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4. Controllability & Observability

Controllability

Controllable & Reachable Subspaces, Gramians

Controllability Matrix & Minimum Energy Control

Controllable Decomposition, Tests for Controllability, Stabilisability

Observability

Unobservable & Unconstructible Subspaces, Gramians

Observability Matrix, Controllability-Observability Duality

Kalman Decomposition, Detectability, Output Feedback
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Subspaces of State Space

Consider a CT LDS starting from x(t0) = x0 ∈ X ⊆ Rn and its solution

ẋ(t) = A(t)x(t) +B(t)u(t),

=⇒ x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ.

Interesting Subspaces of X :

1 R ⊆ X that is reachable from origin in finite t time steps

2 C ⊆ X from where origin can be reached after finite t steps

Then, we design control ut that takes us to the xfinal. Given a xfinal,

check if ∃ut that takes us from current state to xfinal in finite time.
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Controllable & Reachable Subspaces

Reachable Subspace (Reachable from the origin)
Given tf > t0 ≥ 0, the reachable subspace on [t0, tf ], denoted by

R[t0, tf ] consists of all states xtf for which ∃u : [t0, tf ]→ Rm that

transfers the state from x(t0) = 0 to x(tf ) = xtf .

R[t0, tf ] :=
{
xtf ∈ X | ∃u(·), xtf =

∫ tf

t0

Φ(t, τ)B(τ)u(τ)dτ
}
⊆ X .

Controllable Subspace (Controllable to the origin)
Given tf > t0 ≥ 0, the controllable subspace on [t0, tf ], denoted by

C[t0, tf ] ⊆ X consists of all states x0 for which ∃u : [t0, tf ]→ Rm that

transfers the state from x(t0) = x0 to x(tf ) = 0.

C[t0, tf ] :=
{
x0 ∈ X | ∃u(·), 0 = Φ(tf , t0)x0 +

∫ tf

t0

Φ(t, τ)B(τ)u(τ)dτ
}
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Controllable & Reachable Subspaces

Matrices C(t), D(t) do not affect computation of R[t0, tf ],C[t0, tf ].

Parallel connection of similar systems leads to restricted reachable

and controllable subspaces. For eg. consider the parallel RC network

ẋ =

− 1
R1C1

0

0 − 1
R2C2

x+

 1
R1C1

1
R2C2

u
When two branches have same time constants 1

R1C1
= 1

R2C2
= ω,

R[t0, tf ] = C[t0, tf ] =

{
α

[
1

1

]
| α ∈ R

}
, ∀tf > t0 ≥ 0.

However, when they have different time constants 1
R1C1

6= 1
R2C2

,

R[t0, tf ] = C[t0, tf ] = R2, ∀tf > t0 ≥ 0.
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Controllability & Reachability Gramians

Reachability & Controllability Gramians of CT-LTV System
Given tf > t0 ≥ 0, the reachability & controllability gramians on

[t0, tf ], denoted by WR[t0, tf ] � 0,WC [t0, tf ] � 0 resp. are defined as

WR[t0, tf ] :=
∫ tf

t0

Φ(t, τ)B(τ)B(τ)>Φ(t, τ)>dτ,

WC [t0, tf ] :=
∫ tf

t0

Φ(t0, τ)B(τ)B(τ)>Φ(t0, τ)>dτ.

1 Reachability gramian is used to compute R[t0, tf ]

2 Controllability gramian is used to compute C[t0, tf ]

3 Both gramians give the respective minimum-energy control to

perform the required state transfer.
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Computing Reachable Subspace from its Gramian

Reachable Subspace from Reachability Gramian
Given tf > t0 ≥ 0, the reachable subspace is given by

R[t0, tf ] = Im (WR[t0, tf ]) .

Let v ∈ Rn and if xtf = WR[t0, tf ]v ∈ Im (WR[t0, tf ]), then the open

loop control input u†R(t) = B(t)>Φ(tf , t)>v for all t ∈ [t0, tf ] can be

used to transfer the state from x(t0) = 0 to x(tf ) = xtf .

∃ other u(t) achieving same goal but u†R(t) does it with min energy.

When xtf = WR[t0, tf ]v ∈ R[t0, tf ], the control u†R(t) transfers the

state from x(t0) = 0 to x(tf ) = xtf with min energy given by∫ tf

t0

‖u(τ)‖2 dτ = v>WR[t0, tf ]v = x>tf
WR[t0, tf ]−1xtf .
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Computing Controllable Subspace from its Gramian

Controllable Subspace from Controllability Gramian
Given tf > t0 ≥ 0, the controllable subspace is given by

C[t0, tf ] = Im (WC [t0, tf ]) .

Let v ∈ Rn and if x0 = WC [t0, tf ]v ∈ Im (WC [t0, tf ]), then the open

loop control input u†C(t) = −B(t)>Φ(t0, t)>v for all t ∈ [t0, tf ] can be

used to transfer the state from x(t0) = x0 to x(tf ) = 0.

∃ other u(t) achieving same goal but u†C(t) does it with min energy.

When x0 = WC [t0, tf ]v ∈ C[t0, tf ], the control u†C(t) transfers the

state from x(t0) = x0 to x(tf ) = x0 with min energy given by∫ tf

t0

‖u(τ)‖2 dτ = v>WC [t0, tf ]v = x>0 WC [t0, tf ]−1x0.
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Controllability Matrix - LTI Systems

Consider the CT-LTI system, its reachability & controllability gramians.

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm,

WR[t0, tf ] =
∫ tf

t0

eA(tf−τ)BB>eA
>(tf−τ)dτ =

∫ tf−t0

0
eAtBB>eA

>tdt

WC [t0, tf ] =
∫ tf

t0

eA(t0−τ)BB>eA
>(t0−τ)dτ =

∫ tf−t0

0
e−AtBB>e−A

>tdt

Connection Between Controllability Matrix & Gramians

Controllability Matrix: C =
[
B AB A2B . . . An−1B

]
∈ Rn×nm

R[t0, tf ] = Im (WR[t0, tf ]) = Im (C) = Im (WC [t0, tf ]) = C[t0, tf ]
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Controllability Matrix, Subspaces & Gramians

Time Reversibility: For LTI systems R[t0, tf ] = C[t0, tf ]. Hence, we

can go to a state xtf from origin and come back to origin from xtf .

Time Scaling: R[t0, tf ],C[t0, tf ] is independent of interval [t0, tf ]. If

a state transfer is possible in [t0, tf ], then it is also possible in [t̄0, t̄f ].

Hence, we do not generally specify the interval for R[t0, tf ],C[t0, tf ].

For eg., consider the same parallel RC network. Controllability matrix is

C =

 1
R1C1

− 1
R2

1C
2
1

1
R2C2

1
R2

2C
2
2

 =

ω −ω2

ω −ω2

 . Then ∀tf > t0 ≥ 0,

R[t0, tf ] = C[t0, tf ] = Im(C) =



α
1

1

 | α ∈ R

 , if 1
R1C1

= 1
R2C2

= ω

R2, if 1
R1C1

6= 1
R2C2
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Changes in Discrete Time Setting

DT LDS Solution: x(t1) = Φ(t1, t0)x0 +
∑t1−1
τ=t0 Φ(t1, τ + 1)B(τ)u(τ)

Remark: WC [t0, tf ] is well defined only when all matrices

A(t0), A(t0 + 1), . . . , A(t1 − 1) are non-singular.

The minimum energy controls ∀t ∈ [t0, tf − 1] are as follows

u†R(t) = B(t)>Φ(tf , t+ 1)>v and u†C(t) = −B(t)>Φ(t0, t+ 1)>v.

For DT-LTI system with A invertible, R[t0, tf ] = C[t0, tf ]. Otherwise,

R[t0, tf ] = Im (C) ⊂ C[t0, tf ]

Time Scaling: When tf − t0 < n, we have R[t0, tf ] ⊂ C[t0, tf ].

Otherwise when tf − t0 ≥ n, they coincide.
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Controllable & Reachable Systems

Consider the DT - LTV system with states x ∈ Rn and inputs u ∈ Rm.

ẋ(t) = A(t)x(t) +B(t)u(t), ∀t ≥ t0.

Reachable System
Given tf > t0 ≥ 0, the LTV system or simply the pair (A(·), B(·)) is

called completely state reachable on [t0, tf ] if R[t0, tf ] = Rn,

meaning that origin can be transferred to any other state in Rn.

Controllable System
Given tf > t0 ≥ 0, the LTV system or simply the pair (A(·), B(·)) is

called completely state controllable on [t0, tf ] if C[t0, tf ] = Rn,

meaning that any state in Rn can be transferred to origin.
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Controllable & Reachable LTI Systems

For LTI systems, we know that R[t0, tf ] = C[t0, tf ] = Im(C) ⊆ Rn.

For LTI systems to be controllable, we require Im(C) = Rn.

Equivalently, LTI System is controllable iff Rank(C) = n.

In DT, we can have Im(C) = R[t0, tf ] ⊂ Rn & yet C[t0, tf ] = Rn

Eigenvector Test for Controllability
LTI system is controllable iff @ non-zero eigvec(A>) in Ker(B>).

LTI system is controllable iff @ 6= 0n left eigvec(A) in left Ker(B).

Popov-Belevitch-Hautus (PBH) Test for Controllability
LTI system is controllable iff

Rank
([
A− λI B

])
= n, ∀λ ∈ C.
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Lyapunov Test for Controllability

Theorem
Assume that A is Schur stable. The LTI system is controllable iff

∃!W � 0 solution to the Lyapunov equation AW +WA> = −BB> and

the unique solution to the Lyapunov equation is given by

W =
∫ ∞

0
eAτBB>eA

>τdτ = lim
(tf−t0)→∞

WR(t0, tf )

In DT, use AWA> −W = −BB> and W =
∑∞
τ=0A

τBB>(A>)τ .

∃ uncontrollable systems for which origin can be reached in ∞ time.

For eg., consider the system ẋ = −x+ 0 · u, which can be transferred

to origin in ∞ time. But W = 0 & hence system is uncontrollable.
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Updated Lyapunov Stability Theorem

Updated Lyapunov Theorem
Following 5 conditions are equivalent for LTI system ẋ = Ax, x ∈ Rn

1 CT LTI system is asymptotically (equivalently exponentially) stable

2 λi(A) < 0,∀i

3 ∀Q � 0,∃!P � 0 which solves the following Lyapunov equation

A>P + PA = −Q, and P :=
∫ ∞

0
eA
>tQeAtdt.

4 ∃P � 0 for which A>P + PA ≺ 0.

5 ∀B, with (A,B) controllable, ∃!P � 0 which solves Lyapunov eqn.

A>P + PA = −BB>, and P :=
∫ ∞

0
eA
>tBB>eAtdt.
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Feedback Stabilisation Via Lyapunov Test

Using the Lyapunov Test for controllability, we can design controllers to

asymptotically stabilise the system.

Theorem
When LTI system is controllable, ∀µ > 0,∃u = −Kx, a state feedback

controller that places all eigenvalues of closed loop system

ẋ = (A−BK)x with their real part being almost −µ. The Lyapunov

equation to solve is

P (A−BK) + (A−BK)>P = −2µP, where K := 1
2B
>P.
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Invariance with respect to Similarity Transformation

Consider the LTI system and its equivalent system obtained via similarity

transformation z = T−1x.

ẋ = Ax+Bu ⇐⇒ ż = Āz + B̄u, where Ā = T−1AT, B̄ = T−1B.

=⇒ C̄ =
[
B̄ ĀB̄ . . . Ān−1B̄

]
=
[
T−1B T−1AB . . . T−1An−1B

]
= T−1C

rank(C̄) = rank(T−1C) = rank(C), as T−1 is non-singular.

Theorem
Controllability is preserved via similarity transformation

(A,B) is controllable iff (Ā, B̄ = (T−1AT, T−1B)) is controllable.
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Controllable Decomposition

Controllable Decomposition: [Ā, B̄, C̄, T ] = ctrbf(A, B, C)

For every LTI system, ∃ a similarity transformation z = T−1x =

xc
xu


that transforms the original LTI system ẋ = Ax+Bu to ż = Āz + B̄uẋc
ẋu

 =

Ac A12

0 Au


︸ ︷︷ ︸
:=Ā=T−1AT

xc
xu

+

Bc
0


︸ ︷︷ ︸

:=B̄=T−1B

u and C̄ = CT =
[
Cc Cu

]
.

Input u cannot affect the states xu & the pair (Ac, Bc) is controllable

Transfer function = C(sI −A)−1B +D = Cc(sI −Ac)−1Bc +Dc.

Controllable subspace of ż = Āz + B̄u is C̄[t0, tf ] = Im

In̄
0

.
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Stabilisability

Stabilisable Systems
The pair (A,B) is stabilisable if it is algebraically equivalent to a

system in the standard form for uncontrollable systems with n̄ = n or

with Au being a stability matrixẋc
ẋu

 =

Ac A12

0 Au

xc
xu

+

Bc
0

u, xc ∈ Rn̄, xu ∈ Rn−n̄

y =
[
Cc Cu

]xc
xu

+Du.

Any controllable system is stabilisable as n̄ = n and @Au.

Asymptotically stable sys. is stabilisable as Au, Ac are stable matrices.

Stabilizability (∞-time version of Controllability): lim
t→∞

xu → 0.
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Changes from Controllability to Stabilisability

Eigenvector Test: For all eigenvalues of A> with Re(λ) ≥ 0, their

corresponding eigenvectors should not be in ker(B>).

PBH Test: LTI system is stabilisable iff rank
([
A− λI B

])
= n,

for all λ ∈ C such that Re(λ) ≥ 0.

Lyapunov Test: LTI system is stabilisable iff ∃P � 0 solution to

Lyapunov inequality AP + PA>- BB> ≺ 0.

Feedback stabilisation based on above Lyapunov test is possible.

Analogous results exist for discrete time.

If the system is controllable, ∃u = Kx state feedback control law to

place the poles at our desired locations.
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Observability - Motivation of Output Feedback

The full state feedback control law u = Kx is applicable only when

you have access to the entire set of states.

However, if it is possible to reconstruct the system state based on

outputs and inputs applied, such control laws can be applied. For eg,

a possible choice of reconstruction given ∃C−1 is

x(t) = C−1(y(t)−Du(t))

In practice p < n. Still we can reconstruct x from u, y over an

interval [t0, tf ].

Observability Find x(t0) from future i/p u(t), o/p y(t), t ∈ [t0, tf ].

Constructibility Find x(tf ) from past i/p u(t), o/p y(t), t ∈ [t0, tf ].
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Unobservable Subspace

Let CT-LTV system starts at x(t0) = x0 with x ∈ Rn, u ∈ Rm, y ∈ Rp.

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t),

=⇒ y(t) = C(t)Φ(tf , t0)x0 +
∫ tf

t0

C(t)Φ(tf , τ)B(τ)u(τ)dτ +D(t)u(t).

For observability, we look for conditions to solve

ȳ(t) = C(t)Φ(tf , t0)x0, ∀t ∈ [t0, tf ], where (1)

ȳ(t) = y(t)−
∫ tf

t0

C(t)Φ(tf , τ)B(τ)u(τ)dτ −D(t)u(t) (2)

Unobservable Subspace
Given tf > t0 ≥ 0, unobservable subspace denoted by UO[t0, tf ] consists

of all states x0 ∈ Rn for which C(t)Φ(tf , t0)x0 = 0,∀t ∈ [t0, tf ].
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Properties of Unobservable Subspace

Given tf > t0 ≥ 0 and input output pair (u(t), y(t)), t ∈ [t0, tf ]
1 If an initial state x0 is compatible with input output pair (agrees (1)),

then every initial state of the form x0 + xu, xu ∈ UO[t0, tf ] is also

compatible with same input output pair. Because,

ȳ(t) = C(t)Φ(tf , t0)x0, and C(t)Φ(tf , t0)xu = 0, ∀t ∈ [t0, tf ]

=⇒ ȳ(t) = C(t)Φ(tf , t0)(x0 + xu), ∀t ∈ [t0, tf ].

2 If UO[t0, tf ] = {0}, then ∃!x0 that is compatible with i/p-o/p pair. It

is then possible to uniquely reconstruct the state from i/p-o/p.
3 Matrices B(·), D(·) do not play a role in defining UO[t0, tf ]

Observable System
Given tf > t0 ≥ 0, the CT-LTV system is observable if UO[t0, tf ] = {0}.
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Unconstructible Subspace

Future states x(tf ) = xtf can be related to i/p-o/p on interval [t0, tf ].

Unconstructible Subspace
Given tf > t0 ≥ 0, the unconstructible subspace on [t0, tf ], UC[t0, tf ]

consists of all final state xtf for which C(t)Φ(t0, tf )xtf = 0, ∀t ∈ [t0, tf ]

If a final state xtf is compatible with i/p-o/p pair, then every final

state of the form xtf + xu, xu ∈ UC[t0, tf ] is also compatible with

same i/p-o/p pair.

If UC[t0, tf ] = {0}, then ∃!xtf final state that is compatible with

i/p-o/p pair.

Constructible System
Given tf > t0 ≥ 0, CT-LTV system is constructible if UC[t0, tf ] = {0}.
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Observability & Constructibility Gramians

Given tf > t0 ≥ 0, the observability and constructibility gramians are

WO[t0, tf ] =
∫ tf

t0

Φ(τ, t0)>C>(τ)C(τ)Φ(τ, t0)dτ

WC[t0, tf ] =
∫ tf

t0

Φ(τ, tf )>C>(τ)C(τ)Φ(τ, tf )dτ

Relation Between Gramians & Subspaces
Given tf > t0 ≥ 0, the gramians and subspaces are related as

UO[t0, tf ] = kernel (WO[t0, tf ]) , UC[t0, tf ] = kernel (WC[t0, tf ])

1 LTV system is observable iff rank (WO[t0, tf ]) = n

2 LTV system is constructible iff rank (WC[t0, tf ]) = n
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Gramian Based Reconstruction

Suppose that we are given tf > t0 ≥ 0, and the i/p-o/p pair

(u(t), y(t)), t ∈ [t0, tf ].

1 When LTV system is observable

x(t0) = WO[t0, tf ]−1
∫ tf

t0

Φ(t, t0)C(t)>ȳ(t)dt.

2 When LTV system is constructible

x(tf ) = WC[t0, tf ]−1
∫ tf

t0

Φ(t, tf )C(t)>ỹ(t)dt, where

ỹ(t) = y(t)−
∫ t

tf

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, tf ].

Remarks: Whatever we saw till now in CT has its counterpart in DT.
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Controllability-Observability Duality of LTI Systems

Consider the original & its transposed LTI systemsẋ
y

 =

A B

C D

x
u

 and

 ˙̄x

ȳ

 =

A> C>

B> D>

x̄
ū

 .
Given tf > t0 ≥ 0, the transposed system is

controllable ⇐⇒ Rank
∫ tf

t0

eA
>(τ−t0)C>CeA(τ−t0)dτ︸ ︷︷ ︸

:=W̄C [t0,tf ]

= n

observable ⇐⇒ Rank
∫ tf

t0

eA(τ−t0)BB>eA
>(τ−t0)dτ︸ ︷︷ ︸

:=W̄O[t0,tf ]

= n

1 Original sys is controllable iff transposed sys is observable on [t0, tf ].

2 Original sys is observable on [t0, tf ] iff transposed sys is controllable.
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Reachability-Constructibility Duality of LTI Systems

Given tf > t0 ≥ 0,

1 Original sys is reachable iff transposed sys is constructible on [t0, tf ].

2 Original sys is constructible on [t0, tf ] iff transposed sys is reachable.

Both time scaling and time-reversibility properties hold here too just

as in the case of controllability.

If one can reconstruct the state from future inputs/outputs then one

can also reconstruct it from the past inputs/outputs.

For LTV system, duality is more complicated as state transition matrix

of dual system must be equal to transposed state transition matrix of

original system and for LTV systems this is not straight-forward.
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Observability Matrix

Consider the LTI System ẋ = Ax, y = Cx with x ∈ Rn, y ∈ Rp.

From duality, (A,C) is observable iff (A>, C>) is controllable.

Applying the controllability matrix test to pair (A>, C>), we see that

C =
[
C> A>C> . . . (A>)n−1C>

]
= O>, where

O =


C

CA
...

CAn−1

 ∈ Rpn×n, is the observability matrix.

Observability Matrix Test: LTI system is observable iff

rank(C) = rank(O>) = rank(O) = n.
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Observability Tests

Eigenvector Test for Observability
LTI system is observable iff @ non-zero eigvec(A) in Ker(C).

Popov-Belevitch-Hautus (PBH) Test for Observability
LTI system is observable iff

Rank

A− λI
C

 = n, ∀λ ∈ C.

Eigenvalues corresponding to eigenvectors of A in Ker(C) are called

unobservable modes.

For DT, do the appropriate changes.

Controllability & Observability 4-29



Lyapunov Test for Observability

Theorem
Assume that A is Schur stable. The LTI system is observable iff

∃!W � 0 solution to the Lyapunov equation A>W +WA = −C>C and

the unique solution to the Lyapunov equation is given by

W =
∫ ∞

0
eA
>τC>CeAτdτ = lim

(tf−t0)→∞
WO[t0, tf ]
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Observable Decomposition

Consider LTI system & its equivalent system obtained via similarity

transformation z = T−1x, where Ā = T−1AT, B̄ = T−1B, C̄ = CT .

ẋ = Ax+Bu ⇐⇒ ż = Āz + B̄u,

y = Cx+Du ⇐⇒ y = C̄z +Du,

=⇒ Ō =


C̄

C̄Ā
...

C̄Ān−1

 =


C

CA
...

CAn−1

T = OT

Observability is preserved via similarity transformation. Since T−1 is

non-singular, we have rank(Ō) = rank(OT ) = rank(O).

(A,C) is observable iff (Ā, C̄) = (T−1AT,CT ) is observable.
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Observable Decomposition

For every LTI system, ∃ a similarity transformation z = T−1x =

xo
xu


that transforms the original system to the formAo 0

A21 Au

 = T−1AT,
[
Bo Bu

]
= T−1B,

[
Co 0

]
= CT

for which

1 UO[t0, tf ] = Image

 0

In̄×n̄


2 the pair (Ao, Co) is observable

3 The xu component of the state cannot be reconstructed from o/p.
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Kalman Decomposition

Suppose choose a similarity transformation x = T−1x where

T =
[
Vco Vcō Vc̄o Vc̄ō

]
such that

Columns of Vcō form a basis for A−invariant subspace C ∩ UO

Columns of
[
Vco Vcō

]
form a basis for A−invariant controllable

subspace C of the pair (A,B).

Columns of
[
Vcō Vc̄ō

]
form a basis for A−invariant unobservable

subspace UO of the pair (A,C).
ẋco

ẋcō

ẋc̄o

ẋc̄ō

 =


Aco 0 A×o 0

Ac× Acō A×× A×ō

0 0 Ac̄o 0

0 0 Ac̄× Ac̄ō



xco

xcō

xc̄o

xc̄ō


︸ ︷︷ ︸

:=x

+


Bco

Bcō

0

0

u

y =
[
Cco 0 Cc̄o 0

]
x+Du
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Kalman Decomposition Picture

Figure: Schematic representation of canonical Kalman Decomposition
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Kalman Decomposition Theorem

For every LTI system, ∃ a similarity transformation that transforms it to

canonical Kalman Decomposition form for which

1 The pair

Aco 0

Ac× Acō

 ,
Bco
Bcō

 is controllable

2 The pair

Aco A×o

0 Ac̄o

 , [Cco Cc̄o

] is observable

3 The triple (Aco, Bco, Cco) is both controllable & observable

4 Transfer function of the original system is same as the transfer

function of the controllable & observable system

G(s) = C(sI −A)−1B +D = Cco(sI −Aco)−1Bco +D
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Detectability

Detectable Systems
The pair (A,C) is detectable if it is algebraically equivalent to a system

in the standard form for unobservable systems with n̄ = n or with Au
being a stability matrixẋo

ẋu

 =

A0 0

A21 Au

xc
xu

+

Bo
Bu

u, xo ∈ Rn̄, xu ∈ Rn−n̄

y =
[
Co 0

]xo
xu

+Du.

Any observable system is detectable as n̄ = n and @Au.

Asymptotically stable sys. is detectable as Au, Ao are stable matrices.
Controllability & Observability 4-36



Evolution of Unobservable Components

The evolution of unobservable component xu is determined by

ẋu = Auxu +A21xo +Buu︸ ︷︷ ︸
:=v

Consider the new input v to ẋu. Then,

xu(t) = eAu(tf−t0)xu(t0) +
∫ tf

t0

eAu(tf−τ)v(τ)dτ

Since the pair (Ao, Co) is observable, it is possible to reconstruct x0

from i/p-o/p.

For detectable systems, the term eAu(tf−t0)xu(t0) eventually

converges to zero and so we can guess xu(t) upto an error that

converges to zero exponentially fast.
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Tests for Detectability

Eigenvector Test: For all eigenvalues of A with Re(λ) ≥ 0, their

corresponding eigenvectors should not be in ker(C).

PBH Test: LTI system is detectable iff rank

A− λI
C

 = n, for

all λ ∈ C such that Re(λ) ≥ 0.

Lyapunov Test: LTI system is detectable iff ∃P � 0 solution to

Lyapunov inequality A>P + PA - C>C ≺ 0.

Analogous results exist for discrete time.
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