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What is a LMI

Linear Matrix Inequalities [1]

A linear matrix inequality (LMI) has the form

m
F(z) 2 Fy+ Y a:F; = 0
i=1

m r € R™ is the variable

m F;=F' €R™™ j=0,...,m are given symmetric matrices

Facts:
LMIs can represent a wide variety of convex constraints on x
LMIs help us to formulate matrices as optimization variables
Multiple LMIs can be expressed as a single LMI

FO(@)>0,...,F?(z) >0 < diag (F(l)(x), o

\\\\\\\\\\
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History of LMI

LUND
UniveRsiTy

Wide variety of problems arising in systems & control theory can be reduced to a few standard
convex or quasiconvex optimization problems involving LMls

Lyapunov Theory (1890)

The differential equation
&(t) = Az(t)
is stable (i.e., all trajectories converge to zero) iff 3P = P = 0 such that

AP+ PA<0

Important Timelines
m 1960s - Positive Real Lemma

m 1980s - Interior-point methods for LMls
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What are we learning today?

Flow of Topics

(-~ oI

BN

Preliminary Topics

LMiIs for Controllability & Feedback Stabilization

LMiIs for Observability & Observer Design

LMI for Hs-Optimal Full-State Feedback Control

LMI for H,.-Optimal Full-State Feedback Control

LMIs for Quadratic Stability with Affine Polytopic & Interval Uncertainty
LMIs for Robust Control (Still in Preparation)

LMIs in Sum of Squares (SOS) Optimization

LUND
UniveRsiTy
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How are we learning today? Lunp

Learning Steps
Study properties about the autonomous system (Eg. & = Ax or xp11 = Axy)
Implement a full-state feedback control ©u = K«
Implement an output feedback control ©u = K&
Study above three with Hy optimality and H,, optimality
Study the system with uncertainty (Eg. 2 = (A+ A)x or 41 = (A + A)xyg)
@A Implement full-state feedback u = Kx & subsequently output feedback u = Kz
Study LMlIs for different forms of A and design optimal controllers w.r.t Hy, Hy, norms
B Miscellaneous LMIs in Sum of Squares Optimization & other problems

Slide Ideas borrowed from [2] and [3]
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Preliminary Topics
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The Dual Lyapunov LMI

uuuuuuuuuu

Problem 1 Problem 2
Find X > 0 such that Find Y > 0 such that

ATX +XA<0 AY +YAT <0
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The Dual Lyapunov LMI

xxxxxxxx

Problem 1 Problem 2
Find X > 0 such that Find Y > 0 such that

ATX+XA<0 AY +YAT <0

Claim: Problem 1) is equivalent to Problem 2).
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The Dual Lyapunov LMI Lunp

Problem 1 Problem 2
Find X > 0 such that Find Y > 0 such that

ATX + XA <0 AY +YAT <0
Claim:

Proof: 1) solves 2). Suppose X > 0 solves 1). Define Y = X1 > 0. Since AT X + XA <0,
we have

X1 (ATX i XA) X 1w e= X AT+ AX 1< e YA  +4Y <0

Therefore, Problem 2) is feasible with solution ¥ = X1
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The Dual Lyapunov LMI LusD

LLLLLLLLLLLL

Problem 1 Problem 2
Find X > 0 such that Find Y > 0 such that
ATX + XA <0 AY +YAT <0
Claim: }
Proof: 1) solves 2). Suppose X > 0 solves 1). Define Y = X! > 0. Since AT X + XA <0,
we have

x-! <ATX i XA> X1 = X MAT+AX 1 <0 e YAT 4+ AY <0

Therefore, Problem 2) is feasible with solution Y = XL
Proof: 2) solves 1). Suppose Y > 0 solves 2). Define X =Y ! > 0. Then

ATX £ XA=X <AX‘1 + X-lAT> X=X (AY + YAT) X <0

Conclusion: If V(z) = 2" Px proves stability of & = Ax, then V(x) = 2" P!z proves
stability of & = AT z.
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LMIs for Controllability & Feedback
Stabilization



Continuous & Discrete Time Stability Lunp

Guaranteeing Continuous Time Stability

System matrix A is Hurwitz iff YQ = 0,3P > 0 such that ATP + PA = —Q < 0. One such
solution is

0 T
P:/ e 3Qesds.
0

Guaranteeing Discrete Time Stability

System matrix A is Schur iff YQ > 0,3P > 0 such that ATPA — P = —Q < 0. One such
solution is

P= i ATYEQAE,
k=0

12 / 68



LMI for Controllability Gramian - Continuous Time Case

Consider the state-space system

Definition
The Controllability Gramian of pair (A, B) is

o0
W= / eASBBT A 5 ds.
0

An LMI for the Controllability Gramian
If (A, B) is controllable, then W = 0 is the unique solution to

AW +WA' + BB =0.

LUND
UniveRsiTy
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LMI for Controllability Gramian Lunp

Consider the state-space system

An LMI for the Controllability Gramian
If (A, B) is controllable, then W - 0 is the unique solution to

AW +WA" + BBT =0.

Question: Can we get to any desired state, z4(t), by using u(t)?
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LMI for Controllability Gramian LusD

LLLLLLLLLLLL

Consider the state-space system

Question: Can we get to any desired state, x4(t), by using u(t)?
Answer: The Controllability Gramian tells us which directions are easily controllable and the
input u(t) which achieves x4(t) has the magnitude

2 Tir—
lullz, = zq W, 2a.

Caution
m Feasibility of controllability gramian LMI requires A to be stable.

m If A were unstable, some directions would require no energy to reach.
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LMI for Stabilizability Lunp

LLLLLLLLLLLL

m Weaker condition than controllability
m System is stabilizable if uncontrollable subspace is naturally stable.

LMI for Stabilizability
The pair (A, B) is stabilizable iff 3X > 0,y > 0 such that

AX +XAT —4BB" <0
and the stabilizing control input is u(t) = —3 BT X 1a(t).

Good News
m Feasibility of the stabilizability LMI does NOT require A to be stable

m The stabilizing controller is a feedback gain
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The Static State Feedback Problem
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The Static State Feedback Problem
Find a feedback matrix K € R™*" such that

& = Ax(t) + Bu(t)
u(t) = Kx(t)

is stable.

Look for matrix K such that the closed loop system & = (A + BK)x(t) is stable.

RECALL LYAPUNOV LMI !
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LMI for Static State Feedback Problem p

~~~~~~~~~~~

Look for matrix K such that the closed loop system & = (A + BK)x(t) is stable.

LMI for Static State Feedback
Find a feedback matrix K € R™*" and X > 0 such that

X(A+BK)+(A+BK)"X <0.
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LMI for Static State Feedback Problem Lunp

Look for matrix K such that the closed loop system & = (A + BK)z(t) is stable.

LMI for Static State Feedback
Find a feedback matrix X € R™*"™ and X > 0 such that

X(A+BK)+(A+BK)"X <0.

Problem: Bilinear in K and X !l!

Resolving this bilinearity is a quintessential step in the controller synthesis
Bilinear optimization is not convex

To convexify the problem, we use a change of variables

Recall Dual Lyapunov LMI
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LMI for Static State Feedback Problem

Problem 1: Find K € R™*"™ and X > 0 such that

X(A+BK)+(A+BK)"X <0.

is equivalent to

Problem 2: Find Z € R™*™ and P > 0 such that

AP+ PA" +BZ+Z"BT <0.

~~~~~~~~~~~
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LMI for Static State Feedback Problem Lunp

Problem 1: Find K € R™*" and X > 0 such that

X(A+ BK)+(A+BK)'X <0.

is equivalent to

Problem 2: Find Z € R™*"™ and P > 0 such that

AP+ PAT +BZ+Z"BT <.

m Problem 2 has a valid LMI now in variables Z, P

m Solve Problem 2) and recover feedback gain matrix K = ZP~1.
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LMI for Controllability Gramian - Discrete Time Case

Consider the state-space system

Ti+1 = Az + Bug, x9=0.

Definition
The Discrete-Time Controllability Gramian of pair (A, B) is

W =Y A*BBT(AT)".
k=0

An LMI for the Discrete-Time Controllability Gramian
If (A, B) is controllable, then W - 0 is the unique solution to

ATWA—-W +BB' =0.

LUND
UniveRsiTy
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The Discrete-Time Feedback Stabilization Problem

LUND
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The Static State Feedback Problem
Find a feedback matrix K € R™*" such that

Tr11 = Axy + Bug
Uk = K:L’k

is Schur stable.

Look for matrix K such that the closed loop system zy1 = (A + BK)xy is stable.

AGAIN RECALL LYAPUNOV LMI !
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LMI for Discrete-Time Feedback Stabilization Problem

Look for matrix K such that the closed loop system zj11 = (A + BK)xy is stable.

LMI(Almost) Discrete-Time Feedback Stabilization
Find a feedback matrix K € R™*™ and P > 0 such that

(A+ BK)"P(A+ BK)— P <0.

~~~~~~~~~~~

24 / 68



LMI for Discrete-Time Feedback Stabilization Problem

Look for matrix K such that the closed loop system zy1 = (A + BK)xy, is stable.

LMI(Almost) Discrete-Time Feedback Stabilization
Find a feedback matrix K € R™*™ and P > 0 such that

(A+ BK)"P(A+ BK)— P <0.
Work towards a LMI via small trick

(A+BK)"P(A+ BK)—~P <0
< P—(A+BK)"P(A+BK) >0
— P '-PYA+BK)'P(A+BK)P™' >0

p-l (A+ BK)P~*

P~Y(A+ BK)T p! =0

—

Problem: Bilinear in K and P~ Il

LUND
UniveRsiTy
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LMI for Discrete-Time Feedback Stabilization Problem

Again we have two equivalent problems.
Problem 1: Find K € R™*"™ and P > 0 such that

p1 (A+BKHF1>O
P YA+ BK)" P!

is equivalent to

Problem 2: Find Z € R™*"™ and X > 0 such that

X AX + BZ <0
(AX + BZ)T X
What did we do ?
m Did variable substitutions P! = X and Z = KX
m Problem 2 has a valid LMI now in variables Z, X

m Solve Problem 2) and recover feedback gain matrix K = ZX 1.

LUND
UniveRsiTy
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LMI for Discrete-Time Stabilizability

UUUUUUUU

LMI for Discrete-Time Stabilizability
The pair (A, B) is stabilizable iff 3P > 0 such that

APAT — P < BBT
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LMIs for Observability & Observer Design



Duality Between Observability & Controllability Lunp

~~~~~~~~~~~

Consider the state-space system

& = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), z(0)=0.

Observability & Controllability are duals of each other
m We can investigate observability of (A, C) by studying controllability of (AT,CT)
m (A,C) is observable if and only if (AT,CT) is controllable.

29 / 68



LMI for Observability Gramian Lunp

Consider the state-space system

Definition
The Observability Gramian of pair (A,C) is

Y:/ eATs 0T CeAsds.
0

LMI for the Observability Gramian
If (A, C) is observable, iff Y > 0 is the unique solution to

YA+ ATY +CTC=0.
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LMI for Observer Synthesis

Consider the state-space system

FACT
An observer exists if and only if (A4, C') is detectable

LMI for Observer Synthesis

LLLLLLLLLLLL

There exists an observer with gain L such that A + LC is stable iff 3P > 0 and Z such that

ATP+PA+CTZ+ZTC <0,

where the observer gain matrix is retrieved as L = P~1ZT.
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LMI for Hy-Optimal Full-State Feedback
Control



System Hy Norm e

Consider the system

i = Az + Bu
y=Cx+ Du

System H; Norm

For a stable, causal continuous time LTI system with state-space model (A, B, C, D), transfer
function G/(s), and impulse response Gi(t), the Hz norm of G, denoted by [|G||;;, measures

m The energy of impulse response
m For |G|, to be finite, need strict causality <= D =0

m When x¢p = 0 and u; is an unit impulse signal,

G, = / IG)|2 dt = [/ GG dt]
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System Hy Norm Computation Lunp

Recall
m Controllability Gramian W = [ eA'BBTeA dt satisfies AW + WAT + BBT =0

m Observability Gramian Y = fooo eATtCTCeAldt satisfies ATY + YA+ CTC =0
Computing Hy norm is easy via state-space methods with G(t) = Ce?*B

G2, = Tr [/0 G(t)TG(t)dt} ~ Tr UO BTeATtCTCeAtht} = Tr [BTYB]

IG||F, = Tr G(t)G(t)"dt| = Tx CeABBTeA tCTat| = Tr [cweT
Ho 0 0

Takeaways
Hj norm can be computed easily if Controllability or Observability Gramians are calculated
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LMI Characterization of H/ Norm
H> Norm Minimization Problem
Find X = X T > 0 such that

m (|G(s)llg, <7

m AX + XA" + BBT <0

Equivalently, the solution to the following SDP in variables X, P assures that the A is
asymptotically stable and the Hy norm is atmost 1 = ~2.

LMI for H5 Norm Minimization
e
subject to Tr(P) <n,X »=0,P >0
AX +XAT +BBT <0

[P CX

xcT X]H)
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Control Design Using Hy Norm Lunp

Consider the system

T = Ax + Bu+ Fw

y=Cx+ Du

w >y
)

w f,//x

L[+

Control Design Problem

Design a full state feedback controller u(t) = Kz(t) that stabilizes and minimizes the Ho
norm of the closed loop system from disturbance input w to performance output .

36 / 68



Control Design Using Hy Norm Lunp

Use the Ha LMI for closed loop system obtained using full state feedback v = K=

t=(A+BK)x+ Fuw
y=(C+ DK)zx

LMI(Almost) for Hy Norm Controller Synthesis

minimize 7

n,X,P
subject to Tr(P)<n,X >=0,P >0
(A+BE)X + X(A+ BK)T + FFT <0 (2)
P (C + DK)X
X(C + DK)T X =0

m Bilinear in K, X.
m Let L = KX and solve following SDP in variables n, X, L, P.
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LMI for Hy Norm Controller Synthesis Lunp

LMI for Controller Synthesis

minimize 7

n,X,L,P
subject to Tr(P)<n,X = 0,P >0
AX+ XAT+BL+L"BT + FFT <0 (3)
P CX + DL
XCT +LTDT X a

Recover the controller gain as K = LX !

38 /68



LMI for H~o-Optimal Full-State Feedback
Control



Defining the H,, Norm Lunp

Consider the proper stable LTI system with transfer function G(s) = C(sI — A)"'B+ D

T = Az + Bw
z=Cx+ Dw

H_, Norm
The Hy, Norm (aka induced Lo gain) of the above system is given by
1Glloo = sup ||zl
wll,=1

It is the worst-case gain of the system : e
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Bounded Real Lemma Lunp

Consider the following linear system

&= Az + Bu, z(0)=0,
y=Cx

If a quadratic Lyapunov function V(z) = x| Pz satisfies
V(z,u) =y u+y y <0
Then, |G|, <.

What's the intuition ?

Integrate above inequality & apply boundary conditions to see that ||G||go = ”yH‘Q <~?

flully
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LMI to Compute H., Norm Lunp

Consider the following linear system

& = Az + Bu, z(0)=0,
y=Cz

Then, V(x,u) —~uTu+yTy <0
— (Az+B)"Pr+a2"P(Az+B) —~*u"u+2"CTCx <0

z| [ATP+PA+CTC PB| [z <0 Vv
u BTP VI |u| = Ty

LMI to Compute H,, Norm
For the above linear system, ||G||, < 7 iff the following LMI in P is satisfied.

ATP+PA PB CT
<0 <= BTP —2I 0| =0

ATP+PA+C'C PB}
- c 0 -1

BTP V2T
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H., Control Design Problem PR
Consider the system
y=Cz+ Du

w-;‘ = — 94
&= Axr + Bu+ Fw /_%,___—
w x
|

H, Control Design Problem

Design a full state feedback controller u(t) = Kx(t) to minimize closed-loop ||GHC2>o

Trick: Use Bounded Real Lemma for closed-loop with v = Kx.

t=(A+ BK)r+ Fw
y=(C+ DK)x
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SDP for H,, Control Design B

\\\\\\\\\\

Then, the corresponding LMI that guarantees ||G\|iO =
(A+ BK)"P+ P(A+BK) PF (C+DK)"
FTpP —21 0
(C+ DK) 0

m Bilinear in P, K - Assume P > 0, let Q = P~!. Multiply on left & right by diag(Q,I,1).
m Define variable substitution L = KQ and n = >
SDP for H,, Control Design with LMI Constraints
Solve the following SDP & if feasible extract the control gain as K = LQ ™!,
minimize
n,Q,L 7
subject to @ >0

(AQ+ BL)+ (AQ+BL)T F (CQ+DL)T
FT —I 0 <0
CQ+ DL 0 —~I
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LMIs for Quadratic Stability with Affine
Polytopic & Interval Uncertainty



Modeling Uncertainty & Robustness Lunp

v — 9
%’ -

Originally, we solved for K that minimizes the H., norm of the transfer function from w to y.
min ||S(2, K
oin [1S(2 Kl

When the system 3 has uncertainty, we have to solve a robust control problem

Robust Control Problem

in ~v:[|S(D K < Y e P.
A S K)llg, <7, VXe

m X € P is set of all possible plants

m P can describe either finite or infinite possible systems
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Different Types of Modeling Uncertainty o

uuuuuuuuuu

"’_;‘ = — 4
ILF—_’—‘——- X
<

m X € P is set of all possible plants

m P can describe either finite or infinite possible systems
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Set of all possible plants P

The set of all possible plants P can be characterized as follows

Set of all possible plants P

-
P={2:2=30+A,AcA}
-
P={Z:2=(+A)%,AcA}
||

Yo
P=<¢X:Y=—-A€cA
{ I+ A < }

m A - uncertain system in the uncertainty set A

m Y - nominal plant (usually known or can be estimated)

LLLLLLLLLL
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Types of Uncertainty - Can be time-varying or time-invariant

m Unstructured, Dynamic, norm-bounded
A={A: | Allg, <1}
Structured, Static, norm-bounded
A = {diag(d1,...,0k, A1,...,Ap) 1 |0i] <1,5(A;) <1}
m Structured, Dynamic, norm-bounded
A = {diag(Ay1,...,Ap) || Allg, < 1}
Unstructured, Parametric, norm-bounded
A= {A ER™™: || Al < 1}
m Parametric, Polytopic (Simplex)
A:={AeR"": A= ZaiHi,ai > O,Zai =1}

Parametric, Interval

A= {mei 1 6; € [5;,5;]}

LUND
UniveRsiTy
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Stability for Static & Dynamic Uncertainty LusD

LLLLLLLLLLLL

Robust Stability for Static Uncertainty

The system
i(t) = (Ao + A1)z (1)

is over A if Ag + A is Hurwitz VA € A.

Quadratic Stability for Dynamic Uncertainty

The system
£(t) = (Ao + A(H))z(t)

is over A if 3P > 0 such that

(A+A)TP+PA+A)<0, VA€A.

m Quadratic Stability - often called “infinite-dimensional LMI" - Hence NOT tractable

m LMI can be made finite for polytopic sets
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LMI for Polytopic Uncertainty Lunp

Consider the system

B(t) = (Ao + AA(L))z(t),

k
AA() =D Aidi(t),
i=1

Sty e{6:) =10, > 1}

LMI for Polytopic Uncertainty
Above system is quadratically stable over A := Co(Aq,..., Ag) iff 3P = 0 such that

(Ao + A)TP+ P(Ag+ A;) <0, fori=1,... k.
LMI only needs to hold at the VERTICES of the polytope.
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LMI for Interval Uncertainty (Kind of Polytopic Uncertainty) e

Consider the system

#(t) = (Ao + AA())(0),

k
AA) =Y Aibi(t),6:(t) € 105,67 5 y
> 1

X

The vertices of the hypercube define the vertices of the uncertainty set
k
V.= {Ao + ZAzéz(t)a 0; € [—1, 1]}
i=1

LMI for Interval Uncertainty
Above system is quadratically stable over A := Co(V) iff 3P > 0 such that

k U k
(A() T ZA@) P+ P <Ao + ZAi5i> <0, Vée {—1, 1}k.

i=1 =1
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LMI for Quadratic Polytopic Stabilization LusD

LLLLLLLLLLLL

LMI for Quadratic Polytopic Stabilization

There exists a controller gain matrix K such that
(t) = (A+As+ (B+ Ap)K)xz(t)
is quadratically stable for (A4, Ap) € Co((A1, B1),. .., (Ag, By)) iff 3P > 0 and Z such that
(A+A)P+PA+A) +(B+B)Z+Z"(B+B)" <0, i=1,....k
Controller gain matrix K can be obtained as K = ZP~ !,

Remarks:
m K is independent of A
m Designing K(A) is harder - requires sensing A in real time
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LMI for Quadratic Polytopic H..-Optimal State-Feedback Control 14w

Consider the system

i=(A+> Az +(B+> Bu+ (F+) Fuw
y=(C+> Ciz+ D+ Diu

LMI that guarantees ||G|2%, = |‘|yH2 <~% under u = Kz for all A € Co(Aq,...,Ay) is

llwlly
SDP for Quadratic Polytopic H,,-Optimal State-Feedback Control
Solve the following SDP & if feasible extract the control gain as K = LQ .

oL
st @>0
(A+A)Q+(B+B)L)+ (A+A)Q+ (B+B)L)T *T T
(F+FE)T —I xT | 20,i=1:k
(C+Ci))Q+ (D + D;)L 0 -
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LMI for Quadratic Polytopic H,-Optimal State-Feedback Control Lunp

LMI that guarantees ||G||3 < 72 under u = Kz for all A € Co(Ay,...,Ay) is

SDP for Quadratic Polytopic H>-Optimal State-Feedback Control
Solve the following SDP & if feasible extract the control gain as K = LQ ™!,

min 7
n,X,L,P
st Tr(P)<n,X>0,P>0
AX+XAT+BL+L'B" +FF" + ;X + XA + BBL+ LB + F,F' <0

P CX + DL] [ 0 C; X + D;L

XcT+LTDT X XCT +LTD] 0 =0i=1,...k

Possible Research: LMI for Quadratic Polytopic Ho-Optimal Output-Feedback Control 777
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LMI for Quadratic Schur Stabilization Lunp

Consider the system

Tpp1 = <A+§i:Ai> T + (BJFZZ:Bi) m
- <A+;Ai+ <B+;Bi> K) T

SDP for Quadratic Schur Stabilization
Suppose dX > 0 and Z such that

X AX +BZ 0 A X +B,Z

XAT 4 ZTBT X ]+[XAI+ZTBZT 0 ]*O’Zzl’“"k

then if K = ZX !, the trajectories of closed loop stable are quadratically stable
VA € CO(Al, soog Ak)
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LMIs for Robust Control



TO BE DONE !!! Lunp

LLLLLLLLLLLL

Tentative Topics:
m LMI for Parametric, Norm-Bounded Uncertainty
m LMI for Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

m LMI for H,,—Optimal Quadratically Stabilizing Controllers with Parametric
Norm-Bounded Uncertainty

m LMI for Stability of Structured, Norm-Bounded Uncertainty

m LMI for Stabilizing State-Feedback Controllers with Structured Norm-Bounded
Uncertainty

m LMI for H,,—Optimal State-Feedback Controllers with Structured Norm-Bounded
Uncertainty

m D-K Iteration-based Output-Feedback Robust Controller Synthesis
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LMIs in Sum of Squares (SOS)

Optimization



Polynomial Space & Its Representation Lunp

LLLLLLLLLLLL

m The set of polynomials is an co-dimensional (but Countable) vector space
m Can be made “Finite Dimensional” if we bound the degree

m The monomials form a simple basis for the space of polynomials

Linear Representation of Polynomials
Any polynomial of degree d can be represented as follows

p(z) = cTBd(x)

m c is vector of coefficients

m By(z) is the vector of monomial bases of degree d or less. For instance,

By(z)=[1 = 2% 23 2

Bg(:cl,acg):[l T1 T2 T1T2 x% x%]

60 / 68



LMI for Positive Polynomials Lunp

Definition
A polynomial p(x) in x € R" is called Positive Semi-Definite (PSD) if

p(z) >0, VzeR™

LMI for Positive Polynomials
A polynomial p(x) in x € R™ will be PSD (p(z) > 0,Vz € R™) if 3P > 0 such that

p(z) = B4 (z)PBa(x)

Proof: If 3P = 0 such that p(z) = B] (z)PBy(x), then P can be split as P = Q' Q. Then,
p(x) = Bj (x) PB(x)
= p(z) = B} (¢)Q' QBa(z)
= (QBu(x)) " (@Ba(x))
= h(z) " h(z)
>0
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LMI for Positive Polynomials LuND

xxxxxxx

Definition
A polynomial p(x) in x € R" is called Positive Semi-Definite (PSD) if

p(z) >0, VxeR™

LMI for Positive Polynomials
A polynomial p(z) in z € R™ will be PSD (p(x) > 0,Vz € R™) if 3P > 0 such that

p(x) = By (¢)PBa(x)

m We call such polynomials as Sum-of-Squared (SOS), denoted by p(z) € Xs.
m Equality constraints relate the coefficients of p(z) to the elements of P

Nonnegative Polynomials

SOS Polynomials
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Representing Measure of Moments [4] Lunp

Given a sequence of moments of an univariate non-negative random variable denoted by

& = [Mo, M, ..., My).

Representing Measure

Does & has a representing measure (i.e. probability distribution) p ?
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Representing Measure of Moments [4] Lunp

LLLLLLLLLLLL

Given a sequence of moments of an univariate non-negative random variable denoted by

& = [Mo, M, ..., My).

Representing Measure

Does & has a representing measure (i.e. probability distribution) p ?

Example
Suppose & = [My, My, Ms] = [1,0.5,0.2]. Then,

var =E [(z — E[z])*] = Mo — M{ >0
But var = 0.2 — 0.5% < 0

So, & does not have a representing measure
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Moments Matrix

LUND
UniveRsiTy

Given a sequence of moments of an univariate non-negative random variable denoted by

& = [Mo, M, ..., My).

Representing Measure

Does G has a representing measure (i.e. probability distribution) p ?

LMI Condition on the moments up to order 2
Suppose & = [My, Mi, Ms] Then,
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Moments Matrix

Moment Matrix associated with & up to order 2d is the real symmetric square matrix

Rq(0) = E, [Bd(w)B;zr(fC)] :

m Bg(x) - vector of monomials up to order d

Moment matrix of order d = 2 of a measure in R

The vector of monomials up to order d =2 is By(z) = [1 = x2]T. Then,

My My M,
Ry(5) =E, [Bg(x)BZT (x)}: My My M
My M; My

m R;(d) required moments up to order 2d
[ Rd(a') S RS"vdXS"’d, where Sn,d = (nzd)
n+2d)

m Number of moments is Sy, og = ("7

LLLLLLLLLLLL
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LMI Conditions on Moments Matrix Lunp

Moments Condition
Moments of every non-negative measure i € R™ satisfies

Ry(5) =0, Vd.

Important Fact

Not every moment sequence & that satisfies R;(a) = 0, Vd has a representing measure p € R™.
(1,5) & Rq(5) = 0,Vd.

Analogy: Not every non-negative polynomial has a SOS representation
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Thank you &

Any questions ?
Hope you all enjoyed the presentation !

O
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