Intent of this exercise

The motive of this exercise session is try out some problems in realization theory \& popular operators in control theory to get a good grasp of that content. This specific exercise session will aide the students to successfully complete the Hand-in \# 5,6. The following exercise problems are suggested for students to be solved.

Problem 1

Solve the following optimal control problem and find the optimal control,

$$
\begin{array}{ll}
\min & x(1)^{2}+\int_{0}^{1} u(t)^{2} d t, \\
\text { s.t. } & \dot{x}(t)=e^{-t} u(t), \tag{1}\\
& x(0)=1 .
\end{array}
$$

Hint: Use a differential Riccati equation to solve.

Problem 2

Let us investigate the relative degree and zeros of single-input-single- output systems (SISO). Consider the state space representation

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and its corresponding transfer function with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}$.

$$
G(s)=C(s I-A)^{-1} B=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{0}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n}}
$$

1. The relative degree $d=n-m$ is the excess degree of the denominator compared to the numerator. Prove that

$$
C A^{k} B=0, \quad \forall k=0,1, \ldots, d-2 \quad \text { and } \quad C A^{d-1} B \neq 0 .
$$

2. Factorise the transfer function using the poles and zeros as

$$
G(s)=C(s I-A)^{-1} B=b_{m} \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}
$$

Let the stationary state space solution has the form $x(t)=\bar{x} e^{s t}$. Suppose that a complex exponential input $u(t)=\bar{u} e^{s t}, \bar{u} \neq 0$ gives rise to complex exponential output $y(t)=G(s) \bar{u} e^{s t}$. If the frequency is equal to the zeros
$s=z_{k}, k=\{1, \ldots, m\}$, then the output goes to zeros. Prove that the zeros can be characterized as those complex numbers s such that

$$
\operatorname{rank}\left(\left[\begin{array}{cc}
-s I+A & B \\
C & 0
\end{array}\right]\right)<n+1
$$

3. Use your results from above to verify that the transfer function $G(s)=C(s I-$ $A)^{-1} B$ has the relative degree $d=1$ and a zero at $z=2$ for the following system.

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
-2 & 1
\end{array}\right] .
$$

Problem 3

1. Given a minimal realisation (A, B, C), show that $(A+B L C, B, C)$ is also minimal with any L.
2. Check whether the following system is minimal or not and discuss when it is BIBO stable.

$$
A=\left[\begin{array}{cc}
-(1+a) & -a \\
1 & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

3. Given a minimal realisation (A, B, C), is $(A+B K, B, C)$ also minimal with any K ?

Problem 4

Compute the Smith-McMillan form and the McMillan degree of the transfer function matrix

$$
H(s)=\left[\begin{array}{ll}
\frac{s+2}{s+1} & \frac{s}{s+1} \\
\frac{1}{s+3} & \frac{s+1}{s+3}
\end{array}\right] .
$$

