6. Polynomial Matrices, State Estimation

- Theory of Polynomial Matrices
- Smith Normal Form \& Smith-McMillan Form
- Poles \& Zeros of MIMO Systems, Transmission Zeros
- Connection to Controllability \& Observability
- State Estimation
- Separation Theorem
- Sylester Equation in Control Theory.
- Riccati Equation

Theory of Polynomial Matrices

- $\mathbb{R}[s]^{p \times m}$ denotes the set of $p \times m$ real polynomial matrices on s.
- A real polynomial matrix is a matrix valued function whose entries are polynomials with real coefficients. Eg. $P(s)=\left[\begin{array}{ll}(s+1) & (s+2) \\ (s+3) & (s+4)\end{array}\right]$.

Nonsingular \& Unimodular Polynomial Matrix

Consider a square ($p=m$) real polynomial matrix. Then, $P(s)$ is called

- nonsingular if $\operatorname{det}[P(s)]$ is a non-zero polynomial
- unimodular if $\operatorname{det}[P(s)] \neq 0$

Determinantal Divisors of $P(s)$: Polynomials $\left\{D_{i}(s) \mid i \in[0, r]\right\}$ with $D_{0}(s)=1, D_{i}(s)$ is the monic gcd of all $\neq 0$ minors of $P(s)$ of order i. Fact: $r=\operatorname{rank}[P(s)]$ drops precisely at the roots of $D_{r}(s)$.

Rank of a Transfer Function Matrix (TFM)

Normal Rank of a transfer function matrix

Normal rank of a TFM $P(s) \in \mathbf{R}[s]^{p \times m}$, denoted by $\overline{\operatorname{rank}}[P(s)]$ is said to be equal to r if $\operatorname{rank}[P(s)]=r$ for almost all values of s.

For eg., for the TFM $P(s)=\left[\begin{array}{cc}\frac{1}{s+1} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s+1}\end{array}\right], \operatorname{det}[P(s)]=\frac{-(2 s+1)}{s^{2}\left(s^{2}+2 s+1\right)}$.

$$
\overline{\operatorname{rank}}[P(s)]=2 . \text { But, det }\left[P\left(\frac{-1}{2}\right)\right]=0 \Longrightarrow \operatorname{rank}\left[P\left(\frac{-1}{2}\right)\right]=1
$$

Facts:

- $\overline{\operatorname{rank}}[P(s)] \leq \min (m, p)$.
- If $\overline{\operatorname{rank}}[P(s)]=p$, then \exists right inverse of $P(s)$ s.t. $P(s) P^{-R}(s)=I_{p}$
- If $\overline{\operatorname{rank}}[P(s)]=m$, then \exists left inverse of $P(s)$ s.t. $P^{-L}(s) P(s)=I_{m}$

System Inverse

- When $p=m$, we say system has an inverse $P^{-1}(s)$ satisfying $P(s) P^{-1}(s)=P^{-1}(s) P(s)=I_{p}$.
- $P^{-1}(s)$ is usually improper and does not have a state space realisation.
- Many control theory approaches tend to construct a rational approximation of $P^{-1}(s)$ which though desirable can lead to robustness issues.
- Suppose that $p=m$ and $\exists D^{-1}$. Then a state space realisation of $P^{-1}(s)$ is given by

$$
\begin{aligned}
\dot{z} & =\left(A-B D^{-1} C\right) z+B D^{-1} v \\
w & =-D^{-1} C z+D^{-1} v
\end{aligned}
$$

Rational Matrices

Monic Greatest Common Divisor (GCD)

The monic GCD of a family of polynomials is the monic polynomial of greatest order that divides all the polynomials in the family.

Monic Least Common Denominator (LCD)

The monic LCD of a family of polynomials is the monic polynomial of smallest order that is divided by all the polynomials in the family.

- $\mathbb{R}(s)^{p \times m}$ denotes the set of $p \times m$ real rational matrices on s.
- $G(s) \in \mathbb{R}(s)^{p \times m}$ is a matrix valued function whose entries are ratios of polynomials with real coefficients. Eg. $G(s)=\left[\begin{array}{cc}1 /(s+1) & 1 / s^{2} \\ 1 /(s+3) & 1 / s\end{array}\right]$.
- Any $G(s) \in \mathbb{R}(s)^{p \times m}$ can be written as $G(s)=\frac{1}{d(s)} N(s)$, where $d(s)$ is the monic LCD of all entires of $G(s)$ and $N(s) \in \mathbb{R}[s]^{p \times m}$.

Smith Form

Smith form of a real polynomial matrix $P(s) \in \mathbb{R}[s]^{p \times m}$ is the diagonal $S_{P}(s) \in \mathbb{R}[s]^{p \times m}$ defined by
$S_{P}(s)=\left[\begin{array}{cc}\operatorname{diag}\left(\epsilon_{1}(s), \ldots, \epsilon_{r}(s)\right) & \mathbf{0}_{r \times(m-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times(m-r)}\end{array}\right], \quad$ where $\operatorname{rank}[P(s)]=r$,
$\epsilon_{i}(s)=\frac{D_{i}(s)}{D_{i-1}(s)}, \quad i=\{1,2, \ldots, r\}$ are the invariant factors of $P(s)$.

Smith Form Factorisation Theorem

For every $P(s) \in \mathbb{R}[s]^{p \times m}$ with Smith form $S_{P}(s) \in \mathbb{R}[s]^{p \times m}, \exists$ unimodular matrices $L(s) \in \mathbb{R}[s]^{p \times p}, R(s) \in \mathbb{R}[s]^{m \times m}$ which can be found using Gaussian elimination procedure such that

$$
P(s)=L(s) S_{P}(s) R(s)
$$

Smith-McMillan Form

Smith-McMillan form of a real rational matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ is the diagonal $S M_{G}(s) \in \mathbb{R}(s)^{p \times m}$ defined by
$S M_{G}(s)=\frac{1}{d(s)} S_{N}(s)=\left[\begin{array}{cc}\operatorname{diag}\left(\frac{\eta_{1}(s)}{\psi_{1}(s)}, \ldots, \frac{\eta_{1}(r)}{\psi_{r}(s)}\right) & \mathbf{0}_{r \times(m-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times(m-r)}\end{array}\right]$, where

- $S_{N}(s) \in \mathbb{R}[s]^{p \times m}$ denotes the Smith form of $N(s)$
- $\left\{\eta_{i}(s), \psi_{i}(s)\right\}, i=1, \ldots, r$ are all co-prime.

Smith-McMillan Form Factorisation Theorem

For every $G(s) \in \mathbb{R}(s)^{p \times m}$ with Smith-McMillan form $S M_{G}(s), \exists$ unimodular matrices $L(s) \in \mathbb{R}[s]^{p \times p}, R(s) \in \mathbb{R}[s]^{m \times m}$ such that

$$
G(s)=\frac{1}{d(s)} S_{N}(s)=L(s) S M_{G}(s) R(s)
$$

McMillan Degree, Poles \& Zeros

Smith-McMillan form is used to define poles \& zeros of rational matrices.

Pole \& Zero Polynomial

For a real rational matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ with Smith-McMillan form $S M_{G}(s)$, define the following polynomials

Zero Polynomial of $G(s): z_{G}(s):=\eta_{1}(s) \eta_{2}(s) \ldots \eta_{r}(s)$
Transmission Zeros of $G(s)$: Roots of $z_{G}(s)$
Pole Polynomial of $G(s): p_{G}(s):=\psi_{1}(s) \psi_{2}(s) \ldots \psi_{r}(s)$
McMillan Degree of $G(s)$: degree of $p_{G}(s)$

Fact: A scalar rational function can't have a pole and zero at the same location. However, the matrix case $G(s) \in \mathbb{R}(s)^{p \times m}$ can have.

General Description of a Linear System

Physical system can be described by linear differential equations with input u, output y and internal physical variables η as follows

$$
\{\begin{array}{l}
P(s) \eta=Q(s) u \\
y=R(s) \eta+W(s) u
\end{array} \Longleftrightarrow \underbrace{\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]}_{:=P_{\Sigma}(s)}\left[\begin{array}{c}
-\eta \\
u
\end{array}\right]=\left[\begin{array}{l}
0 \\
y
\end{array}\right]
$$

Then the transfer function is $G(s)=R(s) P^{-1}(s) Q(s)+W(s)$.

Rosenbrock System Matrix

Representation bridging state-space \& transfer function matrix form. For a CT LTI system, its Rosenbrock system matrix is given by

$$
P_{\Sigma}(s)=\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right] \in \mathbb{R}[s]^{(n+p) \times(n+m)}
$$

Rosenbrock Matrix \& Controllability/Observability

Two systems $P_{\Sigma_{1}}(s), P_{\Sigma_{2}}(s)$ are said to be equivalent if \exists unimodular matrices $U(s), V(s)$ and polynomial matrices $X(s), Y(s)$ such that

$$
\left[\begin{array}{cc}
U(s) & 0 \\
X(s) & I
\end{array}\right]\left[\begin{array}{cc}
P_{1}(s) & Q_{1}(s) \\
-R_{1}(s) & W_{1}(s)
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
P_{2}(s) & Q_{2}(s) \\
-R_{2}(s) & W_{2}(s)
\end{array}\right]
$$

State Space Equivalence of Rosenbrock System Matrix

Any Rosenbrock system matrix is equivalent to one in state space form

$$
\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right] \sim\left[\begin{array}{cc}
s I-A & B \\
-C & J(s)
\end{array}\right] .
$$

Equivalence

- Controllability $\Longleftrightarrow(P, Q)$ or $(\Longleftrightarrow(s I-A, B))$ left co-prime
- Observability $\Longleftrightarrow(P, R)$ or $(\Longleftrightarrow(s I-A, C))$ right co-prime

Output Zeroing Problem \& Zero Dynamics

Consider the CT LTI (MIMO) system $\dot{x}=A x+B u, y=C x$.

Output Zeroing Problem

If possible, find a control u \& initial state x_{0} such that $y(t)=0, \forall t \geq 0$.

If above problem has a solution, then we can define the zero dynamics.
Zero Dynamics
The dynamics of the CT LTI system restricted to the set of initial conditions defining the o / p zeroing problem is called the zero dynamics.

Sylvester Inequality: If A, B are two matrices of the same order n, then

$$
\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}(A B)+n
$$

Normal Rank of a Rosenbrock System Matrix

Lemma

$$
\overline{\operatorname{rank}}\left[P_{\Sigma}(s)\right]=n+\overline{\operatorname{rank}}[P(s)]
$$

Proof: We can see that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & 0 \\
C(s I-A)^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right]=\left[\begin{array}{cc}
s I-A & B \\
0 & P(s)
\end{array}\right]} \\
& \Longrightarrow \overline{\operatorname{rank}[L H S]}=\overline{\operatorname{rank}}[R H S]=n+\overline{\operatorname{rank}}[P(s)], \quad \text { Sylvester Inequality }
\end{aligned}
$$

Crucial Assumptions:

(1) $\overline{\operatorname{rank}}[P(s)]=\min (p, m) \Longleftrightarrow \overline{\operatorname{rank}}\left[P_{\Sigma}(s)\right]=n+\min (p, m)$.
(2) (A, B) is controllable and (A, C) is observable.

Transmission Zeros

Transmission Zero

Suppose all assumptions are satisfied. Then $z \in \mathbb{C}$ is a transmission zero of system (A, B, C, D) if $\overline{\operatorname{rank}}\left[P_{\Sigma}(z)\right]<n+\min (p, m)$

For scalar systems with $m=p=1$, we see that

$$
\begin{gathered}
P(s)=\frac{N(s)}{D(s)}=\frac{\operatorname{det}\left(P_{\Sigma}(s)\right)}{\operatorname{det}(s I-A)}, \quad \text { and } \quad \operatorname{det}\left(\left[\begin{array}{cc}
I & 0 \\
C(s I-A)^{-1} & I
\end{array}\right]\right)=1 \\
\Longrightarrow \operatorname{det}\left(P_{\Sigma}(s)\right)=\operatorname{det}((s I-A)) \operatorname{det}(P(s))=\operatorname{det}((s I-A)) P(s)
\end{gathered}
$$

- SISO Transmission zeros $=$ zeros of $P(s)$ (given assumption 1 holds)
- For a MIMO TFM, the TFM loses rank given that it can have poles \& zeros at the same s.

Transmission Zeros

- Transmission zeros are associated with modes of behavior wherein the input and states of a system are nonzero, yet the output equals zero.
- Suppose that both assumptions hold true and that z is a transmission zero but not a pole of $P(s)$. Then $\operatorname{rank}(P(z))<\min (p, m)$.

Transmission Blocking Property

Suppose that both assumptions hold true and that z is a transmission zero with $p \geq m$. Then, $\exists u(t)=u_{0} e^{z t}, u_{0} \neq 0$ and x_{0} such that $y(t)=0, \forall t \geq 0$. Further, if $\operatorname{Real}\left(\left|\lambda_{i}(A)\right|\right)<0, \forall i$, then $y(t) \rightarrow 0, \forall x_{0}$.
u_{0} : Input Zero Direction
x_{0} : Zero State Direction

Invariant Zeros

- The invariant zero polynomial of a state space of the CL LTI is the monic GCD $z_{P}(s)$ of all nonzero minors of order $r=\operatorname{rank}\left[P_{\Sigma}(s)\right]$.
- The roots of $z_{P}(s)$ are called the invariant zeros of the state space.
- Transmission zeros are defined in frequency domain for TFM, while invariant zeros are defined in time-domain for state space realisations.
- Both transmission zeros \& invariant zeros have transmission blocking property.

Important Facts

- $\{$ Poles of $G(s)\} \subset\{$ Eigenvalues of $A\}$
- $\{$ Transmission zeros of $G(s)\} \subset\{$ Invariant Zeros of LTI $\}$

Transmission Blocking Property

Since, $\operatorname{rank}(P(z))<\min (p, m), \exists$ a non-trivial nullspace of $P_{\Sigma}(s)$.

$$
\left[\begin{array}{cc}
z I-A & B \\
-C & D
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Consider the input $u(t)=u_{0} e^{z t}$ with $u_{0}=-u$ and $x_{0}=x$. Then,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
z I-A & B \\
-C & D
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
-u_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow(z I-A) x_{0}=B u_{0}, \quad C x_{0}+D u_{0}=0 . } \\
& X(s)=(s I-A)^{-1} x_{0}+(s I-A)^{-1} B \frac{u_{0}}{s-z}, \quad\left(\text { substituting } U(s)=\frac{u_{0}}{s-z}\right) \\
&=(s I-A)^{-1}\left(x_{0}+B \frac{u_{0}}{s-z}\right)=(s I-A)^{-1}\left(x_{0}+\frac{(z I-A) x_{0}}{s-z}\right) \\
&=(s I-A)^{-1}\left((s I-A) \frac{x_{0}}{s-z}\right)=\frac{x_{0}}{s-z} \Longrightarrow x(t)=x_{0} e^{z t} \\
& y(t)=C x(t)+D u(t)=C x_{0} e^{z t}+D u_{0} e^{z t}=\left(C x_{0}+D u_{0}\right) e^{z t}=0 .
\end{aligned}
$$

Minimal Realisation \& BIBO Stability

Proposition

Assuming the LTI realisation of $G(s)$ is minimal, the TFM $G(s)$ is BIBO stable iff the LTI realisation is (internally) asymptotically stable.

Proof: LTI Asymptotic Stability $\Longleftrightarrow \operatorname{Real}[\lambda(A)]<0$. For BIBO stability, we need the poles to have strict negative real parts. For minimal realisation, set of poles of $G(s)=$ the set of eigenvalues of A.

Minimality \& McMillan Degree

LTI realisation is minimal iff McMillan Degree of $G(s)=n$. That is,

$$
p_{G}(s)=\operatorname{det}[S I-A], \quad z_{G}(s)=z_{P}(s)
$$

State Estimation - Motivation

Consider the CT-LTI system with $\dot{x}=A x+B u, \quad y=C x+D u$.

- When output $y=x$ (entire state can be measured exactly), we can design a control law $u=K x$ to stabilise the above system.
- But when $y \neq x$, full state feedback control law is not possible.
- However, we also saw at a particular instant of time, the Gramian-based reconstruction of state on $\left[t_{0}, t_{f}\right]$.
- Need continuous estimate of state to implement control like $u=K x$.

Open-Loop State Estimate

Simplest state estimate consists of copy of the original system

$$
\dot{\hat{x}}=A \hat{x}+B u .
$$

State Estimate \& Estimation Error

Define the state estimation error as $e=\hat{x}-x$, where \hat{x} is the state estimate. If A is Hurwitz, $e \rightarrow 0$ exponentially fast $\forall u$ as follows

$$
\dot{e}=\dot{\hat{x}}-\dot{x}=A \hat{x}+B u-A x-B u=A(\hat{x}-x)=A e
$$

Even if A is not Hurwitz, we can construct asymptotically correct state estimate using a closed-loop state estimator via o/p injection

$$
\dot{\hat{x}}=A \hat{x}+B u-L(\hat{y}-y), \quad \hat{y}=C \hat{x}+D u
$$

where $L \in \mathbb{R}^{n \times p}$ is called \mathbf{o} / \mathbf{p} injection (or estimator) gain matrix.

$$
\Longrightarrow \dot{e}=\dot{\hat{x}}-\dot{x}=A \hat{x}+B u-L(\hat{y}-y)-A x-B u=(A-L C) e
$$

If L makes $A-L C$ Hurwitz, then $e \rightarrow 0$ exponentially fast $\forall u$.

Stabilisation By Output Feedback

Eigenvalue Assignment Theorem

When (A, C) is detectable, $\exists L \in \mathbb{R}^{n \times p}$ such that $A-L C$ is Hurwitz.
Then, given any set of $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{n}, \lambda_{i} \in \mathbb{C}, \exists L \in \mathbb{R}^{n \times p}$ such that $\operatorname{eig}(A-L C)=\Lambda$. (Conditions are both iff)

The control law $u=K \hat{x}$ results in controller with the state space model

$$
\dot{\hat{x}}=\underbrace{(A-L C-B K+L D K)}_{:=\tilde{A}} \hat{x}+L y \Longleftrightarrow C(s)=-K(s I-\tilde{A})^{-1} L .
$$

Consider the closed loop system with states $\bar{x}=\left[\begin{array}{ll}x^{\top} & e^{\top}\end{array}\right]^{\top}$. Then,

$$
\dot{x}=A x+B u=A x-B K \hat{x}=A x-B K(x+e)=(A-B K) x-B K e
$$

$$
\Longrightarrow\left[\begin{array}{l}
\dot{x} \\
\dot{e}
\end{array}\right]=A_{c l}\left[\begin{array}{l}
x \\
e
\end{array}\right], \quad \text { where } \quad A_{c l}=\left[\begin{array}{cc}
A-B K & -B K \\
0 & A-L C
\end{array}\right] .
$$

Separation Theorem

Separation Theorem

- The eigenvalues of $A_{c l}$ with the output feedback controller $u=-K \hat{x}$ are the union of eigenvalues of state feedback closed loop matrix $A-B K$ with the eigenvalues of the state estimator matrix $A-L C$.
- This means that one can design the state feedback gain K and the estimator gain L matrices independently.

Questions: How can we
(1) design the optimum K_{\star} for a given CT-LTI? LQR.
(2) design the optimum L_{\star} for a given CT-LTI with noisy output? KF.
(0) find the optimum $\left(K_{\star}, L_{\star}\right)$ instead of any (K, L) ? LQG (LQR+KF).

Eigenvalue Problems for a Linear Operator

Eigenvalue Problem

Let \mathcal{A} be a linear operator. Eigenvalue Problem for operator \mathcal{A} involves finding non-trivial function-number pairs $(v(x), \lambda)$ that solves

$$
\begin{equation*}
\mathcal{A} v(x)=\lambda v(x) \quad \Longleftrightarrow \quad \mathcal{A} v(x)-\lambda v(x)=0 \tag{1}
\end{equation*}
$$

- The functions $v(x)$ that solve (1) are called eigenfunctions and each corresponds to an eigenvalue λ.
- Often the eigenfunctions form a basis for the underlying vector space, and the set is is called complete.
- Completeness property is useful for PDEs as it allows for solutions to be expressed as linear combinations of eigenfunctions.

Sylvester Equation

Spectrum of a Linear Operator

Let \mathcal{A} be a linear operator. Then, the (eigen) discrete spectrum of the operator \mathcal{A}, denoted by $\sigma(\mathcal{A})$ refers to the set of all eigenvalues of \mathcal{A}.

In control theory, we often solve Sylvester equations.

Sylvester Equation

Given $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times m}$, the Sylvester equation

$$
\begin{equation*}
A X-X B=C . \tag{2}
\end{equation*}
$$

Equation (2) has an unique solution $X \in \mathbb{R}^{n \times m}$ iff $\sigma(A) \cap \sigma(B)=\emptyset$.

- Sylvester equation is a linear equation in matrix variable X
- $A X+X A^{\top}=C$ (Lyapunov eqn) special case of (2) with $B=-A^{\top}$.

Sylvester Operator

Consider the Sylvester matrix equation in X of the form

$$
\begin{equation*}
A X+X B=Q \tag{3}
\end{equation*}
$$

Solutions \& properties of (3) are determined by the Sylvester operator \mathfrak{L}

Sylvester operator

Given A, B, the Sylvester operator in variable X is $\mathfrak{L}(X)=A X+X B$.

Solvability of Sylvester Equations: $X \in \mathcal{N}(\mathfrak{L}) \Longleftrightarrow X=V D$, where D is diagonal matrix \& V corresponds to right eigenvector matrix of A.

$$
\begin{equation*}
A X-X B=C \quad \Longleftrightarrow\left(I_{m} \otimes A+B^{\top} \otimes I_{n}\right) \operatorname{vec}(X)=\operatorname{vec}(C) \tag{4}
\end{equation*}
$$

Cost of solving (2):

- Gaussian elimination is costly as it costs $O\left((m n)^{3}\right)$
- Bartels-Stewart efficient algorithm takes only $O\left(\max (m, n)^{3}\right)$

The Algebraic Riccati Equation

- The Riccati equation occurs in optimal control problems
- The algebraic Riccati equation is a nonlinear quadratic matrix equation that also can be expressed via an eigenvalue problem.

Continuous Algebraic Riccati Equation

Given A, B matrices and the cost matrices $Q \succeq 0, R \succ 0$, the CT optimal control problem poses the following algebraic Riccati equation with X denoting the symmetric solution matrix.

$$
\begin{equation*}
A^{\top} X+X A-X B R^{-1} B^{\top} X+Q=0 \tag{5}
\end{equation*}
$$

Rewriting LHS of Riccati equation as a pure quadratic, we get

$$
\left[\begin{array}{c}
I \\
X
\end{array}\right]\left[\begin{array}{cc}
Q & A \\
A^{\top} & -B R^{-1} B^{\top}
\end{array}\right]\left[\begin{array}{l}
I \\
X
\end{array}\right]=0
$$

The Algebraic Riccati Equation

We can also characterise (5) by the relation

$$
\left[\begin{array}{cc}
Q & A \\
A^{\top} & -B R^{-1} B^{\top}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right] \Longleftrightarrow \underbrace{\left[\begin{array}{cc}
A & -B R^{-1} B^{\top} \\
-Q & -A^{\top}
\end{array}\right]}_{:=Z}\left[\begin{array}{c}
I \\
X
\end{array}\right]=0
$$

We want a specific basis of the null space of a Hamiltonian matrix. That
is, a matrix Z such that $J Z$ is symmetric with $J=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$.

Hamiltonian Matrix

A matrix $M \in \mathbb{R}^{2 n \times 2 n}$ is called Hamiltonian if $J M$ is symmetric. So,

$$
J M=(J M)^{\top} \Longrightarrow M^{\top} J+J M=0
$$

