(4.4.15) 

(4.4.16) 

The entire procedure is now summarized in Table 4.2. Consider a first­
order system example to illustrate the previous method. 

Example 4.4 

Consider a first-order system 

x(t) = -x(t) + u(t), x(O) = 1 

and a performance measure 

J =! roo e2at [x2 (t) + u2 (t)]dt. 
2 io 

( 4.4.17) 

(4.4.18) 

Find the optimal control law and show that the closed-loop optimal 
system has a degree of stability of at least a. 
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Table 4.2 Procedure Summary of Regulator System with 
Prescribed Degree of Stability 

A. Statement of the Problem 
Given the plant as 
x(t) = Ax(t) + Bu(t), 
the performance index as 

J = ~ It; e2at [x'(t)Qx(t) + u'(t)Ru(t)] dt, 
and the boundary conditions as 
x(to) = Xo; x(oo) = 0, 
find the optimal control, state and index. 

B. Solution of the Problem 
Step 1 Solve the matrix algebraic Riccati equation 

P(A + aI) + (A' + aI)P + Q - PBR-1B'P = O. 
Step 2 Solve the optimal state x* (t) from 

x*(t) = (A - BR -1 B'P) x*(t) 

with initial condition x(to) = Xo. 
Step 3 Obtain the optimal control u * ( t) from 

u*(t) = -R-1 B'Px*(t). 
Step 4 Obtain the optimal performance index from 

J* = je2ato x*'(to)Px*(to). 

Solution: Essentially, we show that the eigenvalue of this closed­
loop optimal system is less than or equal to -a. First of all, in 
the above, we note that A = a = -1, B = b = 1, Q = q = 1 and 
R = r = 1. Then, the algebraic Riccati equation (4.4.14) becomes 

2p(a - 1) - p2 + 1 = 0 ---+ p2 - 2p(a - 1) - 1. (4.4.19) 

Solving the previous for positive value of p, we have 

p = -1 + a + v(a - 1)2 + 1. 

The optimal control (4.4.15) becomes 

u*(t) = -px*(t). 

The optimal system (4.4.22) becomes 

x*(t) = ( -a - v(a -1)2 + 1) x*(t). 

(4.4.20) 

(4.4.21 ) 

( 4.4.22) 
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It is easy to see that the eigenvalue for the system (4.4.22) is related 
as 

-0:: - V(o:: - 1)2 + 1 < -0::. (4.4.23) 

This shows the desired result that the optimal system has the eigen­
value less than 0::. 

4.5 Frequency-Domain Interpretation 
In this section, we use frequency domain to derive some results from the 
classical control point of view for a linear, time-invariant, continuous­
time, optimal control system with infinite-time horizon case. For this, 
we know that the closed-loop optimal control involves the solution of 
matrix algebraic Riccati equation [89, 3]. For ready reference, we repeat 
here some of the results of Chapter 3. 

Consider a controllable, linear, time-invariant plant 

x(t) = Ax(t) + Bu(t), (4.5.1) 

and the infinite-time interval cost functional 

11000 

J = - [x'(t)Qx(t) + u'(t)Ru(t)] dt. 
2 0 

(4.5.2) 

The optimal control is given by 

u*(t) = -R-1B'Px*(t) = -Kx*(t), (4.5.3) 

where, K = R -1 B'P, and P, the nxn constant, positive definite, sym­
metric matrix, is the solution of the nonlinear, matrix ARE 

-PA - A'P + PBR-1B'P - Q = O. (4.5.4) 

The optimal trajectory (state) is the solution of 

x* (t) = (A - BR -1 B'P) x* (t) = (A - BK) x* (t), (4.5.5) 

which is asymptotically stable. Here, we assume that [A, B] is stabi­
lizable and [A, vel] is observable. Then, the open-loop characteristic 
polynomial of the system is [89] 

Llo(s) = lsI - AI, (4.5.6) 
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where, s is the Laplace variable and the optimal closed-loop character­
istic polynomial is 

de(s) = lsI - A + BKI 
= II + BK[sl - A]-II·lsI - AI, 
= 11+ K[sl - A]-IBldo (S). (4.5.7) 

This is a relation between the open-loop do ( s) and closed-loop de ( s ) 
characteristic polynomials. From Figure 4.10, we note that 

1. - K [sl - A] -1 B is called the loop gain matrix, and 

2. 1+ K[sl - A]-1 B is termed return difference matrix. 

U(s) . -1 
[sI - A] B 

X(s) 

~ ___________ rJ~l].t. _______________________________________ : 

9- _ -1-
K = R B'P 1+------' 

Closed-Loop Optimal Controller 
, ................................................................................................................................................................ ... 

Figure 4.10 Optimal Closed-Loop Control in Frequency Domain 

To derive the desired factorization result, we use the matrix ARE 
(4.5.4). Let us rewrite the ARE as 

-P A - A'P + PBR-1B'P = Q. (4.5.8) 

First adding and subtracting sP, s = jw to the previous ARE, we get 

P[sl - A] + [-sl - A']P + K'RK = Q. (4.5.9) 

Next, premultiplying by B'~'( -s) and post multiplying by ~(s)B, the 
previous equation becomes 

B'~'( -s)PB + B'P~(s)B + B'~'( -s)K'RK~(s)B 
= B'~'( -s)Q~(s)B (4.5.10) 
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where, we used 

~(s) = [sl - A]-I; ~'(-s) = [-sl - A,]-I. (4.5.11) 

Finally, using K = R -1 B'P ----+ K' = PBR -1 ----+ PB = K'R and 
adding R to both sides of (4.5.10), we have the desired factorization 
result as 

I B'~/( -s)Q~(s)B + R = [I + K~( -s)BJ' R [I + K~(s)B] I 
(4.5.12) 

or equivalently, 

B'[-sl - A']-IQ[sl - A]-IB + R 

= [I + K[-sl - A]-IB], R [I + K[sl - A]-IB] . 

( 4.5.13) 

The previous relation is also called the Kalman equation in frequency 
domain. 

4.5.1 Gain Margin and Phase Margin 

We know that in classical control theory, the features of gain and phase 
margins are important in evaluating the system performance with re­
spect to robustness to plant parameter variations and uncertainties. 
The engineering specifications often place lower bounds on the phase 
and gain margins. Here, we interpret some of the classical control 
features such as gain margin and phase margin for the closed-loop op­
timal control system [3]. For ready reference let us rewrite the return­
difference result (4.5.13)) with s = jw here as 

B'[-jwl - A,]-IQ[jwl - A]-IB + R 

= [I + K[-jwl - A]-IB]' R[I + K[jwl - A]-IB]. 

( 4.5.14) 

The previous result can be viewed as 

M(jw) = W'( -jw)W(jw) (4.5.15) 

where, 

W(jw) = R 1/ 2 [I + K[jwl - A]-IB] 

M(jw) = R + B'[-jwl - A,]-IQ[jwl - A]-lB. (4.5.16) 
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Note that M(jw) 2: R > O. Using Q = ee', R = DD' = I and the 
notation 

W'( -jw)W(jw) = IIW(jw)112
, ( 4.5.17) 

the factorization result (4.5.14) can be written in neat form as 

This result can be used to find the optimal feedback matrix K given 
the other quantities A, B, Q, R = I. Note that in (4.5.18), we need not 
solve for the Riccati coefficient matrix P, instead we directly obtain 
the feedback matrix K. 

In the single-input case, the various matrices become scalars or vec­
tors as B = b, R = r, K = k. Then, the factorization result (4.5.14) 
boils down to 

r + b'[-jwI - A']-lQ[jwI - A]-lb 

= rl1 + k[jwI - A]-lbI 2
. 

In case Q = ee', we can write (4.5.19) as 

( 4.5.19) 

The previous result may be called another version of the Kalman equa­
tion in frequency domain. The previous relation (also from (4.5.18) for 
a scalar case) implies that 

( 4.5.21) 

Thus, the return difference is lower bounded by 1 for all w. 

Example 4.5 

Consider a simple example where we can verify the analytical so­
lutions by another known method. Find the optimal feedback co­
efficients for the system 

Xl(t)=X2(t) 
X2(t) = u(t) 

and the performance measure 

1 [00 
J = 2 J

o 
[xi(t) + x~(t) + u2(t)] dt. 

( 4.5.22) 

(4.5.23) 
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Solution: First it is easy to identify the various matrices as 

A = [~~]; B = b = [~]; Q = [~~]; R = r = 1. (4.5.24) 

Also, note since Q = R = I, we have C = D = I and B = I. Thus, 
the Kalman equation (4.5.18) with jw = s becomes 

( 4.5.25) 

Further, we have 

(4.5.26) 

Then, the Kalman equation (4.5.25) becomes 

[1+ [ kll k12] [ !~ ~] [~]] [1+ [ kll k12] [& ~] [~]] = 

1+ [0 1] [ !o ~] [~~] [& ~] [~] . 
(4.5.27) 

By simple matrix multiplication and equating the coefficients of 
like powers of s on either side, we get a set of algebraic equations 
in general, and in particular in this example we have a single scalar 
equation as 

( 4.5.28) 

giving us 

kll = 1, k12 = v'3 ( 4.5.29) 

and the optimal feedback control as 

u*(t) = -Kx*(t) = - [ 1 V3] x*(t). ( 4.5.30) 

Note: This example can be easily verified by using the algebraic 
Riccati equation (3.5.15) (of Chapter 3) 

PA + A'P - PBR-1B'P + Q = 0 ( 4.5.31) 
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discussed in Chapter 3. Using the previous relation, we get 

(4.5.32) 

and the optimal control (3.5.14) as 

u*(t) = -R-1B'Px*(t) = - [1 vI3] x*(t) ( 4.5.33) 

which is the same as (4.5.30). 

Let us redraw the closed-loop optimal control system in Figure 4.10 as 
unity feedback system shown in Figure 4.11. 

~ + 
U(s) - 1 Xes) 

• K[sI -Ar B ... 

I 
Figure 4.11 Closed-Loop Optimal Control System with Unity 

Feedback 

Here, we can easily recognize that for a single-input, single-output 
case, the optimal feedback control system is exactly like a classical feed­
back control system with unity negative feedback and transfer function 
as Go(s) = k[sI-A]-lb. Thus, the frequency domain interpretation in 
terms of gain margin, phase margin can be easily done using Nyquist, 
Bode, or some other plot .of the transfer function Go (s ). 

Gain Margin 

We recall that the gain margin of a feedback control system is the 
amount of loop gain (usually in decibels) that can be changed before 
the closed-loop system becomes unstable. Let us now apply the well­
known Nyquist criterion to the unity feedback, optimal control system 
depicted in Figure 4.11. Here, we assume that the Nyquist path is clock­
wise (CW) and the corresponding Nyquist plot makes counter-clock­
wise (CCW) encirclements around the critical point -1 + jO. According 
to Nyquist stability criterion, for closed-loop stability, the Nyquist plot 
(or diagram) makes CCW encirclements as many times as there are 
poles of the transfer function Go (s) lying in the right half of the s­
plane. 
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From Figure 4.11 and the return difference relation (4.5.21), we note 
that 

(4.5.34) 

implies that the distance between the critical point -1 + jO and any 
point on the Nyquist plot is at least 1 and the resulting Nyquist plot 
is shown in Figure 4.12 for all positive values of w (i.e., 0 to (0). This 

-2 Re 

--- --Go(jro) 

1 + Go(jro) 

Figure 4.12 Nyquist Plot of Go(jw) 

means that the Nyquist plot of Go(jw) is constrained to avoid all the 
points inside the unit circle (centered at -1 + jO). Thus, it is clear 
that the closed-loop optimal system has infinite gain margin. Let us 
proceed further to see if there is a lower limit on the gain factor. 

Now, if we multiply the open-loop gain with some constant factor 
f3, the closed-loop system will be asymptotically stable if the Nyquist 
plot of f3Go(jw) encircles -1 + jO in CCW direction as many times 
as there are poles of f3Go(s) in the right-half plane. This means that 
the closed-loop system will be stable if the Nyquist diagram of Go(jw) 
encircles the critical point -(1/ f3) + jO the same number of times as 
there are open-loop poles in the right-half plane. But the set of points 
-(1/ f3) for all real f3 > ~ lies inside the critical unit circle and thus 
are encircled CCW the same number of times as the original point 
-1 + jO. Consequently, there is a lower limit as f3 > ~. In other words, 
for values of f3 < ~, the set of points -1/ f3 + jO lies outside the unit 
circle and contradicts the Nyquist criterion for stability of closed-loop 
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optimal control system. Thus, we have an infinite gain margin on the 
upper side and a lower gain margin of j3 = 1/2. 

Phase Margin 

Let us first recall that the phase margin is the amount of phase shift in 
CW direction (without affecting the gain) through which the Nyquist 
plot can be rotated about the origin so that the gain crossover (unit 
distance from the origin) passes through the -1 + jO point. Simply, 
it is the amount by which Nyquist plot can be rotated CW to make 
the system unstable. Consider a point P at unit distance from the 
origin on the Nyquist plot (see Figure 4.12). Since we know that the 
Nyquist plot of an optimal regulator must avoid the unit circle centered 
at -1 + jO, the set of points which are at unit distance from the origin 
and lying on Nyquist diagram of an optimal regulator are constrained 
to lie on the portion marked X on the circumference of the circle with 
unit radius and centered at the origin as shown in Figure 4.13. Here, 

jro 

-2 

Figure 4.13 Intersection of Unit Circles Centered at Origin and 
-1 +jO 

we notice that the smallest angle through which one of the admissible 
points A on (the circumference of the circle centered at origin) the 
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Nyquist plot could be shifted in a CW direction to reach -1 + j 0 point 
is 60 degrees. Thus, the closed-loop optimal system or LQR system 
has a phase margin of at least 60 degrees. 
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4-. 6 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 4.1 A second order plant 

Xl(t) = X2(t), 

X2(t) = -2Xl(t) - 3X2(t) + u(t) 

y(t) = x(t) 

is to be controlled to minimize a performance index and to keep the 
state Xl(t) close to a ramp function 2t. The final time tf is specified, 
the final state x( t f) is free and the admissible controls and states are 
unbounded. Formulate the performance index, obtain the feedback 
control law and plot all the time histories of Riccati coefficients, optimal 
states and control. 

Problem 4.2 A second order plant 

Xl(t) = X2(t), 

X2(t) = -2Xl(t) - 4X2(t) + O.5u(t) 

y(t) = x(t) 

is to be controlled to minimize the performance index 

The final time t f is specified, the final state x( t f) is fixed and the 
admissible controls and states are unbounded. Obtain the feedback 
control law and plot all the time histories of inverse Riccati coefficients, 
optimal states and control. 



4.6 Problems 

Problem 4.3 For a linear, time-varying system (3.2.48) given as 

x(t) = A(t)x(t) + B(t)u(t), 

y(t) = C(t)x(t) 

with a general cost functional (3.2.49) as 

J = ~ x' ( t f) F ( t f )x ( t f ) 

+~ f [x'(t) u'(t) 1 [~i!j ii!j] [:m] dt, 
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where, the various vectors and matrices are defined in Chapter 3, formu­
late a tracking problem and obtain the results similar to those obtained 
in Chapter 4. 

Problem 4.4 Using the frequency-domain results, determine the op­
timal feedback coefficients and the closed-loop optimal control for the 
multi-input, multi-output system 

. [0 1] [10] x(t) = -2 -3 x(t) + ° 1 u(t) 

and the cost function 

J = 10"" [4xi(t) + 4x~(t) + o.5ui(t) + u~(t)ldt. 

Problem 4.5 For the D.C. motor speed control system described in 
Problem 1.1, find the closed-loop optimal control to track the speed at 
a particular value. 

Problem 4.6 For the liquid-level control system described in Prob­
lem 1.2, find the closed-loop optimal control to track the liquid level 
along a ramp function 0.25t. 

Problem 4.7 For the mechanical control system described in Prob­
lem 1.4, find the closed-loop optimal control to track the system along 
(i) a constant value and (ii) a ramp function. 

Problem 4.8 For the chemical control system described in Problem 1.6, 
find the closed-loop optimal control to track the system along (i) a con­
stant value and (ii) a ramp function. 

@@@@@@@@@@@@@ 





Chapter 5 

Discrete- Time Optimal 
Control Systems 

In previous chapters, the optimal control of continuous-time systems 
has been presented. In this chapter, the optimal control of discrete-time 
systems is presented. We start with the basic calculus of variations 
and then touch upon all the topics discussed in the previous chapters 
with respect to the continuous-time systems such as open-loop optimal 
control, linear quadratic regulator system, tracking system, etc. It is 
suggested that the student reviews the material in Appendices A and 
B given at the end of the book. This chapter is inspired by [84, 89,120]1. 

5.1 Variational Calculus for Discrete-Time 
Systems 

In earlier chapters, we discussed the optimal control of continuous-time 
systems described by differential equations. There, we minimized cost 
functionals which are essentially integrals of scalar functions. Now, we 
know that discrete-time systems are characterized by difference equa­
tions, and we focus on minimizing the cost functionals which are sum­
mations of some scalar functions. 

IThe permission given by John Wiley for F. L. Lewis, Optimal Control, John Wiley & Sons, 
Inc., New York, NY, 1986, is hereby acknowledged. 
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5.1.1 Extremization of a Functional 

In this section, we obtain the necessary conditions for optimization of 
cost functionals which are summations such as 

kf-l 

J(x(ko), ko) = J = L V(x(k), x(k + 1), k) (5.1.1) 
k=ko 

where, the discrete instant k = ko, kl' ... ,kj - 1. Note the following 
points. 

1. For a given interval k E [ko, kj] and a given function V(x(k), x(k+ 
1), k), the summation interval in (5.1.1) needs to be [ko, kj - 1]. 

2. We consider first a scalar case for simplicity and then we gener­
alize for the vector case. 

3. We are also given the initial condition x(k = ko) = x(ko). 

4. Consider the case of a free-final point system, such that k is fixed 
or specified and x(kj) is free or unspecified. 

5. Also, if T is the sampling period, then x(k) = x(kT). 

6. Let us note that if we are directly considering the discrete-time 
version of the continuous-time cost functionals (such as (2.3.1) 
addressed in Chapter 2), we have the sampling period T multi­
plying the cost functional (5.1.1). 

For extremization (maximization or minimization) of functionals, anal­
ogous to the case of continuous-time systems addressed in Chapter 2, we 
use the fundamental theorem of the calculus of variations (Co V) which 
states that the first variation must be equal to zero. The methodology 
for this simple case of optimization of a functional is carried out briefly 
under the following steps. 

• Step 1: Variations 

• Step 2: Increment 

• Step 3: First Variation 

• Step 4: Euler-Lagrange Equation 
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• Step 5: Boundary Conditions 

Now consider these items in detail. 

• Step 1: Variations: We first let x(k) and x(k + 1) take on vari­
ations 8x(k) and 8x(k + 1) from their optimal values x*(k) and 
x* (k + 1), respectively, such that 

x(k) = x*(k) + 8x(k); x(k + 1) = x*(k + 1) + 8x(k + 1). (5.1.2) 

Now with these variations, the performance index (5.1.1) be­
comes 

J* = J(x*(ko), ko) 

kf-l 

= L V(x*(k), x*(k + 1), k) (5.1.3) 
k=ko 

J = J(x(ko), ko) 

kf-l 

= L V (x*(k) + 8x(k), x*(k + 1) + 8x(k + 1), k). (5.1.4) 
k=ko 

• Step 2: Increment: The increment of the functionals defined by 
(5.1.2) and (5.1.3) is defined as 

~J=J-J*. (5.1.5) 

• Step 3: First Variation: The first variation 8J is the first order 
approximation of the increment ~J. Thus, using the Taylor series 
expansion of (5.1.4) along with (5.1.3), we have 

oJ = kfl [8V(X*(k), x*(k + 1), k) 8x(k) 
k=ko 8x*(k) 

8V(x*(k), x*(k + 1), k) 8 (k 1)] 
+ 8x* (k + 1) x + . (5.1.6) 
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Now in order to express the coefficient 8x(k + 1) also in terms of 
8 x ( k), consider the second expression in (5.1. 6) . 

kt1 
8V(x*(k), x*(k + 1), k) 6x(k + 1) 

k=ko 8x*(k + 1) 

= 8V(x*(ko), x*(ko + 1), ko) 8x(ko + 1) 
8x*(ko + 1) 

8V(x*(ko + 1), x*(ko + 2), ko + 1) 8 (k ) 
+ 8x*(ko +2) x 0+ 2 

+ ................. . 
8V(x*(kf - 2), x*(kf - 1), kf - 2) 8 (k ) 

+ 8x* (k f - 1) x f - 1 

8V(x*(kf - 1), x*(kf), kf - 1) 8 (k ) 
+ 8x*(kf) x f 

8V(x*(ko - 1), x*(ko), ko - 1) 8 (k ) 
+ 8x*(ko) x 0 

8V(x*(ko - 1)tiko), ko - 1) 6x(ko) (5.1.7) 
8x* ko 

where, the last two terms in (5.1.7) are added without affecting 
the rest of the equation. The entire equation (5.1.7) (except the 
last term and the last but the two terms) is rewritten as 

kt1 
8V(x*(k), x*(k + 1), k) 6x(k + 1) 

k=ko 8x*(k + 1) 

= kt1 
8V(x*(k - 1), x*(k), k - 1) 6x(k) 

k=ko 8x*(k) 

8V(x*(kf - 1), x*(kf), kf - 1) 8 (k ) 
+ 8x*(kf) x f 

_ 8V(x*(ko - 1), x*(ko), ko - 1) 8x(ko) 
8x* (ko) 

= kt1 
8V(x*(k - 1), x*(k), k - 1) 6x(k) 

k=ko 8x*(k) 

+ [8V(X*(k -8;:(~;(k), k - 1) 6X(k)] c::. (5.1.8) 
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Substituting (5.1.8) in (5.1.6) and noting that the first variation 
should be zero, we have 

k~l [aV(x*(k), x*(k + 1), k) aV(x*(k - 1), x*(k), k - 1)]8X(k) 
k7::o ax*(k) + ax*(k) 

+ [aV(x'(k -a~,(~;(k), k -1) 8X(k)] [:: = O. 

(5.1.9) 

• Step 4: Euler-Lagrange Equation: For (5.1.9) to be satisfied 
for arbitrary variations 8x(k), we have the condition that the 
coefficient of 8x(k) in the first term in (5.1.9) be zero. That is 

8V(x*(k), x*(k + 1), k) 8V(x*(k - 1), x*(k), k - 1) 
8x*(k) + 8x*(k) = O. 

(5.1.10) 

This may very well be called the discrete-time version of the 
Euler-Lagrange (EL) equation . 

• Step 5: Boundary Conditions: The boundary or transversality 
condition is obtained by setting the second term in (5.1.9) equal 
to zero. That is 

Now, we discuss two important cases: 

1. For a fixed-end point system, we have the boundary condi­
tions x(ko) and x(kf) fixed and hence 8x(ko) = 8x(kf) = 
O. The additional (or derived) boundary condition (5.1.11) 
does not exist. 

2. For a free-final point system, we are given the initial con­
dition x(ko) and hence 8x(ko) = 0 in (5.1.11). Next, at the 
final point, k f is specified, and x ( k f ) is not specified or is free, 
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and hence 8x(kf) is arbitrary. Thus, the coefficient of 8x(k) 
at k = kf is zero in the condition (5.1.11) which reduces to 

[
8V(X*(k - 1), x*(k), k - 1)]1 = o. ( ) 

( 
5.1.12 

8x* k) . k=k j 

Let us note that the necessary condition (5.1.10) and the associ­
ated boundary or transversality condition (5.1.12) are derived for 
the scalar function x (k) only. 

The previous analysis can be easily extended to the vector function x( k) 
of nth order. Thus, consider a functional which is the vector version of 
the scalar functional (5.1.1) as 

kj-l 

J(x(ko), ko) = J = L V(x(k), x(k + 1), k). (5.1.13) 
k=ko 

We will only give the corresponding final Euler-Lagrange equation and 
the transversality condition, respectively, as 

8V(x*(k), x*(k + 1), k) 8V(x*(k - 1), x*(k), k - 1) _ 0 ( ) 
8x*(k) + 8x*(k) - 5.1.14 

and 

[
8V(X*(k - 1), x*(k), k - 1)]1 = o. 

8x*(k) k=kj 
(5.1.15) 

Note in the Euler-Lagrange equation (5.1.10) or (5.1.14), 

1. the first term involves taking the partial derivative of the given 
function V(x*(k), x*(k + 1), k) w.r.t. x(k) and 

2. the second term considers taking the partial derivative of V (x* (k-
1), x*(k), k - 1) (one step behind) w.r.t. the same function x(k). 

The second function V(x*(k - 1), x*(k), k - 1) can be easily obtained 
from the given function V (x* (k ), x* (k + 1), k) just by replacing k by 
k -1. Also, compare the previous results with the corresponding results 
for continuous-time systems in Chapter 2. 



5.1 Variational Calculus for Discrete-Time Systems 197 

5.1.2 Functional with Terminal Cost 

Let us formulate the cost functional with terminal cost (in addition to 
summation cost) as 

J = J(x(ko), ko) 
kf-l 

= S(x(kf), kf) + L V(x(k), x(k + 1), k) (5.1.16) 
k=ko 

given the initial condition x(ko) and the final time kf as fixed, and the 
final state x(kf) as free. First, assume optimal (*) condition and then 
consider the variations as 

x(k) = x*(k) + 8x(k) 

x(k + 1) = x*(k + 1) + 8x(k + 1). (5.1.17) 

Then, the corresponding functionals J and J* become 

kf-l 

J* = S(x*(kf), kf) + L V(x*(k), x*(k + 1), k), (5.1.18) 
k=ko 

J = S(x*(kf) + 8x(kf), kf) 
kf-l 

+ L V(x*(k) + 8x(k), x*(k + 1) + 8x(k + 1), k). (5.1.19) 
k=ko 

Following the same procedure as given previously for a functional with­
out terminal cost, we get the first variation as 

8J = ~1 [8V(X*(k),X*(k + 1), k) 8V[x*(k - 1), x*(k), k - 1)]' 8x(k) 
~ 8x*(k) + 8x*(k) 

k=ko 

+ [8V(X*(k - l),x*(k), k - 1) 8X(k)]l
k
=k

f 

8x*(k) k=ko 

8S(x*(kf ),kf)8 (k ) 
+ 8x* (k f) x f· 

(5.1.20) 

For extremization, the first variation 8J must be zero. Hence, from 
(5.1.20) the Euler-Lagrange equation becomes 

8V(x*(k), x*(k + 1), k) 8V(x*(k - 1), x*(k), k - 1) 
8x*(k) + 8x*(k) = o. 

(5.1.21) 
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and the transversality condition for the free-final point becomes 

[
8V(X*(k - 1), x*(k), k - 1) + 8S(x*(kf), kf )] I = O. 

8x*(k) 8x*(kf) k=kf 

(5.1.22) 

Let us now illustrate the application of the Euler~Lagrange equation 
for discrete-time functionals. 

Example 5.1 

Consider the minimization of a functional 

kf-l 
J(x(ko), ko) = J = L [x(k)x(k + 1) + x2 (k)] (5.1.23) 

k=ko 

subject to the boundary conditions x(O) = 2, and x(IO) = 5. 

Solution: Let us identify in (5.1.23) that 

V(x(k), x(k + 1)) = x(k)x(k + 1) + x2 (k) (5.1.24) 

and hence 

V(x(k - 1), x(k)) = x(k - I)x(k) + x2 (k - 1). (5.1.25) 

Then using the Euler-Lagrange equation (5.1.10), which is the same 
as the scalar version of (5.1.21), we get 

x (k + 1) + 2x (k) + x (k - 1) = 0 (5.1.26) 

or 

x (k + 2) + 2x (k + 1) + x (k) = 0 (5.1.27) 

which upon solving with the given boundary conditions x(O) = 2 
and x(IO) = 5, becomes 

x(k) = 2( _I)k + 0.3k( _I)k. (5.1.28) 
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5.2 Discrete-Time Optimal Control Systems 
We develop the Minimum Principle for discrete-time control systems 
analogous to that for continuous-time control systems addressed in pre­
vious Chapters 2, 3, and 4. Instead of repeating all the topics of the 
continuous-time systems for the discrete-time systems, we focus on lin­
ear quadratic optimal control problem. We essentially approach the 
problem using the Lagrangian and Hamiltonian (or Pontryagin) func­
tions. 

Consider a linear, time-varying, discrete-time control system described 
by 

x(k + 1) = A(k)x(k) + B(k)u(k) (5.2.1) 

where, k = ko, kl, .. . , kf -1, x(k) is nth order state vector, u(k) is rth 
order control vector, and A(k) and B(k) are matrices of nxn and nxr 
dimensions, respectively. Note that we used A and B for the state space 
representation for discrete-time case as well as for the continuous-time 
case as shown in the previous chapters. One can alternatively use, say 
G and E for the discrete-time case so that the case of discretization of 
a continuous-time system with A and B will result in G and E in the 
discrete-time representation. However, the present notation should not 
cause any confusion once we redefine the matrices in the discrete-time 
case. We are given the initial condition as 

x(k = ko) = x(ko). (5.2.2) 

We will discuss later the final state condition and the resulting relations. 
We are also given a general performance index (PI) with terminal cost 
as 

J= J(x(ko),u(ko),ko) 

= ~x'(kf )F(kf )x(kf) 

kf-l 

+~ L [x' (k)Q(k)x(k) + u'(k)R(k)u(k)] 
k=ko 

(5.2.3) 

where, F(kf) and Q(k) are each nxn order symmetric, positive semi­
definite matrices, and R( k) is rxr symmetric, positive definite matrix. 

The methodology for linear quadratic optimal control problem is car­
ried out under the following steps. 
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• Step 1: Augmented Performance Index 

• Step 2: Lagrangian 

• Step 3: Euler-Lagrange Equation 

• Step 4: Hamiltonian 

• Step 5: Open-Loop Optimal Control 

• Step 6: State and Costate System 

Now these steps are described in detail. 

• Step 1: Augmented Performance Index: First, we formulate an 
augmented cost functional by adjoining the original cost func­
tional (5.2.3) with the condition or plant relation (5.2.1) using La­
grange multiplier (later to be called as costate function) A(k + 1) 
as 

Ja = ~x' (kf )F(kf )x(kf) 

kf-l 

+~ L [x'(k)Q(k)x(k) + u'(k)R(k)u(k)] 
k=ko 

+A(k + 1) [A(k)x(k) + B(k)u(k) - x(k + 1)]. (5.2.4) 

Minimization of the augmented cost functional (5.2.4) is the same 
as that of the original cost functional (5.2.3), since J = Ja . The 
reason for associating the stage (k + 1) with the Lagrange mul­
tiplier A( k + 1) is mainly the simplicity of the final result as will 
be apparent later. 

• Step 2: Lagrangian: Let us now define a new function called 
Lagrangian as 

£(x(k), u(k), x(k + 1), A(k + 1)) 

= ~x' (k)Q(k)x(k) + ~u'(k)R(k)u(k) 
+A'(k + 1) [A(k)x(k) + B(k)u(k) - x(k + 1)]. (5.2.5) 
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• Step 3: Euler-Lagrange Equations: We now apply the Euler­
Lagrange (EL) equation (5.1.21) to this new function £ with re­
spect to the variables x(k), u(k), and A(k + 1). Thus, we get 

8£(x*(k), x*(k + 1), u*(k), A*(k + 1)) 
8x* (k) 

8£(x*(k - 1), x*(k), u*(k - 1), A*(k)) _ 0 
+ 8x*(k) -

8£(x*(k), x*(k + 1), u*(k), A*(k + 1)) 
8u*(k) 

8£(x*(k - 1), x*(k), u*(k - 1), A*(k)) _ 0 
+ 8u*(k) -

8£ (x* ( k ) , x* (k + 1), u * ( k ), A * (k + 1)) 
8A*(k) 

8£(x*(k - 1), x*(k), u*(k - 1), A*(k)) _ 0 
+ 8A*(k) -

and the boundary (final) condition (5.1.22) becomes 

(5.2.6) 

(5.2.7) 

(5.2.8) 

[
8£(X(k - 1), x(k), u(k - 1), A(k)) + 8S(x(k), k)]' 8X(k)!k=k

f 
= 0 

8x(k) 8x(k) * 
k=ko 

(5.2.9) 

where, from (5.2.3), 

(5.2.10) 

• Step 4: Hamiltonian: Although relations (5.2.6) to (5.2.10) give 
the required conditions for optimum, we proceed to get the results 
in a more elegant manner in terms of the Hamiltonian which is 
defined as 

1t(x*(k), u*(k), A*(k + 1)) = ~X*'(k)Q(k)x*(k) 

+~U*'(k)R(k)u*(k) 
+A*'(k + 1) [A(k)x*(k) + B(k)u*(k)] . (5.2.11) 
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Thus, the Lagrangian (5.2.5) and the Hamiltonian (5.2.11) are 
related as 

£(x*(k),x*(k + 1), u*(k), >.*(k + 1)) = 

H(x*(k), u*(k), >.*(k + 1)) 

->.*(k + l)x*(k + 1). (5.2.12) 

Now, using the relation (5.2.12) in the set of Euler-Lagrange 
equations (5.2.6) to (5.2.8), we get the required conditions for 
extremum in terms of the Hamiltonian as 

*(k) = 8H(x*(k), u*(k), >'*(k + 1)) 
>. 8x*(k) ' 

(5.2.13) 

8H(x*(k), u*(k), >.*(k + 1)) 
o = 8u*(k) , (5.2.14) 

*(k) = 8H(x*(k - 1), u*(k - 1), >.*(k)) 
x 8>.*(k)' (5.2.15) 

Note that the relation (5.2.15) can also be written in a more 
appropriate way by considering the whole relation at the next 
stage as 

*(k 1) = 8H(x*(k), u*(k), >'*(k + 1)) 
x + 8>'*(k + 1) . (5.2.16) 

For the present system described by the plant (5.2.1) and the 
performance index (5.2.3) we have the relations (5.2.16), (5.2.13), 
and (5.2.14) for the state, costate, and control, transforming re­
spectively, to 

x*(k + 1) = A(k)x*(k) + B(k)u*(k) 

>'*(k) = Q(k)x*(k) + A'(k)>'*(k + 1) 

0= R(k)u*(k) + B'(k)>'*(k + 1). 

(5.2.17) 

(5.2.18) 

(5.2.19) 

• Step 5: Open-Loop Optimal Control: The optimal control is then 
given by (5.2.19) as 

I u*(k) = _R-l(k)B'(k)>.*(k + 1) I (5.2.20) 
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where,the positive definiteness of R(k) ensures its invertibility. 
Using the optimal control (5.2.20) in the state equation (5.2.17) 
we get 

x*(k + 1) = A(k)x*(k) - B(k)R-l(k)B'(k)A*(k + 1) 

= A(k)x*(k) - E(k)A*(k + 1) (5.2.21) 

where, E(k) = B(k)R-l(k)B'(k) . 

• Step 6: State and Costate System: The canonical (state and 
costate) system of (5.2.21) and (5.2.18) becomes 

[
X*(k + 1)] [A(k) -E(k)] [X*(k) ] 
A*(k) - Q(k) A'(k) A*(k + 1) . (5.2.22) 

The state and costate (or Hamiltonian) system (5.2.22) is shown 
in Figure 5.1. Note that the preceding Hamiltonian system (5.2.22) 
is not symmetrical in the sense that x* (k + 1) and A * (k) are re­
lated in terms of x*(k) and A*(k + 1). 

5.2.1 Fixed-Final State and Open-Loop Optimal 
Control 

Let us now discuss the boundary condition and the associated control 
configurations. For the given or fixed-initial condition (5.2.2) and the 
fixed-final state as 

(5.2.23) 

the terminal cost term in the performance index (5.2.3) makes no sense 
and hence we can set F(kj) = O. Also, in view of the fixed-final state 
condition (5.2.23), the variation ox(kf) = 0 and hence the boundary 
condition (5.2.9) does not exist for this case. Thus, the state and 
costate system (5.2.22) along with the initial condition (5.2.2) and 
the fixed-final condition (5.2.23) constitute a two-point boundary value 
problem (TPBVP). The solution of this TPBVP, gives x*(k) and A*(k) 
or A*(k + 1) which along with the control relation (5.2.20) leads us to 
the so-called open-loop optimal control. The entire procedure is now 
summarized in Table 5.l. 

We now illustrate the previous procedure by considering a simple 
system. 
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Table 5.1 Procedure Summary of Discrete-Time Optimal 
Control System: Fixed-End Points Condition 

A. Statement of the Problem 
Given the plant as 
x(k + 1) = A(k)x(k) + B(k)u(k), 
the performance index as 

J(ko) = ~ E~~~~ [x'(k)Q(k)x(k) + u'(k)R(k)u(k)] , 
and the boundary conditions as 
x(k = ko) = x(ko); x(kf) = x(kf), 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin H function 

H = ~x'(k)Q(k)x(k) + ~u'(k)R(k)u(k) 
+A'(k + 1) [A(k)x(k) + B(k)u(k)] . 

Step 2 Minimize H w.r.t. u(k) 

(8~(l)) * = 0 and obtain 
u*(k) = _R-l(k)B'(k)A*(k + 1). 

Step 3 Using the result of Step 2, find the 
optimal H* function as 
H* (x* ( k ), A * (k + 1)). 

Step 4 Solve the set of 2n difference equations 
x*(k + 1) = 8A~~~1) = A(k)x*(k) - E(k)A*(k + 1), 

A*(k) = 8~"!(:) = Q(k)x*(k) + A'(k)A*(k + 1), 
with the given boundary conditions 
x(ko) and x(kf ), where E(k) = B(k)R-1(k)B'(k). 

Step 5 Substitute the solution of A * (k) from Step 4 into 
the expression for u*(k) of Step 2 to obtain the 
optimal control. 
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Consider the minimization of the performance index (PI) [120] 

kf-l 

J(ko) = ~ L u2 (k), 
k=ko 

(5.2.24) 

subject to the boundary conditions 

x (ko = 0) = 1, x (k f = 10) = 0 (5.2.25) 

for a simple scalar system 

x(k + 1) = x(k) + u(k). (5.2.26) 

Solution: Let us first identify the various matrices by compar­
ing the present state (5.2.26) and the PI (5.2.24) with the corre­
sponding general formulation of the state (5.2.1) and the PI (5.2.3), 
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respectively, to get 

A(k) = 1; B(k) = 1; F(kf) = 0; Q(k) = 0; R(k) = 1. 

(5.2.27) 

Now let us use the procedure given in Table 5.1. 

• Step 1: Form the Pontryagin 'H function as 

1 
'H(x(k), u(k), A(k + 1)) = 2,u2(k) + A(k + l)[x(k) + u(k)]. 

(5.2.28) 

• Step 2: Minimizing'H of (5.2.28) w.r.t. u(k) 

8'H 
8u(k) = 0 ---+ u*(k) + A*(k + 1) = 0 ---+ u*(k) = -A*(k + 1). 

(5.2.29) 

• Step 3: Using the control relation (5.2.29) and the Hamiltonian 
(5.2.28), form the optimal 'H* function 

'H*(x*(k), A*(k + 1)) = X*(k)A*(k + 1) - ~A*2(k + 1). (5.2.30) 

• Step 4: Obtain the set of 2 state and costate difference equa­
tions 

8'H* 
x*(k + 1) = 8A*(k + 1) ---+ x*(k + 1) = x*(k) - A*(k + 1) 

(5.2.31) 

and 

(5.2.32) 

Solving these 2 equations (5.2.31) and (5.2.32) (by first eliminat­
ing A(k) and solving for x(k)) along with the boundary conditions 
(5.2.25), we get the optimal solutions as 

x*(k) = 1 - 0.1k; A*(k + 1) = 0.1. (5.2.33) 

• Step 5: Using the previous state and costate solutions, the op­
timal control u*(k) is obtained from (5.2.29) as 

u*(k) = -0.1. (5.2.34) 
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5.2.2 Free-Final State and Open-Loop Optimal Control 

Let us, first of all, note that for a free-final state system, it is usual to 
obtain closed-loop optimal control configuration. However, we reserve 
this to the next section. Let us consider the free-final state condition 
as 

x(kf) is free, and kf is fixed. (5.2.35) 

Then, the final condition (5.2.9) along with the Lagrangian (5.2.5) be­
comes 

(5.2.36) 

Now, for this free-final point system with kf fixed, and x(kf) being free, 
8x(kf) becomes arbitrary and its coefficient in (5.2.36) should be zero. 
Thus, the boundary condition (5.2.36) along with the performance in­
dex (5.2.3) becomes 

(5.2.37) 

which gives 

1 A(kf) = F(kf )x(kf )·1 (5.2.38) 

The state and costate system (5.2.22) along with the initial condition 
(5.2.2) and the final condition (5.2.38) constitute a TPBVP. The so­
lution of this TPBVP, which is difficult because of the coupled nature 
of the solutions (i.e., the state x*(k) has to be solved forward starting 
from its initial condition x(ko) and the costate A*(k) has to be solved 
backward starting from its final condition A(kf)) leads us to open-loop 
optimal control. The entire procedure is now summarized in Table 5.2. 

5.3 Discrete-Time Linear State Regulator 
System 

In this section, we discuss the state regulator system, and obtain closed­
loop optimal control configuration for discrete-time systems. This leads 
us to matrix difference Riccati equation (DRE). Now, we restate the 
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Table 5.2 Procedure Summary for Discrete-Time Optimal 
Control System: Free-Final Point Condition 

A. Statement of the Problem 
Given the plant as 
x(k + 1) = A(k)x(k) + B(k)u(k) 
the performance index as 

J(ko) = ~x'(kf )F(kf )x(kf) 

+~ L~:~~ [x'(k)Q(k)x(k) + u'(k)R(k)u(k)] 
and the boundary conditions as 
x(k = ko) = x(ko); x(kf) is free, and kf is fixed, 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin 1-l function 

1-l = ~x' (k )Q(k )x(k) + ~u' (k )R(k )u(k) 
+A'(k + 1) [A(k)x(k) + B(k)u(k)] . 

Step 2 Minimize 1-l w.r. t. u( k) as 

C9~)) * = 0 and obtain 
u*(k) = _R-l(k)B'(k)A*(k + 1). 

Step 3 U sing the result of Step 2 in Step 1, find the 
optimal 1-l* as 
1-l*(x*(k), A*(k + 1)). 

Step 4 Solve the set of 2n difference equations 

x*(k + 1) = aA~~~l) = A(k)x*(k) - E(k)A*(k + 1), 

A*(k) = a~?!c:) = Q(k)x*(k) + A'(k)A*(k + 1), 
with the given initial condition and 
the final condition A(kf) = F(kf )x(kf), 
where, E(k) = B(k)R-l(k)B'(k). 

Step 5 Substitute the solution of A*(k) from Step 4 into 
the expression for u*(k) of Step 2, to obtain the 
optimal control. 
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problem of linear state regulator and summarize the results derived in 
Section 5.2. 

Consider the linear, time-varying discrete-time control system de­
scribed by the plant (5.2.1) and the performance index (5.2.3). We are 
given the initial and final conditions as 

x(k = ko) = x(ko); x(kf) is free, and kf is fixed. (5.3.1) 

Then the optimal control (5.2.20) and the state and costate equations 
(5.2.22) are reproduced, respectively here for convenience as 

and 

u*(k) = _R-l(k)B'(k)A*(k + 1) 

x*(k + 1) = A(k)x*(k) - E(k)A*(k + 1), 

A*(k) = Q(k)x*(k) + A'(k)>'*(k + 1), 

(5.3.2) 

(5.3.3) 

(5.3.4) 

where, E(k) = B(k)R-1(k)B'(k), and the final costate relation (5.2.38) 
is given by 

(5.3.5) 

5.3.1 Closed-Loop Optimal Control: Matrix Difference 
Riccati Equation 

In order to obtain closed-loop optimal configuration, we need to try to 
express the costate function A*(k + 1) in the optimal control (5.3.2) in 
terms of the state function x*(k). The final condition (5.3.5) prompts 
us to express 

A *(k) = P(k )x*(k) (5.3.6) 

where, P (k) is yet to be determined. This linear transformation is 
called the Riccati transformation, and is of fundamental importance 
in the solution of the problem. Using the transformation (5.3.6) in the 
state and costate equations (5.3.3) and (5.3.4), we have 

P(k)x*(k) = Q(k)x*(k) + A'(k)P(k + l)x*(k + 1) (5.3.7) 

and 

x*(k + 1) = A(k)x*(k) - E(k)P(k + l)x*(k + 1). (5.3.8) 
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Solving for x* (k + 1) from (5.3.8) 

x*(k + 1) = [I + E(k)P(k + 1)]-1 A(k)x*(k). (5.3.9) 

Substituting (5.3.9) in (5.3.7) yields 

P(k)x*(k) = Q(k)x*(k) + A'(k)P(k + 1) [I + E(k)P(k + 1)r1 A(k)x*(k). 
(5.3.10) 

Since, this relation (5.3.10) must hold for all values of x*(k), we have 

I P(k) = A/(k)P(k + 1) [I + E(k)P(k + 1)]-1 A(k) + Q(k).! 

(5.3.11) 

This relation (5.3.11) is called the matrix difference Riccati equation 
(DRE). Alternatively, we can express (5.3.11) as 

I P(k) = A'(k) [P-1(k + 1) + E(k)] -1 A(k) + Q(k) I (5.3.12) 

where, we assume that the inversion of P(k) exists for all k =I=- kf. 
The final condition for solving the matrix DRE (5.3.11) or (5.3.12) is 
obtained from (5.3.5) and (5.3.6) as 

(5.3.13) 

which gives 

I P(kf) = F(kf)·! (5.3.14) 

In the matrix DRE (5.3.11), the term P(k) is on the left hand side 
and P (k + 1) is on the right hand side and hence it needs to be solved 
backwards starting from the final condition (5.3.14). Since Q(k) and 
F(kf) are assumed to be positive semidefinite, we can show that the 
Riccati matrix P(k) is positive definite. Now to obtain the closed-loop 
optimal control, we eliminate '\*(k+1) from the control relation (5.3.2) 
and the state relation (5.3.4) and use the transformation (5.3.6). Thus, 
we get the relation for closed-loop, optimal control as 

I u*(k) = -R-1(k)B'(k)A -T(k) [P(k) - Q(k)] x*(k).1 (5.3.15) 

Here, A -T is the inverse of A' and we assume that the inverse of A(k) 
exists. This relation (5.3.15) is the desired version for the closed-loop 
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optimal control in terms of the state. We may write the closed-loop, 
optimal control relation (5.3.15) in a simplified form as 

I u*(k) = -L(k)x*(k) I (5.3.16) 

where, 

1 L(k) = R-1(k)B'(k)A -T(k) [P(k) - Q(k)] .1 (5.3.17) 

This is the required relation for the optimal feedback control law and 
the feedback gain L(k) is called the "Kalman gain." The optimal state 
x*(k) is obtained by substituting the optimal control u*(k) given by 
(5.3.16) in the original state equation (5.2.1) as 

I x*(k + 1) = (A(k) - B(k)L(k)) x*(k)·1 (5.3.18) 

Alternate Forms for the DRE 

Alternate forms which do not require the inversion of the matrix A( k) 
for the matrix DRE (5.3.11) and the optimal control (5.3.16) are ob­
tained as follows. Using the well-known matrix inversion lemma 

[All + A2A 4A3] -1 = A1 - A1A2 [A3A1A2 + Ail] -1 A3A1 

(5.3.19) 

in (5.3.12), and manipulating, we have the matrix DRE as 

P(k) = A'(k) {P(k + 1) - P(k + l)B(k). 

[B'(k)P(k + l)B(k) + R(k)] -1 B'(k)P(k + I)} A(k) 

+Q(k). (5.3.20) 

Next, consider the optimal control (5.3.2) and the transformation (5.3.6), 
to get 

u*(k) = -R- 1 (k)B'(k)P(k + l)x*(k + 1) (5.3.21) 

which upon using the state equation (5.2.1) becomes 

u*(k) = -R-1(k)B'(k)P(k + 1) [A(k)x*(k) + B(k)u*(k)] . (5.3.22) 
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Rearranging, we have 

[I + R-1(k)B'(k)P(k + l)B(k)] u*(k) = 

-R-1(k)B'(k)P(k + l)A(k)x*(k). 

Premultiplying by R(k) and solving for u*(k), 

I u*(k) = -La(k)x*(k) I 

where, La (k ), called the Kalman gain matrix is 

(5.3.23) 

(5.3.24) 

I La(k) = [B'(k)P(k + l)B(k) + R(k)]-l B'(k)P(k + l)A(k)·1 

(5.3.25) 

Let us note from the optimal feedback control law (5.3.24) that the 
Kalman gains are dependent on the solution of the matrix DRE (5.3.20) 
involving the system matrices and performance index matrices. Finally., 
the closed-loop, optimal control (5.3.24) with the state (5.2.1) gives us 
the optimal system 

x*(k + 1) = [A(k) - B(k)La(k)] x*(k). (5.3.26) 

Using the gain relation (5.3.25), an alternate form for the matrix DRE 
(5.3.20) becomes 

I P(k) = A'(k)P(k + 1) [A(k) - B(k)La(k)] + Q(k).1 (5.3.27) 

Let us now make some notes: 

1. There is essentially more than one form of the matrix DRE given 
by (5.3.11) or (5.3.12), (5.3.20), and (5.3.27). 

2. However, the Kalman feedback gain matrix has only two forms 
given by the first form (5.3.17) which goes with the DRE (5.3.11) 
or (5.3.12) and the second form (5.3.25) which corresponds to the 
DRE (5.3.20) or (5.3.27). 

3. It is a simple matter to see that the matrix DRE (5.3.11) and 
the assdciated Kalman feedback gain matrix (5.3.17) involve the 
inversion of the matrix 1 + E(k)P(k + 1) once only, whereas the 



5.3 Discrete-Time Linear State Regulator System 213 

matrix DRE (5.3.20) and the associated Kalman feedback gain 
matrix (5.3.25) together involve two matrix inversions. The num­
ber of matrix inversions directly affects the overall computation 
time, especially if one is looking for on-line implementation of 
closed-loop optimal control strategy. 

5.3.2 Optimal Cost Function 

For finding the optimal cost function J* ( ko ), we can follow the same 
procedure as the one used for the continuous-time systems in Chapter 3 
to get 

J* = ~x*'(ko)P(ko)X(ko). (5.3.28) 

Let us note that the Riccati function P(k) is generated off-line before 
we obtain the optimal control u*(k) to be applied to the system. Thus, 
in general for any initial state k, we have the optimal cost as 

J*(k) = ~X*'(k)P(k)x*(k). (5.3.29) 

The entire procedure is now summarized in Table 5.3. The actual 
implementation of this control law is shown in Figure 5.2. We now 
illustrate the previous procedure by considering a second order system 
with a general cost function. 

Example 5.3 

Consider the minimization of a functional [33] 

J = [xi ( k f ) + 2x~ ( k f ) ] 

kf-l 

+ L [0.5xi(k) + 0.5x~(k) + 0.5u2(k)] 
k=ko 

for the second order system 

xI(k + 1) = 0.8XI(k) + x2(k) + u(k) 
x2(k + 1) = 0.6X2(k) + 0.5u(k) 

subject to the initial conditions 

(5.3.30) 

(5.3.31) 

Xl (ko = 0) = 5, x2(ko = 0) = 3; kf = 10, and x(kf) is free. 

(5.3.32) 
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Table 5.3 Procedure Summary of Discrete-Time, Linear 
Quadratic Regulator System 

A. Statement of the Problem 
Given the plant as 
x(k + 1) = A(k)x(k) + B(k)u(k) 
the performance index as 

J ( ko) = ! x' ( k f ) F ( k f ) x( k f ) 

+! 2:~:~~ [x'(k)Q(k)x(k) + u'(k)R(k)u(k)] 
and the boundary conditions as 
x(k = ko) = x(ko); x( k f) is free, and k f is free, 
find the closed-loop optimal control, state and performance index. 

B. Solution of the Problem 
Step 1 Solve the matrix difference Riccati equation (DRE) 

P(k) = A'(k)P(k + 1) [I + E(k)P(k + 1)]-1 A(k) + Q(k) 
with final condition P(k = kf) = F(kf), where 
E(k) = B(k)R-1(k)B'(k). 

Step 2 Solve the optimal state x* (k) from 
x*(k + 1) = [A(k) - B(k)L(k)] x*(k) 
with initial condition x( ko) = Xo, where 
L(k) = R-1(k)B'(k)A -T(k) [P(k) - Q(k)]. 

Step 3 Obtain the optimal control u*(k) from 
u*(k) = -L(k)x*(k), where L(k) is the Kalman gain. 

Step 4 Obtain the optimal performance index from 
J* = !x*'(k)P(k)x*(k). 
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Solution: Let us first identify the various matrices by comparing 
the system (5.3.31) and the PI (5.3.30) of the system with the 
system (5.2.1) and the PI (5.2.3) of the general formulation as 

A(k) = [0.81.0]; B(k) = [1.0] ; 
0.00.6 0.5 

F(kf ) = [~.\~]; Q(k) = [~~]; R = 1. (5.3.33) 

Now let us use the procedure given in Table 5.3. 
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• Step 1: Solve the matrix difference Riccati equation (5.3.11) 

[
Pl1(k) P12(k)]_ [10] [0.80.0] [Pl1(k+1) P12(k+1)] 
P12(k) P22(k) - 01 + 1.00.6 P12(k+1) p22(k+1) . 

[[
10] + [1.0] [1]-1 [1.00.5J [Pl1(k+1) P12(k+1)]]-l x ° 1 0.5 P12(k + 1) P22(k + 1) 

[
0.8 1.0] 
0.0 0.6 

(5.3.34) 

backwards in time starting with the final condition (5.3.14) as 

[
P11 (10) P12(10)] = F(k ) = [2.0 0] 
P12(10) P22(10) f 0 4.0 . 

(5.3.35) 

• Step 2: The optimal control u*(k) is obtained from (5.3.16) as 

u*(k) = - [h(k) 12(k) 1 [~~i~\] (5.3.36) 

where I' = [II, l2] is given by (5.3.17). 

• Step 3: Using the optimal control (5.3.36) the optimal states are 
computed by solving the state equation (5.3.18) forward in time. 
This is an iterative process in the backward direction. Evaluation 
of these solutions require the use of standard software such as 
MATLAB© as shown below. 

******************************************************* 
% Solution Using Control System Toolbox (STB) 
% MATLAB Version 6 
% 
A=[0.8 1;0,0.6]; %% system matrix A 
B=[1;0.5]; %% system matrix B 
Q=[l 0;0 1]; %% performance index state weighting matrix Q 
R=[l]; %% performance index control weighting matrix R 
F=[2,0;0,4]; %% performance index weighting matrix F 
% 
x1(1)=5; %% initial condition on state xl 
x2(1)=3; %% initial condition on state x2 
xk=[xl(1);x2(1)]; 
% note that if kf = 10 then k = [kO,kf] = [0 1 2, ... ,10], 
% then we have 11 points and an array xl should have subscript 
% x1(N) with N=l to 11. This is because x(o) is illegal in array 
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% definition in MATLAB. Let us use N = kf+1 
kO=O; % the initial instant k_O 
kf=10; % the final instant k_f 
N=kf+1; % 
[n,n]=size(A); % fixing the order of the system matrix A 
I=eye(n); % identity matrix I 
E=B*inv(R)*B'; % the matrix E = BR-{-1}B' 
% 
% solve matrix difference Riccati equation backwards 
% starting from kf to kO 
% use the form P(k) = A'P(k+1)[I + EP(k+1)]-{-1}A + Q 
% first fix the final condition P(k_f) = F 
% note that P, Q, R are all symmatric ij = ji 
Pkplus1=F; 
p11(N)=F(1) ; 
p12(N)=F(2); 
p21(N)=F(3); 
p22(N)=F(4); 
% 
for k=N-1:-1:1, 

end 
% 

Pk = A' *Pkplus1*inv(I+E*Pkplus1)*A+Q; 
p11 (k) = Pk(1); 
p12(k) = Pk(2); 
p21(k) = Pk(3); 
p22(k) = Pk(4); 
Pkplus1 = Pk; 

% calcuate the feedback coefficient L 
% L = R-{-1}B'A-{-T}[P(k) - Q] 
% 
for k = N:-1:1, 

Pk=[p11(k),p12(k);p21(k),p22(k)] ; 
Lk = inv(R)*B'*inv(A')*(Pk-Q); 
11 (k) = Lk(1); 
l2(k) = Lk(2); 

end 
% 
% solve the optimal states 
% x(k+1) = [A-B*L)x(k) given x(O) 
% 
for k=1:N-1, 

Lk = [l1(k),12(k)]; 
xk = [x1(k);x2(k)]; 
xkplus1 = (A-B*Lk)*xk; 

217 
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end 
% 

xl (k+l) 
x2(k+l) 

xkplusl (1) ; 

xkplusl(2); 

% solve for optimal control u(k) 
% 
for k=l:N, 

Lk = [ll(k),l2(k)]; 
xk = [xl(k);x2(k)]; 
u(k) = - Lk*xk; 

end 
% 

- L(k)x(k) 

% plot various values: P(k), x(k), u(k) 
% let us first reorder the values of k = 0 to 10 
figure (1) 

plot(k,pll,'k:o',k,p12,'k:+',k,p22,'k:*') 
xlabel ('k') 
ylabel('Riccati Coefficients') 
gtext('p_{ll}(k)') 
gtext('p_{12}(k)=p_{21}(k)') 
gtext('p_{22}(k)') 
% 
figure (2) 
plot(k,xl,'k:o',k,x2,'k:+') 
xlabel( 'k') 
ylabel('Optimal States') 
gtext ( , x_l (k) ') 
gtext ( , x_2 (k) , ) 
% 
figure (3) 
plot (k, u, 'k: *') 
xlabel ( , k ' ) 
ylabel('Optimal Control') 
gtext('u(k) ') 
% end of the program 
% 
********************************************************* 

The Riccati coefficients of the matrix P(k) obtained using MATLAB© 
are shown in Figure 5.3. The optimal states are plotted in Fig­
ure 5.4 and the optimal control is shown in Figure 5.5. 
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Here, we let k f tend to 00 and this necessitates that we assume the 
time-invariant case. Thus, the linear time-invariant plant becomes 

x(k + 1) = Ax(k) + BU(k) (5.4.1) 

and the performance index becomes 

J = ~ f: [x*'(k)Qx(k) + u*'(k)Ru*(k)]. 
k=ko 

(5.4.2) 

As the final time kf tends to 00, we have the Riccati matrix P(k) 
attaining a steady-state value P in (5.3.11). That is, 

P(k) =P(k+l) =p (5.4.3) 
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resulting in the algebraic Riccati equation (ARE) as 

1 I> = A'I> [I + BR-1B'I>]-1 A + Q 1 (5.4.4) 

or (5.3.12) as 

where, E = BR-1 B'. The feedback optimal control (5.3.15) becomes 

I u*(k) = -R- 1 B' A -T [I> - Q] x*(k) = -Lx*(k) I (5.4.5) 

where, the Kalman gain (5.3.17) becomes 

(5.4.6) 



5.4 Steady-State Regulator System 221 

0.5 .--------.,r-------y----,----..------r----.----.-----r----.-----. 

o 

-0.5 

-1 

e -1.5 
'E 
o 

~ -2 
(1! 

.§ 
8- -2.5 

, 
-3 f- ! 

-3.5 f , , 
-4 ~ 

, 

, , , 

, 
, . , 

i , , , 

, , 

;*' --~, -.... --- --+ -----+, ----+ --,- --+-----+-----+-- --­
, 

,/ u(k) 

I 

2 3 4 5 
k 

I I 

6 7 8 9 

-

10 

Figure 5.5 Optimal Control and States for Example 5.3 

and A -Tis the inverse of A'. 

Alternate Form: An alternate form for the ARE (5.4.4) is obtained 
by considering steady-state form of the DRE (5.3.20) as 

P = A/{P - PB [B/PB + R]-l B/p}A + Q. (5.4.7) 

The optimal feedback control (5.3.24) becomes 

u*(k) = -Lax*(k) (5.4.8) 

where, the alternate optimal-feedback gain matrix (5.3.25) becomes 

La = [B/PB + R] -1 B/p A. (5.4.9) 

The optimal control (5.4.9) with the state (5.4.1) gives us the optimal 
system 

x*(k + 1) = [A - BLa] x*(k). (5.4.10) 
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Table 5.4 Procedure Summary of Discrete-Time, Linear 
Quadratic Regulator System: Steady-State Condition 

A. Statement of the Problem 
Given the plant as 
x(k + 1) = Ax(k) + Bu(k) 
the performance index as 

J(ko) = ~ 2:~ko [x'(k)Qx(k) + u'(k)Ru(k)] 
where, kf = 00, 

find the optimal control, state and the performance index. 
B. Solution of the Problem 

Step 1 Solve the matrix algebraic Riccati equation 
P = A'P [I + BR -1 B'P] -1 A + Q, or 

P = A'{P - PB [B'PB + R]-l B'P}A + Q. 
Step 2 Solve the optimal state x* (k) from 

x*(k + 1) = [A - BL] x*(k) or 

x*(k + 1) = [A - BLa] x*(k). 
with initial condition x(ko) = xo, where 
L = R-1B'A -T [P - Q] and 

La = [B'PB + R] -1 B'P A. 
Step 3 Obtain the optimal control u * ( k) from 

u*(k) = -Lx*(k), or 

u*(k) = -Lax*(k). 
Step 4 Obtain the optimal performance index from 

J*(ko) = ~x*'(k)Px*(k). 

The optimal cost function (5.3.29) becomes 

I J*(k) = x*'(k)Px*(k)·1 (5.4.11) 

The entire procedure is now summarized in Table 5.4. The implemen­
tation of this closed-loop optimal control for steady-state (k f ---+ (0) 
case is shown in Figure 5.6. We now illustrate the previous procedure 
by considering the same system of Example 5.3. 
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Example 5.4 

Consider the minimization of the performance index (5.3.30) with­
out the terminal cost function and the plant (5.3.31) with kf = 00. 

Let us find the closed-loop optimal control for this system. 

Solution: We have already identified the various matrices of the 
state (5.2.1) and the performance index (5.2.3) as given by (5.3.33), 
except that we now have F(kf) = o. 
Then, the solution of the algebraic Riccati equation (5.4.7), the 
closed-loop, optimal control (5.4.8) and the optimal states (5.4.10) 
are best solved using MATLAB© as shown below. 

******************************************************* 
% Solution Using Control System Toolbox (STB) in 
% the MATLAB, Version 6 
% 
A=[0.8 1;0,0.6]; %% system matrix A 
B=[1;0.5]; %% system matrix B 
Q=[1 0;0 1]; %% performance index state weighting matrix QO.5 
R=[1]; %% performance index control weighting matrix R 
% 
x1(1)=5; %% initial condition on state x1 
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x2(1)=3; %% initial condition on state x2 
xk=[xl(1);x2(1)] ; 
% note that if kf = 10 then k = [kO,kf] = [0 1 2, ... ,10], 
% then we have 11 points and an array xl should have subscript 
% xl(N) with N=l to 11. This is because x(o) is illegal in array 
% definition in MATLAB. Let us use N = kf+l 
kO=O; % the initial instant k_O 
kf=10; % the final instant k_f 
N=kf+l; % 
[n,n]=size(A); % fixing the order of the system matrix A 
I=eye(n); % identity matrix I 
E=B*inv(R)*B'; % the matrix E = BR~{-l}B' 
% 
% solve matrix algebraic Riccati equation 
% use the form P = A'PA - A'PB[B'PB+R]~{-l}B'PA + Q 
% note that P, Q, R are all symmatric ij = ji 
% calcuate the feedback coefficient L 
% L = [B'PB+R]~{-l}B'PA 
% 
[P,EIGVAL,L,RR] = dare(A,B,Q,R) 
% 
P = 

1.3944 
0.3738 

0.3738 
1.7803 

EIGVAL = 

L 

% 

0.3211 + 0.2151i 
0.3211 - 0.2151i 

0.3937 0.7281 

% solve the optimal states 
% x(k+l) = (A-B*L)x(k) given x(O) 
% 
for k=l:N-l, 

xk = [xl(k);x2(k)]; 
xkplusl (A-B*L)*xk; 
xl(k+l) xkplusl(l); 
x2(k+l) xkplusl(2); 

end 
% 
% solve for optimal control u(k) - Lx(k) 
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% 
for k=l:N, 

end 
% 

xk = [xl(k);x2(k)]; 
u(k) = -L*xk; 

k=O:10; 
plot(k,xl,'k:o',k,x2,'k:+') 
xlabel ('k') 
ylabel('Optimal States') 
gtext ( , x_l (k) ') 
gtext ( , x_2 (k) , ) 
plot(k, u, 'k: *') 
xlabel ( , k' ) 
ylabel('Optimal Control') 
gtext ('u(k) ') 
% 
% end of the program 
% 
****************************************************** 
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Note that the value obtained for P previously is the same as the 
steady-state value for the Example 5.3 (see Figure 5.3). The opti­
mal states are shown in Figure 5.7 and the optimal control is shown 
in Figure 5.8. 

5.4.1 Analytical Solution to the Riccati Equation 

This subsection is based on [89, 138]. The solution of the matrix differ­
ence Riccati equation is critical for linear quadratic regulator system. 
Thus, traditionally, the solution to the DRE (5.3.20) is obtained by 
iteration in a recursive manner using the final condition (5.3.14). Al­
ternatively, one can obtain analytical solution to the DRE. 

Let us rewrite the Hamiltonian system (5.2.22) arising in the time­
invariant LQR system as (omitting the optimal notation (*) for clarity) 

[X(k)] =H [X(k+1)] 
>..(k) >..(k + 1) . 

Here, the Hamiltonian matrix H is 

H = [Hll H12] = [A-I 
I 

H2I H22 QA-
A-IE] 

A'+QA-IE 

(5.4.12) 

(5.4.13) 
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Figure 5.7 Implementation of Optimal Control for Example 5.4 

where, 

Let us note that 

(5.4.14) 

The boundary conditions for (5.4.12) are reproduced here from (5.3.1) 
and (5.3.5) as 

(5.4.15) 

Also, in trying to obtain the difference Riccati equation, we assumed a 
transformation (5.3.6) between the state and costate as 

A(k) = P(k)x(k); V k ::; kf. (5.4.16) 
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Figure 5.8 Implementation of Optimal Control for Example 5.4 

Now, we will show that the solution P(k) to the Riccati equation 
(5.3.20) can be obtained in terms of the eigenvalues and eigenvectors 
of the Hamiltonian matrix H. 

Let us first define 

J = [-~ ~ 1 such that J-1 = -J. (5.4.17) 

Now, using (5.4.13), (5.4.14) and (5.4.17), it is a simple thing to show 
that 

H'JH = J. (5.4.18) 

By premultiplying and postmultiplying (5.4.18) with H-1 and J-1, 

respectively, we have 

(5.4.19) 
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and using (5.4.17), we get 

H-I = -JH'J. (5.4.20) 

Now, substituting for the quantities on the right hand side of the pre­
vious equation, we have 

_I_[A+EA-TQ 
H - -A-TQ 

-EA-T
] 

A-T (5.4.21 ) 

where, A -T is the transpose of A-I. Now, let us show that if J.L is an 
eigenvalue of H, then 1/ J.L is also the eigenvalue of H. First, if J.L is an 
eigenvalue with a corresponding eigenvector [j, g]', then 

[
A- I 

QA-T 

and rearranging, we have 

[
A' + QA -IE 
-A-IE 

Using (5.4.21), we have 

(5.4.22) 

-QA-
I

] [g] [g] 
A-I - f = J.L -f· 

(5.4.23) 

This shows that J.L is also an eigenvalue of H-T , and hence of H-I . We 
know that from elementary matrix algebra that if G: is an eigenvalue of 
a matrix A, then 1/ G: is also an eigenvalue of matrix A-I. Therefore, 
1/ J.L is an eigenvalue of H, and hence the result. This means that the 
eigenvalues of H can be arranged as 

(5.4.24) 

where, M is a diagonal (Jordon) matrix containing n eigenvalues out­
side the unit circle and M-I is a diagonal matrix containing n eigen­
values inside the unit circle which means that M-I is stable. Now, we 
note that D can be written in terms of a nonsingular matrix W whose 
columns are the eigenvectors of H as 

W-IHW=D. (5.4.25) 
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Let us now introduce a transformation as 

[
X(k)] = W [V(k)] = [Wll W12] [V(k)] 
A(k) z(k) W 21 W22 z(k)· 

(5.4.26) 

Then, using (5.4.26), (5.4.24) and the Hamiltonian system (5.4.12), we 
get 

[V(k)] = W-1 [X*(k)] = W-1H [X*(k + 1)] 
z(k) A*(k) A*(k + 1) 

= W-1HW [V(k + 1)] = D [V(k + 1)] 
z(k+1) z(k+1) 

[M 0] [V(k+1)] 
= ° M-1 z(k+1)· 

(5.4.27) 

The solution of (5.4.27) in terms of the final conditions is found by first 
writing it as 

[V(k+1)] =D-l [V(k)] 
z(k + 1) z(k) . 

Then solving this for the given final conditions, we get 

[
V(k)] = [M(kf-k) 
z(k) 0 

(5.4.28) 

Here, since M is unstable (i.e., it does not go to zero as (k f - k) ----+ (0), 
we rewrite (5.4.28) as 

(5.4.29) 

Next, at the final time kf' using (5.4.16) and (5.4.26) we have 

A(kf) = W 21V(kf) + W 22Z(kf ) = P(kf)x(kf) = F(kf)x(kf), 
= F(kf) [Wllv(kf) + W 12Z(kf)] (5.4.30) 

the solution of which becomes 

(5.4.31) 

where, 
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Now, using (5.4.29) and (5.4.31) 

z(k) = M-(kf-k)z(kf) 

= M-(kf-k)T(kf )v(kf) 

= M-(kf-k)T(kf )M-(kf-k)v(k). 

This means that at each value of k, 

z(k) = T(k)v(k) 

where, 

(5.4.33) 

(5.4.34) 

(5.4.35) 

Now we relate P(k) in (5.4.16) with T(k) in (5.4.34) by first using 
(5.4.26) and (5.4.16) to get 

A*(k) = W21V(k) + W22Z(k) 

= P(k)x*(k) = P(k) [Wnv(k) + W12Z(k)] (5.4.36) 

and then using (5.4.34) 

[W21 + W 22T(k)] v(k) = P(k) [Wn + W12T(k)] v(k). (5.4.37) 

Since this must hold good for all x(O) and hence for all v(k), leading 
to 

I P(k) = [W21 + W22T(k)] [Wn + W12T(k)]-1 ·1 (5.4.38) 

Finally, we have the nonrecursive analytical solution (5.4.38) to the ma­
trix difference Riccati equation (5.3.20). Let us note that the solution 
(5.4.38) requires the relations (5.4.35) and (5.4.32) and the eigenval­
ues (5.4.24), eigenvectors (5.4.25), and the given terminal cost matrix 
F(kf ). 

Steady-State Condition 
As the terminal time kf ---+ 00, the matrix difference Riccati equation 
(5.3.20) becomes matrix algebraic Riccati equation (5.4.7). Now, let 
us find the analytical expression for the solution P of this ARE. As 
(kf - k) ---+ 00, M-(kf-k) ---+ 00, since M-1 is stable. This means that 
in (5.4.35) T(k) ---+ O. Then the steady-state solution of (5.4.38) gives 

II> = w21wii·1 (5.4.39) 
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Let us note that the previous steady-state solution (5.4.39) requires the 
unstable eigenvalues (5.4.24) and eigenvectors (5.4.25). Thus, we have 
the analytical solution (5.4.39) of the ARE (5.4.7). 

Example 5.5 

Consider the same Example 5.3 to use analytical solution of ma­
trix Riccati difference equation based on [138]. The results are 
obtained using Control System Toolbox of MATLAB©, Version 
6 as shown below. Th..e solution of matrix DRE is not readily avail­
able with MATLABC£) and hence a program was developed based 
on the analytical solution of the matrix DRE [138]. The follow-
ing MATL.aB© m file for Example 5.5 requires two additional 
MATLABC£) files lqrdnss.m and lqrdnssf.m given in Appendix C. 
The solutions are shown in Figure 5.9. Using these Riccati gains, 
the optimal states xHk) and x2(k) are shown in Figure 5.10 and 
the optimal control u* (k) is shown in Figure 5.11. 

.~ I P22(k). 
(1j 2 •••••• f.··.··,··.··.· ·············f·················-·-------·- ---.-
:2 : : 
a. 

P11 (k): 
I 

I 
I 
I 

P12(k), 

0 
0 2 5 10 

k 

Figure 5.9 Riccati Coefficients for Example 5.5 

**************************************************** 
%% Solution using Control System Toolbox and 
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%% the MATLAB. Version 6 
%% The following file example.m requires 
%% two other files lqrnss.m and lqrnssf.m 
%% which are given in Appendix C 
clear all 
A= [ . 8 , 1; 0, .6] ; 
B= [1 ; .5] ; 
F= [2 , 0 ; 0 ,4] ; 
Q=[1,O;O,1] ; 
R=1; 
kspan=[O 10]; 
xO ( : ,1) = [5. ; 3.] ; 
[x,u]=lqrdnss_dsn(A,B,F,Q,R,xO,kspan); 
****************************************************** 

5.5 Discrete-Time Linear Quadratic Tracking 
System 

In this section, we address linear quadratic tracking (LQT) problem 
for a discrete-time system and are interested in obtaining a closed­
loop control scheme that enables a given system track (or follow) a 
desired trajectory over the given interval of time. We essentially deal 
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with linear, time-invariant systems in order to get some elegant results 
although the method can as well be applied to nonlinear, time-varying 
case [89]. 

Let us consider a linear, time-invariant system described by the state 
equation 

x(k + 1) = Ax(k) + Bu(k) (5.5.1) 

and the output relation 

y(k) = Cx(k). (5.5.2) 

The performance index to be minimized is 

1 , 
J = "2 [Cx(kf) - z(kf)] F [Cx(kf ) - z(kf)] 

kf-l 

+~ L {[Cx(k) - z(k)]' Q [Cx(k) - z(k)] + u'(k)Ru(k)} 
k=ko 

(5.5.3) 

where, x(k), u(k), and y(k) are n, r, and n order state, control, and 
output vectors, respectively. Also, we assume that F and Q are each 
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nxn dimensional positive semidefinite symmetric matrices, and R is an 
rxr positive definite symmetric matrix. The initial condition is given 
as x(ko) and the final condition x(kf ) is free with kf fixed. We want 
the error e(k) = y(k) -z(k) as small as possible with minimum control 
effort, where z(k) is n dimensional reference vector. The methodology 
to obtain the solution for the optimal tracking system is carried out 
using the following steps. 

• Step 1 : Hamiltonian 

• Step 2: State and Costate System 

• Step 3: Open-Loop Optimal Control 

• Step 4: Riccati and Vector Equations 

• Step 5: Closed-Loop Optimal Control 

Now the details follow. 

• Step 1: Hamiltonian: We first formulate the Hamiltonian as 

kf-l 

H(x(k), u(k), )"(k + 1)) = ~ L {[Cx(k) - z(k)]' Q [Cx(k) - z(k)] 
k=ko 

+ u'(k)Ru(k)} + )..'(k + 1) [Ax(k) + BU(k)] 
(5.5.4) 

and follow the identical approach of the state regulator system 
described in the previous section. For the sake of simplicity, let 
us define 

E = BR-1B', V = C'QC and W = C'Q. (5.5.5) 

• Step 2: State and Costate System: Using (5.2.15), (5.2.13) and 
(5.2.14) for the state, costate, and control, respectively, we obtain 
the state equation as 

8H 
8>"*(k + 1) = x*(k + 1) -----+ x*(k + 1) = Ax*(k) + BU*(k), 

(5.5.6) 

the costate equation as 

a:~k) = '\*(k) -> '\*(k) = A''\*(k + 1) + Vx*(k) - Wz(k), 

(5.5.7) 
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and the control equation as 

a~k) = 0 ----> 0 = B'A*(k + 1) + RU*(k). 

(5.5.8) 

The final condition (5.2.37) becomes 

A(kj) = C'FCx(kj) - C'Fz(kj). (5.5.9) 

• Step 3: Open-Loop Optimal Control: The relation (5.5.8) yields 
the open-loop optimal control as 

u*(k) = _R-1B'A*(k + 1) (5.5.10) 

and using this in the state (5.5.6) and costate (5.5.7) system (also 
called Hamiltonian system), we have the Hamiltonian (canonical) 
system as 

[
X*(k + 1)] [A -E] [ X*(k)] [0] 
A*(k) = V A' .x*(k + 1) + _ W z(k). (5.5.11) 

Thus, we see that the Hamiltonian system is similar to that ob­
tained for state regulator system in the previous section, except 
for the nonhomogeneous nature due to the forcing term z(k). 

• Step 4: Riccati and Vector Equations: Now to obtain closed-loop 
configuration for the optimal control (5.5.10), we may assume 
from the nature of the boundary condition (5.5.9) a transforma­
tion 

I A*(k) = P(k)x*(k) - g(k) I (5.5.12) 

where, the matrix P(k) and the vector g(k) are yet to be de­
termined. In order to do so we essentially eliminate the costate 
A*(k) from the canonical system (5.5.11) using the transformation 
(5.5.12). Thus, 

x*(k + 1) = Ax*(k) - EP(k + l)x*(k + 1) + Eg(k + 1) (5.5.13) 

which is solved for x*(k + 1) to yield 

x*(k + 1) = [I + EP(k + 1)]-1 [Ax*(k) + Eg(k + 1)]. (5.5.14) 
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Now using (5.5.14) and (5.5.12) in the costate relation in (5.5.11), 
we have 

[-P(k) + A'P(k + 1) [I + EP(k + 1)]-1 A + v] x(k) + 

[g(k) + A'P(k + 1) [I + EP(k + l)r1 Eg(k + 1)-

A'g(k + 1) - Wz(k)] = 0 
(5.5.15) 

This equation must hold for all values of the state x* (k) which 
in turn leads to the fact that the coefficient of x( k) and the rest 
of the terms in (5.5.15) must individually vanish. That is 

I P(k) = A'P(k + 1) [I + EP(k + l)r1 A + v I or 

I P (k) = A' [p- 1 (k + 1) + E] -1 A + V I 

(5.5.16) 

and 

g ( k) = A' { 1 - [p -1 (k + 1) + EJ -1 E } g (k + 1) + W z (k ) or 

g(k) = {A' - A'P(k + 1) [I + EP(k + 1)]-1 E} g(k + 1) + WZ(k). 

(5.5.17) 

To obtain the boundary conditions for (5.5.16) and (5.5.17), let 
us compare (5.5.9) and (5.5.12) to yield 

,P(kf) = C'FC' 

'g(kf) = C'Fz(kf )., 

(5.5.18) 

(5.5.19) 

Let us note that (5.5.16) is the nonlinear, matrix difference Ric­
cati equation (DRE) to be solved backwards using the final con­
dition (5.5.18), and the linear, vector difference equation (5.5.17) 
is solved backwards using the final condition (5.5.19) . 

• Step 5: Closed-Loop Optimal Control: Once we obtain these so­
lutions off-line, we are ready to use the transformation (5.5.12) in 
the control relation (5.5.10) to get the closed-loop optimal control 
as 

u*(k) = -R-1B' [P(k + l)x(k + 1) - g(k + 1)] (5.5.20) 
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and substituting for the state from (5.5.6) in (5.5.20), 

u*(k) = -R-1B'P(k + 1) [Ax*(k) + Bu*(k)] + R- 1B'g(k + 1). 

(5.5.21) 

Now premultiplying by R and solving for the optimal control 
u*(k) we have 

I u*(k) = -L(k)x*(k) + Lg(k)g(k + 1) I (5.5.22) 

where, the feedback gain L( k) and the feed forward gain Lg (k) are 
given by 

L(k) = [R + B'P(k + l)B] -1 B'P(k + l)A 

Lg(k) = [R + B'P(k + l)B] -1 B' 

(5.5.23) 

(5.5.24) 

The optimal state trajectory is now given from (5.5.6) and (5.5.22) 
as 

x*(k + 1) = [A - BL(k)] x(k) + BLg(k)g(k + 1). (5.5.25) 

The implementation of the discrete-time optimal tracker is shown in 
Figure 5.12. The complete procedure for the linear quadratic tracking 
system is summarized in Table 5.5. 

Example 5.6 

We now illustrate the previous procedure by considering the same 
system of the Example 5.3. Let us say that we are interested in 
tracking Xl (k) with respect to the desired trajectory Zl (k) = 2 and 
we do not have any condition on the second state X2 (k ). Then the 
various matrices are 

A(k) = [0.8 1.0j. 
0.0 0.6 ' 

F(kf) = [~~ j ; 

B(k) = [1.0j. C = [1 OJ 
0.5' ° 1 

Q(k) = [~~]; R = 0.01. (5.5.26) 

Now let us use the procedure given in Table 5.5. Note that one 
has to try various values of the matrix R in order to get a better 
tracking of the states. 

The various solutions obtained using MATLAB© Version 6. 
Figure 5.13 shows Riccati functions Pn(k),P12(k), and p22(k); Fig­
ure 5.14 shows vector coefficients gl ( k) and 92 ( k ); Figure 5.6 gives 
the optimal states and Figure 5.6 gives optimal control. 

The MATLAB© program used is given in Appendix C. 
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Table 5.5 Procedure Summary of Discrete-Time Linear 
Quadratic Tracking System 

A. Statement of the Problem 
Given the plant as 
x(k + 1) = Ax(k) + BU(k), 
the output relation as 
y(k) = Cx(k), 
the performance index as 

J(ko) = ~ [Cx(kf) - z(kf)]' F [Cx(kf) - z(kf)] 

+~ L~~~~ {[Cx(k) - z(k)]' Q [Cx(k) - z(k)] + u'(k)Ru(k)} 
and the boundary conditions as 
x(ko) = Xo, x(kf) is free, and k is fixed, 
find the optimal control and state. 

B. Solution of the Problem 
Step 1 Solve the matrix difference Riccati equation 

P(k) = A'P(k + 1) [I + EP(k + 1)]-1 A + V 
with P(kf) = C'FC, where V = C'QC and 
E = BR-1B'. 

Step 2 Solve the vector difference equation 

g(k) = A' {I - [P-1(k + 1) + E]-l E} g(k + 1) + Wz(k) 
with g(kf) = C'Fz(kf), where, W = C'Q. 

Step 3 Solve for the optimal state x* (k) as 
x*(k + 1) = [A - BL(k)] x*(k) + BLg(k)g(k + 1) 
where, L(k) = [R + B'P(k + l)B]-l B'P(k + l)A, 
Lg(k) = [R + B'P(k + 1)B]-1 B'. 

Step 4 Obtain the optimal control as 
u*(k) = -L(k)x*(k) + Lg(k)g(k + 1). 
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Figure 5.12 Implementation of Discrete-Time Optimal Tracker 

5.6 Frequency-Domain Interpretation 
This section is based on [89]. In this section, we use frequency do­
main to derive some results from the classical control point of view 
for a linear, time-invariant, discrete-time, optimal control system with 
infinite-time case, described earlier in Section 5.4. For this, we know 
that the optimal control involves the solution of matrix algebraic Ric­
cati equation. For ready reference, we reproduce here results of the 
time-invariant case described earlier in this chapter. For the plant 

x(k + 1) = Ax(k) + Bu(k), (5.6.1) 

the optimal feedback control is 

u*(k) = -Lx*(k) (5.6.2) 
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Figure 5.13 Riccati Coefficients for Example 5.6 

where, 

L = [H/PB + R]-l B/pA. (5.6.3) 

Rewriting the above by postmultiplying by [B/PB + R] 

[B/pB + R] L = B/p A. (5.6.4) 

Here, P is the solution of the ARE 

P = A' [p - PB [B/PB + R]-l B/P] A + Q (5.6.5) 

where, we assume that [A, B] is stabilizable and [A, vel] is observable. 
With this optimal control (5.6.2), the optimal system becomes 

x*(k + 1) = [A - BL] x*(k) (5.6.6) 

and is asymptotically stable. Here, the open-loop characteristic poly­
nomial of the system is 

(5.6.7) 
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Figure 5.14 Coefficients 91 (t) and 92(t) for Example 5.6 
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Figure 5.15 Optimal States for Example 5.6 
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Figure 5.16 Optimal Control for Example 5.6 

whereas, the optimal closed-loop characteristic polynomial is [89] 

.6.c (z) = IzI - A + BLI, 
= II + BL[zl - A]-ll·lzI - AI, 
= 11+ L[zl - A]-lBI·.6.o (z). 

From Figure 5.17, we note that 

1. -L[zl - A]-l B is called the loop gain matrix, and 

2. I + L [zl - A] -1 B is termed return difference matrix. 

First of all, let us note that 

(5.6.8) 

P - A'PA = [z-11 - A]'P[zl - A] + [z-11 - A]'PA + A'P[zl - A]. 

(5.6.9) 

Using the ARE (5.6.5) to replace the left-hand side of the previous 
equation, we have 

[z- 11 - A]'P[zl - A] + [z-11 - A],PA + A'P[zl - A] 

+ A'PB [B'PB + R] -1 B'P A = Q. (5.6.10) 
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Figure 5.17 Closed-Loop Discrete-Time Optimal Control System 

Premultiplying by B'[z-l 1- A]-T (where for example, we define M-T 

as the transpose of M-l ) and postmultiplying by [zI - A]-lB, the 
previous relation becomes 

B'PB + BP A[zl - A]-lB + B'[z-ll - A]-T A'PB 

+ B'[z-ll - A]-T A'PB [B'PB + R] -1 B'P A[zl - A]B, 

= B'[z-ll - A]-TQ[zl - A]-lB. (5.6.11) 

Using (5.6.4) in the above, we get 

B'PB + [B'PB + R]L[zI - A]-lB + B'[z-ll - A]-Tp'[B'PB + R] 

+ B'[z-ll - A]-TL-T[B'PB + R]L[z-ll - Aj-lB, 

= B'[z-ll - Aj-TQ[zl - Aj-lB. (5.6.12) 

Now, adding the positive definite matrix R to both sides of the previous 
equation and factoring we get 

B'[z-ll - A']-lQ[zl - Aj-lB + R 

= [I + L[z-ll - Aj-lB]' [B'PB + R] [I + L[zl - Aj-lB] . 

(5.6.13) 

With fictitious output equation as 

y(k) = Cx(k) + DU(k) (5.6.14) 
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where, Q = C'C and R = D'D, and using (5.6.1), the transfer function 
relating the output y(k) and the control u*(k) becomes 

Also, we see that 

[C[Z-lI ~ A]-lB r [C[ZI -DA]-lB] 

= B[z-lI - A]-TQ[zI - A]-lB + R. 

(5.6.15) 

(5.6.16) 

Then, we can easily see from (5.6.13) that the previous transfer func­
tion product can be expressed in terms of the return difference matrix. 
Hence, the relation (5.6.15) implies that Figure 5.17 shows a return 
difference product. 
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5.7 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 5.1 Show that the coefficient matrix P(k) in the matrix dif­
ference Riccati equation (5.3.11) 

P(k) = A'(k)P(k + 1) [I + E(k)P(k + 1)]-1 A(k) + Q(k) 

is positive definite. 

Problem 5.2 A second order discrete-time system is given by 

x1(k + 1) = 2XI(k) + 0.2X2(k), 

x2(k + 1) = 2X2(k) + 0.2u(k), 

XI(O) = 2 

X2(0) = O. 

The performance index to be minimized is 

kf-l 

J = 2
1
0 L [xI(k)2 + u(k)2] 

k=ko 

where, ko = 0, and kf = 10. In order to drive the above system to the 
final states xI(10) = x2(10) = 0, 
( a) find the open-loop optimal control, and 
(b) find the closed-loop optimal control. 

Problem 5.3 Find the open-loop optimal control sequence u(O), u(l), u(2) 
for the second order discrete-time system 

and the performance index 

kf-l 

J = L [xi(k) + u2(k)] 
k=ko 

where, kf = 5, Xl (5) is unspecified, and x2(5) = o. 
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Problem 5.4 Derive the relation for the optimal cost function given 
by (5.3.28) as 

J* = ~x*' (ko)P(ko)x(ko). 

Problem 5.5 Given the plant as 

x(k + 1) = A(k)x(k) + B(k)u(k) 

the performance index as 

J ( ko) = ~ x' ( k f ) F ( k f ) x ( k f ) 

kf-l 

+~ L [x'(k)Q(k)x(k) + u' (k)R(k)u(k)] 
k=ko 

and the fixed-end boundary conditions as x(k = ko) = x(ko), x(k = 

kf) = x(kf) and kf is fixed, obtain the closed-loop, optimal control 
based on similar results for continuous-time, optimal control system 
described in Chapter 4. 

Problem 5.6 For Problem 5.3, find the closed-loop optimal control 
for both (a) kf = 3 and (b) kf = 00. 

Problem 5.7 For Problem 5.3, add a capability to track a ramp ref­
erence signal zl(k) = O.5k, z2(k) = O. 

Problem 5.8 For Problem 5.3, add a capability to track a low fre­
quency sinusoidal function. 

Problem 5.9 Obtain the Hamilton-Jacobi-Bellman equation for discrete­
time optimal control problem. 

Problem 5.10 For the D.C. motor speed control system described in 
Problem 1.1, obtain 

1. the discrete-time model based on zero-order hold, 

2. the closed-loop optimal control to keep the speed constant at a 
particular value, and 
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3. the closed-loop optimal control to track the speed along a ramp 
function 0.5t. 

Problem 5.11 For the liquid-level control system described in Prob­
lem 1.2, obtain 

1. the discrete-time model based on zero-order hold, 

2. the closed-loop optimal control to keep the liquid level constant 
at a particular value, and 

3. the closed-loop optimal control to track the liquid level along a 
ramp function 0.25t. 

Problem 5.12 For the mechanical control system described in Prob­
lem 1.4, find the discrete-time model based on zero-order hold and 
then find the closed-loop optimal control to track the system along (i) 
a constant value and (ii) a ramp function. 

Problem 5.13 [105] The discretized model using zero-order hold of 
the longitudinal motion of an aircraft is given by 

where, 

x(t) = Ax(k) + Bu(t) 

0.9237 -0.3081 0.0 0.0530 -0.0904 
0.0397 0.9955 0.0 -0.1075 0.5889 

A = 0.0871 1.900 1.0 -0.6353 0.3940 
-0.0356 0.0101 0.0 0.0078 0.1374 

0.0696 -0.0127 0.0 -0.0971 0.2874 

0.0428 -0.0004 -0.1540 
-0.4846 -0.5154 -0.0023 

B = -0.1615 -0.0675 -0.0053 
-0.2020 -0.2893 0.0051 
-0.8068 -0.8522 -0.0064 
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Xl (k) = velocity, ft / sec 

X2 (k) = pitch angle, deg 

x3(k) = altitude, ft 

X4 (k) = angle of attack, deg 

X5 (k) = pitch angular velocity, deg/ sec 

UI (k) = elevator deflection, deg 

U2 (k) = flap deflection, deg 

U3 (k) = throttle position, deg 

Formulate a performance index to minimize the errors in states and to 
minimize the control effort. Obtain optimal controls and states for the 
system. 

@@@@@@@ 



Chapter 6 

Pontryagin Minimum 
Principle 

In previous chapters, we introduced Pontryagin principle in getting op­
timal condition of a plant or system along with a performance index and 
boundary conditions. In this chapter, we present Pontryagin Minimum 
Principle (PMP) and the related topics of dynamic programming and 
Hamilton-Jacobi-Bellman (HJB) equation. This chapter also bridges 
the previous chapters dealing with unconstrained optimal control with 
the next chapter focusing on constrained optimal control. This chapter 
is motivated by [79, 89]1. 

6.1 Constrained System 
In this section, we consider a practical limitation on controls and states 
[79]. Let us reconsider the optimal control system (see Chapter 2, 
Table 2.1) 

x(t) = f(x(t), u(t), t) (6.1.1) 

where, x(t) and u(t) are the n- and r- dimensional state and control 
unconstrained variables respectively, and the performance index 

l
tf 

J = S(x(tf), tf) + V(x(t), u(t), t)dt 
to 

(6.1.2) 

IThe permissions given by John Wiley for F. L. Lewis, Optimal Control, John Wiley & 
Sons, Inc., New York, NY, 1986, and Prentice Hall for D. E. Kirk, Optimal Control Theory: 
An Introduction, Prentice Hall, Englewood Cliffs, NJ, 1970, are hereby acknowledged. 
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with given boundary conditions 

x(t = 0) = Xo, x(t = tf) = xf is free, tf is free. (6.1.3) 

The important stages in obtaining optimal control for the previous 
system are 

1. the formulation of the Hamiltonian 

1-l(x(t) , u(t), A(t), t) = V(x(t), u(t), t) + A'(t)f(x(t), u(t), t), 

(6.1.4) 

where, A(t) is the costate variable, and 

2. the three relations for control, state and costate as 

o = + (81-l) control relation, 
8u * 

(6.1.5) 

x*(t) = + (:) * state relation, and (6.1.6) 

,\ * ( t) = - (81-l) costate relation 
ax * 

(6.1.7) 

to solve for the optimal values x*(t), u*(t), and A*(t), respectively, 
along with the general boundary condition 

(6.1.8) 

In the previous problem formulation, we assumed that the control u(t) 
and the state x( t) are unconstrained, that is, there are no limitations 
(restrictions or bounds) on the magnitudes of the control and state 
variables. But, in reality, the physical systems to be controlled in 
an optimum manner have some constraints on their inputs (controls), 
internal variables (states) and/or outputs due to considerations mainly 
regarding safety, cost and other inherent limitations. For example, 
consider the following cases. 

1. In aD. C. motor used in a typical positional control system, the 
input voltage to field or armature circuit are limited to certain 
standard values, say, 110 or 220 volts. Also, the magnetic flux in 
the field circuit saturates after a certain value of field current. 
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2. Thrust of a rocket engine used in a space shuttle launch control 
system cannot exceed a certain designed value. 

3. Speed of an electric motor used in a typical speed control sys­
tem cannot exceed a certain value without damaging some of the 
mechanical components such as bearings and shaft. 

This optimal control problem for a system with constraints was ad­
dressed by Pontryagin et al., and the results were enunciated in the cel­
ebrated Pontryagin Minimum Principle [109]. In their original works, 
the previous optimization problem was addressed to maximize the Hamil­
tonian 

H(x(t), u(t), A(t), t) = - V(x(t), u(t), t) + A'(t)f(x(t), u(t), t) (6.1.9) 

which is equivalent to minimization of the Hamiltonian defined in 
(6.1.4). However, here and throughout this book, we define the Hamil­
tonian as in (6.1.4) and use Pontryagin Minimum Principle (PMP) 
or simply Pontryagin Principle. Before we consider the optimal con­
trol system with control constraints, a historical perspective is in order 
regarding Pontryagin Minimum Principle [52, 53]. 

Lev Semyonovich Pontryagin (born September 3, 1908, 
Moscow, Russia and died May 3, 1988, Moscow, Russia) 
lost his eyesight when he was about 14 years old due to an 
explosion. His mother, although does not know mathemat­
ics herself, became his tutor by just reading and describing 
the various mathematical symbols as they appeared to her. 

L. S. Pontryagin (also known as L. S. by his associates) 
entered Moscow State University in 1925 and during the 
1930s and 1940s, he made significant contributions to topol­
ogy leading to the publication of Topological Groups which 
was translated into several languages. Later, as head of 
the Steklov Mathematical Institute, he devoted to engineer­
ing problems of mathematics and soon focused on two ma­
jor problems of general theory of singularly perturbed sys­
tems of ordinary differential equations and the maximum 
principle in optimal control theory. In particular, in 1955, 
he formulated a general time-optimal control problem for a 
fifth-order dynamical system describing optimal maneuvers 
of an aircraft with bounded control functions. In trying to 
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"invent a new calculus of variations," he spent "three con­
secutive sleepless nights," and came up with the idea of the 
Hamiltonian formulation for the problem and the adjoint 
differential equations, "thanks to his wonderful geometric 
insight. " 

Pontryagin suggested to his former students and close asso­
ciates V. Boltyanski and R. V. Gamkrelidze to join him in 
continuing investigations into the optimal control systems. 
Pontryagin and Boltyanski focused on controllability and 
Gamkrelidze investigated the second variation of the opti­
mal control system which in fact led to the maximum prin­
ciple. It took nearly a year to complete the full proof of the 
maximum principle and published as a short note in [25j. 
E. F. Mishchenko closely collaborated with L. S. during his 
later years and contributed to the development of the the­
ory of singularly perturbed ordinary differential equations 
and differential games. The maximum principle was first 
presented at the International Congress of Mathematicians 
held in Edigburgh, UK, in 1958. The summary of the works 
on optimal control was published in English translation in 
1962 by this group of mathematicians [109}. Pontryagin 
and his associates, for their works, were awarded the Lenin 
Prize in 1961. 

6.2 Pontryagin Minimum Principle 
In Chapter 2, for finding the optimal control u*(t) for the problem 
described by the plant (6.1.1), performance index (6.1.2), and boundary 
conditions (6.1.3), we used arbitrary variations in control u(t) = u*(t)+ 
8u(t) to define the increment t::,.J and the (first) variation 8J in J as 

t::,.J(u*(t),8u(t)) = J(u(t)) - J(u*(t)) 2: 0 for minimum 

= 8J(u*(t), 8u(t)) + higher-order terms (6.2.1) 

where, the first variation 

aJ 
8J = au 8u(t). (6.2.2) 

Also, in Chapter 2, in order to obtain optimal control of unconstrained 
systems, we applied the fundamental theorem of calculus of variations 
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(Theorem 2.1), i.e., the necessary condition of minimization is that the 
first variation 8J must be zero for an arbitrary variation 8u(t). But 
now we place restrictions on the control u(t) such as 

Ilu(t)11 ::; u (6.2.3) 

or component wise, 

(6.2.4) 

where, Uj- and ut are the lower and upper bounds or limits on the 
control function Uj (t). Then, we can no longer assume that the con­
trol variation 8u(t) is arbitrary for all t E [to, tf]. In other words, the 
variation 8u(t) is not arbitrary if the extremal control u*(t) lies on the 
boundary condition or reaches a limit. If, for example, an extremal 
control u*(t) lies on the boundary during some interval [ta, tb] of the 
entire interval [to, tf]' as shown in Figure 6.1(a), then the negative 
admissible control variation -8u(t) is not allowable as shown in Fig­
ure 6.1(b) [79]. The reason for taking +8u(t) and -8u(t) the way it is 
shown will be apparent later. Then, assuming that all the admissible 
variations 118u(t)11 is small enough that the sign of the increment b"J 
is determined by the sign of the variation 8J, the necessary condition 
for u * ( t) to minimize J is that the first variation 

8J(u*(t), 8u(t)) 2: o. (6.2.5) 

Summarizing, the relation for the first variation (6.2.5) is valid if u*(t) 
lies on the boundary (or has a constraint) during any portion of the 
time interval [to, tf] and the first variation 8J = 0 ifu*(t) lies within the 
boundary (or has no constraint) during the entire time interval [to, tf]. 
Next, let us see how the constraint affects the necessary conditions 
(6.1.5) to (6.1.6) which were derived by using the assumption that the 
admissible control values u(t) are unconstrained. Using the results of 
Chapter 2, we have the first variation as 

8J(u*(t),6u(t)) = {' {[ ~~ + '\(t) 1. 6x(t) 

[art]' [art ]' } + au * 8u(t) + 8A - x(t) * 8A(t) dt 

+ [~~ - >.(t{ 6xf + [1t + ~~L Mf · 
I I 

(6.2.6) 
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In the above, 

1. if the optimal state x* (t) equations are satisfied, it results in the 
state relation (6.1.6), 

2. if the costate ..\ * (t) is selected so that the coefficient of the depen­
dent variation 8x( t) in the integrand is identically zero, it results 
in the costate condition (6.1. 7), and 

3. the boundary condition is selected such that it results in the aux­
iliary boundary condition (6.1.8). 

When the previous items are satisfied, then the first variation (6.2.6) 
becomes 

r! [8H]' 8J( u*(t), 8u(t)) = Jto ou 8u(t)dt. (6.2.7) 

The integrand in the previous relation is the first order approximation 
to change in the Hamiltonian H due to a change in u(t) alone. This 
means that by definition 

[8H ]' 8u (x*(t), u*(t), ..\*(t), t) 8u(t) == 

H (x*(t), u*(t) + 8u(t), ..\*(t), t) - H (x*(t), u*(t), ..\*(t), t). (6.2.8) 

Then, using (6.2.8) in the first variation (6.2.7), we have 

8J(u*(t), 8u(t)) = r! [H(x*(t), u*(t) + 8u(t), ..\*(t), t) 
Jto 

- H(x*(t), u*(t), ..\*(t), t)] dt. (6.2.9) 

Now, using the above, the necessary condition (6.2.5) becomes 

it! 
[H(x*(t), u*(t) + 8u(t), ..\*(t), t) - H(x*(t), u*(t), ..\*(t), t)] dt 2: 0 

to 
(6.2.10) 

for all admissible 8u(t) less than a small value. The relation (6.2.10) 
becomes 

H(x*(t), u*(t) + 8u(t), ..\*(t), t) 2: H(x*(t), u*(t), ..\*(t), t). (6.2.11) 
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Replacing u*(t) + bu(t) by u(t), the necessary condition (6.2.10) be­
comes 

1-l(x*(t), u*(t), A*(t), t) ~ 1-l(x*(t), u(t), A*(t), t) (6.2.12) 

or, in other words, 

min {1-l (x*(t), u(t), A*(t), t)} = 1-l(x*(t), u*(t), A*(t), t). (6.2.13) 
lu(t)I~U 

The previous relation, which means that the necessary condition for 
the constrained optimal control system is that the optimal control should 
minimize the Hamiltonian, is the main contribution of the Pontryagin 
Minimum Principle. We note that this is only the necessary condition 
and is not in general sufficient for optimality. 

6.2.1 Summary of Pontryagin Principle 

The Pontryagin Principle is now summarized below. Given the plant 
as 

x(t) = f(x(t), u(t), t), (6.2.14) 

the performance index as 

It! 
J = S(x(tf), tf) + V(x(t), u(t), t)dt, 

to 
(6.2.15) 

and the boundary conditions as 

x(to) = Xo and tf, x(tf) = xf are free, (6.2.16) 

to find the optimal control, form the Pontryagin 1-l function 

1-l(x(t) , u(t), A(t), t) = V(x(t), u(t), t) + A' (t)f(x(t), u(t), t), (6.2.17) 

minimize 1-l w.r.t. u(t)(~ U) as 

1-l(x*(t), u*(t), A*(t), t) ~ 1-l(x*(t), u(t), A*(t), t), (6.2.18) 

and solve the set of 2n state and costate equations 

. (81-l) . * (81-l) x*(t) = 8A * and A (t) = - 8x * (6.2.19) 
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Table 6.1 Summary of Pontryagin Minimum Principle 

A. Statement of the Problem 
Given the plant as 
x(t) = f(x(t), u(t), t), 
the performance index as 

J = S(x(tf), tf) + ftt: V(x(t), u(t), t)dt, 
and the boundary conditions as 
x(to) = Xo and tf and x(tf) = xf are free, 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin 1i function 

1i(x(t), u(t), .\(t), t) = V(x(t), u(t), t) + .\'(t)f(x(t), u(t), t) 

Step 2 Minimize 1i w.r.t. u(t)(:S U) 

1i(x*(t), u*(t), .\*(t), t) :S 1i(x*(t), u(t), .\*(t), t) 

Step 3 Solve the set of 2n state and costate equations 

x*(t) = (art) and.x * (t) = _ (art) a.\ * ax * 
with boundary conditions Xo and 

[1i + ~~] 8tf + [~~ -.\J' 8xf = O. 
*tJ *tJ 
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with the boundary conditions Xo and 

(6.2.20) 

The entire procedure is now summarized in Table 6.1. Note that in 
Figure 6.1, the variations +8u(t) and -8u(t) are taken in such a way 
that the negative variation -8u(t) is not admissible and thus we get 
the condition (6.2.10). On the other hand, by taking the variations 
+8u(t) and -8u(t) in such a way that the positive variation +8u(t) is 
not admissible, we get the corresponding condition as 

it! 
[1i(x*(t), u*(t) - 8u(t), '\*(t), t) -1i(x*(t), u*(t), '\*(t), t)] dt ~ 0 

to 

(6.2.21) 

which can again be written as (6.2.11) or (6.2.12). It should be noted 
that 

1. the optimality condition (6.2.12) is valid for both constrained 
and unconstrained control systems, whereas the control relation 
(6.1.5) is valid for unconstrained systems only, 

2. the results given in the Table 6.1 provide the necessary conditions 
only, and 

3. the sufficient condition for unconstrained control systems is that 
the second derivative of the Hamiltonian 

~:~ (x'(t), u'(t), A'(t), t) = (:~). (6.2.22) 

must be positive definite. 

Let us illustrate the previous principle by a simple example in sta­
tic optimization which is described by algebraic equations unlike the 
dynamic optimization described by differential equations. 

Example 6.1 

We are interested in minimizing a scalar function 

H = u2 
- 6u + 7 (6.2.23) 
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subject to the constraint relation 

lui:::; 2, ~ -2 :::; u :::; +2. (6.2.24) 

Solution: First let us use a relation similar to (6.1.5) for uncon­
strained control as 

8H * * - = 0 ~ 2u - 6 = 0 ~ u = 3 au 
and the corresponding optimal H* from (6.2.23) becomes 

H* = 32 - 6x3 + 7 = -2. 

(6.2.25) 

(6.2.26) 

This value of u* = 3 is certainly outside the constraint (admissible) 
region specified by (6.2.24). But, using the relation (6.2.18) for the 
constrained control, we have 

H(u*) :::; H(u), 

H(U*2 - 6u* + 7) :::; H(u2 - 6u + 7). (6.2.27) 

The complete situation is depicted in Figure 6.2 which shows that 
the admissible optimal value is u* = +2 and the corresponding 
optimal H* is 

H* = 22 - 6x2 + 7 = -1. (6.2.28) 

However, let us note if our constraint relation (6.2.24) had been 

lui:::; 3, ~ -3 :::; u :::; +3 (6.2.29) 

then, we are lucky to use the relation similar to (6.1.5) or (6.2.25) 
and obtain the optimal value as u* = 3. But, in general this is not 
true. 

6.2.2 Additional Necessary Conditions 

In their celebrated works [109], Pontryagin and his co-workers also ob­
tained additional necessary conditions for constrained optimal control 
systems. These are stated below without proof [109]. 

1. If the final time t f is fixed and the Hamiltonian 11 does not depend 
on time t explicitly, then the Hamiltonian 11 must be constant 
when evaluated along the optimal trajectory; that is 

11(x*(t), u*(t), ;\*(t)) = constant = 0 1 vt E [to, tf]. (6.2.30) 
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Figure 6.2 Illustration of Constrained (Admissible) Controls 

2. If the final time t f is free or not specified priori and the Hamil­
tonian does not depend explicitly on time t, then the Hamiltonian 
must be identically zero when evaluated along the optimal tra­
jectory; that is, 

H(x*(t), u*(t), A*(t)) = 0 Vt E [to, tf] (6.2.31) 

Further treatment of constrained optimal control systems is carried 
out in Chapter 7. According to Gregory and Lin [61] the credit for 
formulating the optimal control problem for the first time in 1950 is 
given to M. R. Hestenes [64], the detailed proof of the problem was 
given by a group of Russian mathematicians led by Pontryagin and 
hence called the Pontryagin Minimum Principle (PMP) [109]. The 
PMP is the heart of the optimal control theory. However, the original 
proof given by Pontryagin et al. is highly rigorous and lengthy. There 
are several books devoting lengthy proof of PMP such as Athans and 
Falb [6], Lee and Markus [86] and Machki and Strauss [97]. Also see 
recent books (Pinch [108] and Hocking [66]) for a simplified treatment 
of the proof. 



6.3 Dynamic Programming 261 

6.3 Dynamic Programming 
Given a dynamical process or plant and the corresponding performance 
index, there are basically two ways of solving for the optimal control of 
the problem, one is the Pontryagin maximum principle [109] and the 
other is Bellman's dynamic programming [12, 14, 15]. Here we concen­
trate on the latter, the dynamic programming (DP). The technique is 
called dynamic programming because it is a technique based on com­
puter "programming" and suitable for "dynamic" systems. The basic 
idea of DP is a discrete, multistage optimization problem in the sense 
that at each of the finite set of times, a decision is chosen from a finite 
number of decisions based on some optimization criterion. The central 
theme of DP is based on a simple intuitive concept called principle of 
optimality. 

6.3.1 Principle of Optimality 

Consider a simple multistage decision optimization process shown in 
Figure 6.3. Here, let the optimizing cost function for the segment AC 

c 

A 
B 

Figure 6.3 Optimal Path from A to B 

be JAG and for the segment CB be JGB. Then the optimizing cost for 
the entire segment AB is 

(6.3.1) 

That is, if JAG is the optimal cost of the segment AC of the entire op­
timal path AB, then JGB is the optimal cost of the remaining segment 
C B. In other words, one can break the total optimal path into smaller 
segments which are themselves optimal. Conversely, if one finds the 
optimal values for these smaller segments, then one can obtain the op­
timal value for the entire path. This obvious looking property is called 
the principle of optimality (PO) and stated as follows [79]: 

An optimal policy has the property that whatever the pre­
vious state and decision (i. e., control), the remaining deci-
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sions must constitute an optimal policy with regard to the 
state resulting from the previous decision. 

Backward Solution 
It looks natural to start working backward from the final stage or point, 
although one can also work forward from the initial stage or point. To il­
lustrate the principle of optimality, let us consider a multistage decision 
process as shown in Figure 6.4. This may represent an aircraft routing 

E 

A B 

G 

Figure 6.4 A Multistage Decision Process 

network or a simple message (telephone) network system. In an aircraft 
routing system, both the initial point A and the final point B represent 
the two cities to be connected and the other nodes C, D, E, F, G, H, I 
represent the intermediate cities. The numbers (called units) over each 
segment indicate the cost (or performance index) of flying between the 
two cities. Now we are interested in finding the most economical route 
to fly from city A to city B. We have 5 stages starting from k = 0 to 
k = N = 4. Also, we can associate the current state as the junction 
or the node. The decision is made at each state. Let the decision or 



6.3 Dynamic Programming 263 

control be u = ± 1, where u = + 1 indicates move up or left and u = -1 
indicates move down or right looking from each junction towards right. 

Now, our working of the dynamic programming algorithm is shown 
in Figure 6.5. 

E 

G 

B 
(0) 

Figure 6.5 A Multistage Decision Process: Backward Solution 

Stage 5: k = k f = N = 4 

This is just the starting point, there is only one city B and hence 
there is no cost involved. 

Stage 4: k = 3 

There are two cities H and I at this stage and we need to find the 
most economical route from this stage to stage 5. Working backward, 
we begin with B which can be reached by H or I. It takes 2 units to 
fly from H to B by using control or decision u = -1 (downward or 
right) and hence let us place the number 2 within parenthesis under 
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H. Similarly, it takes 3 units to fly from I to B by using control or 
decision u = +1 (upward or left) and hence place the number 3 just 
near to I. Let us also place an arrow head to the corresponding paths 
or routes. Note there is no other way of flying from H to B and I to 
B except as shown by the arrows. 

Stage 3: k = 2 

Here, there are three cities E, F, G and from these nodes we can fly 
to H and I. Consider first E. The total cost to fly from E to B 
will be 2 + 4 = 6 by using control or decision u = -1 (downward or 
right) and let us place units 6 in parenthesis at the node E. Secondly, 
from F, we can take two routes F, H, Band F, I, B, by using decisions 
u = + 1 (upward or left) and u = -1 (downward or right) and the 
corresponding costs are 2 + 3 = 5 and 3 + 5 = 8, respectively. Note, 
that we placed 5 instead of 8 at the node F and an arrow head on 
the segment F H to indicate the optimal cost to fly the route F, H, B 
instead of the costlier route F, I, B. Finally, consider G. There is only 
one route which is G, I, B to go to B starting from G. The cost is the 
cost to fly from G to I and the cost to fly from I to B. 

Stage 2: k = 1 

By the same procedure as explained above, we see that the node C 
has minimum cost 9 and the node D has minimum cost 7. 

Stage 1: k = 0 

Here, note that from A, the two segments AC and AD have the same 
minimum cost indicating either route is economical. 

Optimal Solution 

This is easy to find, we just follow the route of the arrow heads from 
A to B. Note that there are two routes to go from stage 0 to stage 
1. Thus, the most economical (optimal) route is either A, C, F, H, B or 
A, D, F, H, B. The total minimum cost is 11 units. 
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Forward Solution 
One can solve the previous system using forward solution, starting from 
A at stage 0 and working forward to stages 1,2,3 and finally to stage 
5 to reach B. We do get the identical result as in backward solution as 
shown in Figure 6.6. 

E 

G 

Figure 6.6 A Multistage Decision Process: Forward Solution 

Thus, as shown in both the previous cases, we 

1. divide the entire route into several stages, 

2. find the optimal (economical) route for each stage, and 

3. finally, using the principle of optimality, we are able to combine 
the different optimal segments into one single optimal route (or 
trajectory) . 

In the previous cases, we have fixed both the initial and final points 
and thus we have a fixed-end-point system. We can similarly address 
the variable end point system. 
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Next, we explore how the principle of optimality in the dynamic pro­
gramming can be used to optimal control systems. We notice that the 
dynamic programming approach is naturally a discrete-time system. 
Also, it can be easily applied to either linear or nonlinear systems, 
whereas the optimal control of a nonlinear system using Pontryagin 
principle leads to nonlinear two-point boundary value problem (TP­
BVP) which is usually very difficult to solve for optimal solutions. 

6.3.2 Optimal Control Using Dynamic Programming 

Let us first consider the optimal control of a discrete-time system. Or 
even if there is a continuous-time system, one can easily discretize it to 
obtain the discrete-time system by using one of the several approaches 
[82]. Let the plant be described by 

x(k + 1) = f(x(k), u(k), k) (6.3.2) 

and the cost function be 

kf-l 

Ji(x(ki )) = J = S(x(kf), kf) + I: V(x(k), u(k)) (6.3.3) 
k=i 

where, x( k), u( k) are the nand r state and control vectors, respectively. 
Note, we showed the dependence of J on the initial time (k) and state 
(x(k)). 

We are interested in using the principle of optimality to find the 
optimal control u*(k) which applied to the plant (6.3.2) gives optimal 
state x* (k). Let us assume that we evaluated the optimal control, state 
and cost for all values starting from k + 1 to k f. Then, at any time or 
stage k, we use the principle of optimality to write as 

J;;(x(k)) = min [V[x(k), u(k)] + J;;+l(x*(k + 1))] . 
u(k) 

(6.3.4) 

The previous relation is the mathematical form of the principle of opti­
mality as applied to optimal control system. It is also called functional 
equation of dynamic programming. Thus, it means that if one had 
found the optimal control, state and cost from any stage k + 1 to the 
final stage kf' then one can find the optimal values for a single stage 
from k to k + 1. 
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Example 6.2 

Consider a simple scalar example to illustrate the procedure un­
derlying the dynamic programming method [79,89]. 

x(k + 1) = x(k) + u(k) (6.3.5) 

and the performance criterion to be optimized as 

(6.3.6) 

where, for simplicity of calculations, we take kf = 2. Let the 
constraints and the quantization values on the control be 

-1.0::; u(k) ::; +1.0, 
u(k) = -1.0, -0.5, 

and on the state be 

° ::; x( k) ::; +2.0, 
x(k) = 0, 0.5, 

k = 0,1,2 or 
0, +0.5, +1.0 

k = 0,1 or 
1.0 1.5 2.0. 

(6.3.7) 

(6.3.8) 

Find the optimal control sequence u* (k) and the state x* (k) which 
minimize the performance criterion (6.3.6). 

Solution: To use the principle of optimality, to solve the previous 
system, we first set up a grid between x(k) and k, omitting all the 
arrows, arrow heads, etc. We divide the stages into two sets: one 
for k = 2 and the other for k = 1,0. We start with k = 2 and 
first find the optimal values and work backward for k = 1, ° using 
the state (6.3.5), the cost function (6.3.6) and the optimal control 
(6.3.7). 

Stage: k = 2 

First calculate the state x(2) using the state relation (6.3.5)for 
all admissible values of x(k) and u(k) given by (6.3.7) and (6.3.8). 
Thus, for example, for the admissible value of x(I) = 2.0 and u(I) = 
-1, -0.5,0,0.5, 1, we have 

x(2) = x(I) + u(l) 
x(2) = 2.0 + (-1) = 1.0 
x(2) = 2.0 + (-0.5) = 1.5 

x(2) = 2.0 + ° = 2.0 
x(2) = 2.0 + 0.5 = ~ 

x(2) = 1.5 + 1 = 3~ . (6.3.9) 
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Note the values 2.5 and 3.0 (shown by a striking arrow) of state 
x(2) are not allowed due to exceeding the state constraint (6.3.8). 

Also, corresponding to the functional equation (6.3.4), we have 
for this example, 

Jk(x(k)) = min [-2
1 
u2(k) + x2 (k) + Jk+1] 

u(k) 

from which we have for the optimal cost at k = 2 

J* = ~x2(2) 
kf 2 

which is evaluated for all admissible values of x(2) as 

Jkf = 2.000 for x(2) = 2.0 

= 1.125 for x(2) = 1.5 
= 0.500 for x(2) = 1.0 
= 0.125 for x(2) = 0.5 
= 0.000 for x(2) = O. 

(6.3.10) 

(6.3.11) 

(6.3.12) 

The entire computations are shown in Table 6.2 for k = 2 and in 
Table 6.3 for k = 1, O. 

The data from Tables 6.2 and 6.3 corresponding to optimal con­
ditions is represented in the dynamic programming context in Fig­
ure 6.7. Here in this figure, Uo = u*(x(O), 0) and ui = u*(x(I), 1) 
and the quantities within parenthesis are the optimal cost values 
at that stage and state. For example, at stage k = 1 and state 
x(k) = 1.0, the value Ji2 = 0.75 indicates that the cost of transfer 
the state from x(l) to x(2) is 0.75. Thus, in Figure 6.7, for find­
ing the optimal trajectories for any initial state, we simply follow 
the arrows. For example, to transfer the state x(O) = 1 to state 
x(2) = 0, we need to apply first Uo = -1 to transfer it to x(l) = 0 
and then ui = o. 

Note: In the previous example, it so happened that for the given con­
trol and state quantization and constraint values (6.3.7) and (6.3.8), 
respectively, the calculated values using x(k + 1) = x(k) + u(k) either 
exactly coincide with the quantized values or outside the range. In 
some cases, it may happen that for the given control and state quan­
tization and constraint values, the corresponding values of states may 
not exactly coincide with the quantized values, in which case, we need 
to perform some kind of interpolation on the values. For example, let 
us say, the state constraint and quantization is 

-1 :::; x (k) :::; +2, k = 0, 1 or 

x(k) = -1.0, 0, 0.5, 1.0 2.0. (6.3.13) 
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Table 6.2 Computation of Cost during the Last Stage k = 2 

Current Current Next Cost Optimal Optimal 
State Control State Cost Control 

x(l) u(l) x(2) J12 Ji2(x(1)) u*(x(l),l) 
-1.0 1.0 3.0 
-0.5 1.5 2.25 Ji2(2.0)=2.25 u*(1.5,1) = -0.5 

2.0 0 2.0 4.0 
0.5 ~ 

1.0 --&-@ 

-1.0 0.5 1.75 Ji2 (1.5)=1. 75 u*(1.5,1) = -1.0 
-0.5 1.0 1.75 Ji2 (1.5)=1. 75 u*(1.5,1) = -0.5 

1.5 0 1.5 2.25 
0.5 2.0 3.25 
1.0 ~ 

-1.0 0 1.0 
-0.5 0.5 0.75 Ji2(1.0) = 0.75 u*(l,l) = -0.5 

1.0 0 1.0 1.0 
0.5 1.5 1.75 
1.0 2.0 3.0 
-1.0 ~ 

-0.5 0 0.25 Ji2(0.5)=0.25 u* (0.5,1)=-0.5 
0.5 0 0.5 0.25 Ji2 (0.5)=0.25 u*(0.5,1)=0 

0.5 1.0 0.75 
1.0 1.5 1.75 
-1.0 ~ 

-0.5 ~ 

0 0 0 0 Ji2(0)=0 u*(O,l)=O 
0.5 0.5 0.25 
1.0 1.0 1.0 

Use these to calculate the above: x(2) = x(l) + u(l); 
J12 = 0.5x2(2) + 0.5u2(1) + 0.5x2(1) 
A strikeout (---+) indicates the value is not admissible. 
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Table 6.3 Computation of Cost during the Stage k = 1,0 

Current Current Next Cost Optimal Optimal 
State Control State Cost Control 

x(O) u(O) x(l) J02 J02 (x(0) ) u*(x(O),O) 
-1.0 1.0 3.25 Jo2 (2.0) = 3.25 u* (2.0,0) = -1.0 
-0.5 1.5 3.875 

2.0 0 2.0 4.25 
0.5 ~ 

1.0 ~ 

-1.0 0.5 1.875 Jo2 (1.5) = 1.875 u* (1.5,0) = -1.0 
-0.5 1.0 2.0 

1.5 0 1.5 2.875 
0.5 2.0 3.25 
1.0 ~ 

-1.0 0 1.0 Jo2 (1)=1 u* (1,0)=-1.0 
-0.5 0.5 0.875 

1.0 0 1.0 1.25 
0.5 1.5 2.375 
1.0 2.0 3.0 
-1.0 ~ 

-0.5 0 0.25 Jo2 (0.5)=0.25 u* (1,0)=-0.5 
0.5 0 0.5 0.375 

0.5 1.0 1.0 
1.0 1.5 2.375 
-1.0 --h@ 

-0.5 ~ 

0 0 0 0 J02 (0)=0 u*(O,O) = 0 
0.5 0.5 0.375 
1.0 1.0 1.25 

Use these to calculate the above: x(l) = x(O) + u(O); 
J02 = 0.5u2(0) + 0.5x2(0) + Ji2(x(1)) 
A strikeout (~) indicates the value is not admissible. 
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x(k) J*O 2 
• 

J*l 2 . J*2 
• 

(2.0) 

1.5 • • 
(1.125) 

1.0 - • 

0.5 

o 

o 
~-----------------------------------------'k 

Figure 6. 7 Dynam~c Programming Framework of Optimal State 
Feedback Control 

Then, for x(l) = 2.0 and u(l) = -0.5, when we try to use the state 
equation (6.3.5) to find the x(2) = x(l) +u(I), we get x(2) = 1.5 which, 
although is not an allowable quantized value, is within the constraint 
(limit). Hence, we cannot simply calculate the quantity J2 = 0.5x2(2) 
as J2 = 0.5(1.5? = 1.125, instead using the interpolation we calculate 
it as 

J2 = 0.5[x(2) = 1.5]2 

[ (2) ]
2 0.5[x(2) = 2F - 0.5[x(2) = IF 

= 0.5 x = 1 + 2 

2 - 0.5 
= 0.5 + 2 = 1.25. (6.3.14) 
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We notice that the dynamic programming technique is a computation­
ally intensive method especially with increase in the order and the 
number of stages of the system. However, with the tremendous ad­
vances in high-speed computational tools since Bellman [15] branded 
this increased computational burden inherent in dynamic programming 
as "curse of dimensionality," the "curse" may be a "boon" due to the 
special advantages of dynamic programming in treating both linear and 
nonlinear systems with ease and in handling the constraints on states 
and/ or controls. 

6.3.3 Optimal Control of Discrete-Time Systems 

Here, we try to derive the optimal feedback control of a discrete-time 
system using the principle of optimality of dynamic programming [79, 
89]. Consider a linear, time-invariant, discrete-time plant, 

x(k + 1) = Ax(k) + Bu(k) 

and the associated performance index 

Ji = ~x' (kf )Fx(kf) 

kf-l 
1 

+2 ~ [x'(k)Qx(k) + u'(k)Ru(k)] 
1, 

(6.3.15) 

(6.3.16) 

where, x( k) and u( k) are nand r dimensional state and control vec­
tors, and A(k) and B(k) are matrices of nxn and nxr dimensions, 
respectively. Further, F and Q are each nxn order symmetric, positive 
semidefinite matrices, and R is rxr symmetric, positive definite matrix. 
For our present discussion, let us assume that there are no constraints 
on the state or control. 

The problem is to find the optimal control u * ( k) for i :::; k :::; k f that 
minimizes the performance index Jk using the principle of optimality. 
Let us assume further that the initial state x(ko) is fixed and the final 
state x( k f) is free. In using dynamic programming, we start with the 
final stage x( k f) and work backwards. At each stage, we find the opti­
mal control and state. Let us start with last stage k = k f. 

Last Stage: k = k f 

Let us first note that at i = k f , 
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(6.3.17) 

Previous to Last Stage: k = k f - 1 

At i = kf - 1, the cost function (6.3.16) becomes 

Jk f -1 = ~x'(kf - I)Qx(kf - 1) + ~U'(kf - I)Ru(kf - 1) 

+~x'(kf )Fx(kf). (6.3.18) 

According to the functional equation of the principle of optimality 
(6.3.4), we need to find the optimal control u*(kf - 1) to minimize the 
cost function (6.3.18). Before that, let us rewrite the relation (6.3.18) 
to make all the terms in (6.3.18) to belong to stage kf - 1. For this, 
using (6.3.15) in (6.3.18), we have 

Jk f -1 = ~X'(kf - I)Qx(kf - 1) + ~U'(kf - I)Ru(kf - 1) 

1 , 
+2 [Ax(kf - 1) + Bu(kf - 1)] F [Ax(kf - 1) + Bu(kf - 1)]. 

(6.3.19) 

Since there are no constraints on states or controls, we can easily find 
the minimum value of (6.3.19) w.r.t. u(kf - 1) by simply making 

8Jk -1 
8u(k; _ 1) = RU*(kf - 1) + B'F [Ax(kf - 1) + BU*(kf - 1)] = o. 

Solving for u*(kf - 1), we have 

where, 

u*(kf - 1) = - [R + B'FBJ -1 B'FAx(kf - 1) 

= -L(kf - I)x(kf - 1) 

L(kf - 1) = [R + B'FB] -1 B'FA 

(6.3.20) 

(6.3.21) 

(6.3.22) 
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is also called the Kalman gain. Now the optimal cost Jkf - 1 for this 

stage k f - 1 is found by substituting the optimal control u* (k f - 1) 
from (6.3.21) into the cost function (6.3.19) to get 

Jkf - 1 = ~X'(kf -1) [{A - BL(kf -1)}'F{A - BL(kf -1)} 

+ L'(kf - 1)RL(kf - 1) + Q] x(kf - 1) 

= ~x'(kf - 1)P(kf - 1)x(kf - 1) (6.3.23) 

where, 

P(kf -1) = {A - BL(kf -1)}'F{A - BL(kf -1)} 

+L'(kf - 1)RL(kf - 1) + Q (6.3.24) 

Stage: kf - 2 

Using i = kf - 2 in the cost function (6.3.16), we have 

Jkf -2 = ~x'(kf)FX(kf) + ~X'(kf - 2)Qx(kf - 2) 

+~u'(kf - 2)Ru(kf - 2) + ~x'(kf - 1)Qx(kf - 1) 
2 2 

+~U'(kf -1)Ru(kf -1). (6.3.25) 

Now, using (6.3.15) to replace kf' (6.3.21) to replace u(kf - 1) and 
(6.3.24) in (6.3.25), we get 

Jkf-2 = ~X'(kf - 2)Qx(kf - 2) + ~u'(kf - 2)Ru(kf - 2) 

+~x'(kf - 1)P(kf - 1)x(kf - 1) (6.3.26) 

where, P(kf - 1) is given by (6.3.24). At this stage, we need to express 
all functions at stage kf - 2. Then, once again, for this stage, to 
determine u*(kf - 2) according to the optimality principle (6.3.4), we 
minimize Jkf -2 in (6.3.26) w.r.t. u(kf - 2) and get relations similar to 
(6.3.21), (6.3.22), (6.3.23), and (6.3.24). For example, the optimal cost 
function becomes 

(6.3.27) 
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where, P(kf - 2) is obtained similar to (6.3.24) except we replace kf-1 
by kf - 2. We continue this procedure for all other stages kf - 3, kf -
4, ... , ko. 

Any Stage k 

N ow we are in a position to generalize the previous set of relations 
for any k. Thus, the optimal control is given by 

u*(k) = -L(k)x*(k), (6.3.28) 

where, the Kalman gain L(k) is given by 

L(k) = [R + B'P(k + 1)BJ -1 B'P(k + 1)A, (6.3.29) 

the matrix P(k), also called the Riccati matrix, is the backward solution 
of 

P(k) = [A - BL(k)]' P(k + 1) [A - BL(k)] 

+L'(k)RL(k) + Q (6.3.30) 

with the final condition P(kf) = F, and the optimal cost function as 

Jk = ~X*'(k)P(k)x*(k). (6.3.31) 

We notice that these are the same set of relations we obtained in Chap­
ter 5 by using Pontryagin principle. 

6.3.4 Optimal Control of Continuous-Time Systems 

Here, we describe dynamic programming (DP) technique as applied 
to finding optimal control of continuous-time systems. First of all, we 
note that although in the previous sections, the DP is explained w.r.t. 
the discrete-time situation, DP can also be applied to continuous-time 
systems. However, one can either 

1. discretize the continuous-time systems in one or other ways and 
use the DP as applicable to discrete-time systems, as explained 
in previous sections, or 

2. apply directly the DP to continuous-time systems leading to the 
celebrated Hamilton-Jacobi-Bellman (HJB) equation, as presented 
in the next section. 
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In using the discretization of continuous-time processes, we can either 
employ 

1. the Euler method, or 

2. sampler and zero-order hold method. 

Let us now briefly discuss these two approaches. 

1. Euler Method: Let us first take up the Euler approximation of a 
linear time invariant (LTI) system (although it can be used for 
nonlinear systems as well) for which the plant is 

x(t) = Ax(t) + Bu(t) (6.3.32) 

and the cost function is 

1 
J(O) = "2 x' (t J )F(t J )x(t J) 

1 rf 
+"2 10 [x'(t)Qx(t) + u'(t)Ru(t)] dt (6.3.33) 

where, the state vector x(t) and control vector u(t) and the var­
ious system and weighted matrices and are defined in the usual 
manner. Assume some typical boundary conditions for finding the 
optimal control u * ( t ) . 

Using the Euler approximation of the derivative in (6.3.32) as 

x(t) = x(k + 1) - x(k) 
T 

(6.3.34) 

where, T is the discretization (sampling) interval and x(k) = 

x(kT), the discretized version of the state model (6.3.32) becomes 

x(k + 1) = [I + TA] x(k) + TBu(k). (6.3.35) 

Also, replacing the integration process in continuous-time cost 
function (6.3.33) by the summation process, we get 

1 
J(O) = "2x'(kJ )Fx(tJ) 

1 kf-l 

+"2 L [X'(k)QdX(k) + u(k)RdU(k)] (6.3.36) 
k=ko 

where, Qd = TQ, and Rd = TR. 
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2. Zero-Order Hold: Alternatively, using sampler and zero-order 
hold [83], the continuous-time state model (6.3.32) becomes 

x(k + 1) = AdX(k) + BdU(k) 

Ad = eAT, and Bd = loT eATBdT. (6.3.37) 

Thus, we have the discrete-time state model (6.3.35) or (6.3.37) 
and the corresponding discrete-time cost function (6.3.36) for 
which we can now apply the DP method explained in the pre­
vious sections. 

6.4 The Hamilton-Jacobi-Bellman Equation 
In this section, we present an alternate method of obtaining the closed­
loop optimal control, using the principle of optimality and the Hamilton­
Jacobi-Bellman (HJB) equation. First we need to state Bellman's prin­
ciple of optimality [12]. It simply states that any portion of the optimal 
trajectory is optimal. Alternatively, the optimal policy (control) has 
the property that no matter what the previous decisions (i.e., controls) 
have been, the remaining decision must constitute an optimal policy. 
In Chapter 2, we considered the plant as 

x(t) = f(x(t), u(t), t) (6.4.1) 

and the performance index (PI) as 

l
tf 

J(x(to), to) = V(x(t), u(t), t)dt. 
to 

(6.4.2) 

Now, we provide the alternative approach, called Hamilton-Jacobi­
Bellman approach and obtain a control law as a function of the state 
variables, leading to closed-loop optimal control. This is important from 
the practical point of view in implementation of the optimal control. 

Let us define a scalar function J*(x*(t), t) as the minimum value of 
the performance index J for an initial state x*(t) at time t, i.e., 

rtf 
J*(x*(t), t) = it V(X*(T), U*(T), T)dT. (6.4.3) 

In other words, J*(x*(t), t) is the value of the performance index when 
evaluated along the optimal trajectory starting at x( t). Here, we used 
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the principle of optimality in saying that the trajectory from t to t f is 
optimal. However, we are not interested in finding the optimal control 
for specific initial state x( t), but for any unspecified initial conditions. 
Thus, our interest is in J(x(to), to) as a function of x(to) and to. Now 
consider 

dJ* (x* (t), t) = (a J* (x* (t), t) )' x* (t) a J* (x* (t), t) 
dt ax* + at ' 

= (aJ*(x*(t),t))'f( *() *()) aJ*(x*(t),t) a x t ,U t ,t + a . x* t 
(6.4.4) 

From (6.4.3), we have 

dJ*(x*(t), t) = -V( *() *() ) & x t ,U t ,t . (6.4.5) 

Using (6.4.4) and (6.4.5), we get 

aJ*(x*(t), t) V( *() *() ) at + xt,ut,t 

(
a J* (x* (t) t))' + ax* ' f(x*(t), u*(t), t) = o. 

(6.4.6) 

Let us introduce the Hamiltonian as 

(
aJ*(x* (t) t))' 

1t = V(x(t), u(t), t) + ax* ' f(x(t), u(t), t) (6.4.7) 

Using (6.4.7) in (6.4.6), we have 

aJ*(x*(t), t) '1J ( *( ) aJ*(x*(t), t) *() ) _ O. \...I [ ) 
at + I L X t, ax* ,u t, t - ,v t E to, t f 

(6.4.8) 

with boundary condition from (6.4.3) as 

(6.4.9) 

or 

(6.4.10) 
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if the original PI (6.4.2) contains a terminal cost function. This equa­
tion (6.4.8) is called the Hamilton-Jacobi equation. Since this equation 
is the continuous-time analog of Bellman's recurrence equations in dy­
namic programming [15], it is also called the Hamilton-Jacobi-Bellman 
(HJB) equation. Comparing the Hamiltonian function (6.4.7) with that 
given in earlier chapters, we see that the costate function A*(t) is given 
by 

*( ) _ 8J*(x*(t), t) 
A t - a . 

x* 
(6.4.11) 

Also, we know from Chapter 2 that the state and costate are related 
by 

.x*(t) = _ (8H) 
8x * 

(6.4.12) 

and the optimal control u*(t) is obtained from 

(~) * = 0 --> u*(t) = h(x*(t), J~, t). (6.4.13) 

Here, comparing (6.4.11) and (6.4.12), we get 

~ (aJ*(x*(t), t)) = ~ [A *(t)] 
dt 8x* dt 

aH (x* (t), 8J* (~: (t),t) , u* (t), t) 

8x* 
(6.4.14) 

Using 

J* _ aJ*(x*(t), t). 
t - at ' 

J* = aJ*(x*(t), t) 
x &* (6.4.15) 

The HJB equation (6.4.8) becomes 

I Jt + 1i (x*(t), J~, u*(t), t) = 0·1 (6.4.16) 

This equation, in general, is a nonlinear partial differential equation 
in J*, which can be solved for J*. Once J* is known, its gradient 
J~ can be calculated and the optimal control u*(t) is obtained from 
(6.4.13). Often, the solution of HJB equation is very difficult. The 
entire procedure is summarized in Table 6.4. Let us now illustrate the 
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Table 6.4 Procedure Summary of Hamilton-Jacobi-Bellman 
(HJB) Approach 

A. Statement of the Problem 
Given the plant as 
x(t) = f(x(t), u(t), t), 
the performance index as 

J = S(x(tf), tf) + Itd V(x(t), u(t), t)dt, 
and the boundary conditions as 
x(to) = Xo; x ( t f) is free 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin H function 

H(x(t), u(t), J~, t) = V(x(t), u(t), t) + J~' f(x(t), u(t), t). 
Step 2 Minimize H w.r.t. u(t) as 

(~~) * = 0 and obtain u*(t) = h(x*(t), J~, t). 
Step 3 Using the result of Step 2, find the optimal H* function 

H*(x*(t), h(x*(t), J~, t), J~, t) = H*(x*(t), J~, t) 
and obtain the HJB equation. 

Step 4 Solve the HJB equation 
Jt + H(x*(t), J~, t) = o. 
with boundary condition J*(x*(tf), tf) = S(x(tf), t.f). 

Step 5 Use the solution J*, from Step 4 to evaluate J~ and 
substitute into the expression for u*(t) of Step 2, to 
obtain the optimal control. 
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HJB procedure using a simple first-order system. 

Example 6.3 

Given a first-order system 

x(t) = -2x(t) + u(t) 

and the performance index (PI) 

1 1 lot! J = -x2(tf) + - [x2(t) + u2 (t)]dt 
2 2 0 

find the optimal control. 
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(6.4.17) 

(6.4.18) 

Solution: First of all, comparing the present plant (6.4.17) and 
the PI (6.4.18) with the general formulation of the plant (6.4.1) 
and the PI (6.4.2), respectively, we see that 

1 1 1 2 
V(x(t), u(t), t) = 2u2 (t) + 2x2(t); S(x(tf), tf) = 2x (tf) 

f(x(t), u(t), t) = -2x(t) + u(t). (6.4.19) 

Now we use the procedure summarized in Table 6.4. 

• Step 1: The Hamiltonian (6.4.7) is 

1-l [x*(t), Jx, u*(t), t] = V(x(t), u(t), t) + Jxf(x(t) , u(t), t) 
1 1 

= 2u2(t) + 2x2(t) + Jx ( -2x(t) + u(t)). 

(6.4.20) 

• Step 2: For an unconstrained control, a necessary condition for 
optimization is 

and solving 

81-l 
- = 0 ---+ u(t) + Jx = 0 au 

u*(t) = -Jx. 

(6.4.21) 

(6.4.22) 

• Step 3: Using the optimal control (6.4.22) and (6.4.20), form 
the optimal 1-l function as 

1 212 
1-l = 2 (-Jx) + 2x (t) + Jx( -2x(t) - Jx) 

1 2 1 2 = -2Jx + 2x (t) - 2x(t)Jx. (6.4.23) 
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Now using the previous relations, the H-J-B equation (6.4.16) 
becomes 

1 2 1 2 
Jt - 2 Jx + 2x (t) - 2x(t)Jx = 0 (6.4.24) 

with boundary condition (6.4.10) as 

(6.4.25) 

• Step 4: One way to solve the HJB equation (6.4.24) with the 
boundary condition (6.4.25) is to assume a solution and check 
if it satisfies the equation. In this simple case, since we want 
the optimal control (6.4.22) in terms of the states and the PI 
is a quadratic function of states and controls, we can guess the 
solution as 

1 
J(x(t)) = 2P(t)x2(t), (6.4.26) 

where, p(t), the unknown function to be determined, has the 
boundary condition as 

(6.4.27) 

which gives us 

(6.4.28) 

Then using (6.4.26), we get 

Jx = p(t)x(t); Jt = ~p(t)x2(t), (6.4.29) 

leading to the closed-loop optimal control (6.4.22), as 

u*(t) = -p(t)x*(t). (6.4.30) 

Using the optimal control (6.4.29) into the HJB equation (6.4.24), 
we have 

(
1 . 1 2 1) 2 2P(t) - 2P (t) - 2p(t) + 2 x* (t) = o. (6.4.31) 

For any x* ( t), the previous relation becomes 

1 . 1 2 1 
2P(t) - 2P (t) - 2p(t) + 2 = 0, (6.4.32) 
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which upon solving with the boundary condition (6.4.28) be-
comes 

(v'5 - 2) + (v'5 + 2) [3-/5] e2 /5(t-tj) 
(t) - 3+/5 () 

p - 1 _ [3-/5] e2 /5(t-tf) 6.4.33 3+/5 
Note, the relation (6.4.32) is the scalar version of the matrix DRE 
(3.2.34) for the finite-time LQR system . 

• Step 5: Using the relation (6.4.33), we have the closed-loop 
optimal control (6.4.30). 

Note: Let us note that as tf ---* 00, p(t) in (6.4.33) becomes 
p( 00) = p = v'5 - 2, and the optimal control (6.4.30) is 

u(t) = -(vis - 2)x(t). (6.4.34) 

6.5 LQR System Using H-J-B Equation 
We employ the H-J-B equation to obtain the closed-loop optimal con­
trol of linear quadratic regulator system. Consider the plant described 
by 

x(t) = A(t)x(t) + B(t)u(t) (6.5.1) 

where, x( t) and u( t) are nand r dimensional state and control vectors 
respectively, and the performance index to be minimized as 

J = ~X'(tf )Fx(tf) 

1 rtf 
+"2 J

to 
[x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt, (6.5.2) 

where, as defined earlier, F, and Q(t) are real, symmetric, positive 
semidefinite matrices respectively, and R(t) is a real, symmetric, posi­
tive definite matrix. We will use the procedure given in Table 6.4. 

• Step 1: As a first step in optimization, let us form the Hamil­
tonian as 

1 1 
1t(x(t), u(t), J;, t) = "2 x'(t)Q(t)x(t) + "2u'(t)R(t)u(t) 

+J;' (x(t), t)[A(t)x(t) + B(t)u(t)]. 

(6.5.3) 
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• Step 2: A necessary condition for optimization of H w.r.t. u(t) 
is that 

~~ = 0 ---t R(t)u(t) + B'(t)J~'(x(t), t) = 0, (6.5.4) 

which leads to 

u*(t) = _R-l(t)B'(t)J~(x(t), t). (6.5.5) 

Let us note that for the minimum control, the sufficient condition 
that 

(6.5.6) 

is positive definite, is satisfied due to our assumption that R(t) 
is symmetric positive definite . 

• Step 3: With optimal control (6.5.5) in the Hamiltonian (6.5.3) 

1 1 
H(x(t), u(t), J~, t) = 2x'(t)Q(t)x(t) + 2J~'B(t)R-l(t)B'(t)J~ 

+J~'A(t)x(t) - J~'B(t)R-l(t)B'(t)J~ 
1 1 

= 2x'(t)Q(t)x(t) - 2J~'B(t)R-l(t)B'(t)J~ 

+J~' A(t)x(t). (6.5.7) 

The HJB equation is 

Jt + H(x*(t), u*(t), J~, t) = o. (6.5.8) 

With (6.5.7), the HJB equation (6.5.8) becomes 

Jt + ~x*'(t)Q(t)x*(t) - ~J~'B(t)R-l(t)B'(t)J~ 
+J~' A(t)x*(t) = 0, (6.5.9) 

with boundary condition 

(6.5.10) 



6.5 LQR System Using H-J-B Equation 285 

• Step 4: Since the performance index J is a quadratic function of 
the state, it seems reasonable to assume a solution as 

1 
J* (x(t), t) = "2 x' (t)P(t)x(t) (6.5.11) 

where, P(t) is a real, symmetric, positive-definite matrix to be 
determined (for convenience * is omitted for x(t)). With 

oJ* 1· 
at = Jt = "2 x (t)P(t)x(t), 

aJ* 
ox = Jx = P(t)x(t) (6.5.12) 

and using the performance index (6.5.11) in the HJB equation 
(6.5.9), we get 

1· 1 
"2 x' (t)P(t)x(t) + "2 x (t)Q(t)x(t) 

- ~x' (t)P(t)B(t)R -1 (t)B' (t)P(t)x(t) 

+x' (t)P(t)A(t)x(t) = O. (6.5.13) 

Expressing P(t)A(t) as 

P(t)A(t) = ~ [P(t)A(t) + {P(t)A(t)}'] 

1 
+"2 [P(t)A(t) - {P(t)A(t)}'] , (6.5.14) 

where, the first term on the right-hand side of the above expres­
sion is symmetric and the second term is not symmetric. Also, 
we can easily show that since all the terms, except the last term 
on the right-hand side of (6.5.13), are symmetric. Using (6.5.14) 
in (6.5.13), we have 

1· 1 "2 x' (t)P(t)x(t) + "2 x (t)Q(t)x(t) 

- ~x' (t)P(t)B(t)R -1 (t)B' (t)P(t)x(t) 

1 1 
+"2x'(t)P(t)A(t)x(t) + "2x'(t)A'(t)P(t)x(t) = O. 

(6.5.15) 
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This equation should be valid for any x( t), which then reduces 
to 

P(t) + Q(t) - P(t)B(t)R-1(t)B'(t)P(t) 

+P(t)A(t) + A'(t)P(t) = O. 

(6.5.16) 

Rewriting the above, we have the matrix differential Riccati equa­
tion (DRE) as 

I P(t) = -P(t)A(t) - A'(t)P(t) + P(t)B(t)R-1 (t)B'(t)P(t) - Q(t)·1 

(6.5.17) 

Using (6.5.10) and (6.5.11), 

~ x' ( t f ) P ( t f )x ( t f) = ~ x' ( t f ) F ( t f ) x ( t f ), (6.5.18) 

we have the final condition for P(t) as 

I P(tf) = F(tf)·1 (6.5.19) 

• Step 5: Using (6.5.5) and (6.5.12), we have the closed-loop op­
timal control as 

u*(t) = -R-1(t)B'(t)P(t)x*(t). (6.5.20) 

Some noteworthy features of this result follow. 

1. The HJB partial differential equation (6.5.8) reduces to a nonlin­
ear, matrix, differential equation (6.5.17). 

2. The matrix P(t) is determined by numerically integrating back­
ward from tf to to. We also note that since the nxn P(t) matrix 
is symmetric, one need to solve only n( n + 1) /2 instead of nxn 
equations. 

3. The reason for assuming the solution of the form (6.5.11) is that 
we are able to obtain a closed-loop optimal control, which is lin­
ear, and time-varying w.r.t. the state. 

4. A necessary condition: The result that has been obtained is only 
the necessary condition for optimality in the sense that the min­
hnum cost function J*(x(t), t) must satisfy the HJB equation. 
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5. A sufficient condition: If there exists a cost function JS(x(t), t) 
which satisfies the HJB equation, then JS(x(t), t) is the minimum 
cost function, i.e., 

JS(x(t), t) = J*(x(t), t). (6.5.21) 

6. Solution of the nonlinear HJB equation: For the linear, time­
varying plant with quadratic performance index, we are able to 
guess the solution to the nonlinear HJB equation. In general, we 
may not be able to easily find the solution, and the nonlinear 
HJB equation needs to be solved by numerical techniques. 

7. Applications of HJB equation: The HJB equation is useful in 
optimal control systems. Also, this provides a bridge between 
dynamic programming approach and optimal control. 

We provide another example with infinite-time interval for the appli­
cation of HJB approach. 

Example 6.4 

Find the closed-loop optimal control for the first-order system 

x(t) = -2x(t) + u(t) (6.5.22) 

with the performance index 

J = 10"'" [x2 (t) + u2 (t)] dt. (6.5.23) 

Hint: Assume that J* = Jx2 (t). 

Solution: First of all, let us identify the various functions as 

V(x(t), u(t)) = x2 (t) + u2(t), 
J(x(t), u(t)) = -2x(t) + u(t). (6.5.24) 

We now follow the step-by-step procedure given in Table 6.4 . 

• Step 1: Form the 1t function as 

H(x(t), u(t), J;) = V(x(t), u(t)) + J;J(x(t), u(t)) 

= x2 (t) + u2 (t) + 2Jx(t) [-2x(t) + u(t)] 

= x2 (t) + u2 (t) - 4Jx2 (t) + 2Jx(t)u(t) (6.5.25) 

where, we used J* = Jx2 (t) and J; = 2Jx(t). Here, we use a 
slightly different approach by using the value of J; in the begin­
ning itself. 
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• Step 2: Minimize 7-l w.r.t. u to obtain optimal control u*(t) as 

a7-l 
au = 2u*(t) + 2fx*(t) = 0 -----* u*(t) = - fx*(t). (6.5.26) 

Step 3: Using the result of Step 2 in Step 1, find the optimal 7-l 
as 

2 2 2 2 
7-l*(x*(t), J;, t) = x* (t) - 4fx* (t) - f x* (t). (6.5.27) 

• Step 4: Solve the HJB equation 

7-l*(x*(t), J;) + J; = 0 -----* 

X*2 (t) - 4fx*2 (t) - f 2x*2 (t) = O. (6.5.28) 

Note that Jt = 0 in the previous HJB equation. For any x* (t), 
the previous equation becomes 

Taking the positive value of f in (6.5.29), we get 

J* = fX*2 (t) = (-2 + V5)X*2 (t). 

(6.5.29) 

(6.5.30) 

Note that (6.5.29) is the scalar version of the matrix ARE (3.5.15) 
for the infinite-time interval regulator system. 

• Step 5: Using the value of f from Step 4, in Step 2, we get the 
optimal control as 

u*(t) = - fx*(t) = -( V5 - 2)x*(t). (6.5.31) 

6.6 Notes and Discussion 
In this chapter, we discussed two topics: dynamic programming and 
HJB equation. The dynamic programming was developed by Bellman 
during the 1960s as an optimization tool to be adapted with the then 
coming up of digital computers. An excellent account of dynamic pro­
gramming and optimal control is given recently by Bertsekas [18, 19], 
where the two-volume textbook develops in depth dynamic program­
ming, a central algorithmic method for optimal control, sequential de­
cision making under uncertainty, and combinatorial optimization. 
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Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 6.1 Prove the Pontryagin Minimum Principle based on the 
works of Athans and Falb [6], Lee and Markus [86], Machki and Strauss 
[97] and some of the recent works Pinch [108] and Hocking [66]. 

Problem 6.2 For the general case of the Example 6.2, develop a 
MATLAB© based program. 

Problem 6.3 For a traveling salesperson, find out the cheapest route 
from city L to city N if the total costs between the intermediate cities 
are shown in Figure 6.8. 

Problem 6.4 Consider a scalar example 

x(k + 1) = x(k) + u(k) (6.6.1) 

and the performance criterion to be optimized as 

1 1 kf-l 

J = 2x2 (kf) + 2 L u2(k) 
k=ko 

1 2 1 2 1 2 
= 2x (kf ) + 2u (0) + 2u (1) 

where, for simplicity of calculations we take kf = 2. Let the constraints 
on the control be 

-1.0 :S u(k) :S +1.0, k = 0,1,2 or 

u(k) = -1.0, -0.5, 0, +0.5, +1.0 

and on the state be 

0.0 :S x(k) :S + 1.0, k = 0,1 or 

x(k) = 0.0, 0.5, 1.0, 1.5. 

Find the optimal control sequence u*(k) and the state x*(k) which 
minimize the performance criterion. 
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E 

L N 

G 

Figure 6.8 Optimal Path from A to B 

Problem 6.5 Find the Hamilton-Jacobi-Bellman equation for the sys­
tem 

:h (t) = X2(t) 

X2(t) = -2X2(t) - 3xi(t) + u(t) 

with the performance index as 

1 rtf ( ) J = 2" 10 xi(t) + u2(t) dt. 

Problem 6.6 Solve the Example 5.3 using dynamic programming ap­
proach. 

Problem 6.7 For the D.C. motor speed control system described in 
Problem 1.1, find the HJB equation and hence the dosed-loop optimal 
control to keep the speed at a constant value. 

Problem 6.8 For the liquid-level control system described in Prob­
lem 1.2, find the HJB equation and hence the dosed-loop optimal con­
trol to keep the liquid level constant at a particular value. 
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Problem 6.9 For the mechanical control system described in Prob­
lem 1.4, find the HJB equation and hence the closed-loop optimal con­
trol to keep the states at a constant value. 

Problem 6.10 For the automobile suspension system described in 
Problem 1.5, find the HJB equation and hence the closed-loop control. 

@@@@@@@@@@@@@ 





Chapter 7 

Constrained Optimal 
Control Systems 

In the previous chapters, we considered optimization of systems with­
out any constraints on controls or state variables. In this chapter, we 
present an entirely different class of systems where we impose some 
constraints on controls and/or states. In this way, we address the 
time-optimal control (TOC) system, where the performance measure is 
the minimization of the transition time from initial state to any tar­
get or desired state. Our treatment is focused on linear, time-invariant 
(LTI) systems. These are also called brachistochrone problems. Next, 
we address fuel-optimal control (FOC) system, where the performance 
measure is minimization of a quantity proportional to fuel consumed 
by the process or plant. Next, we briefly consider the energy-optimal 
control (EOC) system. Finally, we consider a plant with some con­
straints on their states. It is suggested that the student reviews the 
material in Appendices A and B given at the end of the book. This 
chapter is based on [6, 79]1. 

7.1 Constrained Optimal Control 
From Chapter 6 (Table 6.1) the Pontryagin Principle is now summa­
rized below for linear, time-invariant system with a quadratic perfor-

1 The permission given by McGraw-Hill for M. Athans and P. L. Falb, Optimal Control: An 
Introduction to The Theory and Its Applications, McGraw-Hill Book Company, New York, 
NY, 1966, is hereby acknowledged. 
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mance index. Given the system as 

x(t) = A(t)x(t) + B(t)u(t) (7.1.1) 

with the control constraint as 

u- :S u( t) :S U+ ----+ lu( t) I :S U (7.1.2) 

the performance index as 

J(x(to), u(t), to) = J 

= ~ x' ( t f ) F ( t f ) x ( t f ) 

lit! +- [x'(t)Q(t)x(t) + u'(t)R(t)u(t)] dt (7.1.3) 
2 to 

and the boundary conditions as 

x(to) = Xo fixed,x(tf) = xf is free and tf is free, (7.1.4) 

to find the optimal control, form the Pontryagin H function 

1 1 
H(x(t), u(t), ;\(t) , t) = "2x'(t)Q(t)x(t) + "2u'(t)R(t)u(t) 

+;\' (t) [A(t)x(t) + B(t)u(t)] (7.1.5) 

minimize H w.r.t. u(t)(:S U) as 

H(x* (t), u* (t), ;\ * (t), t) :S H(x* (t), u( t), ;\ * (t), t), 

and solve the set of 2n state and costate differential equations 

x*(t) = + G~) * ' 
.x*(t) = _ (aH) 

ax * 

with the boundary conditions Xo and 

where, 

(7.1.6) 

(7.1.7) 

(7.1.8) 
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Note: Here we address the optimal control system with a constraint 
on the control u(t) given by (7.1.2). Thus, we cannot in general use 
the condition 

(a1i) = 0 
au * 

(7.1.9) 

that we used earlier in Chapters 2 to 4 for continuous-time systems, 
where we had no constraints on the control u(t), because there is no 
guarantee that in general the optimal control u*(t) obtained by using 
the condition (7.1.9) will satisfy the constraint on the control given by 
(7.1.2). 

7.1.1 Time-Optimal Control of LTI System 

In this section, we address the problem of minimizing the time taken 
for the system to go from an initial state to the desired final state of 
a linear, time-invariant (LTI) system. The desired final state can be 
conveniently taken as the origin of the state space; in this way we will 
be dealing with time-optimal regulator system. 

7.1.2 Problem Formulation and Statement 

Let us now present a typical time-optimal control (TOC) system. Con­
sider a linear, time-invariant dynamical system 

x(t) = Ax(t) + Bu(t) (7.1.10) 

where, x(t) is nth state vector; u(t) is rth control vector, and the 
matrices A and B are constant matrices of nxn and nxr dimensions, 
respectively. We are also given that 

1. the system (7.1.10) is completely controllable, that is, the matrix 

(7.1.11) 

is of rank n or the matrix G is nonsingular, and 

2. the magnitude of the control u(t) is constrained as 

u- :S u(t) :S U+ ---+ lu(t)l:S u (7.1.12) 
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or component wise 

(7.1.13) 

Here, U+ and U- are the upper and lower bounds of U. But, the 
constraint relation (7.1.12) can also be written more conveniently 
(by absorbing the magnitude U into the matrix B) as 

-1 :::; u(t) :::; +1 ---+ lu(t)l:::; 1 (7.1.14) 

or component wise, 

(7.1.15) 

3. the initial state is x(to) and the final (target) state is o. 

The problem statement is: Find the (optimal) control u*(t) which sat­
isfies the constraint (7.1.15) and drives the system (7.1.1 0) from the 
initial state x(to) to the origin 0 in minimum time. 

7.1.3 Solution of the TOe System 

We develop the solution to this time-optimal control (TOe) system 
stated previously under the following steps. First let us list all the 
steps here and then discuss the same in detail. 

• Step 1: Performance Index 

• Step 2: Hamiltonian 

• Step 3: State and Costate Equations 

• Step 4: Optimal Condition 

• Step 5: Optimal Control 

• Step 6: Types of Time-Optimal Controls 

• Step 7: Bang-Bang Control Law 

• Step 8: Conditions for Normal Time Optimal Control System 

• Step 9: Uniqueness of Optimal Control 

• Step 10: Number of Switchings 
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• Step 1: Performance Index: For the minimum-time system for­
mulation specified by (7.1.10) and by the control constraint rela­
tion (7.1.14), the performance index (PI) becomes 

it! it! 
J(u(t)) = V [x(t), u(t), t] dt = 1dt = tf - to 

to to 
(7.1.16) 

where, to is fixed and t f is free. If the final time t f is fixed, trying 
to minimize a fixed quantity makes no sense. 

• Step 2: Hamiltonian: We form the Hamiltonian H for the prob­
lem described by the system (7.1.10) and the PI (7.1.16) as 

H(x(t), ;\(t), u(t)) = 1 + ;\'(t) [Ax(t) + Bu(t)] , 

= 1 + [Ax(t)]';\(t) + u'(t)B';\(t) (7.1.17) 

where, ;\(t) is the costate variable. 

• Step 3: State and Costate Equations: Let us assume the optimal 
values u*(t), x*(t), and ;\*(t). Then, the state x*(t) and the 
costate ;\*(t) are given by 

x*(t) = + (~~) * = Ax*(t) + Bu*(t), 

j.*(t) = - (aH) = -A';\*(t) 
ax * 

with the boundary conditions 

where, we again note that t f is free. 

(7.1.18) 

(7.1.19) 

(7.1.20) 

• Step 4: Optimal Condition: Now using Pontryagin Principle, we 
invoke the condition (7.1.6) for optimal control in terms of the 
Hamiltonian. Using (7.1.17) in (7.1.6), we have 

1 + [Ax*(t)]';\*(t) + u*'(t)B';\*(t) 

::; 1 + [Ax*(t)]';\*(t) + u'(t)B';\*(t) 

which can be simplified to 

u * I ( t ) B ';\ * ( t) ::; u' ( t ) B I ;\ * ( t ) , 

u * I ( t ) q * ( t) ::; u ' ( t ) q * ( t ) , 

= min {u' (t)q*(t)} 
lu(t)l~l 

(7.1.21) 

(7.1.22) 
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where q*(t) = B'A*(t), and q*(t) is not to be confused as the 
vector version of the weighting matrix Q used in quadratic per­
formance measures . 

• Step 5: Optimal Control: We now derive the optimal sequence 
for u*(t). From the optimal condition (7.1.21) 

1. if q*(t) is positive, the optimal control u*(t) must be the 
smallest admissible control value -1 so that 

min {u'(t)q*(t)} = -q*(t) = -lq*(t)l, (7.1.23) 
lu(t)l~l 

2. and on the other hand, if q*(t) is negative, the optimal con­
trol u*(t) must be the largest admissible value +1 so that 

min {u'(t)q*(t)} = +q*(t) = -lq*(t)l. (7.1.24) 
lu(t)l~l 

In other words, the previous two relations can be written in a 
compact form (for either q*(t) is positive or negative) as 

min {u' ( t) q * ( t)} = - I q * ( t ) I . 
lu(t)l~l 

(7.1.25) 

Also, the combination of (7.1.23) and (7.1.24) means that 

{

+1 
u*(t) = -1 

indeterminate 

if q*(t) < 0, 
if q*(t) > 0, 
if q*(t) = 0. 

(7.1.26) 

Now, using the signum function (see Figure 7.1) defined between 
input fi and output fo, written as fo = sgn{li} as 

{

+1 
fo = -1 

indeterminate 

if Ii > ° 
if fi < ° 
if fi = 0. 

The engineering realization of the signum function is an ideal 
relay. 

Then, we can write the control algorithm (7.1.26) in a compact 
fonn as 

I u*(t) = -SGN{q*(t)} I (7.1.27) 
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+11-------

-1 +1 

-------1-1 

Figure 7.1 Signum Function 

~ 

+1 

-q*(t) u*(t) 
.. 

-1 +1 

-1 

Figure 7.2 Time-Optimal Control 

where the relation between the time-optimal control u*(t) and 
the function q*(t) is shown in Figure 7.2. 

In terms of component wise, 

uj(t) = -sgn{qj(t)} 

= -sgn{bjA*(t)} (7.1.28) 

where, bj,j = 1,2, ... , r denote the column vectors of the input 
matrix B. From the time-optimal control relation (7.1.27), note 
that the optimal control u*(t) depends on the costate function 
A*(t) . 

• Step 6: Types of Time-Optimal Controls: We now have two 
types of time-optimal controls, depending upon the nature of the 
function q*(t). 

1. Normal Time- Optimal Control (NTOC) System: Suppose 
that during the interval [to, tj], there exists a set of times 
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h,t2, ... ,t'Yj E [to,t!], ,= 1,2,3, ... ,j = 1,2, ... ,r such 
that 

*(t) - b' A*(t) _ {O, if and only if t = t'Yj 
% - j - nonzero, otherwise, 

(7.1.29) 

then we have a normal time-optimal control (NTOC) sys­
tem. The situation is depicted in Figure 7.3. Here, the 

+1 
Uj*(t)=-sgn {%*(t)} 

r-----.---/.-----~ ~------------------

t 

-1 

Figure 7.3 Normal Time-Optimal Control System 

function q; (t) is zero only at four instants of time, and the 
time optimal control is piecewise constant function with sim­
ple switchings at t1, t2, t3, and t4. Thus, the optimal control 
uJ (t) switches four times, or the number of switchings is 
four. 

2. Singular Time-Optimal Gontrol (STOG) System: Suppose 
that during the interval [to, tj], there is one (or more) subin­
tervals [T1 , T2]' such that 

(7.1.30) 

then, we have a singular time-optimal control (STOG) sys­
tem, and the interval [Tl, T2] is called singularity intervals. 
The situation is shown in Figure 7.4. During this singularity 
intervals, the time-optimal control is not defined. 
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+1 

Or--+------r-----~------~------__+ 
tt' t 

-1 

Figure 7.4 Singular Time-Optimal Control System 

• Step 7: Bang-Bang Control Law: For a normal time-optimal 
system, the optimal control, given by (7.1.27) 

I u*(t) = -SGN{q*(t)} = -SGN{B'A*(t)} I (7.1.31) 

for all t E [to, tj], is a piecewise constant function of time (i.e., 
bang-bang). 

• Step 8: Conditions for NTOC System: Here, we derive the con­
ditions necessary for the system to be not singular, thereby ob­
taining the conditions for the system to be normal. First of all, 
the solution of the costate equation (7.1.19) is 

(7.1.32) 

and assume that the costate initial condition A*(O) must be a 
nonzero vector. With this solution for A * (t), the control law (7.1.31) 
becomes 

u*(t) = -SGN{B'E-A'tA*(O)} (7.1.33) 

or component wise, 

uj(t) = -sgn{qj(t)}, 

= -sgn {bjE-A't A*(O)} . (7.1.34) 
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Let us suppose that there is an interval of time [TI' T2 ] during 
which the function q*(t) is zero. Then, it follows that during 
the time interval [TI' T2] all the derivatives of q*(t) must be zero. 
That is 

qj(t) = bjE -A1tA*(0) = 0 

i/(t) bjA'E-A'tA*(O) = 0 

q*(t) = bjA,2E-A'tA*(0) = 0 

(7.1.35) 

which in turn can be written in a compact form as 

(7.1.36) 

where, 

G j = [bj : Abj : A2b j : ... : An-lbj ] 

= [B : AB : A2B : ... : An-IB]. (7.1.37) 

In the condition (7.1.36), we know that E-A't is nonsingular, and 
A*(O) =1= 0, and hence the matrix Gj must be singular. Hence, 
for the STOC system, G j must be singular. Or for the NTOC 
system, G j must be nonsingular. We know that the matrix G j 

is nonsingular if and only if the original system (7.1.10) is com­
pletely controllable. This leads us to say that the time-optimal 
control system is normal if the matrix G j is nonsingular or if 
the system is completely controllable. These results are stated as 
follows (the proofs are found in books such as [6]). 

THEOREM 7.1 

The necessary and sufficient conditions for the time-optimal control 
system to be normal is that the matrix G j , j = 1,2, ... , r, is nonsin­
gular or that the system is completely controllable. 
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THEOREM 7.2 

The necessary and sufficient conditions for the time-optimal control 
system to be singular is that the matrix Gj,j = 1,2, ... , r, is singular 
or that the system is uncontrollable. 

Thus, for a singular interval to exist, it is necessary that the 
system is uncontrollable, conversely, if the system is completely 
controllable, a singular interval cannot exist. 

• Step 9: Uniqueness of Optimal Control: If the time-optimal 
system is normal, then the time-optimal control is unique . 

• Step 10: Number of Switchings: The result is again stated in 
the form of a theorem. 

THEOREM 7.3 

If the original system (7.1.10) is normal, and if all the n eigenvalues 
of the system are real, then the optimal control u*(t) can switch (from 
+1 to -lor from -1 to +1) at most (n - 1) times. 

7.1.4 Structure of Time- Optimal Control System 

We examine two natural structures, i.e., open-loop and closed-loop 
structures for implementation of time-optimal control system. 

1. Open-Loop Structure: We repeat here again the time-optimal 
control system and summarize the result. For the normal time­
optimal control system, where the system is described by 

x(t) = Ax(t) + Bu(t) (7.1.38) 

with the constraint on the control as 

jUj(t)j ~ 1, j = 1,2, ... ,r. (7.1.39) 

the time-optimal control is to find the control which drives the 
system (7.1.38) from any initial condition x(O) to target condi­
tion 0 in minimum time under the constraint (7.1.39). From the 
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previous discussion, we know that the optimal control is given 
by 

uj(t) = -sgn{bj, .\*(t)} (7.1.40) 

where, the costate function .\*(t) is 

'\*(t) = E-A't.\*(O). (7.1.41) 

Let us note that the initial condition .\ * (0) is not specified and 
hence arbitrary, and hence we have to adopt an iterative proce­
dure. Thus, the steps involved in obtaining the optimal control 
are given as follows. 

(a) Assume a value for the initial condition .\*(0). 

(b) Using the initial value in (7.1.41), compute the costate .\*(t). 

(c) Using the costate .\*(t), evaluate the control (7.1.40). 

(d) Using the control u*(t), solve the system relation (7.1.38). 

(e) Monitor the solution x*(t) and find if there is a time tf 
such that the system goes to zero, i.e., x(tf) = O. Then 
the corresponding control computed previously is the time­
optimal control. If not, then change the initial value of .\*(0) 
and repeat the previous steps until x(tf) = O. 

A schematic diagram showing the open-loop, time-optimal con­
trol structure is shown in Figure 7.5. The relay shown in the 

r-----------------------Re1iy-: r----- -i(O)------: 

~(t)= -A' A(t) A *(t) -B I -q*(t ~ :u*(t): x(t)=Ax(t)+Bu(t) x*(~) 1 

L: 
Stop Iteration 1+----'" 

Start Iteration! 

1 
1 
1 
1 
1 
1 
1 1 • 

Change A(O) 
··r······,.······························· 

1 1 
1 1 
1 1 _____________________________ 1 L _______________ J 

Open-Loop Time-Optimal Controller Plant 

Figure 7.5 Open-Loop Structure for Time-Optimal Control System 
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figure is an engineering realization of signum function. It gives 
the required control sequences +1 or -1 depending on its input. 
However, we note the following: 

(a) The adjoint system (7.1.19) has unstable modes for a stable 
system (7.1.10). This makes the already an iterative proce­
dure much more tedious. 

(b) We all know the obvious disadvantages of the open-loop im­
plementation of a control system. 

One should try for closed-loop implementation of the time-optimal 
control system, which is discussed next. 

2. Closed-Loop Structure: Intuitively, we can feel the relation be­
tween the control u * ( t) and the state x* ( t) recalling the results 
of Chapters 3 and 4 where we used Riccati transformation ..\ * (t) = 

P(t)x*(t) to express the optimal control u*(t), which was a func­
tion of the costate ..\ * (t), as a function of the state x* (t). Thus, we 
assume that at any time there is a time-optimal control u*(t) as a 
function of the state x*(t). That is, there is a switching function 
h(x* (t)) such that 

I u*(t) = -SGN{h(x*(t))} I (7.1.42) 

where an analytical and/or computational algorithm 

h(x*(t)) = B'..\*(x*(t)). (7.1.43) 

needs to be developed as shown in the example to follow. Then, 
the optimal control law (7.1.42) is implemented as shown in Fig­
ure 7.6. The relay implements the optimal control depending on 
its input which in turn is decided by the feedback of the states. 
The determination of the switching functions h[x*(t)] is the im­
portant aspect of the implementation of the control law. In the 
next section, we demonstrate the way we try to obtain the closed­
loop structure for time-optimal control system of a second order 
(double integral) system. 

7.2 TOe of a Double Integral System 
Here we examine the time-optimal control (TOC) of a classical dou­
ble integral system. This simple example demonstrates some of the 
important features of the TOC system [6]. 
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.--------------------------, 
, Relay , r--------------, , , , , , , , , 
i Algorithm - h[x*(t)] :f -1 

, , , 
'u*(t), !x*(t) , ' .. x(t)=Ax(t)+Bu(t) , I' 

Ii 
, , , , , , 

, , 

l _________________________ ~ L _____________ J 

Closed-Loop Time-Optimal Controller Plant 

Figure 7.6 Closed-Loop Structure for Time-Optimal Control 
System 

7.2.1 Problem Formulation and Statement 

Consider a simple motion of an inertial load in a frictionless environ­
ment. The motion is described by 

my(t) = f(t) (7.2.1) 

where, m is the mass of a body (system or plant), y(t), y(t), and y(t) 
are the position, velocity and acceleration, respectively, and f(t) is the 
external force applied to the system. Defining a set of state variables 
as 

XI(t) = y(t); X2(t) = y(t) 

we have the double integral system described as 

XI(t) = X2(t) 

X2(t) = u(t) 

(7.2.2) 

(7.2.3) 

where, u(t) = f(t)/m. Let us assume that the control (input) u(t) to 
the system is constrained as 

I u ( t) I :::; 1 V t E [to, t f ] . (7.2.4) 

This constraint on the control is due to physical limitations such as 
current in a circuit or thrust of an engine. 

Problem Statement: Given the double integral system (7.2.3) and 
the constraint on the control (7.2.4), find the admissible control that 
forces the system from any initial state [Xl (0), X2 (0)] to the origin in 
minimum time. 

Let us assume that we are dealing with normal system and no singular 
controls are allowed. Now, we attempt to solve the system following 
the procedure described in the previous section. 
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7.2.2 Problem Solution 

Our problem solution consists of the list of the following steps with the 
details following. 

• Step 1: Performance Index 

• Step 2: Hamiltonian 

• Step 3: Minimization of Hamiltonian 

• Step 4: Costate Solutions 

• Step 5: Time-Optimal Control Sequences 

• Step 6: State Trajectories 

• Step 7: Switch Curve 

• Step 8: Phase Plane Regions 

• Step 9: Control Law 

• Step 10: Minimum Time 

• Step 1: Performance Index: For minimum-time system, the per­
formance index (7.1.16) is easily seen to be 

l
tf 

J = 1 dt = t f - to 
to 

(7.2.5) 

where, to is fixed and t f is free. 

• Step 2: Hamiltonian: From the system (7.2.3) and the PI (7.2.5), 
form the Hamiltonian (7.1.17) as 

'H(x(t) , ;\(t), u(t)) = 1 + Al(t)X2(t) + A2(t)U(t). (7.2.6) 

• Step 3: Minimization of Hamiltonian: According to the Pon­
tryagin Principle, we need to minimize the Hamiltonian as 

'H(x*(t), ;\*(t), u*(t)) :S 'H(x*(t), ;\*(t), u(t),) 

= min 'H(x*(t), ;\*(t), u(t)). (7.2.7) 
lul~l 
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Using the Hamiltonian (7.2.6) in the condition (7.2.7), we have 

which leads to 

1 + Ai(t)x;(t) + A;(t)U*(t) 

< 1 + Ai(t)x;(t) + A;(t)U(t) (7.2.8) 

(7.2.9) 

U sing the result of the previous section, we have the optimal 
control (7.1.27) given in terms of the signum function as 

u*(t) = -sgn{A;(t)}. (7.2.10) 

N ow to know the nature of the optimal control, we need to solve 
for the costate function A2 (t) . 

• Step 4: Costate Solutions: The costate equations (7.1.19) along 
with the Hamiltonian (7.2.6) are 

. 81i 
Ai(t) = -a * = 0, 

xl 

'\;(t) = -a8~ = -Ai(t). 
x 2 

(7.2.11) 

Solving the previous equations, we get the costates as 

Ai(t) = Ai(O), 

A;(t) = A;(O) - AI(O)t. (7.2.12) 

• Step 5: Time-Optimal Control Sequences: From the solutions 
of the costates (7.2.12), we see that A2(t) is a straight line, and 
that there are four possible (assuming initial conditions AI(O) and 
A2(0) to be nonzero) solutions as shown in Figure 7.7. Also shown 
are the four possible optimal control sequences 

{+1}, {-1}, {+1,-1}, {-1,+1} (7.2.13) 

that satisfy the optimal control relation (7.2.10). Let us reiter­
ate that the admissible optimal control sequences are the ones 
given by (7.2.13). That is, a control sequence like {+1,-1,+1} 
is not an optimal control sequence. Also, the control sequence 
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A2(t) ........ . 
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-1 -1 u*(t) 

(a) AI(O) > 0; A2(0) < 0 (b) AI(O) < 0; A2(0) >0 
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......... ~~(t) 

-1 t------I '. 
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(d) Al (0) > 0; A2(0»0 

Figure 7.7 Possible Costates and the Corresponding Controls 

{ + 1, -1, + I} requires two switchings which is in violation of the 
earlier result (Theorem 7.3) that a second (nth) order system will 
have at most 1 (n - 1) switchings. From Figure 7.7, we see that 
the time-optimal control for the second order (double integral) 
system is a piecewise constant and can switch at most once. In 
order to arrive at closed-loop realization of the optimal control, 
we need to find the phase (XI(t), X2(t)) plane (state) trajectories . 

• Step 6: State Trajectories: Solving the state equations (7.2.3), 
we have 

1 
xi(t) = xi(O) + X2(0)t + 2Ut2 , 

X2(t) = x2(0) + Ut, (7.2.14) 

where, U = u*(t) = ±l. For phase plane plots, we need to elimi­
nate t from solutions (7.2.14) for the states. Thus, (for simplicity, 
we omit * since we are now dealing with all optimal functions 
only and write XI(O) = XlO, X2(0) = X20) 

t = (X2(t) - X20)/U, 
1 2 1 2 

Xl (t) = XlO - 2U X20 + 2U X2(t), (7.2.15) 
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where, we used U = ±1 = I/U. If 

{ 
t = X2 ( t) - X20 

U = U = +1, I 2 I 2 I 2 
Xl (t) = XlO - 2 X20 + 2 X2(t) = CI + 2 X2(t) 

(7.2.16) 

and if 

u = U = -1, { 
t = X20 - X2(t), 
XI(t) = XlO + !x§o - !x§(t) = C2 - !x§(t) 

(7.2.17) 

where, CI = XlO - !x§o and C2 = XlO + !x§o are constants. Now, 
we can easily see that the relations (7.2.16) and (7.2.17) represent 
a family of parabolas in (Xl, X2) plane (or phase plane) as shown 
in Figure 7.8. The arrow indicates the direction of motion for 
increasing (positive) time. Our aim is to drive the system from 

u=+l 

u =-1 

Figure 7.8 Phase Plane Trajectories for u = + 1 (dashed lines) and 
u = -1 (dotted lines) 

any initial state (XI(O), X2(0)) to origin (0,0) in minimum time. 
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Then, from (7.2.15), we find that at t = tf 

XI(t = tf) = 0; X2(t = tf) = 0. (7.2.18) 

With this, (7.2.15) becomes 

1 2 1 2 
0= XlO - 2UX20 + ° ---+ XlO = 2UX20· (7.2.19) 

Now, rewriting this for any initial state Xl = XlO, X2 = X20, we 
have 

(7.2.20) 

Note that Xl and X2 in (7.2.19) are any initial states and not to 
be confused with XI(t) and X2(t) in (7.2.15) which are the states 
at any time t. 

Now we can restate our problem as to find the time-optimal con­
trol sequence to drive the system from any initial state (Xl, X2) 
to the origin (0,0) in minimum time . 

• Step 7: Switch Curve: From Figure 7.8, we see that there are 
two curves labeled r+ and r- which transfer any initial state 
(Xl, X2) to the origin (0,0). 

1. The r+ curve is the locus of all (initial) points (Xl, X2) which 
can be transferred to the final point (0,0) by the control u = 

+1. That is 

1'+ = {(Xl, X2): xl = ~X~' X2::; o} . (7.2.21) 

2. The r- curve is the locus of all (initial) points (Xl, X2) which 
can be transferred to the final point (0,0) by the control u = 

-1. That is 

1'- = {(Xl, X2): Xl = -~X~' X2 ~ o}. (7.2.22) 

3. The complete switch curve, i. e., the r curve, is defined as 
the union (either or ) of the partial switch curves r + and r - . 
That is 

l' = {(Xl, X2): Xl = -~x2Ix21}, 
= r+ U r-

where, U means the union operation. 

(7.2.23) 
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The switch curve 'Y is shown in Figure 7.9 

U* = +1 

R+ 

U* =-1 
R_ 

Figure 7.9 Switch Curve for Double Integral Time-Optimal 
Control System 

• Step 8: Phase Plane Regions: Let us now define the regions in 
which we need to apply the control u = + 1 or u = -1. 

1. Let R+ be the region of the points such that 

R+ = {(Xl,X2): Xl < -~x2Ix21}. (7.2.24) 

That is R+ consists of the region of the points to the left of 
the switch curve 'Y. 

2. Let R_ be the region of the points such that 

(7.2.25) 

That is R_ consists of the region of the points to the right 
of the switch curve 'Y. 
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u=+1 
'. ". 

u =-1 

Figure 7.10 Various Trajectories Generated by Four Possible 
Control Sequences 

Figure 7.10 shows four possible control sequences (7.2.13) which 
drive the system from any initial condition to the origin. 

1. If the system is initially anywhere (say a) on the /"+ curve, 
the optimal control is u = + 1 to drive the system to origin 
in minimum time t f. 

2. If the system is at rest anywhere (say b) on the /,,_ curve, 
the optimal control is u = -1 to drive the system to origin 
in minimum time t f. 

3. If the system is initially anywhere (say c) in the R+ region, 
the optimal control sequence is u = {+ 1, -1} to drive the 
system to origin in minimum time t f. 

4. If the system is initially anywhere (say d) in the R- region, 
the optimal control sequence is u = {-1, + 1} to drive the 
system to origin in minimum time t f. 

If we start at d and use the control u = + 1 and use the 
optimal control sequence u = {-1, +1}, we certainly drive 
the system to origin but 
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(a) we then have a control sequence {+1, -1, +1} which is 
not a member of the optimal control sequence (7.2.13), 
and 

(b) the time t f taken for the system using the control se­
quence {+ 1, -1, + 1} is higher than the corresponding 
time t f taken for the system with control sequence 
{-1,+1}. 

• Step 9: Control Law: We now reintroduce * to indicate the 
optimal values. The time-optimal control u* as a function of the 
state [Xl, X2] is given by 

u* = u*(XI, X2) = +1 for all (Xl, X2) E f+ U R+ 

u* = u*(XI, X2) = -1 for all (Xl, X2) E f- U R_. (7.2.26) 

Alternatively, if we define z = Xl + ~x2Ix21, then if 

z > 0, u* = -1, and 

z < 0, u* = +1. (7.2.27) 

• Step 10: Minimum Time: We can easily calculate the time taken 
for the system starting at any position in state space and ending 
at the origin. We use the set of equations (7.2.15) for each portion 
of the trajectory. It can be shown that the minimum time tj for 
the system starting from (Xl, X2) and arriving at (0,0) is given 
by [6] 

if 
if 
if 

(Xl, X2) E R_ 
(Xl, X2) E R+ 
(Xl, X2) E I 

or Xl > -~x2Ix21 
or Xl < -#x2Ix21 
or Xl = -2X21x21 

(7.2.28) 

7.2.3 Engineering Implementation of .Control Law 

Figure 7.11 shows the implementation of the optimal control law (7.2.26). 

1. If the system is initially at (Xl, X2) E R_, then Xl > -~x2Ix21, 
which means z > 0 and hence the output of the relay is u* = -1. 

2. On the other hand, if the system is initially at (Xl, X2) E R+, 
then Xl < -~x2Ix21, which means z < 0 and hence the output of 
the relay is u* = + 1. 
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1-----------------------------------------------, 
I I 

: u*(t) J X2 *(t) J Xl *(t) l 
I I 
: Plant : ------------------------------------------- -~ 
r -----------------------------~----------------
I 

: Function 
Generator 

Relay 

-If f -1 

Closed-Loop Time-Optimal Controller 

Figure 7.11 Closed-Loop Implementation of Time-Optimal Control 
Law 

Let us note that the closed-loop (feedback) optimal controller is non­
linear (control u* is a nonlinear function of xi and x~2) although the 
system is linear. On the other hand, we found in Chapters 3 and 4 for 
unconstrained control, the optimal control u* is a linear function of the 
state x*. 

7.2.4 SIMULINX@ Implementation of Control Law 

The SIMULINK© implementation of time-optimal control law is very 
easy and convenient. The controller is easily obtained by using abs and 
signum function blocks as shown in Figure 7.12. Using different initial 
conditions, one can get the phase-plane (Xl and X2 plane) trajectories 
belonging to 1'+,1'-, R+ and R- shown in Figures 7.13,7.14,7.15, and 
7.16, respectively. 

7.3 Fuel-Optimal Control Systems 
Fuel-optimal control systems arise often in aerospace systems where 
the vehicles are controlled by thrusts and torques. These inputs like 
thrusts are due to the burning of fuel or expulsion of mass. Hence, the 
natural question is weather we can control the vehicle to minimize the 
fuel consumption. Another source of fuel-optimal control systems is 
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PLANT 

u 

Phase Plane 

Figure 7.12 SIMULINK© Implementation of Time-Optimal 
Control Law 

nuclear reactor control systems where fuel remains within the system 
and not expelled out of the system like in aerospace systems. 

An interesting historical account is found in [59] regarding fuel-optimal 
control as applicable to the terminal phase of the lunar landing prob­
lem [100] of Apollo 11 mission, in which astronauts Neil Armstrong and 
Edwin Aldrin soft-landed the Lunar Excursion Module (LEM) "Eagle" 
on the lunar surface on July 20, 1969, while astronaut Michael Collins 
was in the orbit with Apollo Command Module "Columbia". 

7.3.1 Fuel- Optimal Control of a Double Integral Sys­
tem 

In this section, we formulate the fuel-optimal control system and obtain 
a solution to the system. 
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Figure 7.13 Phase-Plane Trajectory for 1'+: Initial State (2,-2) and 
Final State (0,0) 

Figure 7.14 Phase-Plane Trajectory for 1'_: Initial State (-2,2) and 
Final State (0,0) 



318 Chapter 7: Constrained Optimal Control Systems 

Figure 7.15 Phase-Plane Trajectory for R+: Initial State (-1,-1) 
and Final State (0,0) 

Figure 7.16 Phase-Plane Trajectory for R_: Initial State (1,1) and 
Final State (0,0) 



7.3 Fuel-Optimal Control Systems 319 

7.3.2 Problem Formulation and Statement 

Consider a body with a unit mass undergoing translational motion 

:h (t) = X2(t) 

X2(t) = U(t), lu(t)1 ::; 1 (7.3.1) 

where, Xl(t) is the position, X2(t) is the velocity, and u(t) is the thrust 
force. Let us assume that the thrust (i.e., the control) is proportional 
to ¢( t), the rate of fuel consumption. Then, the total fuel consumed 
becomes 

it! 
J = ¢(t)dt. 

to 
(7.3.2) 

Let us further assume that 

1. the mass of fuel consumed is small compared with the total mass 
of the body, 

2. the rate of fuel, ¢(t) is proportional to the magnitude of the 
thrust, u(t), and 

3. the final time t f is free or fixed. 

Then from (7.3.2), the performance index can be formulated as 

it! 
J(u) = lu(t)1 dt. 

to 
(7.3.3) 

The fuel-optimal control problem may be stated as follows: Find the 
controlu(t) which forces the system (7.3.1) from any initial state (Xl(O), 
X2(O) = XlO, X20) to the origin in a certain unspecified final time t f while 
minimizing the fuel consumption (7.3.3). 

Note that in case the final time t f is fixed then that final time t f must 
be greater than the minimum time tj required to drive the system from 
(XlO, X20) to the origin. 

7.3.3 Problem Solution 

The solution to the fuel-optimal system is provided first under the 
following list of steps and then explained in detail. 



320 Chapter 7: Constrained Optimal Control Systems 

• Step 1: Hamiltonian 

• Step 2: Optimal Condition 

• Step 3: Optimal Control 

• Step 4: Costate Solutions 

• Step 5: State Trajectories 

• Step 6: Minimum Fuel 

• Step 7: Switching Sequences 

• Step 8: Control Law 

• Step 1: Hamiltonian: Let us formulate the Hamiltonian as 

H(x(t), A(t), U(t)) = lu(t)1 + Al(t)X2(t) + A2(t)U(t). (7.3.4) 

• Step 2: Optimal Condition: According to the Minimum Princi­
ple, the optimal condition is 

H(x*(t), A*(t), u*(t)) ::; H(x*(t), A*(t), u(t)), 

= min {H(x*(t), A*(t), u(t))}. (7.3.5) 
lu(t)l~l 

Using (7.3.4) in (7.3.5), we have 

lu*(t)1 + Ai(t)x~(t) + A~(t)U*(t) 
~ lu(t)1 + Ai(t)x~(t) + A~(t)U(t), 

which reduces to 

lu*(t)1 + U*(t)A~(t) ~ lu(t)1 + U(t)A~(t). 

• Step 3: Optimal Control: Let us note at this point that 

(7.3.6) 

(7.3.7) 

min {lu(t)1 + U(t)A~(t)} = lu*(t)1 + U*(t)A~(t) (7.3.8) 
lu(t)l~l 

and 

lu(t)1 = {+U(t) 
-u(t) 

if u(t) 2: 0, 
if u(t) ~ o. (7.3.9) 
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Hence, we have 

min {lu(t)1 + U(t)A2(t)} 
lu(t)l:Sl 

= {min1u(t)l:Sl {[+1 + A2(t)] u(t)} if u(t) ~ 0 

minlu(t)l:Sl {[-I + A2(t)] u(t)} if u(t) :S o. 
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(7.3.10) 

Let us now explore all the possible values of A2(t) and the cor­
responding optimal values of u*(t). Thus, we have the following 
table. 

Possible values of Resulting values of Mi ....... · ... , L ... U. ................ .I.U 

A2(t) u*(t) {lu(t)1 + u( 
A2 ( t) > + 1 u * ( t) = -1 1 - A2 ( t ) 
A2 ( t) < -1 u * ( t) = + 1 1 + A2 ( t) 
A2(t) = +1 -1 :S u*(t) :S 0 0 
A2 ( t) = -1 0 :S u * ( t) :S + 1 0 

-1 < A2(t) < 1 u*(t) = 0 0 
Possible values of Resulting values of Maximum value of 

A2 (t) u* (t) {Iu(t) I + U(t)A2 (t)} 
A2( t) = 0 u * ( t) = + 1 or - 1 + 1 
A2(t) > 0 u*(t) = + 1 1 + A2(t) 
A2 ( t) < 0 u * ( t) = -1 1 - A2 ( t) 

These relations are also exhibited in Figure 7.17 

The previous tabular relations are also written as 

{ 

0 if -1 < A2 (t) < + 1 
u*(t) = +1 if A2(t) < -1 

-1 if A2(t) > +1 
o :S u*(t) :S +1 if A2(t) = -1 
-1 :S u*(t) :S 0 if A2(t) = +1. 

The previous relation is further rewritten as 

u*(t) = {~sgn{,\2(t)} 
undetermined 

if I A2 ( t ) I < 1 
if I A2 ( t ) I > 1 
if I A2 ( t ) I = 1 

(7.3.11) 

(7.3.12) 

where, sgn is already defined in the previous section on time­
optimal control systems. In order to write the relation (7.3.12) in 
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Figure 7.17 Relations Between A2(t) and lu*(t)1 + U*(t)A2(t) 

a more compact form, let us define a dead-zone function between 
input function fi and output function fo, denoted by dez { }, as 
fo = dez{Ji} means that 

fa = {~gn{f;} if Ifil < 1 
if Ifil > 1 (7.3.13) 

0:::; fo:::; 1 if fi = +1 
-1 :::; fo :::; 0 if Ji = -1. 

The dead-zone function is illustrated in Figure 7.18. 

Using the definition of the dez function (7.3.13), we write the 
control strategy (7.3.12) as 

I u*(t) = -dez{A2(t)}·1 (7.3.14) 

Using the previous definition of dead-zone function (7.3.13), the 
optimal control (7.3.14) is illustrated by Figure 7.19 . 

• Step 4: Costate Solutions: Using the Hamiltonian (7.3.4), the 



7.3 Fuel-Optimal Control Systems 

fo A~ 

+1 ------r---

-1 
+1 

--~------ -1 

Figure 7.18 Dead-Zone Function 

~ 

+1 ------r---

-1 u* 
+1 

----...----- -1 

Figure 7.19 Fuel-Optimal Control 

costates are described by 

. 811, 
Ai(t) = -8 * = 0, 

xl 

~2(t) = -8a~ = -Ai(t), 
X 2 

the solutions of which become 

323 

(7.3.15) 

From Figure 7.19), depending upon the values of Al (0) f=- ° and 
A2 (0), there are 9 admissible fuel-optimal control sequences: 

{a}, {+1}, {-I}, {-1,0}, {0,+1}, {+1,0}, {0,-1} 

{-1,0,+1}, {+1,0,-1}. (7.3.17) 
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• Step 5: State Trajectories: The solutions of the state equations 
(7.3.1), already obtained in (7.2.15) under time-optimal control 
system, are (omitting * for simplicity) 

1 2 1 2 
Xl(t) = XlO - "2 UX20 + "2 UX2 (t), 

t = [X2(t) - X20]/U (7.3.18) 

for the control sequence u(t) = U = ±1. The switching curve 
is the same as shown in Figure 7.9 (for time-optimal control 
of a double integral system) which is repeated here in Figure 7.20. 
For the control sequence u(t) = U = 0, we have from (7.3.1) 

u* = +1 

R+ 

u* =-1 
R_ 

Xl 

Figure 7.20 Switching Curve for a Double Integral Fuel-Optimal 
Control System 

Xl(t) = XlO + X20 t , 

X2(t) = X20, 

t = (Xl(t) - XlO)/X20. (7.3.19) 

These trajectories for u(t) = 0 are shown in Figure 7.21. Here, 
we cannot drive the system from any initial state to the origin by 
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X2 
-------~------------ -----------------~ 

+1 
-------.------------ ------------------~ 

-------.. ------------ -----------------~ 

-1 +1 
~------------------- ----------~-------

~------------------- ----------~-------

-1 
~------------------------------~-------

Figure 7.21 Phase-Plane Trajectories for u(t) = 0 

means of the zero control. For example, if the system is on the Xl 

axis at (1,0), it continues to stay there for ever. Or if the system 
is at (0,1) or (0,-1), it travels along the trajectory with constant 
X20 towards the right or left . 

• Step 6: Minimum Fuel: If there is a control u(t) which drives the 
system from any initial condition (XlO, X20) to the origin (0,0), 
then the minimum fuel satisfies the relation 

(7.3.20) 

and hence 

I J* = IX 201·1 (7.3.21) 

Proof: Solving the state equation (7.3.1), we have 

(7.3.22) 

Since we must reach the origin at t f, it follows from the previous 
equation 

(7.3.23) 

which yields 

rf 
X20 = - io u(t)dt. (7.3.24) 
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Or using the well-known inequality, 

(7.3.25) 

Hence, IX201 = J*. Note, if the initial state is (XlO, 0), the fuel 
consumed J = 0, which implies that u(t) = 0 for all t E [0, tf]. 
In other words, a minimum-fuel solution does not exist for the 
initial state (XlO,O) . 

• Step 7: Switching Sequences: Now let us define the various re­
gions in state space. (See Figure 7.22.) 

u=+l 

u=o 

Xl 
u=o 

w--------. A4(x 1O,X20) 

u=-l 
~~.....;;""..,~C 

Figure 7.22 Fuel-Optimal Control Sequences 

1. The Rl (R3) is the region to the right (left) of'Y curve and 
for the positive (negative) values of X2. 

2. The R2 (R4) is the region to the left (right) of 'Y curve and 
for the positive (negative) values of X2. 

Now, depending upon the initial position of the system, we have 
a particular optimal control sequence (see Figure 7.22). 
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1. 1'+ and 1'_ Curves: If the initial condition (XlO,X20) E 1'+(1'-), 
then the control u(t) = +1(u(t) = -1) . 

2. R2 and R4 Regions: If the initial condition is (XlO, X20) E 

R4, then the control sequence {O, + I} forces the system 
to (0,0), through A4 to B, and then to 0, and hence is 
fuel-optimal. Although the control sequence { -1,0, + I} also 
drives the system to origin through A4C DO, it is not optimal. 
Similarly, in the region R2, the optimal control sequence is 
{0,-1}. 

3. Rl and R3 Regions: Let us position the system at Al (XlO' X20) 
in the region Rl, as shown in Figure 7.23. As seen, staying 

Xl 

Figure 7.23 E-Fuel-Optimal Control 

in region Rl there is no way one can drive the system at 
Al to origin, as the control sequence u*(t) = ° drives the 
system towards right (or away from the origin). 

Thus, there is no fuel-optimal solution for the system for 
region Rl. However, given any E > 0, there is a control se­
quence { -1, 0, + 1 }, which forces the system to origin. Then, 
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the fuel consumed is 

I J, = IX 201 + I~I + I~I = IX 201 + E = J* + E 2 J*·I 
(7.3.26) 

We call such a control E fuel-optimal. Similarly, for the re­
gion R3 , we have the E fuel-optimal control sequence given 
as {+1, 0, -I}. Note that the control sequence {-I, +1} 
through AIBCEO is not an allowable optimal control se­
quence (7.3.17) and also consumes more fuel than the E-fuel 
optimal through AlBeDO. Also, we like to make E as small 
as possible and apply the control {O} as soon as the trajec­
tory enters the region R4. 

• Step 8: Control Law: The fuel-optimal control law for driving 
the system from any initial state (Xl, X2) to the origin, can be 
stated as follows: 

(7.3.27) 

If (Xl, X2) E RI U R3, there is no fuel-optimal control. However, 
there is E - fuel-optimal control as described above. 

7.4 Minimum-Fuel System: LTI System 
7.4.1 Problem Statement 

Let us consider a linear, time-invariant system 

x(t) = Ax(t) + Bu(t) (7.4.1) 

where, x(t) and u(t) are n- and r- dimensional state and control 
vectors, respectively. Let us assume that the control u( t) is constrained 
as 

-1 ::; u(t) ::; +1 or lu(t)l::; 1 (7.4.2) 

or component wise, 

IUj(t)1 ::; 1 j = 1,2, ... , r. (7.4.3) 
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Our problem is to find the optimal control u*(t) which transfers the 
system (7.4.1) from any initial condition x(O) to a given final state 
(usually the origin) and minimizes the performance measure 

rf r 
J(u) = Jo z= IUj(t)ldt. 

o j=l 

(7.4.4) 

7.4.2 Problem Solution 

We present the solution to this fuel-optimal system under the following 
steps. First let us list the steps. 

• Step 1: Hamiltonian 

• Step 2: Optimal Condition 

• Step 3: Costate Functions 

• Step 4: Normal Fuel-Optimal Control System 

• Step 5: Bang-off-Bang Control Law 

• Step 6: Implementation 

• Step 1 : Hamiltonian: Let us formulate the Hamiltonian for the 
system (7.4.1) and the performance measure (7.4.4) as 

r 

1t(x(t), u(t), A(t)) = z= IUj(t)1 + A'(t)Ax(t) + A'(t)Bu(t). 
j=l 

(7.4.5) 

• Step 2: Optimal Condition: According to the Pontryagin Prin­
ciple, the optimal condition is given by 

1t(X*(t),A*(t), u*(t)) ~ 1t(X*(t),A*(t), u(t)), 

= min {1t(x*(t), A*(t), u(t))}. (7.4.6) 
lu(t)I:S1 

Using (7.4.5) in (7.4.6), we have 

r 

L luj(t)1 + A*'(t)Ax*(t) + A*'(t)Bu*(t) 
j=l 

r 

~ L IUj(t)1 + A*'(t)Ax*(t) + A*'(t)Bu(t) (7.4.7) 
j=l 
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which in turn yields 

r r 

L luj(t)1 + .x*'(t)Bu*(t) ::; L IUj(t)1 + .x*'(t)Bu(t) 
j=1 j=1 

or transposing 

r r 

L luj(t) I + u*' (t)B'.x * (t) ::; L IUj(t) I + u' (t)B'.x * (t). (7.4.8) 
j=1 j=1 

Considering the various possibilities as before for the double in­
tegral system, we have 

q*(t) = B'.x*(t). (7.4.9) 

Using the earlier relations (7.3.11) and (7.3.12) for the dead-zone 
function, we can write the condition (7.4.6) as 

I u*(t) = -DEZ{q*(t)} = -DEZ{B'.x*(t)} I (7.4.10) 

or component wise, 

uj(t) = -dez{qj(t)} = -dez{bj'\*(t)} (7.4.11) 

where, j = 1,2, ... , r. The optimal control (7.4.10) in terms of 
the dead-zone (dez) function is shown in Figure 7.24. 

-q* 
~ 

+1 ------,.-.--

-1 .. 

__ -1. _____ -1 

u* 

Figure 7.24 Optimal Control as Dead-Zone Function 
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• Step 3: Costate Functions: The costate functions A*(t) are given 
in terms of the Hamiltonian as 

.x*(t) = - 8H = -A'A*(t) ax 
the solution of which is 

A*(t) = E-A'tA(O). 

(7.4.12) 

(7.4.13) 

Depending upon the nature of the function q* (t), we can classify 
it as normal fuel-optimal control (NFOC) system, if Iq*(t)1 = 1 
only at switch times as shown in Figure 7.25 or singular fuel­
optimal control (SFOC) system, if Iq*(t)1 = 1 as shown in Fig­
ure 7.26, for some t E [TI' T2]' 

t 

Figure 7.25 Normal Fuel-Optimal Control System 

• Step 4: Normal Fuel-Optimal Control System: We first derive 
the necessary conditions for the fuel-optimal system to be singular 
and then translate these into sufficient conditions for the system 
to be normal, that is, the negation of the conditions for singular 
is taken as that for normal. 

For the fuel-optimal system to be singular, it is necessary that in 
the system interval [0, t f), there is at least one subinterval [TI' T2 ] 

for which 

(7.4.14) 

Using (7.4.9), the previous condition becomes 

Iq*(t)1 = IB'A*(t)1 = 1. (7.4.15) 
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u*(t) = -dez{ q*(t)} 

+1 

t 

, , , , , 

:.---~ .--------~ '\. I 
SIngular Intervals 

Figure 7.26 Singular Fuel-Optimal Control System 

This means that the function q*(t) is constant and hence all 
its time derivatives must vanish. By repeated differentiation of 
(7.4.15) and using (7.4.12), we have 

(Abj)'A*(t) = 0, 

(A2b j )'A*(t) = 0, 

(A n-Ibj )' A*(t) = 0, 

(Anhj)'A*(t) = 0, (7.4.16) 

for all t E [Tl' T2 ], where j = 1, 2, ... , r. We can rewrite the 
previous set of equations as 

(7.4.17) 

where, 

G j = [hj, Ahj ,"', A n-1hj ]. (7.4.18) 

The condition (7.4.17) can further be rewritten as 

(7.4.19) 

But the condition (7.4.15) implies that A*(t) =1= 0. Then, for 
(7.4.19) to hold, it is necessary that the matrix GjA' must be 
singular. This means that 

det{ GjA'} = det A det Gj = 0. (7.4.20) 
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Thus, the sufficient condition for the system to be normal is that 

I det{GjA'} i- 0 V j = 1,2, ... ,r.1 (7.4.21) 

Thus, if the system (7.4.1) is normal (that is also controllable), 
and if the matrix A is nonsingular, then the fuel-optimal system 
is normal. 

• Step 5: Bang-off-Bang Control Law: If the linear, time-invariant 
system (7.4.1) is normal and x*(t) and .\*(t) are the state and 
costate trajectories, then the optimal control law u*(t) given by 
(7.4.10) is repeated here as 

u*(t) = -DEZ {B'.\*(t)} (7.4.22) 

for all t E [to,t f]. In other words, if the fuel-optimal system is 
normal, the components of the fuel-optimal control are piecewise 
constant functions of time. The fuel-optimal control can switch 
between +1,0 and -1 and hence is called the bang-off-bang con­
trol (or principle) . 

• Step 6: Implementation: As before in time-optimal control sys­
tem, the fuel-optimal control law can be implemented either in 
open-loop configuration as shown in Figure 7.27. Here, an itera­
tive procedure is to be used to finally drive the state to origin. 
On the other hand, we can realize closed-loop configuration as 

x(O) : 

*( I 
l-I--~x(t)=Ax(t)+Bu(t) x ,t 

L...-..--!-----I 

Stop Iteration M---~ 

Start Iteration! 
Change A(O) 

Open-Loop Fuel-Optimal Controller Plant 

Figure 7.27 Open-Loop Implementation of Fuel-Optimal Control 
System 

shown in Figure 7.28, where the current initial state is used to 
realize the fuel-optimal control law (7.4.22). 
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r-------------------------~ 1-------------, 
I I 

I Dead Zone : I I 
1 I 

I 
I 
I 
I 
I 
I 
I 
I 

~IAlgOrithml h[x*(t)] * 
: I I 
:u*(tt 

x(t)=Ax(t)+Bu(t) 
I x*(t) 

IT -.. 
+1 : I I 

I I I 
I 

I I I 
I I I 
I I I ---------------------------

Closed-Loop Fuel-Optimal Controller Plant 

Figure 7.28 Closed-Loop Implementation of Fuel-Optimal Control 
System 

7.4.3 SIMULINX@ Implementation of Control Law 

The SIMULINK@ implementation of fuel-optimal control law for the 
double integral system described in the previous section is very conve­
nient. The controller is obtained by using abs, signum, and dead-zone 
function blocks as shown in Figure 7.29. Further note that since the 
relay with dead-zone function block required for fuel-optimal control, 
as shown in Figure 7.19, is not readily available in SIMULINK@ li­
brary, the function block is realized by combining dead-zone and sign3 
function blocks [6]. Using different initial conditions one can get the 
phase-plane (Xl and X2 plane) trajectories belonging to 1'+, 1'-, RI, 
R3, R2 and R4 shown in Figures 7.30, 7.31, 7.32, 7.33, 7.34, and 
7.35, respectively. In particular note the trajectories belonging to RI 
and R3 regions showing E-fuel-optimal condition. 

7.5 Energy-Optimal Control Systems 
In minimum-energy (energy-optimal) systems with constraints, we of­
ten formulate the performance measure as the energy of an electrical 
(or mechanical) system. For example, if u(t) is the voltage input to a 
field circuit in a typical constant armature-current, field controlled po­
sitional control system, with negligible field inductance and a unit field 
resistance, the total energy to the field circuit is (power is u 2(t)j Rf, 
where, Rf = 1 is the field resistance) 

(7.5.1) 

and the field voltage u(t) is constrained by lu(t)1 :::; 110. This section 
is based on [6, 89]. 
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PLANT 

Phase Pimle 

CONTROLLER 

Figure 7.29 SIMULINK© Implementation of Fuel-Optimal 
Control Law 

7.5.1 Problem Formulation and Statement 

Let us now formulate the energy-optimal control (EO C) system with 
magnitude-constrained control. Consider a linear, time-varying, fully 
controllable system 

x(t) = A(t)x(t) + B(t)u(t) (7.5.2) 

where, x(t) and u(t) are n- and r-dimensional state and control vec­
tors, respectively, and the energy cost functional 

lit! J = - u'(t)R(t)u(t)dt. 
2 to 

(7.5.3) 

Let us assume that the control u( t) is constrained as 

-1 :::; u(t) :::; +1 or lu(t)l:::; 1 (7.5.4) 

or component wise, 

IUj(t)l:::; 1 j = 1,2, ... ,r. (7.5.5) 
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Figure 7.30 Phase-Plane Trajectory for "Y+: Initial State (2,-2) and 
Final State (0,0) 

Figure 7.31 Phase-Plane Trajectory for "Y-: Initial State (-2,2) and 
Final State (0,0) 
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Figure 7.32 Phase-Plane Trajectory for Rl: Initial State (1,1) and 
Final State (0,0) 

Figure 7.33 Phase-Plane Trajectory for R3: Initial State (-1,-1) 
and Final State (0,0) 
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Figure 7.34 Phase-Plane Trajectory for R2: Initial State (-1.5,1) 
and Final State (0,0) 

Figure 7.35 Phase-Plane Trajectory for R4: Initial State (1.5,-1) 
and Final State (0,0) 
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Problem Statement 

The energy-optimal control system is to transfer the system (7.5.2) 
from any initial state x(t = to) = x(to) -=I- 0 to the origin in time tf and 
at the same time minimize the energy cost functional (7.5.3) with the 
constraint relation (7.5.4). 

7.5.2 Problem Solution 

We present the solution to this energy-optimal system under the fol­
lowing steps. But first let us list the various steps involved. 

• Step 1 : Hamiltonian 

• Step 2: State and Costate Equations 

• Step 3: Optimal Condition 

• Step 4: Optimal Control 

• Step 5: Implementation 

• Step 1: Hamiltonian: Let us formulate the Hamiltonian for the 
system (7.5.2) and the PI (7.5.3) as 

1 
1t(x(t), u(t), A(t)) = "2u'(t)R(t)u(t) + A'(t)Ax(t) + A'(t)Bu(t) 

(7.5.6) 

where, A(t) is the costate variable. 

• Step 2: State and Costate Equations: Let us assume optimal val­
ues u*(t), x*(t), and A*(t). Then, the state x*(t) and the costate 
A*(t) optimal values are given in terms of the Hamiltonian as 

x*(t) = + (:) * = A(t)x*(t) + B(t)u*(t) 

.x*(t) = - C:::J = -A'(t)A*(t) 

with the boundary conditions 

where, we again note that t f is either fixed or free. 

(7.5.7) 

(7.5.8) 
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• Step 3: Optimal Condition: Now using Pontryagin Principle, we 
invoke the condition for optimal control in terms of the Hamilto­
nian, that is, 

7-l(x*(t), .\*(t), u*(t)) :::; 7-l(x*(t), .\*(t), u(t)) 

= min 7-l(x*(t), .\*(t), u(t)). (7.5.9) 
lu(t)l~l 

Using (7.5.6) in (7.5.9), we have 

1 
"2u*'(t)R(t)u*(t) + .\*'(t)A(t)x*(t) + .\*'(t)B(t)u*(t) 

1 
:::; "2u'(t)R(t)u(t) + .\*'(t)A(t)x*(t) + .\*'(t)B(t)u(t) (7.5.10) 

which becomes 

~U*'(t)R(t)u*(t) + .\*'(t)B(t)u*(t) 

1 
:::; "2u'(t)R(t)u(t) + .\*'(t)B(t)u(t) 

= min {-21u'(t)R(t)U(t) + .\*'(t)B(t)U(t)}. (7.5.11) 
lu'(t)l~l 

• Step 4: Optimal Control: Let us denote 

q*(t) = R-l(t)B'(t).\*(t) (7.5.12) 

and write 

.\*'(t)B(t)u*(t) = u*'(t)B'(t).\*(t) = u*'(t)R(t)q*(t). (7.5.13) 

Using (7.5.12) and (7.5.13) in (7.5.11), we get 

1 
"2u*'(t)R(t)u*(t) + u*'(t)R(t)q*(t) 

1 
:::; "2u'(t)R(t)u(t) + u'(t)R(t)q*(t). 

Now, adding 

(7.5.14) 

~q*'(t)R(t)q*(t) = ~.\*'(t)B(t)R-l(t)B'(t).\*(t) (7.5.15) 
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to both sides of (7.5.14), we get 

That is 

[u*(t) + q*(t)]'R(t) [u*(t) + q*(t)] 

:S [u(t) + q*(t)]'R(t) [u(t) + q*(t)]. 

w*'(t)R(t)w*(t) :S w'(t)R(t)w(t) 
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(7.5.16) 

= min {w'(t)R(t)w(t)} , (7.5.17) 
lu(t)l::=;ll 

where, 

w(t) = u(t) + q*(t) = u(t) + R-l(t)B'(t)'\*(t) 

w*(t) = u*(t) + q*(t) = u*(t) + R-l(t)B'(t)'\*(t). (7.5.18) 

The relation (7.5.17) implies that w'(t) attains its minimum value 
at w*(t). 

Now we know that 

1. if R(t) is positive definite for all t, 
its eigenvalues d1(t), d2(t), ... , dr(t) are positive, 

2. if D(t) is the diagonal matrix of 
the eigenvalues d1 (t), d2 (t), ... ,dr(t) of R(t), then 

3. there is an orthogonal matrix M such that 

M'M = I -+ M' = M-1 

and 

D = M'RM -+ MDM' = R. 

Now, using (7.5.20) along with (7.5.17), we have 

w'(t)Rw(t) = w'(t)MDM'w(t) 
r 

(7.5.19) 

(7.5.20) 

= v'(t)Dv(t) = L dj(t)vJ(t) (7.5.21) 
j=l 

where, v(t) = M'w(t) and note that dj > O. Since both M' and 
M are orthogonal, we know that 

v' (t)v(t) = w' (t)MM'w(t) = w' (t)w(t) (7.5.22) 
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where, we used M'M = I. We can equivalently write (7.5.22) 
component wise as 

r r 

L vJ(t) = L wJ(t). (7.5.23) 
j=l j=l 

Now, (7.5.17) implies that (using (7.5.21)) 

min {w'(t)R(t)w(t)} = min {tdj(t)vJ(t)} 
lu(t)I:S1 lu(t)I:S11 j=l 

r 

= Lmin {vJ(t)}. 
j=l Vj (t) 

(7.5.24) 

This implies that ifw*(t) minimizes w'(t)R(t)w(t), then the com­
ponents v j ( t) also minimize v' ( t) v ( t ). This fact is also evident 
from (7.5.22). In other words, we have established that 

if w*'(t)R(t)w*(t) ~ w'(t)R(t)w(t) 

then w*'(t)w*(t) ~ w'(t)w(t) (7.5.25) 

and the converse is also true. Or the effect of R( t) is nullified in 
the minimization process. Thus, 

min {w'(t)R(t)w(t)} = min {w'(t)w(t)}, 
lu(t)I:S11 lu(t)I:S11 

r 

= L min { wJ (t) } , 
j=l w(t) 

r 

= L min {[Uj(t) + q](t)]2} . 
j=1 Iu(t)I:S11 

(7.5.26) 

A careful examination of (7.5.26) reveals that to minimize the 
positive quantity [Uj (t) + q] (t)]2, we must select 

{ 

-q;(t) if Iq;(t)1 ~ 1, 
U * ( t) = + 1 if q; ( t) < -1, 

-1 if q;(t) > +1. 
(7.5.27) 
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First, let us define sat{ } as the saturation function between the 
input Ii and the output fa (see Figure 7.36) as fa = sat{fi} 
means that 

(7.5.28) 

The sgn function is already defined in Section 7.1.1. Then the 

Figure 7.36 Saturation Function 

relation (7.5.27) can be conveniently written as 

{ 
-q;(t) if Iq;(t)l::; 1 

u * ( t) = _ s gn { q; ( t)} if I q; ( t) I > 1, (7.5.29) 

or more compactly component-wise as 

uj(t) = -sat {q;(t)} , (7.5.30) 

or in vector form as 

lu*(t) = -SAT {q*(t)} = -SAT {R-l(t)B'(t)'\*(t)} I (7.5.31) 

shown in Figure 7.37. 

The following notes are in order. 

1. The constrained minimum-energy control law (7.5.31) is valid 
only if R( t) is positive definite. 

2. The energy-optimal control law (7.5.31), described by sat­
uration (SAT) function, which is different from the signum 
(SGN) function for time-optimal control and dead-zone (DEZ) 
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-q*(t) u*(t) 

+1 

Figure 7.37 Energy-Optimal Control 

function for fuel-optimal control functions, is a well-defined 
( determinate) function. Hence, the minimum-energy system 
has no option to be singular. 

3. In view of the above, it also follows that the optimal control 
u*(t) is a continuous function of time which again is differ­
ent from the piece-wise constant functions of time for time­
optimal and fuel-optimal control systems discussed earlier 
in this chapter. 

4. If the minimum-energy system described by the system (7.5.2) 
and the PI (7.5.3) has no constraint (7.5.4) on the control, 
then by the results of Chapter 3, we obtain the optimal 
control u*(t) by using the Hamiltonian (7.5.6) and the con­
dition 

~~ = 0 ---+ R(t)u:,(t) + B'(t).\.*(t) = 0 ---+ 

u~(t) = _R-l(t)B'(t)A*(t) = -q*(t), (7.5.32) 

where, u~(t) refers to unconstraint control. Comparing the 
relation (7.5.32) with (7.5.29), we see that 

u~(t) = -q*(t) = u*(t) if Iq*(t)l::; 1 (7.5.33) 

where u*(t) refers to constrained control. Thus, if q*(t) ::; 1, 
the constrained optimal control u*(t) and the unconstrained 
optimal control u*(t) are the same. 

5. For the constrained energy-optimal control system, using op­
timal control (7.5.31), the state and costate system (7.5.7) 
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becomes 

x*(t) = Ax*(t) - BSAT {R-1B';\*(t)} 

~ * (t) = -A';\ * (t). (7.5.34) 

We notice that this is a set of 2n nonlinear differential equa­
tions and can only be solved by using numerical simulations. 

• Step 5: Implementation: The implementation of the energy-optimal 
control law (7.5.31) can be performed in open-loop or closed-loop 
configuration. In the open-loop case (Figure 7.38), it becomes 
iterative to try different values of initial conditions for ;\(0) to 
satisfy the final condition of driving the state to origin. On the 
other hand, the closed-loop case shown in Figure 7.39 becomes 
more attractive. 

------------------------------~ 
Saturation ,-------------, 

u*(t),' x(t)=Ax(t)+Bu(t) :x*(t) 
, : 

1...-____ ---' , : , : , : , : , ,: , ,: , ,: 
········t······T························r· , , , , , , , , , ______________________________ J L ____________ ~ 

Open-Loop Energy-Optimal Controller Plant 

Figure 7.38 Open-Loop Implementation of Energy-Optimal 
Control System 

A more general constrained minimum-energy control system is where 
the performance measure (7.5.3) contains additional weighting terms 
x'(t)Q(t)x(t) and 2x(t)S(t)u(t) [6]. 

Example 7.1 

Consider a simple scalar system 

x(t) = ax(t) + u(t), a < 0 (7.5.35) 
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r--------------
I 

Closed-Loop Energy-Optimal Controller Plant 

Figure 7.39 Closed-Loop Implementation of Energy-Optimal 
Control System 

to be transferred from an arbitrary initial state x(t = 0) = Xo to 
the origin that minimize the performance index 

(7.5.36) 

where, the final time tf is free and the control u(t) is constrained 
as 

lu(t)1 ::; 1. (7.5.37) 

Discuss the resulting optimal control system. 

Solution: Comparing the system (7.5.35) and the performance 
measure (7.5.36) with the general formulations of the correspond­
ing system (7.5.2) and the performance index (7.5.3), we easily 
see that A(t) = a, B(t) = b = 1, R(t) = r = 2. Then using the 
step-by-step procedure in the last section, we get the following . 

• Step 1: Form the Hamiltonian (7.5.6) as 

1 
H(x(t), A(t), u( t)) = "2x2u2

( t) + A(t)ax(t) + A(t)U( t). 

• Step 2: The state and costate relations (7.5.7) are 

x*(t) = + (':;) * = ax*(t) + u*(t) 

~*(t) = - (aH) = -aA*(t). 
ax * 

(7.5.38) 

(7.5.39) 

The solution of the costate function A*(t) is easily seen to be 

(7.5.40) 
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• Step 3: The optimal control (7.5.30) becomes 

u*(t) = -sat {qi(t)} 
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= -sat {r-1b'\*(t)} 

= -sat {0.5'\*(t)}. (7.5.41 ) 

In other words, 

{ 

+1.0 if 0.5'\*(t) ::; -lor 
u*(t) = -1.0 if 0.5'\*(t) ~ +1 or 

-0.5'\*(t) if 10.5'\*(t)l::; 1 or 

'\*(t) ::; -2, 
'\*(t) ~ +2, 

1'\*(t)1 ::; +2. 

(7.5.42) 

The previous relationship between the optimal control u*(t) and 
the optimal costate '\*(t) is shown in Figure 7.40. 

We note from (7.5.42) that the condition u*(t) = -~'\*(t) is 
also obtained from the results of unconstrained control using the 
Hamiltonian (7.5.38) and the condition 

~~ = 0 ----> 2u*(t) + A*(t) = 0 ----> u*(t) = -~A*(t). (7.5.43) 

Consider the costate function '\*(t) in (7.5.40). The condition 
'\*(0) = 0 is not admissible because then according to (7.5.41), 
u*(t) = 0 for t E [0, tl], and the state x*(t) = X(O)Eat in (7.5.39) 
will never reach the origin in time t I for an arbitrarily given 
initial state x(O). 

Then, the costate '\*(t) = ,\(O)E-at has four possible solutions 
depending upon the initial values (0 < '\(0) < 2, '\(0) > 2, -2 < 
'\(0) < 0, '\(0) < -2) as shown in Figure 7.4l. 

1. 0 < '\(0) < 2: For this case, Figure 7.41, curve (a), 

u*(t) = {-~A*(t)} or {-~A*(t), -1 } (7.5.44) 

depending upon whether the system reaches the origin be­
fore or after time ta, the function'\*(t) reaches the value of 
+2. 

2. '\(0) > 2: In this case, Figure 7.41, curve (b), since '\*(t) > 
+2, the optimal control u*(t) = {-I}. 

3. -2 < '\(0) < 0: Depending on whether the state reaches the 
origin before or after time tc , the function ,\ * ( t) reaches the 
value -2, the optimal control is (Figure 7.41, curve (c)) 

u*(t) = { -~A*(t)} or {-~A*(t), +1 }. (7.5.45) 
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q*(t) -q*(t) 
-1 

u*(t) 

(a) 

A *(t) u*(t) 

(b) 

Figure 7.40 Relation between Optimal Control u*(t) vs (a) q*(t) 
and (b) 0.5A*(t) 

4. A(O) < -2: Here, Figure 7.39, curve (d), since A*(t) < -2, 
the optimal control u*(t) = {+1}. 

The previous discussion refers to the open-loop implementation in 
the sense that depending upon the values of the costate variable 
A*(t). However, in this scalar case, it may be possible to obtain 
closed-loop implementation . 

• Step 4: Closed-Loop Implementation: In this scalar case, it may 
be easy to get a closed-loop optimal control. First, let us note 
that if the final time t f is free and the Hamiltonian (7.5.38) does 
not contain time t explicitly, then we know that 

H(x*(t), A*(t), u*(t)) = 0 V t E [0, tf] (7.5.46) 
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A*(t (b) 
(a) 

i-2 ------------------- ----------------------. 

0 
tel ta t 

-2 

Figure 7.41 Possible Solutions of Optimal Costate '\*(t) 

which means that 

2 
u* (t) + '\*(t) [ax*(t) + u*(t)] = 0. (7.5.47) 

Solving for the optimal state 

*( ) = u*(t) [u*(t) 1] 
x t -a ,\*(t) + . (7.5.48) 

Let us now discuss two situations. 

1. Saturated Region: (i) At time t = ta (Figure 7.41(a)), '\*(ta) = 
2, u*(ta) = -1, then the optimal state (7.5.48) becomes 

x*(ta) = 2
1
a' and since a < 0, x*(ta) < 0. (7.5.49) 

Next, for time t E [ta, tf]' u*(t) = -1 and '\*(t) > 2 and the 
relation (7.5.48) reveals that x*(t) < x*(ta). Combining this 
with (7.5.49), we have 

x*(t) < x*(ta) < ° (7.5.50) 

(ii) At time t = t e , (Figure 7.41(c)), '\*(te ) = -2, u*(te ) = 
+ 1, then the optimal state (7.5.48) becomes 

x*(te ) = - 2~' and since a < 0, x*(te ) > 0. (7.5.51) 
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Next, for time t E [te, tf]' u*(t) = +1 and A*(t) < -2 and 
the relation (7.5.48) reveals that x*(t) > x*(te). Combining 
this with (7.5.51), we have 

x*(t) > x*(te) > o. (7.5.52) 

2. Unsaturated Region: During the unsaturated region, 

IA*(t)1 ~ 1 and (7.5.53) 

and using this, the Hamiltonian condition (7.5.47) becomes 

u*2(t) + A * (t)[ax*(t) + u* (t)] = 0 

~A*2(t) + aA*(t)x*(t) - ~A*(2)(t) = 0 ~ 
4 2 

A*(t) [~A*(t) - ax*(t)] = 0 (7.5.54) 

solution of which becomes 

A*(t) = 0 or A*(t) = 4ax*(t). (7.5.55) 

Here, A*(t) = 0 is not admissible because then the opti­
mal control (7.5.44) becomes zero. For A*(t) = 4ax*(t), the 
optimal control (7.5.44) becomes 

u*(t) = -2ax*(t), a < O. (7.5.56) 

The previous relation also means that 

If x*(t) > 0, then u*(t) = +1 
If x*(t) < 0, then u*(t) = -1 
If x*(t) = 0, then u*(t) = O. (7.5.57) 

Control Law: Combining the previous relations for unsaturated 
region and for the saturated region, we finally get the control law 
for the entire region as 

-1, if x*(t) < +2~ < 0, 
+1, if x*(t) > -ia > 0, 

u*(t) = -2ax*(t), if x*(t) > - 21a > 0, (7.5.58) 
-2ax*(t), if x*(t) < +21a < 0, 
0, if x*(t) = 0 

and the implementation of the energy-optimal control law is shown 
in Figure 7.42. 

Further, for a combination of time-optimal and fuel-optimal control 
systems and other related problems with control constraints, see excel­
lent texts [6, 116]. 
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u*(t) .. f x*(t) .. 
+~ + 

a 

-$ x*(t) 
.... 

-
~+ -1 

• 
+1- r +1/2a 

~ 
-l/2a 

~ t-

-1-

Figure 7.42 Implementation of Energy-Optimal Control Law 

7.6 Optimal Control Systems with State 
Constraints 

In the previous sections, we discussed the optimal control systems with 
control constraints. In this section, we address the optimal control sys­
tems with state constraints [79, 120]. 

Optimal control systems with state constraints (Constrained Opti­
mal Control) has been of great interest to engineers. Some examples of 
state-constrained problems are the solution of the minimum time-to­
climb problem for an aircraft that is required to start within a specified 
flight envelope, the determination of the best control policy for an in­
dustrial mechanical robot subject to path constraints, and the speed 
of an electric motor which cannot exceed a certain value without dam­
aging some of the mechanical components such as bearings and shaft. 
There have been several methods proposed to handle state variable in­
equality constraints. In general, there are three methods for handling 
these systems [49]: 

1. slack variables, 
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2. penalty functions, and 

3. interior-point constraints. 

Let us first consider the penalty function method. 

7.6.1 Penalty Function Method 

Let us consider the system as 

x(t) = f(x(t), u(t), t) (7.6.1) 

and the performance index as 

i
t! 

J = V(x(t), u(t), t) 
to 

(7.6.2) 

where, x(t) and u(t) are nand r dimensional state and control vectors, 
respectively. Let the inequality constraints on the states be expressed 
as 

g(x(t), t) ~ 0 (7.6.3) 

or 

gl(Xl(t),X2(t), ... ,Xn(t),t) ~ 0 

g2(Xl (t), X2(t), . .. ,xn(t), t) ~ 0 

(7.6.4) 

where, g is a p :::; n vector function of the states and assumed to 
have continuous first and second partial derivatives with respect to 
state x(t). There are several methods of solving this system where 
the ineqnality constraints (7.6.3) are converted to eqnality constraints. 
One such methodology is described below. Let us define a new variable 
Xn+l(t) by 

Xn+l(t) ~ fn+l(X(t), t), 
= [gl(X(t), t]2 H(gl) + [g2(X(t), t)]2 H(g2) + ... 

+ [gp(x(t) , t)] H(gp), 
(7.6.5) 
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where, H(9i) is a unit Heaviside step function defined by 

H(9i) = {O, ~f 9i(X(t), t) ~ 0, 
1, If 9i(X(t), t) < 0, 
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(7.6.6) 

for i = 1,2, ... ,po The relations (7.6.6) and (7.6.5) mean that Xn+1(t) = 
o for all t when the constraint relation (7.6.3) is satisfied and Xn+1(t) ~ 
o for all t due to the square terms in (7.6.5). FUrther, let us require that 
the new variable X n+1(t) has the boundary conditions 

(7.6.7) 

such that 

X n+1(t) = ft Xn+1(t)dt ito 
= ft {[91 (x ( t), t] 2 H (91) + [92 (x ( t), t)] 2 H (92) + ... ito 

+ [9p(X(t) , t)f H(9p) } dt. (7.6.8) 

Now we use the Hamiltonian approach to minimize the PI (7.6.2) sub­
ject to the system equation (7.6.1) and the state inequality constraint 
(7.6.3). Let us define the Hamiltonian as 

H(x(t), u(t), A(t), An+l(t), t) 

= V(x( t), u(t), t) + A' (t)f(x( t), u( t), t) 

+An+1(t) {[91 (x(t), t]2 H(91) + [92 (x(t), t)]2 H(92) + ... 

+ [9p(X(t), t)]2 H(9m) } , 

= V(x(t), u( t), t) + A' (t)f(x( t), u( t), t) 

+An+1(t)fn+1(X(t), t). (7.6.9) 

Thus, the previous Hamiltonian is formed with n + 1 costates and n + 1 
states. Note that the Hamiltonian (7.6.9) does not explicitly contain 
the new state variable X n+1 (t). Now, we apply the necessary optimality 
conditions for the state as 

x* (t) = ~~ = f(x* (t), u*(t), t), 

±~+l(t) = ~~H = fn+1(X*(t), t), 
UAn+1 

(7.6.10) 
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for the costate as 

(7.6.11) 

and for the control as 

11t(x*(t), u(t), A*(t), A~+l (t), t) ~ 1t(X*(t), U(t), A*(t), A~+l (t), t).\ 
(7.6.12) 

or 

min {1i(x* (t), u(t), A * (t), A~+l (t), t)} = 1i(x*(t), u(t), A *(t), A~+l (t), t). 
lu(t)I~U 

(7.6.13) 

Note that in the above, ~~+1 (t) = 0 because the Hamiltonian (7.6.9) 
does not contain xn+ 1 ( t) explicitly (see Table 7.1). 

Let us now illustrate the previous method by an example. 

Example 7.2 

Consider a second order system 

Xl(t) = X2(t) 
X2(t) = u(t), 

and the performance index 

(7.6.14) 

(7.6.15) 

where, time t f is free and the final state x( t f) is free. The control 
u(t) is constrained as 

-1 ~ u(t) ~ +1 or lu(t)1 ~ +1 for t E [to, tf]' (7.6.16) 

and the state X2 (t) is constrained as 

-3 ~ X2(t) ~ +3 or IX2(t)1 ~ +3 for t E [to,tf]. (7.6.17) 

Find the optimal control. 
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Table 7.1 Procedure Summary of Optimal Control 
Systems with State Constraints 

A. Statement of the Problem 
Given the system as 
x(t) = f(x(t), u(t), t), 
the performance index as 

J = S(x(tf), tf) + ftd V(x(t), u(t), t)dt, 
the state constraints as 
g(x(t),t) 2: 0, 
and the boundary conditions as 
x(to) = Xo and tf and x(tf) = xf are free, 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin 1-i function 

1-i(x(t) , u(t), '\(t), An+l(t), t) = V(x(t), u(t), t) 

+,\'(t)f(x(t), u(t), t) + An+l (t)!n+l (x(t), t). 

Step 2 Solve the set of 2n + 2 differential equations 

x*(t) = (~)*' x~+l(t) = (8f~1)*' and 
.* (811)·* ( 811 ) ,\ (t) = - 8x *' An+l(t) = - 8Xn +l * =0 
with boundary conditions 

xo, X n+l(tO) = 0, xn+l(tf) = 0 and 

[1-i + ~~] otf + [g~ - ,\]' oXf = o. 
*tj *tf 

Step 3 Minimize 1-i w.r.t. u(t)(:::; U) 

1-i ( x* ( t), u * ( t ) , ,\ * ( t ), A~+ 1 ( t ), t) 
:::; 1-i (x* ( t ), u ( t ), ,\ * ( t ), A~+ 1 ( t ), t). 

355 
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Solution: To express the state constraint (7.6.17) as state inequal­
ity constraint (7.6.3), let us first note 

and then 

[X2(t) + 3] ~ 0, and 
[3 - X2(t)] ~ 0 

91(X(t)) = [X2(t) + 3] ~ 0, 
92(X(t)) = [3 - X2(t)] ~ o. 

• Step 1: First formulate the Hamiltonian as 

1i(x( t), u( t), .\(t), A3( t)) 

(7.6.18) 
(7.6.19) 

(7.6.20) 

1 2 1 2 
= 2 X1 (t) + 2u (t) + Al(t)X2(t) - A2(t)U(t) 

+A3(t) {[X2(t) + 3f H(X2(t) + 3) 

+[3 - X2(t)]2 H(3 - X2(t))} . (7.6.21) 

• Step 2: The necessary condition for the state (7.6.10) becomes 

xi(t) = x2(t), 
X2(t) = u*(t), 

x~(t) = [X2(t) + 3]2 H(X2(t) + 3) + [3 - X2(t)]2 H(3 - X2(t)), 
(7.6.22) 

and for the costate (7.6.11) 

~i(t) = - 81i = -xi(t), 
8X l 

~2(t) = - 881i = -Ai(t) - 2A~(t)[X2(t) + 3]H(X2(t) + 3) 
X2 

+2A~(t)[3 - x2(t)]H(3 - X2(t)) 

~~(t) = - 881i = 0 -+ A~(t) = constant. (7.6.23) 
X3 

• Step 3: Minimize 1i w.r.t. the control (7.6.13) 

1i(x*(t), u*(t), .\*(t), A3(t)) :::; 1i(x*(t), u(t), .\*(t), A3(t)). 
(7.6.24) 

Using (7.6.21) in the condition (7.6.24) and taking out the terms 
not containing the control u(t) explicitly, we get 

1 2 1 2 
2u* (t) + A2(t)U*(t) :::; 2u (t) + A2(t)U(t) 

= min {~u2(t) + A2(t)U(t)}. (7.6.25) 
lul~l 2 
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By simple calculus, we see that the expression !u2 (t) + A2(t)u(t) 
will attain the optimum value for 

u*(t) = -A;(t) (7.6.26) 

when the control u*(t) is unconstrained. This can also be seen 
alternatively by using the relation 

81-l 
ou = 0 ~ u*(t) + A;(t) = 0 ~ u*(t) = -A;(t). (7.6.27) 

But, for the present constrained control situation (7.6.14), we see 
from (7.6.25) or (7.6.26) that 

u*(t) = { -1, 
+1, 

if A;(t) > +1 
if A2(t) < -1. 

(7.6.28) 

Combining the unsaturated or unconstrained control (7.6.26) with 
the saturated or constrained control (7.6.28), we have 

{

+1' 
u*(t) = -1, 

-A2(t), 

if A2(t) < -1 
if A;(t) > +1 
if -1::; A2(t) ::; +1. 

(7.6.29) 

Using the definition of saturation function (7.5.28), the previous 
optimal control strategy can be written as 

uj(t) = -sat {A;(t)}. (7.6.30) 

The situation is shown in Figure 7.43. Thus, one has to solve for 
the costate function A2(t) completely to find the optimal control 
u*(t) from (7.6.29) to get open-loop optimal control implementa­
tion. 

Note: In obtaining the optimal control strategy in general, one cannot 
obtain the unconstrained or unsaturated control first and then just ex­
tend the same for constrained or saturated region. Instead, one has to 
really use the Hamiltonian relation (7.6.13) to obtain the optimal con­
trol. Although, in this chapter, we considered control constraints and 
state constraints separately, we can combine both of them and have a 
situation with constraints as 

g(x(t), u(t), t) ::; o. (7.6.31) 

For further details, see the recent book [61] and the survey article [62]. 
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A2 *(t) u*(t) 

Figure 7.43 Relation between Optimal Control u*(t) and Optimal 
Costate A2 (t) 

7.6.2 Slack Variable Method 

The slack variable approach [68, 137], often known as Valentine's method, 
transforms the given inequality state (path) constraint into an equality 
state (path) constraint by introducing a slack variable. For the sake of 
completeness, let us restate the state constraint problem. 

Consider the optimal control system 

x(t) = f(x(t), u(t), t), x(t = to) = Xo (7.6.32) 

which minimizes the performance index 

it! 
J = F (x ( t f ), t f) + V (x ( t), u ( t ), t) dt 

to 
(7.6.33) 

subject to the state-variable inequality constraint 

S(x(t),t):::; O. (7.6.34) 

Here, x(t) is an n-dimensional order state vector, u(t) is an r-dimensional 
control vector and the constraint S is of pth order in the sense that the 
pth derivative of S contains the control u( t) explicitly. 

The state-constrained, optimal· control problem is solved by con­
verting the given inequality constrained problem into an equality con­
strained one by introducing a "slack variable," as [68, 137] 

(7.6.35) 
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Differentiating (7.6.35) p times with respect to time t, we obtain 

81 (x(t), t) + aal = 0 

82(X(t), t) + at + aa2 = 0 

8p(x(t), u(t), t) + {terms involving a(t), al)(t)" ... , ap(t)} = 0 

(7.6.36) 

where, the subscripts on 8 and a denote the time derivatives, that is, 

d8 (88) (dX) 88 da 
81 = dt = 8x dt + 8t and al = dt· (7.6.37) 

Since the control u( t) is explicitly present in the pth derivative equa­
tion, we can solve for the control to obtain 

u(t) = g(x(t), a(t), al)(t)" ... , ap(t), t). (7.6.38) 

Substituting the control (7.6.38) in the plant (7.6.32) and treating the 
various a, ... , a p-l as additional state variables, the new unconstrained 
control becomes a p . Thus, 

x(t) = f(x(t), g(x(t), a(t), a)l(t), , ... , ap(t), t), x(t = to) = Xo 

a = a1, a(t = to) = aCto) 

al=a2, al(t=to)=al(to) 

ap-l = ap, ap-l(t = to) = ap-l(to). (7.6.39) 

The new cost functional is then given by 

it! 
J = F(x(t f), t f) + V(x(t), g(x(t), a(t), a) (t), , ... , ap(t), t), t)dt 

to 

(7.6.40) 

The new initial conditions aCto), ... , ap-l(to) are required to satisfy 
(7.6.35) and (7.6.36), so after some algebraic manipulations, we get 

aCto) = ±J -28(x(to), to) 

al(to) = -81 (x(to), to)/a(to) 

a2(tO) = -[82 (x(to), to) + at(to)]/a(to) 
(7.6.41) 
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With this choice of boundary conditions, the original relations w.r.t. 
the constraints (7.6.35) and (7.6.36) are satisfied for all t for any con­
trol function Ctp(')' In other words, any function Ctp(') will produce an 
admissible trajectory. Thus, the original constrained problem is trans­
formed into an unconstrained problem. 

Now we apply the Pontryagin Principle to this unconstrained prob­
lem. [68, 27, 40, 62]. In general terms, we define a new n + pth state 
vector 

Z(t) = [x(t), Ct(t), ... Ctp-l]' (7.6.42) 

then, the new plant (7.6.39) becomes 

Z = F(Z(t), Ctp(t) , t) (7.6.43) 

where the (n+p )-dimensional vector function F represents the right­
hand side of (7.6.39). Next, we define the Hamiltonian as 

'H = V +.xF (7.6.44) 

where .x is an n + p-dimensional Lagrange multiplier. Then, for the 
state 

Z(t) = 'H.x, Z(to), (7.6.45) 

for the costate 

(7.6.46) 

and for the control 

(7.6.47) 

where the subscripts in 'H.x, 'Hz, and Fx denote the partial derivative 
with respect to the subscripted variable. 

The previous set of equations for the states (7.6.45) and costates 
(7.6.46) and their initial and final conditions constitute a two point 
boundary value problem (TPBVP). Such problems can be solved, de­
pending on the difficulty, with a closed solution, or highly nonlinear 
problems must be solved with specialized software [68, 129, 130, 63). 
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7. 7 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 7.1 Derive the expressions for minimum time given by (7.2.28) 
for a double integral system. 

Problem 7.2 A second order system, described by 

Xl(t) = X2(t) 

X2(t) = -2X2(t) + Xl(t) + u(t) 

where, the initial and final states are specified, is to minimize the per­
formance index 

J = ~ l [2xM + xM + u2 (t)] dt. 

Find the optimal control u* (t) for 
(a) u(t) unconstrained, and 
(b) u(t) constrained as lu(t)1 :::; 1. 

Problem 7.3 Find the optimal control law for transferring the second 
order linear system 

Xl(t) = X2(t) 

X2(t) = u(t) 

where, (a) the control u(t) is unconstrained and (b) the controllu(t)1 :::; 
1, from any arbitrary initial state to the final state [2,2] in minimum 
time. 

Problem 7.4 For the second order, linear system 

Xl(t) = -Xl(t) - u(t) 

X2(t) = -3X2(t) - 2u(t) 
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to be transferred from any arbitrary initial state to origin in minimum 
time, find the optimal control law if the control u(t) is (a) unconstrained 
and (b) constrained as I u ( t ) I :S 1. 

Problem 7.5 Given a second order linear system 

Xl(t) = -Xl(t) - u(t) 

X2(t) = -3X2(t) - 2u(t), lu(t)1 :S 1 

find the expression for minimum time to transfer the above system from 
any initial state to the origin. 

Problem 7.6 For a first order system 

x(t) = u(t), lu(t)1 :S 1 

find the optimal control law to minimize the performance index 

rtf 
J = io lu(t)ldt tf is free 

so that the system is driven from x(O) = Xo to origin. 

Problem 7.7 Formulate and solve Problem 7.4 as fuel-optimal control 
problem. 

Problem 7.8 A second order system 

Xl(t) = X2(t) 

X2(t) = -ax2(t) + u(t), a > 0 

with control constraint as lu(t)1 :S 1, discuss the optimal control strat­
egy to transfer the system to origin and at the same time minimize the 
performance index 

rf 
J = io [13 + lu(t)l] dt 

where, the final time t f is free and 13 > O. 
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Problem 7.9 For a double integral plant 

:.h(t) = X2(t) 

X2(t) = u(t) 
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with control constraint /u(t)/ ::; 1, find the optimal control which trans­
fers the plant from initial condition XI(O) = 1, X2(O) = 1 to the final 
condition Xl (t f) = X2 (t f) = 0 in such a way so as to minimize the 
performance measure 

and calculate the minimum value J*. 

Problem 7.10 For a second-order system 

XI(t) = X2(t) 

X2(t) = -2X2(t) + 3X2(t) + 5u(t) 

with control constraint /u(t)/ ::; 1, find the optimal control which trans­
fers the plant from initial condition XI(O) = 1,x2(O) = 1 to the final 
condition Xl (t f) = X2 (t f) = 0 in such a way so as to minimize the 
performance measure 

and calculate the minimum value J*. 

Problem 7.11 The double integral plant 

XI(t) = X2(t) 

X2(t) = u(t) 

is to be transferred from any state to the origin in minimum time 
with the state and control constraints as /u(t)/ ::; 1 and /x2(t)1 ::; 2. 
Determine the optimal control law. 

Problem 7.12 For the liquid-level control system described in Prob­
lem 1.2, formulate the time-optimal control problem and find the opti­
mal control law. 
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Problem 7.13 For the D.C. motor speed control system described 
in Problem 1.1, formulate the minimum-energy problem and find the 
optimal control law if the control input is constrained as u( t) :::; 1. 

Problem 7.14 For the mechanical control system described in Prob­
lem 1.4, formulate the minimum-energy problem and find the optimal 
control. 

Problem 7.15 For the automobile suspension system described in 
Problem 1.5, formulate the minimum-energy problem and find the op­
timal control. 

Problem 7.16 For the chemical control system described in Prob­
lem 1.6, formulate the minimum-energy problem and find the optimal 
control. 

@@@@@@@@@@@@@ 



Appendix A 

Vectors and Matrices 

The main purpose of this appendix is to provide a brief summary of 
the results on matrices, vectors and matrix algebra to serve as a review 
of these topics rather than any in depth treatment of the topics. For 
more details on this subject, the reader is referred to [54, 10, 13]. 

A.1 Vectors 

Vector 

A vector x, generally considered as a column vector, is an arrangement 
of n elements in a column as 

x= (A.l.1) 

. The number n is also referred to as order, size or dimensions of the 
vector. We can also write the vector x as 

x = [Xl X2 .... Xn]' (A.1.2) 

where, ' denotes the transpose as defined below. 

365 
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Transpose of a Vector 

The transpose of a vector x is the interchange of the column vector into 
a row vector. Thus 

x' = [Xl X2 ... Xn ] • (A.1.3) 

Norm of a Vector 

The norm of a vector x, written as Ilxll, is a measure of the size or 
length of the vector. Further, 

1. Ilxll > 0 for all x and Ilxll = 0 only if x = o. 
2. Ilaxll = allxll for any scalar a and for all x. 

3. IIx + yll :::; IIxll + lIyll for all x and y, called the Schwartz in­
equality. 

The norm is calculated by either of the following ways 

1. 

IIxll 2 = < x, x >= x'x, or 

Ilxll = [~x;r/2, called the Euclidean nonn (A.l.4) 

2. 

(A.1.5) 

3. 

n 

IIxll = Llxil (A.1.6) 
i=l 

Multiplication of Vectors 

The multiplication of two vectors is done by transposing one of the 
vectors and then multiplying this vector with the other vector. Thus, 

n 

x/y =< x, Y >= L XiYi = XIYI + X2Y2 + ... + XnYn· (A.1.7) 
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This product < x, y > which is a scalar, is often called the inner product 
of these two vectors. 

On the other hand, the outer product x > < y of two vectors is defined 
as 

x >< y = xy' = 
[ 

X1Yl X1Y2 '" Xlyn] 
X2Yl X2Y2 ... X2Yn , ... . ....... . 
XnYl XnY2 ... XnYn 

(A.lo8) 

which is a matrix defined next. 

A. 2 Matrices 
Matrix 

An nxm matrix A is an arrangement of nm elements aij (i = 1,2, ... , n; 
j = 1,2, ... , m) into n rows and m columns as 

[

an a12 ... a1m] 

A = ~~~ ~~~ ::: ~~~ . 

anl an2 ... anm 

(A.2.1) 

The nxn of the matrix A is also referred to as order, size or dimension 
of the matrix. 

Square Matrix 

If the number of rows and columns is the same, that is, if m = n in the 
matrix A of (A.2.1), then it is called a square matrix. 

Unity Matrix 

A unity matrix I is defined as the matrix having values 1 for all diagonal 
elements and having the rest of the elements as zero as 

1= [.~ .. ~ .. ~. ::: .~.]. 
o 0 0 .,. 1 

(A.2.2) 
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Addition/Subtraction of Matrices 

The addition (or subtraction) of two matrices A and B is simply the 
addition of the corresponding elements in a particular row and column, 
and hence, obviously these two matrices should be of the same size or 
order. Thus we get a new matrix C as 

C=A+B (A.2.3) 

where, Cij = aij + bij . The addition of two matrices is commutative as 

A+B = B+A. (A.2.4) 

Multiplication of a Matrix by a Scalar 

The scalar multiplication of two matrices of the same order, and the 
addition or subtraction is easily seen to be 

where, Ql and Q2 are scalars, and 

Multiplication of Matrices 

The product of nxp matrix A and pxm matrix B is defined as 

C = AB, where 
p 

Cij = L aikbkj' 
k=l 

(A.2.5) 

(A.2.6) 

(A.2.7) 

Note that the element Cij is formed by summing the multiplication of 
elements in the i row of matrix A and with the elements in the j column 

of the matrix B. Obviously, the columns of A should be the same as 
the rows of B so that the resultant matrix C has the same rows of A 
and the same columns of B. 

The product of two or more matrices is defined as 

D = ABC = (AB) C = A (BC) . (A.2.8) 

However, note that in general 

AB =I BA. (A.2.9) 
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Thus, the multiplication process is associative, but not generally com­
mutative. However, with unity matrix I, we have 

AI = A = IA. (A.2.10) 

Transpose of a Matrix 

A transpose of a matrix A, denoted as A', is obtained by interchanging 
the rows and columns. Thus, the transpose B' of the matrix A is written 
as 

B = A' such that bij = aji. (A.2.11) 

Also, it can be easily seen that the transpose of the sum of two 
matrices is 

(A+B)'=A'+B'. (A.2.12) 

The transpose of the product of two or more matrices is defined as 

Symmetric Matrix 

(AB)' = B'A' 
(ABC)' = C'B' A'. (A.2.13) 

A symmetric matrix is one whose row elements are the same as the 
corresponding column elements. Thus, aij = aji. In other words, if 
A = A', then the matrix A is symmetric. 

Norm of a Matrix 

For matrices, the various norms are defined as 

1. IIAxll:S IIAII·IIxll, 

2·IIA+BII:SIIAII+IIBII, 

3. IIABII :S IIAII·IIBII 

where. denotes multiplication. 

called the Schwartz inequality, 
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Determinant 

The determinant IAI of an nxn matrix A is evaluated in many ways. 
One of the ways for a 3x3 matrix A is as follows. 

A = [:~~ :~~ :~:] ; 
a31 a32 a33 

IAI = all (_1)1+1 1 a22 a231 + a12( _1)1+21 a21 a231 
a32 a33 a31 a33 

+a13( _1)1+31 a21 a221. (A.2.14) 
a31 a32 

Note that in (A.2.14), the sub-determinant associated with all is formed 
by deleting the row and column containing all. Thus, the 3x3 deter­
minant IAI is expressed in terms of the 2x2 sub-determinants. Once 
again, this 2x2 sub-determinant can be written, for example, as 

Some useful results on determinants are 

IAI = IA'I 

IABI = IAI·IBI 

II+ABI = II+BAI· 

Cofactor of a Matrix 

(A.2.15) 

(A.2.16) 

A cofactor of an element in the ith row and jth column of a matrix A 
is (-1 )i+j times the determinant of the matrix formed by deleting the 
ith row and jth column. Thus, the determinant given by (A.2.14) can 
be written in terms of cofactors as 

IAI = all [cofactor of all] + a12 [cofactor of a12] 

+ + a13 [cofactor of a13] 

Adjoint of a Matrix 

(A.2.17) 

The adjoint of a matrix A, denoted as adjA, is obtained by replacing 
each element by its cofactor and transposing. 
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Singular Matrix 

A matrix A is called singular if its determinant is zero, that is, if 
IAI = O. A is said to be nonsingular if IAI =1= O. 

Rank of a Matrix 

The rank or full rank of a matrix A of order nxn is defined as 

1. the number of linearly independent columns or rows of A, or 

2. the greatest order of nonzero determinant of submatrices of A. 

If the rank of A is n, it means that the matrix A is nonsingular. 

Inverse of a Matrix 

If we have a relation 

PA=I, where 1 is an identity matrix, (A.2.18) 

then P is called the inverse of the matrix A denoted as A -1. The 
inverse of a matrix can be calculated in several ways. Thus, 

It can be easily seen that 

(A -1)' = (A,)-1 

(AB)-1 = B-1 A -1. 

Further, the inverse of sum of matrices is given as 

(A.2.19) 

(A.2.20) 

[A + BCD]-1 = A -1 - A -1B [DA -1B + C-1] -1 DA -1 (A.2.21) 

where, A and Care nonsingular matrices, the matrix [A + BCD] 
can be formed and is nonsingular and the matrix [DA -1 B + C-1] is 
nonsingular. As a special case 

[I - F [sl - A]-1 B] -1 = 1 + F [sl - A - BF]-1 B. (A.2.22) 

If a matrix A consists of submatrices as 

A = [!~: !~~] (A.2.23) 
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then 

IAI = IA11I·IA22 - A21 A il A121 

= IA221·IA11 - A12A2l A211 

where, the inverses of A11 and A22 exist and 

Powers of a Matrix 

(A.2.24) 

The m power of a square matrix A denoted as Am, is defined as 

Am = AA··· A upto m terms. 

Exponential of a Matrix 

The exponential of a square matrix A can be expressed as 

A 1 2 1 3 exp(A)=e =I+A+-A +-A + ... 
2! 3! 

Differentiation and Integration 

Differentiation of a Scalar w.r. t. a Vector 

(A.2.26) 

(A.2.27) 

If a scalar J is a function of a (column) vector x, then the derivative 
of J w.r.t. the x becomes 

[ 

af 1 aXl 

dJ =VxJ= it . 
dx ... 

~ 
aXn 

(A.2.28) 

This is also called a gradient of the function J w.r. t. the vector x. 
The second derivative (also called Hessian) of J w.r.t. the vector x 

is 

(A.2.29) 
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DiHerentiation of a Vector w.r. t. a Scalar 
If a vector x of dimension n is a function of scalar t, then the derivative 
of x w.r.t. t is 

[ 

dXl 1 
dx= ,; . 
dt ... 

dXn 
----;:It 

(A.2.30) 

DiHerentiation of a Vector w.r. t. a Vector 
The derivative of an mth order vector function f w.r.t. an nth vector 
x is written as 

df' 8f' 
--G--­dx- -8x-

where, G is a matrix of order nxm. Note that 

G' = [:r h· h" 8f w IC IS wrItten as 8x' 

This is also called Jacobian matrix denoted as 

Jx(f(x)) = df = 8f = [8 Ii ] 
dx ax 8Xj 

ah ~ ... Qll 
aXl aX2 aXn 

!!h !!h ... !!h 
aXl aX2 aX2 

Thus, the total differential of f is 

of 
df = ax dx. 

DiHerentiation of a Scalar w.r. t. Several Vectors 
For a scalar I as a function of two vectors x and y, we have 

1= f(x,y) 

[8f]' [Of]' df= 8x dx+ 8y dy 

(A.2.31) 

(A.2.32) 

(A.2.33) 

(A.2.34) 

(A.2.35) 
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where, df is the total differential. For a scalar function 

f = f(x(t), y(t), t), y(t) = y(x(t), t) 

df = [ay'] of + of 
dx ax ay ax 

df = [{ay'} of + Of]' dx + [Of]' ay + of (A.2.36) 
dt ax ay ax dt ay at at 

Differentiation of a Vector w.r. t. Several Vectors 
Similarly for a vector function f, we have 

f = f(y, x, t), y = y(x, t), x = x(t) 

df = [Of']' [ay']' + of 
dx ay ax ax 

= [Of] [ay
] + of 

ay ax ax 

df = [Of']' [{ ay'}' dx ay ] [Of']' dx of 
dt ay ax dt + at + ax dt + at 

= [:] [{:} ~~ + Z] + [;~] ~~ + ~!. 
Differentiation of a Matrix w.r. t. a Scalar 

(A.2.37) 

If each element of a matrix is a function of a scalar variable t, then the 
matrix A(t) is said to be a function of t. Then the derivative of the 
matrix A ( t) is defined as 

dA(t) [~!: ~!: ::: :::: 1 --= dt dt dt. 
dt .... ....... . 

danl ~ ... danm 
dt dt dt 

(A.2.38) 

It follows (from chain rule) that 

! [A(t)B(t)) = d~it) B(t) + A(t) ~it). (A.2.39) 

It is obvious that 

! [eAt] = AeAt = eAtA 

~ [A -1 ( t)] =_ A -1 ( t) dA ( t) A -1 ( t ) . 
dt dt 

(A.2.40) 
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Differentiation of a Scalar w.r. t. a Matrix 
Suppose a scalar J is a function of a matrix A, then 

dJ 
dA 

~ ~ ... -.!!L 
da11 dal2 dal rn 

df df df 
da2l da22 ... da2m 

~ ~ ... --.!!L 
danl dan2 danm 
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(A.2.41) 

The integration process for matrices and vectors is similarly defined 
for all the previous cases. For example, 

(A.2.42) 

Taylor Series Expansion 
It is well known that the Taylor series expansion of a function J w.r.t. 
x about Xo is 

[8J ]'1 1 [PJI J(x) = J(xo) + 8x (x - xo) + 2! (x - xo)' 8x2 (x - xo) 
Xo Xo 

+0(3) (A.2.43) 

where, 0(3) indicates terms of order 3 and higher. 

Trace oj a Matrix 

For a square matrix A of n dimension, the trace of A is defined as 

n 

tr [A] = L aii· (A.2.44) 
i=l 

Thus, the trace is the sum of the diagonal elements of a matrix. Also, 

tr [A + B] = tr [A] + tr [B] 

tr [AB] = tr [A'B'] = tr [B' A'] = tr [BA] . (A.2.45) 

Eigenvalues and Eigenvectors oj a Square Matrix 

For a square matrix A of order n, the roots (or zeros) of the charac­
teristic polynomial equation in A 

IAI- AI = 0 (A.2.46) 
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are called eigenvalues of the matrix A. If there is a nonzero vector x 
satisfying the equation 

(A.2.47) 

for a particular eigenvalue Ai, then the vector x is called the eigenvector 
of the matrix A corresponding to the particular eigenvalue Ai. Also, 
note that the trace of a matrix is related as 

n 

tr[A]=LAi' (A.2.48) 
i=l 

Singular Values 

Let A be an nxm matrix, then the singular values u of the matrix 
A are defined as the square root values of the eigenvalues (A) of the 
matrix A' A, that is 

u = VA(A'A). (A.2.49) 

The singular values are usually arranged in the descending order of the 
magnitude. 

A.3 Quadratic Forms and Definiteness 
Quadratic Forms 

Consider the inner product of a real symmetric matrix P and a vector 
x or the norm of vector x w.r.t. the real symmetric matrix P as 

< x,Px > = x'Px = Ilxlip 

= [Xl X2 ... Xn] [~;; ~~~ : : : ;~ 1 [~~·l 
PIn P2n .,. Pnn Xn 

n 

L PijXiXj' (A.3.1) 
i,j=l 

The scalar quantity x'Px is called a quadratic form since it contains 
quadratic terms such as XIPl1 , XIX2PI2, .... 
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Definiteness 
Let P be a real and symmetric matrix and x be a nonzero real vector, 
then 

1. P is positive definite if the scalar quantity x/px > 0 or is positive. 

2. P is positive semidefinite if the scalar quantity x/px ~ 0 or is 
nonnegative. 

3. P is negative definite if the scalar quantity x/px < 0 or is nega­
tive. 

4. P is negative semidefinite if the scalar quantity x/px < 0 or 
nonpositive. 

A test for real symmetric matrix P to be positive definite is that all its 
principal or leading minors must be positive, that is, 

PH > 0, 
I
pII PI21 > 0, 
PI2 P22 

PII PI2 PI3 

PI2 P22 P23 > 0 
PI3 P23 P33 

(A.3.2) 

for a 3x3 matrix P. The > sign is changed accordingly for positive 
semidefinite ( ~), negative definite «), and negative semidefinite (~ 
0) cases. Another simple test for definiteness is using eigenvalues (all 
eigenvalues positive for positive definiteness, etc.). 

Also, note that 

[x/px] I = X/p/X = x/px 

p=VP#=#VP. (A.3.3) 
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Der.ivative of Quadratic Forms 
Some useful results in obtaining the derivatives of quadratic forms and 
related expressions are given below. 

a 
ax (Ax) = A 

a a 
ay (x/y) = ay (y/X) = x 

: (x'Ay) = :y (y'A'x) = A'x 

a 
ax (x' Ax) = Ax + A/x 

a
2 
(') I ax2 x Ax = A + A . 

If there is a symmetric matrix P, then 

a 
ax (x/px) = 2Px 

a2 

ax2 (x/px) = 2P. 

(A.3.4) 

(A.3.5) 
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State Space Analysis 

The main purpose of this appendix is to provide a brief summary of 
the results on state space analysis to serve as a review of these topics 
rather than any in depth treatment of the topics. For more details on 
this subject, the reader is referred to [69, 147, 4, 41, 11, 35]. 

B.l State Space Form for Continuous-Time 
Systems 

A linear time-invariant (LTI) , continuous-time, dynamical system is 
described by 

x(t) = Ax(t) + Bu(t), state equation 

y(t) = Cx(t) + Du(t), output equation (B.l.1) 

with initial conditions x(t = to) = x(to). Here, x(t) is an n-dimensional 
state vector, u(t) is an r dimensional control vector, and y(t) is a p 
dimensional output vector and the various matrices A, B, ... , are of 
appropriate dimensionality. The Laplace transform (in terms of the 
Laplace variable s) of the preceding set of equations (B.l.1) is 

which becomes 

sX(s) - x(to) = AX(s) + BU(s) 

Yes) = CX(s) + DU(s) 

Xes) = [sI - A]-l [x(to) + BU(s)] 

Yes) = C [sI - A]-l [x(to) + BU(s)] + DU(s) 

(B.l.2) 

(B.l.3) 
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where, X( s) =Laplace transform of x( t), etc. In terms of the transfer 
function G(s) with zero initial conditions x(to) = 0, we have 

(B.l.4) 

A linear time-varying (LTV), continuous-time, dynamical system is 
described by 

x(t) = A(t)x(t) + B(t)u(t), state equation 

y(t) = C(t)x(t) + D(t)u(t), output equation (B.l.5) 

with initial conditions x(t = to) = x(to). The solution of the continuous­
time LTI system (B.l.I) is given by 

x(t) = ~(t, to)x(to) + r ~(t, T)Bu(T)dT 
ito 

y(t) = C~(t, to)x(to) + C r ~(t, T)Bu(T)dT + Du(t) (B.l.6) 
ito 

where, ~(t, to), called the state transition matrix of the system (B.l.I), 
is given by 

~(t, to) = eA(t-to) (B.l. 7) 

having the properties 

(B.l.8) 

Similarly, the solution of the continuous-time LTV system (B.l.5) is 
given by 

x(t) = ~(t, to)x(to) + r ~(t, T)B(T)U(T)dT 
ito 

y(t) = C(t)~(t, to)x(to) + C(t) rt ~(t, T)B(T)U(T)dT + D(t)u(t) 
ito 

(B.l.9) 

where, ~(t, to), still called the state transition matrix of the system 
(B.l.5), cannot be easily computed analytically, but does satisfy the 
properties (B.l.8). However, in terms of a fundamental matrix X(t) 
satisfying 

X(t) = A(t)X(t) (B.l.IO) 

it can be written as [35] 

~(t, to) = X(t)X-l(tO). (B.l.II) 
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B.2 Linear Matrix Equations 
A set of linear simultaneous equations for an unknown matrix P in 
terms of known matrices A and Q, is written as 

PA + A'p + Q = O. (B.2.1) 

In particular, if Q is positive definite, then there exists a unique positive 
definite P satisfying the previous linear matrix equation, if and only 
if A is asymptotically stable or the real part (Re) of A{A} < O. Then 
(B.2.1) is called the Lyapunov equation, the solution of which is given 
by 

[00 I 
P = Jo eA tQeAtdt. (B.2.2) 

B.3 State Space Form for Discrete-Time Sys­
tems 

A linear time-invariant (LTI) , discrete-time, dynamical system is de­
scribed by 

x(k + 1) = Ax(k) + Bu(k), 

y(k) = Cx(k) + DU(k), 

state equation 

output equation (B.3.1) 

with initial conditions x(k = ko) = x(ko). Here, x(k) is an n-dimensional 
state vector, u(k) is an r- dimensional control vector, and y(k) is a p­
dimensional output vector and the various matrices A, B, ... , are ma­
trices of appropriate dimensionality. The Z-transform (in terms of the 
complex variable z) is 

which becomes 

zX(z) - x(ko) = AX(z) + BU(z) 

Y(z) = CX(z) + DU(z) 

X(z) = [zI - A]-l [x(ko) + BU(z)] 

Y(z) = C [zI - A]-l [x(ko) + BU(z)] + DU(z). 

(B.3.2) 

(B.3.3) 

In terms of the transfer function G(z) with zero initial conditions 
x(ko) = 0, we have 

Y(z) -1 
G(z) = U(z) = C [zI - A] B + D. (B.3.4) 
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An LTV, discrete-time, dynamical system is described by 

x(k + 1) = A(k)x(k) + B(k)u(k), state equation 

y(k) = C(k)x(k) + D(k)u(k), output equation (B.3.5) 

with initial conditions x(k = ko) = x(ko). The solution of the LTI 
discrete-time system (B.3.1) is given by 

k-l 

x(k) = ~(k, ko)x(ko) + L ~(k, m + 1)Bu(m) 
m=ko 

k-l 

y(k) = C~(k, ko)x(ko) + C L ~(k, m + 1)Bu(m) + DU(k) 
m=ko 

(B.3.6) 

where, ~(k, ko), called the state transition matrix of the discrete-time 
system (B.3.1), is given by 

(B.3.7) 

having the properties 

(B.3.8) 

Similarly, the solution of the LTV, discrete-time system (B.3.5) is 
given by 

k-l 

x(k) = ~(k, ko)x(ko) + L ~(k, m + l)B(m)u(m) 
m=ko 

k-l 

y(k) = C(k)~(k, ko)x(ko) + C(k) L ~(k, m + l)B(m)u(m) + D(k)u(k) 
m=ko 

(B.3.9) 

where, 

~(k, ko) = A(k - 1)A(k - 2) ... A(ko) k terms, (B.3.10) 

is called the state transition matrix of the discrete-time system (B.3.5) 
satisfying the properties (B.3.8). 
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B.4 Controllability and Observability 
Let us first consider the LTI, continuous-time system (B.l.1). Similar 
results are available for discrete-time systems [35]. The system (B.l.1) 
with the pair (A : nxn, B : nxr) is called completely state controllable 
if any of the following conditions is satisfied: 

1. rank of the controllability matrix 

Qc = [B AB A 2B·· . An-1B] 

is n (full row rank), or 

2. the controllability Grammian 

Wc(t) = lot eATBB'eA'TdT 

= lot eA(t~T)BB'eA'(t~T)dT 

is nonsingular for any t > o. 

(B.4.1) 

(B.4.2) 

The system (B.1.1) with the pair (A : nxn, C : pxn) is completely 
observable if any of the following conditions is satisfied: 

1. rank of the observability matrix 

Qo = [C CA CA2 ... CAn- 1]' 

has rank n (full column rank). 

2. the observability Grammian 

rt I 

Wo(t) = 10 eA rC'CeAr dT 

is nonsingular for any t > O. 

(B.4.3) 

(B.4.4) 

Other conditions also exist for controllability and observability [35]. 

B.5 Stabilizability, Reachability and Detectabil-
ity 

Stabilizability 

A system is stabilizable if its uncontrollable states or modes if any, are 
stable. Its controllable states or modes may be stable or unstable. Thus, 
the pair (A, B) is stabilizable if (A - BF) can be made asymptotically 
stable for some matrix F. 
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Reachability 

A system is said to be reachable if the system can be transferred from 
initial state to any other specified final state. Thus, a continuous-time 
system is reachable if and only if the system is controllable and hence 
reachability is equivalent to controllability. 

Detectability 

A system is detectable if its unobservable states, if any, are stable. Its 
observable states may be stable or unstable. Thus, the pair (A, C) is 
detectable if there is a matrix L such that (A - LC) can be made 
asymptotically stable. This is equivalent to the observability of the 
unstable modes of A. 
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MATLAB Files 

This appendix contains MATLAB© files required to run programs 
used in solving some of the problems discussed in the book. One needs 
to have the following files in one's working directory before using the 
MATLAB©. 

C.l MATLAB© for Matrix Differential Ric-
cati Equation 

The following is the typical MATLAB© file containing the various 
given matrices for a problem, such as, Example 3.1 using analytical 
solution of matrix Riccati differential equation given in Chapter 3. This 
file, say example.m requires the other two files lqrnss.m and IqrnssJ.m 
given below. The electronic version of 11 these files can also be obtained 
by sending an email to naiduds@isu.edu. 

%%%%%%%%%%%% 
clear all 
A= [0. ,1. ; -2. ,1.] ; 
B= [0. ; 1.] ; 

Q= [2. ,3. ; 3. ,5.] ; 
F= [1. ,0. 5 ; 0 . 5 , 2 .] ; 
R=[.25] ; 
tspan=[O 5]; 

xo= [2. ,-3.] ; 
[x,u,K]=lqrnss(A,B,F,Q,R,xO,tspan); 

%%%%%%%%%%%%% 

385 
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C.1.1 MATLAB File lqrnss.m 

This MATLAB© file lqrnss.m is required along with the other files 
example. m and lqrnssf. m to solve the matrix Riccati equation using its 
analytical solution. 

%%%%%%%%%%%%% 
%% The following is lqrnss.m 
function [x,u,K]=lqrnss(As,Bs,Fs,Qs,Rs,xO,tspan) 
%Revision Date 11/14/01 
%% 
% This m-file calculates and plots the outputs for a 
% Linear Quadratic Regulator (LQR) system based on given 
% state space matrices A and B and performance index 
% matrices F, Q and R. This function takes these inputs, 
% and using the analytical solution to the 
%% matrix Riccati equation, 
% and then computing optimal states and controls. 
% 
% 
% SYNTAX: [x,u,K]=lqrnss(A,B,F,Q,R,xO,tspan) 
% 
% 
% 
% 
% 
% 
% 

INPUTS (All numeric): 
A,B 
F,Q,R 
xO 
tspan 

Matrices from xdot=Ax+Bu 
Performance Index Parameters; 
State variable initial condition 
Vector containing time span [to tf] 

% OUTPUTS: 
% 
% 
% 
% 

x 
u 

K 

is the state variable vector 
is the input vector 
is the steady-state matrix inv(R)*B'*P 

% The system plots Riccati coefficients, x vector, 
% and u vector 
% 
%Define variables to use in external functions 
% 
global A E F Md tf W11 W12 W21 W22 n, 
% 
%Check for correct number of inputs 
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% 
if nargin<7 

error('Incorrect number of inputs specified') 
return 

end 
% 
%Convert Variables to normal symbology to prevent 
% problems with global statement 
% 
A=As; 
B=Bs; 
F=Fs; 
Q=Qs; 
R=Rs; 
plotflag=O; %set plotflag to 1 to avoid plotting of 
% data on figures 
% 
%Define secondary variables for global passing to 
% ode-related functions and determine matrice size 
% 

%Find dimensions of 
%Find dimensions of 
%Find dimensions of 
%Find Dimensions of 
%Find Dimensions of 

[n,m]=size(A); 
[nb,mb]=size(B); 
[nq,mq] =size (Q) ; 

[nr,mr]=size(R); 
[nf ,mf] =size (F) ; 
if n-=m %Verify A is square 

error('A must be 
else 

square') 

[n, n] =size (A) ; 
end 
% 
%Data Checks for proper setup 
if length(A»rank(ctrb(A,B)) 
%Check for controllability 

end 

error('System Not Controllable') 
return 

if (n -= nq) I (n - mq) 
%Check that A and Q are the same size 

A 
B 
Q 

R 
F 
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error('A and Q must be the same size'); 
return 

end 
if -(mf==l&nf==l) 

if (nq -= nf) I (mq -= mf) 
%Check that Q and F are the same size 

error('Q and F must be the same size'); 
return 

end 
end 
if -(mr==l&nr==l) 

if (mr -= nr) I (mb - nr) 
error('R must be consistent with B'); 
return 

end 
end 
mq = norm(Q,l); 
% Check if Q is positive semi-definite and symmetric 
if any(eig(Q) < -eps*mq) I (norm(Q'-Q,l)/mq > eps) 

disp('Warning: Q is not symmetric and positive ... 
semi-definite'); 
end 
mr = norm(R,l); 
% Check if R is positive definite and symmetric 
if any(eig(R) <= -eps*mr) I (norm(R'-R,l)/mr > eps) 
disp('Warning: R is not symmetric and positive ... 
definite'); 
end 
% 
%Define Initial Conditions for 
%numerical solution of x states 
% 
to=tspan (1) ; 
tf=tspan(2); 
tspan=[tf to]; 
% 
%Define Calculated Matrices and Vectors 
% 
E=B*inv(R)*B' ; %E Matrix E=B*(l/R)*B' 
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% 
%Find Hamiltonian matrix needed to use 
% analytical solution to 
% matrix Riccati differential equation 
% 
Z=[A,-E;-Q,-A'J; 
% 
%Find Eigenvectors 
% 
[W, DJ =eig (Z) ; 
% 
%Find the diagonals from D and pick the 
% negative diagonals to create 
% a new matrix M 
% 
j=n; 
[ml,indexlJ=sort(real(diag(D))); 

for i=l:l:n 
m2(i)=ml(j); 
index2(i)=indexl(j); 
index2(i+n)=indexl(i+n); 
j=j-l; 

end 
Md=-diag(m2); 
% 
%Rearrange W so that it corresponds to the sort 
% of the eigenvalues 
% 
for i=1:2*n 

w2(:,i)=W(:,index2(i)); 
end 
W=w2; 
% 
%Define the Modal Matrix for D and Split it into Parts 
% 
Wll=zeros(n); 
W12=zeros(n); 
W21=zeros(n); 
W22=zeros(n); 
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j=l ; 
for i=1:2*n:(2*n*n-2*n+l) 

Wll(j:j+n-l)=W(i:i+n-l); 
W21(j:j+n-l)=W(i+n:i+2*n-l); 
W12(j:j+n-l)=W(2*n*n+i:2*n*n+i+n-l); 
W22(j:j+n-l)=W(2*n*n+i+n:2*n*n+i+2*n-l); 
j=j+n; 

end 
% 
%Define other initial conditions for 
% calculation of P, g, x and u 
% 
tl=O. ; 
tx=O. ; 
tu=O. ; 
x=O. ; 
% 
%Calculation of optimized x 
% 

%time array for x 
%time array for u 
%state vector 

[tx,x]=ode45('lqrnssf',fliplr(tspan),xO, ... 
odeset('refine',2,'RelTol',le-4,'AbsTol',le-6)); 
% 
%Find u vector 
% 
j=l; 
us=O.; %Initialize computational variable 
for i=l:l:mb 

for tua=tO:.l:tf 
Tt=-inv(W22-F*W12)*(W21-F*Wll); 
P=(W21+W22*expm(-Md*(tf-tua))*Tt* ... 

expm(-Md*(tf-tua)))*inv(Wll+W12*expm(-Md*(tf-tua)) ... 
*Tt*expm(-Md*(tf-tua))); 

K=inv(R)*B'*P; 
xs=interpl(tx,x,tua); 
usl=real(-K*xs'); 
us (j) =usl (i) ; 
tu(j)=tua; 
j=j+l; 

end 
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u ( : , i) =us' ; 
us=O; 
j=l ; 

end 
% 
%Provide final steady-state K 
% 
P=W21/Wll; 
K=real(inv(R)*B'*P); 
% 
%Plotting Section, if desired 
% 
if plotflag-=l 
% 
%Plot diagonal Riccati coefficients using a 
% flag variable to hold and change colors 
% 
fig=l ; 
cflag=l; 
j=l; 
Ps=O. ; 

%Figure number 
%Variable used to change plot color 

%Initialize P matrix plot variable 
for i=l:l:n*n 

for tla=tO: .1:tf 
Tt=-inv(W22-F*W12)*(W21-F*Wll); 
P=real«W21+W22*expm(-Md*(tf-tla))*Tt*expm(-Md* ... 

(tf-tla)))*inv(Wll+W12*expm(-Md*(tf-tla))*Tt ... 
*expm(-Md*(tf-tla)))); 

Ps(j)=P(i); 
tl(j)=tla; 
j=j+l ; 

end 
if cflag==l; 

figure (fig) 
plot(tl,Ps, 'b') 
title('Plot of Riccati Coefficients') 
xlabel (' t') 
ylabel ( , P Matrix') . 
hold 
cflag=2; 
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else if cflag==2 
plot (t 1, Ps, , m: ' ) 
cflag=3; 

elseif cflag==3 
plot(t1,Ps,'g-.') 
cflag=4; 

elseif cflag==4 
plot(t1,Ps,'r--') 
cflag=1 ; 
fig=fig+1; 

end 
Ps=O. ; 
j=1 ; 

end 
if cflag==2Icflag==3Icflag==4 

hold 
fig=fig+1; 

end 
% 
%Plot Optimized x 
% 
if n>2 

for i=1:3:(3*fix«n-3)/3)+1) 
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figure(fig); 
plot(tx,real(x(:,i)),'b',tx,real(x(:,i+1)),'m:',tx, ... 

real(x(:,i+2)),'g-.') 

end 
end 

title('Plot of Optimized x') 
xlabel ( , t ' ) 
ylabel('x vectors') 
fig=fig+1; 

if (n-3*fix(n/3))==1 
figure(fig); 
plot(tx,real(x(:,n)),'b') 

else if (n-3*fix(n/3))==2 
figure(fig); 
plot (tx, real (x ( : , n -1) ) , , b' , tx, real (x ( : , n) ) , , m: ' ) 

end 
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title('Plot of Optimized x') 
xlabel ('t') 
ylabel('x vectors') 
fig=fig+1; 
% 
%Plot Optimized u 
% 
if mb>2 

for i=1:3:(3*fix«mb-3)/3)+1) 
figure(fig); 
plot(tu,real(u(:,i)),'b',tu,real(u(:,i+1)),'m:', ... 

tu,real(u(:,i+2)),'g-.') 
title('Plot of Optimized u') 
xlabel ('t') 

% 

end 
end 

ylabel('u vectors') 
fig=fig+1; 

if (mb-3*fix(mb/3))==1 
figure(fig); 
plot(tu,real(u(:,mb)),'b') 

elseif (mb-3*fix(mb/3))==2 

end 

figure(fig); 
plot(tu,real(u(:,mb-1)),'b',tu,real(u(:,mb)),'m:') 

title('Plot of Optimized u') 
xlabel (' t') 
ylabel('u vectors') 
% 
end 
%% 
%%%%%%%%%%%%% 

C.1.2 MATLAB File lqrnssf.m 

This file lqrnssf. m is used along with the other two files example. m and 
lqrnss. m given above. 

%%%%%%%%%%%%%%%% 
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%% The following is lqrnssf.m 
%% 
function dx = lqrnssf(t,x) 
% Function for x 
% 
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global A E F Md tf Wii W12 W2i W22 n 
%Calculation of P, Riccati Analytical Solution 
Tt=-inv(W22-F*W12)*(W2i-F*Wii); 
P=(W2i+W22*expm(-Md*(tf-t))*Tt*expm(-Md*(tf-t)))* ... 
inv(Wii+W12*expm(-Md*(tf-t))*Tt*expm(-Md*(tf-t))); 
% 
xa=[A-E*P] ; 
% 
%Definition of differential equations 
% 
dx=[xa*x] ; 
%%%%%%%%% 

C.2 MATLAB© for Continuous- Time Track-
ing System 

The following MATLAB© files are used to solve the Example 4.1. 
The main file is Example4.1(example4_l.m) which requires the files: 
Example 4.1 (example4_1p.m), Example 4.1(example4_1g.m), and Ex­
ample 4.1 (example4_1x.m). The file Example 4.1(example4_l.m) is for 
solving the set of first order Riccati differential equations; Example 4.1 
(example4_1g.m) is the set of first order g vector differential equations; 
and EXaInple 4.1 (example4_1x.m) is the set of state differential equa­
tions. 

C.2.1 MATLAB File for Example 4.1{example4_1.m) 

clear all 
% 
%Define variables to use in external functions 
global tp p tg g 
% 
%Define Initial Conditions for numerical solution 
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% of g and x states 
% 
tf=20; 
tspan=[tf 0]; 
tp=O. ; 
tg=O. ; 
tx=O. ; 
pf=[2. ,0. ,0.]; 
gf=[2. ,0.] ; 
xO=[-0.5,0.] ; 
% 
%Calculation of P 
% 
[tp,p]=ode45('example4_1p',tspan,pf,odeset('refine',2, ... 
'RelTol',1e-4,'AbsTol',1e-6)); 
% 
%Calculation of g 
% 
[tg,g]=ode45('example4_1g',tp,gf,odeset('refine',2, ... 
'RelTol',1e-4,'AbsTol',1e-6)); 
% 
%Calculation of optimized x 
% 
[tx,x]=ode45('example4_1x',flipud(tg),xO, ... 
odeset('refine',2,'RelTol',1e-4,'AbsTol',1e-6)); 
% 
%Plot Riccati coefficients 
% 
fig=1; %Figure number 
figure (fig) 
plot(tp,real(p(:,1)),'k',tp,real(p(:,2)),'k',tp, ... 
real (p ( : ,3) ) , , k ' ) 
grid on 
xlabel (' t') 
ylabel('Riccati Coefficients') 
hold 
% 
fig=fig+1; 
% 
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%Plot g values 
% 
figure(fig); 
plot(tg,real(g(:,1)),'k',tg,real(g(:,2)),'k') 
grid on 
xlabel (' t') 
ylabel('g vector') 
%% 
% 
fig=fig+1; 
% 
%Plot Optimal States x 
% 
figure(fig); 
plot(tx,real(x(:,1)),'k',tx,real(x(:,2)),'k') 
grid on 
xlabel (' t') 
ylabel('Optimal States') 
% 
fig=fig+1; 
% 
%Plot Optimal Control u 
% 
[n,m] =size (p) ; 
p12=p(: ,2) ; 
p22=p ( : , 3) ; 
x1=x(: ,1) ; 
x2=x(: ,2); 
g2=flipud(g(:,2)); 
for i=l:l:n 

u(i) = -250*(p12(i)*x1(i) + p22(i)*x2(i) - g2(i)); 
end 
figure(fig); 
plot(tp,real(u),'k') 
grid on 
xlabel ( , t ' ) 
ylabel('Optimal Control') 
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C.2.2 MATLAB File for Example 4.1 (example4_1p.m) 

function dp = example4_1p(t,p) 
% Function for P 
% 
%Define variables to use in external functions 
% 
%Definition of differential equations 
% 
dp=[250*p(2)~2+4*p(2)-2 

% 

250*p(2)*p(3)-p(1)+3*p(2)+2*p(3) 
250*p(3)~2-2*p(2)+6*p(3)]; 

C.2.3 MATLAB File for Example 4.1 (example4_1g.m) 

function dg = example4_1g(t,g) 
% Function for g 
% 
%Define variables to use in external functions 
% 
global tp p 
% 
%Definition of differential equations 
% 
dg=[(250*interpl(tp,p(:,2),t)+2)*g(2)-2 

-g(1)+(250*interpl(tp,p(:,3),t)+3)*g(2)]; 

C.2.4 MATLAB File for Example 4.1 (example4_1x.m) 

function dx = example4_1x(t,x) 
% Function for x 
% 
%Define variables to use in external functions 
global tp p tg g 
% 
%Definition of differential equations 
% 
dx=[x(2) 

-2*x(1)-3*x(2)-250*(interpl(tp,p(:,2),t)*x(1)+ ... 
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interp1(tp,p(:,3),t)*x(2)-interp1(tg,g(:,2),t))] ; 
% 

C.2.5 MATLAB File for Example 4.2{example4-1.m ) 

clear all 
% 
%Define variables to use in external functions 
global tp p tg g 
% 
%Define Initial Conditions for numerical solution of 
% g and x states 
% 
tf=20; 
tspan=[tf 0]; 
tp=O. ; 
tg=O. ; 
tx=O. ; 
pf=[O. ,0. ,0.]; 
gf = [0. , ° .] ; 
xO= [-1. , 0.] ; 
% 
%Calculation of P 

[tp,p]=ode45('example4_2p',tspan,pf, ... 
odeset('refine',2,'ReITol',1e-4,'AbsTol',1e-6)); 
% 
%Calculation of g 
% 

[tg,g]=ode45('example4_2g',tp,gf, ... 
odeset('refine',2,'ReITol',1e-4,'AbsTol',1e-6)); 
% 
%Calculation of optimized x 
% 

[tx,x]=ode45('example4_2x',flipud(tg),xO, ... 
odeset('refine',2,'ReITol',1e-4,'AbsTol',1e-6)); 
% 
fig=1; %Figure number 
figure (fig) 
plot(tp,real(p(:,1)),'k',tp,real(p(:,2)),'k',tp, ... 
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real(p(:,3)),'k') 
grid on 
title('Plot of P') 
xlabel ( , t ' ) 
ylabel('Riccati Coefficients') 
hold 
% 
fig=fig+1; 
% 
%Plotg values 
% 
figure(fig); 
plot(tg,real(g(:,1)),'k',tg,real(g(:,2)),'k') 
grid on 
title('Plot of g Vector') 
xlabel (, t') 
ylabel('g vector') 
% 
fig=fig+1; 
% 
%Plot Optimized x 
% 
figure(fig); 
plot(tx,real(x(:,1)),'k',tx,real(x(:,2)),'k') 
grid on 
title('Plot of Optimal States') 
xlabel ( , t' ) 
ylabel('Optimal States') 
% 
fig=fig+1 ; 
% 
%Calculate and Plot Optimized u 
% 
[n,m]=size(p); 
p12=flipud(p(:,2)); 
p22=flipud(p(:,3)); 
x1=x(: ,1) ; 
x2=x(: ,2); 
g2=flipud(g(:,2)); 
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for i=1:1:n 
u(i) = -25*(p12(i)*x1(i) + p22(i)*x2(i) + g2(i»; 

end 
figure(fig); 
plot(tx,real(u),'b') 
grid on 
title('Plot of Optimal Control') 
xlabel ( , t ' ) 
ylabel('Optimal Control') 
%%%%%%%%%%%%%%%%%%% 

C.2.6 MATLAB File for Example 4.2(example4_2p.m) 

function dp = example4_2p(t,p) 
% Function for P 
% 
%Define variables to use in external functions 
% 
%Definition of differential equations 
% 
dp=[25*p(2)~2+4*p(2)-2 

%% 

25*p(2)*p(3)-p(1)+3*p(2)+2*p(3) 
25*p(3)~2-2*p(2)+6*p(3)] ; 

C.2.7 MATLAB File for Example 4.2(example4_2g.m) 

function dg = example4_2g(t,g) 
% Function for g 
% 
%Define variables to use in external functions 
% 
global tp p 
% 
%Definition of differential equations 
% 
dg=[(25*interp1(tp,p(:,2),t)+2)*g(2)-4*t 

-g(1)+(25*interp1(tp,p(:,3),t)+3)*g(2)] ; 
%% 
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C.2.8 MATLAB File for Example 4.2{example4_2x.m) 

function dx = example4_2x(t,x) 
% Function for x 
% 
%Define variables to use in external functions 
global tp p tg g 
% 
%Definition of differential equations 
% 
dx=[x(2) 

-2*x(1)-3*x(2)-25*(interp1(tp,p(:,2),t)*x(1)+ ... 
interp1(tp,p(:,3),t)*x(2)-interpl(tg,g(:,2),t))] ; 
%% 

C.3 MATLAB© for Matrix Difference Ric~ 
cati Equation 

The following is the typical MATLAB© file containing the various 
given matrices for a problem, such as Example 5.5, using analytical 
solution of matrix Riccati difference equation given in Chapter 5. This 
file, say example.m requires the other file lqrdnss.m given below. 

%%%%%%%%%%%%%%%%% 
clear all 
A= [ .8, 1 ; 0, .5] ; 
B= [1; .5] ; 

F= [2 , ° ; ° ,4] ; 
Q=[1,0;0,1] ; 
R=1; 
kspan=[O 10]; 
xO ( : ,1) = [5. ; 3.] ; 
[x,u]=lqrdnss(A,B,F,Q,R,xO,kspan); 
%%%%%%%%%%%%%%%%%%%%%%% 

C.3.1 MATLAB File lqrdnss.m 

This MATLAB© file lqrdnss. m is required along with the other file 
example. m to solve the matrix Riccati difference equation using its 
analytical solution. 
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%%%%%%%%%%%%% 
function [x,u]=lqrdnss(As,Bs,Fs,Qs,Rs,xO,kspan) 
% 
%This m-file calculates and plots the outputs for a 
% discrete Linear Quadratic Regulator system 
%Based on provided linear state space matrices 
% for A and B and Performance Index matrices 
% for F, Q and R. 
%This function takes these inputs, and using the 
% analytical solution to the matrix Riccati equation, 
% formulates the optimal states and inputs. 
% 
% 
% SYNTAX: [x,u]=lqrdnss(A,B,F,Q,R,xO,tspan) 
% 
% INPUTS (All numeric): 
% A,B Matrices from xdot=Ax+Bu 
% F,Q,R Performance Index Parameters; terminal cost, 
% error and control weighting 
% xO State variable initial condition. Must be a 
% column vector [xl0;x20;x30 ... ] 
% kspan Vector containing sample span [kO kf] 
% 
% OUTPUTS: 
% 
% 
% 

x 
u 

is the state variable vector 
is the input vector 

% The system plots the Riccati coefficients in 
% combinations of 4, 
% and the x vector, and u vector in 
% combinations of 3. 
% 

%Check for correct number of inputs 

if nargin<7 
error('Incorrect number of inputs specified') 
return 
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end 

%Convert Variables to normal symbology to 
% prevent problems with global statement 

A=As; 
B=Bs; 
F=Fs; 
Q=Qs; 
R=Rs; 
plotflag=O; %set plotflag to a 1 to avoid plotting 
% of data on figures 

%Define secondary variables for global passing to 
% ode-related functions and determine matrice size 

%Find dimensions of 
%Find dimensions of 
%Find dimensions of 
%Find Dimensions of 
%Find Dimensions of 

[n,m]=size(A); 
[nb,mb]=size(B); 
[nq,mq] =size (Q) ; 

[nr,mr]=size(R); 
[nf,mf]=size(F); 
if n-=m %Verify A is square 

error('A must be 
else 

[n,n]=size(A); 
end 

square' ) 

%Data Checks for proper setup 
%Check for controllability 
if length(A»rank(ctrb(A,B)) 

end 

error('System Not Controllable') 
return 

if (n -= nq) I (n -= mq) 
%Check that A and Q are the same size 

error('A and Q must be the same size'); 
return 

end 
if -(mf==l&nf==l) 

A 
B 
Q 
R 
F 
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if (nq -= nf) I (mq -= mf) 
%Check that Q and F are the same size 

error('Q and F must be the same size'); 
return 

end 
end 
if -(mr==l&nr==l) 

if (mr -= nr) I (mb - nr) 

end 
end 

error('R must be consistent with B'); 
return 

mq = norm(Q,l); 
% Check if Q is positive semi-definite and symmetric 
if any(eig(Q) < -eps*mq) I (norm(Q'-Q,l)/mq > eps) 
disp('Warning: Q is not symmetric and ... 
positive semi-definite'); 
end 
mr = norm(R,l); 
% Check if R is positive definite and symmetric 
if any(eig(R) <= -eps*mr) I (norm(R'-R,l)/mr > eps) 
disp('Warning: R is not symmetric and ... 
positive definite'); 
end 

%Define Calculated Matrix 

%Find matrix needed to calculate Analytical Solution 
% to Riccati Equation 

%Find Eigenvectors 

[W, D] =eig (H) ; 

%Find the diagonals from D and pick the negative 
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% diagonals to create a new matrix M 

j=n; 
[ml,indexl]=sort(real(diag(D))); 

for i=l:l:n 
m2(i)=ml(j); 
index2(i)=indexl(j); 
index2(i+n)=indexl(i+n); 
j=j-l; 

end 
Md=diag(m2); 

%Rearrange W so that it corresponds to the 
% sort of the eigenvalues 

for i=1:2*n 
w2(:,i)=W(:,index2(i)); 

end 
W=w2; 

%Define the Modal Matrix for D and split it into parts 

Wl1=zeros(n); 
W12=zeros(n); 
W21=zeros(n); 
W22=zeros(n); 
j=l; 

for i=1:2*n:(2*n*n-2*n+l) 
Wll(j:j+n-l)=W(i:i+n-l); 
W21(j:j+n-l)=W(i+n:i+2*n-l); 
W12(j:j+n-l)=W(2*n*n+i:2*n*n+i+n-l); 
W22(j:j+n-l)=W(2*n*n+i+n:2*n*n+i+2*n-l); 
j=j+n; 

end 

%Find M 
M=zeros(n); 
j=l; 

for i=1:2*n:(2*n*n-2*n+l) 
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M(j:j+n-1)=D(i:i+n-1); 
j=j+n; 

end 

%Zero Vectors 
x=zeros(n,1); 

%Define Loop Variables (l=lambda) 
kO=kspan(1); 
kf=kspan(2); 

%x and P Conditions 
x ( : , 1) =xO ( : , 1) ; 

Appendix C: MATLAB Files 

Tt=-inv(W22-F*W12)*(W21-F*W11); 
P=real((W21+W22*((Md--(kf-O))*Tt*(Md--(kf-O)))) ... 
*inv(W11+W12*((Md--(kf-O))*Tt*(Md--(kf-O))))); 
L=inv(R)*B'*(inv(A))'*(P-Q); 
u(:,1)=-L*xO(:,1); 
k1(1)=O; 

for k=(kO+1):1:(kf) 
Tt=-inv(W22-F*W12)*(W21-F*W11); 
P=real((W21+W22*((Md--(kf-k))*Tt*(Md--(kf-k)))) ... 

*inv(W11+W12*((Md--(kf-k))*Tt*(Md--(kf-k))))); 
L=inv(R)*B'*(inv(A))'*(P-Q); 
xC: ,k+1)=(A-B*L)*x(:,k); 
u(:,k+1)=-L*x(:,k+1); 
k1(k+1)=k; 

end 

%Plotting Section, if desired 

if plotflag-=~ 

%Plot Riccati coefficients using flag variables 
% to hold and change colors 
%Variables are plotted one at a time and the plot held 

fig=1; %Figure number 
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cflag=l ; 
j=l; 
Ps=O. ; 
for i=l:l:n*n 

%Variable used to change plot color 

%Initialize P Matrix plot variable 

for k=(kO):l:(kf) 
Tt=-inv(W22-F*W12)*(W21-F*Wll); 
P=real«W21+W22*«Md~-(kf-k))*Tt*(Md~-(kf-k)))) ... 

*inv(Wll+W12*«Md~-(kf-k))*Tt*(Md~-(kf-k))))); 

Ps(j)=P(i); 
k2(j)=k; 
j=j+l ; 

end 
if cflag==l; 

figure(fig); 
plot (k2 , Ps , ' b ' ) 
title('Plot of Riccati Coefficients') 
grid on 
xlabel ( , k') 
ylabel('P Matrix') 
hold 
cflag=2; 

elseif cflag==2 
plot (k2 , Ps , ' b ' ) 
cflag=3; 

else if cflag==3 
plot (k2 ,Ps , ' b' ) 
cflag=4; 

elseif cflag==4 
plot (k2 ,Ps, ' b ' ) 
cflag=l ; 
fig=fig+l; 

end 
Ps=O. ; 
j=l; 

end 
if cflag==2Icflag==3Icflag==4 

hold 
fig=fig+l; 
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end 

%Plot Optimized x 

x=x' ; 
if n>2 

for i=1:3:(3*fix«n-3)/3)+1) 

Appendix C: MATLAB Files 

figure(fig); 
plot(kl,real(x(:,i)),'b',kl,real(x(:,i+l)),'b' ,kl, ... 

% 
end 

end 

real(x(:,i+2)),'b') 
grid on 
title('Plot of Optimal States') 
xlabel( 'k') 
ylabel('Optimal States') 
fig=fig+l ; 

if (n-3*fix(n/3))==1 
figure(fig); 
plot(kl,real(x(:,n)),'b') 

elseif (n-3*fix(n/3))==2 
figure(fig); 
plot(kl,real(x(:,n-l)),'b',kl,real(x(:,n)),'b') 

end 
grid on 
title('Plot of Optimal States') 
xlabel( 'k') 
ylabel('Optimal States') 
fig=fig+l; 

% 
%Plot Optimized u 
% 
u=u' ; 
if mb>2 

for i=1:3:(3*fix«mb-3)/3)+1) 
figure(fig); 
plot(kl,real(u(:,i)),'b',kl,real(u(:,i+l)), ... 

'm:',kl,real(u(:,i+2)),'g-.') 
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end 
end 

grid on 
title('Plot of Optimal Control') 
xlabel( 'k') 
ylabel('Optimal Control') 
fig=fig+1; 

if (mb-3*fix(mb/3))==1 
figure(fig); 
plot(k1,real(u(:,mb)),'b') 

elseif (mb-3*fix(mb/3))==2 
figure(fig); 
plot(k1,real(u(: ,mb-1)), 'b' ,k1,real(u(: ,mb)), 'm:') 

end 
grid on 
title('Plot of Optimal Control') 
xlabel ('k') 
ylabel('Optimal Control') 

gtext ('u') 
end 
%%%%%%%% 
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C.4 MATLAB© for Discrete-Time Tracking 
System 

This MATLAB© file for tracking Example 5.6 is given below. 

% Solution Using Control System Toolbox (STB) in 
% MATLAB Version 6 
clear 
A=[0.8 1;0,0.6]; %% system matrix A 
B=[1;0.5]; %% system matrix B 
C=[1 0;0 1]; %% system matrix C 
Q=[1 0;0 0]; %% performance index 
%% state weighting matrix Q 
R=[0.01]; %% performance index control 
%% weighting matrix R 
F=[1,0;0,0]; %% performance index weighting matrix F 
% 
x1(1)=5; %% initial condition on state x1 



410 Appendix C: MATLAB Files 

x2(1)=3; %% initial condition on state x2 
xk=[xl(1);x2(1)]; 
zk=[2;0]; 
zkf=[2;0]; 
% note that if kf = 10 then 
% k = [kO,kf] = [012, ... ,10], 
% then we have 11 points and an array xl should 
% have subscript 
% xl(N) with N=l to 11. This is because x(o) is 
% illegal in array 
% definition in MATLAB. Let us use N = kf+l 
kO=O; % the initial instant k_O 
kf=10; % the final instant k_f 
N=kf+l; % 
[n,n]=size(A); % fixing the order of the system matrix A 
I=eye(n); % identity matrix I 
E=B*inv(R)*B'; % the matrix E = BRA{-l}B' 
V=C'*Q*C; 
W=C'*Q; 
% 
% solve matrix difference Riccati equation 
% backwards starting from kf to kO 
% use the form P(k) = A'P(k+l)[I + EP(k+l)]A{-l}A + V 
% first fix the final conditionS P(k_f) = F; 
% g(k_f) = C'Fz(k_f) 
% note that P, Q, R, F are all symmatric ij = ji 
Pkplusl=C'*F*C; 
gkplusl=C'*F*zkf; 
pll(N)=F(l); 
p12(N)=F(2); 
p21(N)=F(3); 
p22(N)=F(4); 
% 
gl(N)=gkplusl(l); 
g2(N)=gkplusl(2); 
% 
Pk=O; 
gk=O; 
for k=N-l:-l:1, 
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% 

end 
% 

Pk = A'*Pkplusi*inv(I+E*Pkplusi)*A+V; 
Lk = inv(R+B'*Pkplusi*B)*B'*Pkplusi*A; 
gk=(A-B*Lk)'*gkplusi+W*zk; 
pii(k) = Pk(i,i); 
p12(k) = Pk(1,2); 
p2i(k) = Pk(2,1); 
p22(k) = Pk(2,2); 
pkplui = Pk; 

gi(k) = gk(i); 
g2(k) = gk(2); 
gkplusi = gk; 

% calcuate the feedback coefficients L and Lg(k) 
% L(k) = (R+B'P(k+i)B)-{-l}BP(k+i)A 
% Lg(k) = [R + B'P(k+i)B]-{-l}B' 
% 
for k = N:-i:i, 

Pk=[pii(k),p12(k);p2i(k),p22(k)]; 
gk=[gl(k);g2(k)]; 

end 
% 

Lk = inv(R+B'*Pkplusi*B)*B'*Pkplusi*A; 
Lgk= inv(R+B'*Pkplusi*B)*B'; 
li(k) = Lk(i); 
l2(k) = Lk(2); 
19i(k) = Lgk(i); 
192(k) = Lgk(2); 

% solve the optimal states 
% x(k+i) = [A-B*L)x(k) + BLg(k+i)g(k+i) given x(O) 
% 
xk=O.O; 
for k=i: N-i, 

Lk = [11(k),12(k)]; 
Lgk = [lgl(k),lg2(k)]; 
Lgkplusi=[lgl(k+i),lg2(k+i)]; 
xk = [xi(k);x2(k)]; 
xkplusi = (A-B*Lk)*xk + B*Lgkplusi*gk; 
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end 
% 

xl(k+l) = xkplusl(l); 
x2(k+l) = xkplusl(2); 

% solve for optimal control 
% u(k) = - L(k)x(k) + Lg(k)g(k+l) 
% 
xk=O.O; 
% for k=l:N, 

for k=l:N-l, 
Lk = [11(k),12(k)]; 
Lgk = [lgl(k),lg2(k)]; 
gkplusl=[gl(k+l);g2(k+l)]; 
xk = [xl(k);x2(k)]; 
u(k) = - Lk*xk + Lgk*gkplusl; 

end 
% 

Appendix C: MATLAB Files 

% plot various values: P(k), g(k), x(k), u(k) 
% let us first reorder the values of k = 0 to kf 
% 
% first plot P(k) 
% 
k = O:l:kf; 
figure(l) 
plot(k,pll,'k:o',k,p12,'k:+',k,p22,'k:*') 
grid 
xlabel( 'k') 
ylabel('Riccati coefficients') 
gtext('p_{ll}(k)') 
gtext('p_{12}(k)') 
gtext('p_{22}(k)') 
% 
% Plot g(k) 
% 
k = O:l:kf; 
figure (2) 
plot(k,gl,'k:o',k,g2,'k:+') 
grid 
xlabel( 'k') 
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ylabel('Vector coefficients') 
gtext('g_{l}(k)') 
gtext('g_{2}(k)') 
% 
k=O:l:kf; 
figure (3) 
plot(k,xl,'k:o',k,x2,'k:+') 
grid 
xlabel ( , k ' ) 
ylabel('Optimal States') 
gtext (' x_l (k) ') 
gtext ( , x_2 (k) , ) 
% 
figure (4) 
k=O: 1 :kf-l; 
plot (k, u, , k: * ' ) 
grid 
xlabel( 'k') 
ylabel('Optimal Control') 
gtext ('u(k) ') 
% 
% end of the program 
% 

413 
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