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What is a LMI

Linear Matrix Inequalities [1]

A linear matrix inequality (LMI) has the form

F (x)
∆
= F0 +

m∑
i=1

xiFi � 0 (1)

x ∈ Rm is the variable

Fi = F>i ∈ Rn×n, i = 0, . . . ,m are given symmetric matrices

Facts:

1 LMIs can represent a wide variety of convex constraints on x

2 LMIs help us to formulate matrices as optimization variables

3 Multiple LMIs can be expressed as a single LMI

F (1)(x) > 0, . . . , F (p)(x) > 0 ⇐⇒ diag
(
F (1)(x), . . . , F (p)(x)

)
> 0
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History of LMI

Wide variety of problems arising in systems & control theory can be reduced to a few standard
convex or quasiconvex optimization problems involving LMIs

Lyapunov Theory (1890)

The differential equation

ẋ(t) = Ax(t)

is stable (i.e., all trajectories converge to zero) iff ∃P = P> � 0 such that

A>P + PA ≺ 0

Important Timelines

1960s - Positive Real Lemma

1980s - Interior-point methods for LMIs
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What are we learning today?

Flow of Topics

1 Preliminary Topics

2 LMIs for Controllability & Feedback Stabilization

3 LMIs for Observability & Observer Design

4 LMI for H2-Optimal Full-State Feedback Control

5 LMI for H∞-Optimal Full-State Feedback Control

6 LMIs for Quadratic Stability with Affine Polytopic & Interval Uncertainty

7 LMIs for Robust Control (Still in Preparation)

8 LMIs in Sum of Squares (SOS) Optimization
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How are we learning today?

Learning Steps

1 Study properties about the autonomous system (Eg. ẋ = Ax or xk+1 = Axk)

2 Implement a full-state feedback control u = Kx

3 Implement an output feedback control u = Kx̂

4 Study above three with H2 optimality and H∞ optimality

5 Study the system with uncertainty (Eg. ẋ = (A+ ∆)x or xk+1 = (A+ ∆)xk)

6 Implement full-state feedback u = Kx & subsequently output feedback u = Kx̂

7 Study LMIs for different forms of ∆ and design optimal controllers w.r.t H2, H∞ norms

8 Miscellaneous LMIs in Sum of Squares Optimization & other problems

Slide Ideas borrowed from [2] and [3]
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Preliminary Topics
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The Dual Lyapunov LMI

Problem 1

Find X > 0 such that

A>X +XA < 0

Problem 2

Find Y > 0 such that

AY + Y A> < 0
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The Dual Lyapunov LMI

Problem 1

Find X > 0 such that

A>X +XA < 0

Problem 2

Find Y > 0 such that

AY + Y A> < 0

Claim: Problem 1) is equivalent to Problem 2).
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The Dual Lyapunov LMI

Problem 1

Find X > 0 such that

A>X +XA < 0

Problem 2

Find Y > 0 such that

AY + Y A> < 0

Claim: Problem 1) is equivalent to Problem 2).
Proof: 1) solves 2). Suppose X > 0 solves 1). Define Y = X−1 > 0. Since A>X +XA < 0,
we have

X−1
(
A>X +XA

)
X−1 < 0 ⇐⇒ X−1A> +AX−1 < 0 ⇐⇒ Y A> +AY < 0

Therefore, Problem 2) is feasible with solution Y = X−1.
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The Dual Lyapunov LMI

Problem 1

Find X > 0 such that

A>X +XA < 0

Problem 2

Find Y > 0 such that

AY + Y A> < 0

Claim: Problem 1) is equivalent to Problem 2).
Proof: 1) solves 2). Suppose X > 0 solves 1). Define Y = X−1 > 0. Since A>X +XA < 0,
we have

X−1
(
A>X +XA

)
X−1 < 0 ⇐⇒ X−1A> +AX−1 < 0 ⇐⇒ Y A> +AY < 0

Therefore, Problem 2) is feasible with solution Y = X−1.
Proof: 2) solves 1). Suppose Y > 0 solves 2). Define X = Y −1 > 0. Then

A>X +XA = X
(
AX−1 +X−1A>

)
X = X

(
AY + Y A>

)
X < 0

Conclusion: If V (x) = x>Px proves stability of ẋ = Ax, then V (x) = x>P−1x proves
stability of ẋ = A>x.

10 / 68



LMIs for Controllability & Feedback
Stabilization
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Continuous & Discrete Time Stability

Guaranteeing Continuous Time Stability

System matrix A is Hurwitz iff ∀Q � 0, ∃P � 0 such that A>P + PA = −Q ≺ 0. One such
solution is

P =

∫ ∞
0

eA
T sQeAsds.

Guaranteeing Discrete Time Stability

System matrix A is Schur iff ∀Q � 0,∃P � 0 such that A>PA− P = −Q ≺ 0. One such
solution is

P =

∞∑
k=0

(AT )kQAk.
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LMI for Controllability Gramian - Continuous Time Case

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

Definition

The Controllability Gramian of pair (A,B) is

W =

∫ ∞
0

eAsBB>eA
T sds.

An LMI for the Controllability Gramian

If (A,B) is controllable, then W � 0 is the unique solution to

AW +WA> +BB> = 0.
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LMI for Controllability Gramian

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

An LMI for the Controllability Gramian

If (A,B) is controllable, then W � 0 is the unique solution to

AW +WA> +BB> = 0.

Question: Can we get to any desired state, xd(t), by using u(t)?
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LMI for Controllability Gramian

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

Question: Can we get to any desired state, xd(t), by using u(t)?
Answer: The Controllability Gramian tells us which directions are easily controllable and the
input u(t) which achieves xd(t) has the magnitude

‖u‖2L2
= x>dW

−1
t xd.

Caution

Feasibility of controllability gramian LMI requires A to be stable.

If A were unstable, some directions would require no energy to reach.
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LMI for Stabilizability

Weaker condition than controllability

System is stabilizable if uncontrollable subspace is naturally stable.

LMI for Stabilizability

The pair (A,B) is stabilizable iff ∃X � 0, γ > 0 such that

AX +XA> − γBB> ≺ 0

and the stabilizing control input is u(t) = −1
2B
>X−1x(t).

Good News

Feasibility of the stabilizability LMI does NOT require A to be stable

The stabilizing controller is a feedback gain
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The Static State Feedback Problem

The Static State Feedback Problem

Find a feedback matrix K ∈ Rm×n such that

ẋ = Ax(t) +Bu(t)

u(t) = Kx(t)

is stable.

Look for matrix K such that the closed loop system ẋ = (A+BK)x(t) is stable.

RECALL LYAPUNOV LMI !!!
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LMI for Static State Feedback Problem

Look for matrix K such that the closed loop system ẋ = (A+BK)x(t) is stable.

LMI for Static State Feedback

Find a feedback matrix K ∈ Rm×n and X � 0 such that

X(A+BK) + (A+BK)>X ≺ 0.
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LMI for Static State Feedback Problem

Look for matrix K such that the closed loop system ẋ = (A+BK)x(t) is stable.

LMI for Static State Feedback

Find a feedback matrix K ∈ Rm×n and X � 0 such that

X(A+BK) + (A+BK)>X ≺ 0.

Problem: Bilinear in K and X !!!

Resolving this bilinearity is a quintessential step in the controller synthesis

Bilinear optimization is not convex

To convexify the problem, we use a change of variables

Recall Dual Lyapunov LMI
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LMI for Static State Feedback Problem

Problem 1: Find K ∈ Rm×n and X � 0 such that

X(A+BK) + (A+BK)>X ≺ 0.

is equivalent to

Problem 2: Find Z ∈ Rm×n and P � 0 such that

AP + PA> +BZ + Z>B> ≺ 0.
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LMI for Static State Feedback Problem

Problem 1: Find K ∈ Rm×n and X � 0 such that

X(A+BK) + (A+BK)>X ≺ 0.

is equivalent to

Problem 2: Find Z ∈ Rm×n and P � 0 such that

AP + PA> +BZ + Z>B> ≺ 0.

Problem 2 has a valid LMI now in variables Z, P

Solve Problem 2) and recover feedback gain matrix K = ZP−1.
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LMI for Controllability Gramian - Discrete Time Case

Consider the state-space system

xk+1 = Axk +Buk, x0 = 0.

Definition

The Discrete-Time Controllability Gramian of pair (A,B) is

W =

∞∑
k=0

AkBB>(A>)k.

An LMI for the Discrete-Time Controllability Gramian

If (A,B) is controllable, then W � 0 is the unique solution to

A>WA−W +BB> = 0.
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The Discrete-Time Feedback Stabilization Problem

The Static State Feedback Problem

Find a feedback matrix K ∈ Rm×n such that

xk+1 = Axk +Buk

uk = Kxk

is Schur stable.

Look for matrix K such that the closed loop system xk+1 = (A+BK)xk is stable.

AGAIN RECALL LYAPUNOV LMI !!! link
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LMI for Discrete-Time Feedback Stabilization Problem

Look for matrix K such that the closed loop system xk+1 = (A+BK)xk is stable.

LMI(Almost) Discrete-Time Feedback Stabilization

Find a feedback matrix K ∈ Rm×n and P � 0 such that

(A+BK)>P (A+BK)− P ≺ 0.
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LMI for Discrete-Time Feedback Stabilization Problem

Look for matrix K such that the closed loop system xk+1 = (A+BK)xk is stable.

LMI(Almost) Discrete-Time Feedback Stabilization

Find a feedback matrix K ∈ Rm×n and P � 0 such that

(A+BK)>P (A+BK)− P ≺ 0.

Work towards a LMI via small trick

(A+BK)>P (A+BK)− P ≺ 0

⇐⇒ P − (A+BK)>P (A+BK) � 0

⇐⇒ P−1 − P−1(A+BK)>P (A+BK)P−1 � 0

⇐⇒
[

P−1 (A+BK)P−1

P−1(A+BK)> P−1

]
� 0

Problem: Bilinear in K and P−1 !!!
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LMI for Discrete-Time Feedback Stabilization Problem

Again we have two equivalent problems.
Problem 1: Find K ∈ Rm×n and P � 0 such that[

P−1 (A+BK)P−1

P−1(A+BK)> P−1

]
� 0

is equivalent to

Problem 2: Find Z ∈ Rm×n and X � 0 such that[
X AX +BZ

(AX +BZ)> X

]
� 0

What did we do ?

Did variable substitutions P−1 = X and Z = KX

Problem 2 has a valid LMI now in variables Z, X

Solve Problem 2) and recover feedback gain matrix K = ZX−1.
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LMI for Discrete-Time Stabilizability

LMI for Discrete-Time Stabilizability

The pair (A,B) is stabilizable iff ∃P � 0 such that

APA> − P ≺ BB>
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LMIs for Observability & Observer Design
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Duality Between Observability & Controllability

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

Observability & Controllability are duals of each other

We can investigate observability of (A,C) by studying controllability of (A>, C>)

(A,C) is observable if and only if (A>, C>) is controllable.
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LMI for Observability Gramian

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

Definition

The Observability Gramian of pair (A,C) is

Y =

∫ ∞
0

eA
T sC>CeAsds.

LMI for the Observability Gramian

If (A,C) is observable, iff Y � 0 is the unique solution to

Y A+A>Y + C>C = 0.
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LMI for Observer Synthesis

Consider the state-space system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = 0.

FACT

An observer exists if and only if (A,C) is detectable

LMI for Observer Synthesis

There exists an observer with gain L such that A+ LC is stable iff ∃P � 0 and Z such that

A>P + PA+ C>Z + Z>C ≺ 0,

where the observer gain matrix is retrieved as L = P−1Z>.
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LMI for H2-Optimal Full-State Feedback
Control
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System H2 Norm

Consider the system

ẋ = Ax+Bu

y = Cx+Du

System H2 Norm

For a stable, causal continuous time LTI system with state-space model (A,B,C,D), transfer
function G(s), and impulse response G(t), the H2 norm of G, denoted by ‖G‖H2

measures

The energy of impulse response

For ‖G‖H2
to be finite, need strict causality ⇐⇒ D = 0

When x0 = 0 and ut is an unit impulse signal,

‖G‖2H2
:=

∫ ∞
0
‖G(t)‖2F dt = Tr

[∫ ∞
0

G(t)>G(t)dt

]
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System H2 Norm Computation

Recall

Controllability Gramian W =
∫∞

0 eAtBB>eA
>tdt satisfies AW +WA> +BB> = 0

Observability Gramian Y =
∫∞

0 eA
>tC>CeAtdt satisfies A>Y + Y A+ C>C = 0

Computing H2 norm is easy via state-space methods with G(t) = CeAtB

‖G‖2H2
:= Tr

[∫ ∞
0

G(t)>G(t)dt

]
= Tr

[∫ ∞
0

B>eA
>tC>CeAtBdt

]
= Tr

[
B>Y B

]
‖G‖2H2

= Tr

[∫ ∞
0

G(t)G(t)>dt

]
= Tr

[∫ ∞
0

CeAtBB>eA
>tC>dt

]
= Tr

[
CWC>

]

Takeaways

H2 norm can be computed easily if Controllability or Observability Gramians are calculated
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LMI Characterization of H2 Norm

H2 Norm Minimization Problem

Find X = X> � 0 such that

‖G(s)‖H2
< γ

AX +XA> +BB> ≺ 0

Equivalently, the solution to the following SDP in variables X,P assures that the A is
asymptotically stable and the H2 norm is atmost η = γ2.

LMI for H2 Norm Minimization

minimize
η,X,P

η

subject to Tr(P ) < η,X � 0, P � 0

AX +XA> +BB> ≺ 0[
P CX

XC> X

]
� 0
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Control Design Using H2 Norm

Consider the system

ẋ = Ax+Bu+ Fw

y = Cx+Du

Control Design Problem

Design a full state feedback controller u(t) = Kx(t) that stabilizes and minimizes the H2

norm of the closed loop system from disturbance input w to performance output y.
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Control Design Using H2 Norm

Use the H2 LMI for closed loop system obtained using full state feedback u = Kx

ẋ = (A+BK)x+ Fw

y = (C +DK)x

LMI(Almost) for H2 Norm Controller Synthesis

minimize
η,X,P

η

subject to Tr(P ) < η,X � 0, P � 0

(A+BK)X +X(A+BK)> + FF> ≺ 0[
P (C +DK)X

X(C +DK)> X

]
� 0

(2)

Bilinear in K,X.

Let L = KX and solve following SDP in variables η,X,L, P .
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LMI for H2 Norm Controller Synthesis

LMI for Controller Synthesis

minimize
η,X,L,P

η

subject to Tr(P ) < η,X � 0, P � 0

AX +XA> +BL+ L>B> + FF> ≺ 0[
P CX +DL

XC> + L>D> X

]
� 0

(3)

Recover the controller gain as K = LX−1
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LMI for H∞-Optimal Full-State Feedback
Control
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Defining the H∞ Norm

Consider the proper stable LTI system with transfer function G(s) = C(sI −A)−1B +D

ẋ = Ax+Bw

z = Cx+Dw

H∞ Norm

The H∞ Norm (aka induced L2 gain) of the above system is given by

‖G‖∞ = sup
‖w‖2=1

‖z‖2

It is the worst-case gain of the system
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Bounded Real Lemma

Consider the following linear system

ẋ = Ax+Bu, x(0) = 0,

y = Cx

If a quadratic Lyapunov function V (x) = x>Px satisfies

V̇ (x, u)− γ2u>u+ y>y ≤ 0

Then, ‖G‖∞ ≤ γ.

What’s the intuition ?

Integrate above inequality & apply boundary conditions to see that ‖G‖2∞ =
‖y‖2
‖u‖2
≤ γ2
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LMI to Compute H∞ Norm

Consider the following linear system

ẋ = Ax+Bu, x(0) = 0,

y = Cx

Then, V̇ (x, u)− γ2u>u+ y>y ≤ 0

⇐⇒ (Ax+B)>Px+ x>P (Ax+B)− γ2u>u+ x>C>Cx ≤ 0

⇐⇒
[
x
u

] [
A>P + PA+ C>C PB

B>P γ2I

] [
x
u

]
≤ 0, ∀x, u

LMI to Compute H∞ Norm

For the above linear system, ‖G‖∞ ≤ γ iff the following LMI in P is satisfied.

[
A>P + PA+ C>C PB

B>P γ2I

]
� 0 ⇐⇒

A>P + PA PB C>

B>P −γ2I 0
C 0 −I

 � 0
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H∞ Control Design Problem

Consider the system

ẋ = Ax+Bu+ Fw

y = Cx+Du

H∞ Control Design Problem

Design a full state feedback controller u(t) = Kx(t) to minimize closed-loop ‖G‖2∞ =
‖y‖2
‖w‖2

Trick: Use Bounded Real Lemma for closed-loop with u = Kx.

ẋ = (A+BK)x+ Fw

y = (C +DK)x
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SDP for H∞ Control Design

Then, the corresponding LMI that guarantees ‖G‖2∞ =
‖y‖2
‖w‖2

≤ γ2 is(A+BK)>P + P (A+BK) PF (C +DK)>

F>P −γ2I 0
(C +DK) 0 −I

 � 0

Bilinear in P,K - Assume P � 0, let Q = P−1. Multiply on left & right by diag(Q, I, I).

Define variable substitution L = KQ and η = γ2

SDP for H∞ Control Design with LMI Constraints

Solve the following SDP & if feasible extract the control gain as K = LQ−1.

minimize
η,Q,L

η

subject to Q � 0(AQ+BL) + (AQ+BL)> F (CQ+DL)>

F> −γI 0
CQ+DL 0 −γI

 � 0
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LMIs for Quadratic Stability with Affine
Polytopic & Interval Uncertainty
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Modeling Uncertainty & Robustness

Originally, we solved for K that minimizes the H∞ norm of the transfer function from w to y.

min
K∈H∞

‖S(Σ,K)‖H∞

When the system Σ has uncertainty, we have to solve a robust control problem

Robust Control Problem

min
K∈H∞

γ : ‖S(Σ,K)‖H∞
≤ γ, ∀Σ ∈ P.

Σ ∈ P is set of all possible plants
P can describe either finite or infinite possible systems
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Different Types of Modeling Uncertainty

Σ ∈ P is set of all possible plants

P can describe either finite or infinite possible systems
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Set of all possible plants P

The set of all possible plants P can be characterized as follows

Set of all possible plants P

Additive Uncertainty: (Focussed Mostly From Now On !!!)

P = {Σ : Σ = Σ0 + ∆,∆ ∈∆}

Multiplicative Uncertainty:

P = {Σ : Σ = (I + ∆)Σ0,∆ ∈∆}

Feedback Uncertainty:

P =

{
Σ : Σ =

Σ0

I + ∆
,∆ ∈∆

}
∆ - uncertain system in the uncertainty set ∆

Σ0 - nominal plant (usually known or can be estimated)

48 / 68



Types of Uncertainty - Can be time-varying or time-invariant

Unstructured, Dynamic, norm-bounded

∆ := {∆ : ‖ ∆‖H∞ < 1}
Structured, Static, norm-bounded

∆ := {diag(δ1, . . . , δk,∆1, . . . ,∆n) : |δi| < 1, σ̄(∆i) < 1}
Structured, Dynamic, norm-bounded

∆ := {diag(∆1, . . . ,∆n) : ‖ ∆‖H∞ < 1}
Unstructured, Parametric, norm-bounded

∆ :=
{

∆ ∈ Rn×n : ‖ ∆‖ ≤ 1
}

Parametric, Polytopic (Simplex)

∆ := {∆ ∈ Rn×n : ∆ =
∑
i

αiHi, αi ≥ 0,
∑
i

αi = 1}

Parametric, Interval

∆ :=

{∑
i

δi∆i : δi ∈
[
δ−i , δ

+
i

]}
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Stability for Static & Dynamic Uncertainty

Robust Stability for Static Uncertainty

The system
ẋ(t) = (A0 + ∆(t))x(t)

is Robustly Stable over ∆ if A0 + ∆ is Hurwitz ∀∆ ∈∆.

Quadratic Stability for Dynamic Uncertainty

The system
ẋ(t) = (A0 + ∆(t))x(t)

is Quadratically Stable over ∆ if ∃P � 0 such that

(A+ ∆)>P + P (A+ ∆) ≺ 0, ∀∆ ∈∆.

Quadratic Stability - often called “infinite-dimensional LMI” - Hence NOT tractable

LMI can be made finite for polytopic sets
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LMI for Polytopic Uncertainty

Consider the system

ẋ(t) = (A0 + ∆A(t))x(t),

∆A(t) =

k∑
i=1

Aiδi(t),

δ(t) ∈ {δ :
∑
i

αi = 1, αi ≥ 1}

LMI for Polytopic Uncertainty

Above system is quadratically stable over ∆ := Co(A1, . . . , Ak) iff ∃P � 0 such that

(A0 +Ai)
>P + P (A0 +Ai) ≺ 0, for i = 1, . . . , k.

LMI only needs to hold at the VERTICES of the polytope.
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LMI for Interval Uncertainty (Kind of Polytopic Uncertainty)

Consider the system

ẋ(t) = (A0 + ∆A(t))x(t),

∆A(t) =

k∑
i=1

Aiδi(t), δi(t) ∈ [δ−i , δ
+
i ]

The vertices of the hypercube define the vertices of the uncertainty set

V :=

{
A0 +

k∑
i=1

Aiδi(t), δi ∈ [−1, 1]

}

LMI for Interval Uncertainty

Above system is quadratically stable over ∆ := Co(V ) iff ∃P � 0 such that(
A0 +

k∑
i=1

Aiδi

)>
P + P

(
A0 +

k∑
i=1

Aiδi

)
≺ 0, ∀δ ∈ {−1, 1}k.
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LMI for Quadratic Polytopic Stabilization

LMI for Quadratic Polytopic Stabilization

There exists a controller gain matrix K such that

ẋ(t) = (A+ ∆A + (B + ∆B)K)x(t)

is quadratically stable for (∆A,∆B) ∈ Co((A1, B1), . . . , (Ak, Bk)) iff ∃P � 0 and Z such that

(A+Ai)P + P (A+Ai)
> + (B +Bi)Z + Z>(B +Bi)

> ≺ 0, i = 1, . . . , k

Controller gain matrix K can be obtained as K = ZP−1.

Remarks:

K is independent of ∆

Designing K(∆) is harder - requires sensing ∆ in real time
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LMI for Quadratic Polytopic H∞-Optimal State-Feedback Control

Consider the system

ẋ = (A+
∑
i

Ai)x+ (B +
∑
i

Bi)u+ (F +
∑
i

Fi)w

y = (C +
∑
i

Ci)x+ (D +
∑
i

Di)u

LMI that guarantees ‖G‖2∞ =
‖y‖2
‖w‖2

≤ γ2 under u = Kx for all ∆ ∈ Co(∆1, . . . ,∆k) is

SDP for Quadratic Polytopic H∞-Optimal State-Feedback Control reference link

Solve the following SDP & if feasible extract the control gain as K = LQ−1.

min
η,Q,L

η

s.t Q � 0((A+Ai)Q+ (B +Bi)L) + ((A+Ai)Q+ (B +Bi)L)> ∗> ∗>
(F + Fi)

> −γI ∗>
(C + Ci)Q+ (D +Di)L 0 −γI

 � 0, i = 1 : k
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LMI for Quadratic Polytopic H2-Optimal State-Feedback Control

LMI that guarantees ‖G‖22 ≤ γ2 under u = Kx for all ∆ ∈ Co(∆1, . . . ,∆k) is

SDP for Quadratic Polytopic H2-Optimal State-Feedback Control reference link

Solve the following SDP & if feasible extract the control gain as K = LQ−1.

min
η,X,L,P

η

s.t Tr(P ) < η,X � 0, P � 0

AX +XA> +BL+ L>B> + FF> +AiX +XA>i +BiL+ L>B>i + FiF
>
i ≺ 0[

P CX +DL
XC> + L>D> X

]
+

[
0 CiX +DiL

XC>i + L>D>i 0

]
� 0, i = 1, . . . , k

Possible Research: LMI for Quadratic Polytopic H2-Optimal Output-Feedback Control ???
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LMI for Quadratic Schur Stabilization

Consider the system

xk+1 =

(
A+

∑
i

Ai

)
xk +

(
B +

∑
i

Bi

)
uk

=

(
A+

∑
i

Ai +

(
B +

∑
i

Bi

)
K

)
xk

SDP for Quadratic Schur Stabilization reference link

Suppose ∃X � 0 and Z such that[
X AX +BZ

XA> + Z>B> X

]
+

[
0 AiX +BiZ

XA>i + Z>B>i 0

]
� 0, i = 1, . . . , k

then if K = ZX−1, the trajectories of closed loop stable are quadratically stable
∀∆ ∈ Co(∆1, . . . ,∆k).
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LMIs for Robust Control

57 / 68



TO BE DONE !!!

Tentative Topics:

LMI for Parametric, Norm-Bounded Uncertainty

LMI for Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

LMI for H∞−Optimal Quadratically Stabilizing Controllers with Parametric
Norm-Bounded Uncertainty

LMI for Stability of Structured, Norm-Bounded Uncertainty

LMI for Stabilizing State-Feedback Controllers with Structured Norm-Bounded
Uncertainty

LMI for H∞−Optimal State-Feedback Controllers with Structured Norm-Bounded
Uncertainty

D-K Iteration-based Output-Feedback Robust Controller Synthesis
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LMIs in Sum of Squares (SOS)
Optimization
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Polynomial Space & Its Representation

The set of polynomials is an ∞-dimensional (but Countable) vector space

Can be made “Finite Dimensional” if we bound the degree

The monomials form a simple basis for the space of polynomials

Linear Representation of Polynomials

Any polynomial of degree d can be represented as follows

p(x) = c>Bd(x)

c is vector of coefficients

Bd(x) is the vector of monomial bases of degree d or less. For instance,

B4(x) =
[
1 x x2 x3 x4

]
B2(x1, x2) =

[
1 x1 x2 x1x2 x2

1 x2
2

]
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LMI for Positive Polynomials

Definition

A polynomial p(x) in x ∈ Rn is called Positive Semi-Definite (PSD) if

p(x) ≥ 0, ∀x ∈ Rn.

LMI for Positive Polynomials

A polynomial p(x) in x ∈ Rn will be PSD (p(x) ≥ 0,∀x ∈ Rn) if ∃P � 0 such that

p(x) = B>d (x)PBd(x)

Proof: If ∃P � 0 such that p(x) = B>d (x)PBd(x), then P can be split as P = Q>Q. Then,

p(x) = B>d (x)PBd(x)

=⇒ p(x) = B>d (x)Q>QBd(x)

= (QBd(x))> (QBd(x))

= h(x)>h(x)

≥ 0
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LMI for Positive Polynomials

Definition

A polynomial p(x) in x ∈ Rn is called Positive Semi-Definite (PSD) if

p(x) ≥ 0, ∀x ∈ Rn.

LMI for Positive Polynomials

A polynomial p(x) in x ∈ Rn will be PSD (p(x) ≥ 0,∀x ∈ Rn) if ∃P � 0 such that

p(x) = B>d (x)PBd(x)

We call such polynomials as Sum-of-Squared (SOS), denoted by p(x) ∈ Σs.
Equality constraints relate the coefficients of p(x) to the elements of P
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Representing Measure of Moments [4]

Given a sequence of moments of an univariate non-negative random variable denoted by

σ̄ = [M0,M1, . . . ,Mk].

Representing Measure

Does σ̄ has a representing measure (i.e. probability distribution) µ ?

Example

Suppose σ̄ = [M0,M1,M2] = [1, 0.5, 0.2]. Then,

var = E
[
(x− E[x])2

]
= M2 −M2

1 ≥ 0

But var = 0.2− 0.52 < 0

So, σ̄ does not have a representing measure
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Moments Matrix

Given a sequence of moments of an univariate non-negative random variable denoted by

σ̄ = [M0,M1, . . . ,Mk].

Representing Measure

Does σ̄ has a representing measure (i.e. probability distribution) µ ?

LMI Condition on the moments up to order 2

Suppose σ̄ = [M0,M1,M2] Then,

var = E
[
(x− E[x])2

]
= M2 −M2

1 ≥ 0 =⇒
[

1 M1

M1 M2

]
� 0
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Moments Matrix

Moment Matrix associated with σ̄ up to order 2d is the real symmetric square matrix

Rd(σ̄) = Eµ
[
Bd(x)B>d (x)

]
.

Bd(x) - vector of monomials up to order d

Moment matrix of order d = 2 of a measure in R
The vector of monomials up to order d = 2 is B2(x) =

[
1 x x2

]>
. Then,

R2(σ̄) = Eµ
[
B2(x)B>2 (x)

]
=

M0 M1 M2

M1 M2 M3

M2 M3 M4


Rd(σ̄) required moments up to order 2d

Rd(σ̄) ∈ RSn,d×Sn,d , where Sn,d =
(
n+d
n

)
Number of moments is Sn,2d =

(
n+2d
n

)
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LMI Conditions on Moments Matrix

Moments Condition

Moments of every non-negative measure µ ∈ Rn satisfies

Rd(σ̄) � 0, ∀d.

Important Fact

Not every moment sequence σ̄ that satisfies Rd(σ̄) � 0,∀d has a representing measure µ ∈ Rn.

(µ, σ̄)
⇒: Rd(σ̄) � 0,∀d.

Analogy: Not every non-negative polynomial has a SOS representation
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Thank you

Any questions ?
Hope you all enjoyed the presentation !
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