3. Internal Stability & Lyapunov Stability Theorems

- Internal (Lyapunov) Stability
 - Eigenvalue Condition
 - Stability Theorem
- Input-Output BIBO Stability
 - Time Domain Conditions
 - Frequency Domain Conditions
- BIBO vs Lyapunov Stability

Linear Matrix Inequalities (LMIs)

LMI Definition

A linear matrix inequality (LMI) has the form

$$F(x) \stackrel{\Delta}{=} F_0 + \sum_{i=1}^m x_i F_i \succ 0 \tag{1}$$

- $x \in \mathbb{R}^m$ is the variable
- $F_i = F_i^{\top} \in \mathbb{R}^{n \times n}, i = 0, \dots, m$ are given symmetric matrices
- lacktriangle LMIs can represent a wide variety of convex constraints on x
- LMIs help us to formulate matrices as optimization variables
- Multiple LMIs can be expressed as a single LMI

$$F^{(1)}(x) > 0, \dots, F^{(p)}(x) > 0 \iff \operatorname{diag}\left(F^{(1)}(x), \dots, F^{(p)}(x)\right) > 0$$

History of LMI

Many problems arising in systems & control theory can be reduced to a few standard convex or quasiconvex optimization problems with LMIs

Lyapunov Theory (1890)

The differential equation $\dot{x}(t) = Ax(t)$ is stable (i.e., all trajectories converge to zero) iff $\exists P = P^\top \succ 0$ s.t.

$$A^{\top}P + PA \prec 0$$

Important Timelines

- 1960s Positive Real Lemma
- 1980s Interior-point methods for LMIs

Lyapunov Theory

Lyapunov Theory: Investigate about trajectories of $\dot{x} = f(x)$ without solving differential equation (need not compute $\Phi(t, t_0)$).

Lyapunov Theorem (Informal)

If $\exists V:\mathbb{R}^n \to \mathbb{R}$ that satisfies some conditions on V and \dot{V} , then trajectories of system satisfy some property. We call such V as the **Lyapunov Function.** V indicates a generalised energy fn. for systems.

Lyapunov Stability of CT-LTV Systems

Consider the CT-LTV system $\dot{x} = A(t)x + B(t)u$, y(t) = C(t)x + D(t)u.

Stability in the sense of Lyapunov

- Marginally Stable: If $\forall x(t_0) = x_0 \in \mathbb{R}^n$, the homogeneous state response $x(t) = \Phi(t, t_0)x_0$, $\forall t \geq 0$ is uniformly bounded.
- Asymptotically Stable: If in addition, $\forall x(t_0) = x_0 \in \mathbb{R}^n$, we have $x(t) \to 0$ as $t \to \infty$.
- Exponentially Stable: If in addition, $\forall x(t_0) = x_0 \in \mathbb{R}^n$, $\exists c, \lambda > 0$ such that

$$||x(t)|| \le ce^{-\lambda(t-t_0)} ||x(t_0)||, \quad \forall t \ge 0$$

• Unstable: If it is not marginally stable.

Lyapunov Stability of CT-LTV Systems

Consider the CT-LTV system $\dot{x} = A(t)x$.

Stability in the sense of Lyapunov - Picture

Eigenvalue Conditions for Lyapunov Stability

Eigenvalue Conditions for CT-LTI Systems $\dot{x} = Ax$.

- Marginally Stable: Iff $\forall i, \text{Re}[\lambda_i] \leq 0$ and all Jordan blocks corresponding to $\text{Re}[\lambda_i] = 0$ are 1×1 .
- Asymptotically Stable: Iff $\forall i, \text{Re}[\lambda_i] < 0$.
- Exponentially Stable: Iff $\forall i, \text{Re}[\lambda_i] < 0$.
- Unstable: Iff $\exists i, \operatorname{Re}[\lambda_i] > 0$ or the Jordan blocks corresponding to $\operatorname{Re}[\lambda_i] = 0$ is larger than 1×1 .

Using sub-multiplicative norm property, we have for LTI systems

$$\left\|x(t)\right\| = \left\|e^{A(t-t_0)}x_0\right\| \le \left\|e^{A(t-t_0)}\right\| \left\|x_0\right\| \le ce^{-\lambda(t-t_0)} \left\|x_0\right\|, \quad \forall t \in \mathbb{R}$$

⇒ "Asymptotic & exponential stability are equivalent concepts"

Lyapunov Stability Theorem

Consider the CT homogeneous LTI system $\dot{x} = Ax$, $x \in \mathbb{R}^n$.

Lyapunov Theorem

The following 5 conditions are equivalent

- The CT LTI system is asymptotically stable
- The CT LTI system is exponentially stable
- $\lambda_i(A) < 0, \forall i$
- $\bullet \ \, \forall Q \succ 0, \exists ! P \in \mathbb{S}_n^+$ which solves the following Lyapunov equation

$$A^{\top}P + PA = -Q$$

⑤ $\exists P \succ 0$ for which $A^{\top}P + PA \prec 0$.

Lyapunov Stability of DT-LTV Systems

Let DT-LTV system be

$$x(t+1) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) + D(t)u(t).$$

Stability in the sense of Lyapunov

- Marginally Stable: If $\forall x(t_0) = x_0 \in \mathbb{R}^n$, the homogeneous state response $x(t) = \Phi(t, t_0)x_0$, $\forall t \geq 0$ is uniformly bounded.
- Asymptotically Stable: If in addition, $\forall x(t_0) = x_0 \in \mathbb{R}^n$, we have $x(t) \to 0$ as $t \to \infty$.
- Exponentially Stable: If in addition, $\forall x(t_0) = x_0 \in \mathbb{R}^n$, $\exists c > 0, \lambda < 1 \text{ such that } \|x(t)\| \le c\lambda^{(t-t_0)} \|x(t_0)\|$, $\forall t \ge 0$.
- Unstable: If it is not marginally stable.

Eigenvalue Conditions for Lyapunov Stability

Eigenvalue Conditions for DT-LTI Systems x(t+1) = Ax(t).

- Marginally Stable: Iff $\forall i, \text{Re}[\lambda_i] \leq 1$ and all Jordan blocks corresponding to $\text{Re}[\lambda_i] = 1$ are 1×1 .
- Asymptotically Stable: Iff $\forall i, \text{Re}[\lambda_i] < 1$.
- Exponentially Stable: Iff $\forall i, \text{Re}[\lambda_i] < 1$.
- Unstable: Iff $\exists i, \operatorname{Re}[\lambda_i] > 1$ or the Jordan blocks corresponding to $\operatorname{Re}[\lambda_i] = 1$ is larger than 1×1 .

[&]quot;A matrix is called **Schur Stable**" if $\forall i, \text{Re}[\lambda_i] < 1$.

Lyapunov Stability Theorem

Consider the DT homogeneous LTI system $x(t+1) = Ax(t), \quad x \in \mathbb{R}^n$.

Lyapunov Theorem

The following 5 conditions are equivalent

- The DT LTI system is asymptotically stable
- The DT LTI system is exponentially stable
- $\delta \lambda_i(A) < 1, \forall i$
- $\bullet \ \, \forall Q \succ 0, \exists ! P \in \mathbb{S}_n^+$ which solves the following Lyapunov equation

$$A^{\top}PA - P = -Q$$

⑤ $\exists P \succ 0$ for which $A^{\top}PA - P \prec 0$.

Stability of Locally Linearised Systems

- Consider the CT homogenous nonlinear system $\dot{x}=f(x),\,x\in\mathbb{R}^n$ with an equilibrium point $x^\dagger\in\mathbb{R}^n$ such that $f(x^\dagger)=0$.
- Locally linearising system around the x^{\dagger} with $\delta x = x x^{\dagger}$ results in

$$\dot{\delta}x = \underbrace{\frac{\partial f(x^{\dagger})}{\partial x}}_{:=A} \delta x. \tag{2}$$

 Original nonlinear system inherits some of the desirable stability properties of (2)

Theorem for Stability of Linearisation

Assume $f\in {\bf C}^2$. If (2) is exponentially stable, then $\exists B_{x^\dagger}\subset \mathbb{R}^n, c, \lambda>0$ such that

$$||x(t) - x^{\dagger}|| \le ce^{-\lambda(t - t_0)} ||x(t_0) - x^{\dagger}||, \quad \forall x(t_0) \in B_{x^{\dagger}}, \forall t \ge t_0.$$
 (3)

Stability of Locally Linearised Systems

Theorem for Instability of Linearisation

Assume $f\in {\bf C}^2.$ If (2) is unstable, then $\exists B_{x^\dagger}\subset \mathbb{R}^n, c, \lambda>0$ such that

$$x(t) \to \infty$$
, $\forall x(t_0) \in B_{x^{\dagger}}$, as $t \to \infty$.

When linearised system is only marginally stable, the stability of the original nonlinear system **cannot be concluded**. Consider for example,

$$\dot{x} = -x^3 \quad \text{and} \quad \dot{x} = x^3. \tag{4}$$

- Both the systems have the same local linearisation $\dot{\delta}x=0$ around the equilibrium point $x^{\dagger}=0$, which is only marginally stable.
- ullet However, the 1^{st} system is exponentially stable & latter is unstable.

Input-Output Stability

Assume $x_0=0$ & study the stability of linear systems under forcing input. Recall for a CT-LTV system, its forced response is given by

$$y_f(t) := \int_{t_0}^t C(t)\Phi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

BIBO Stability

A CT-LTV system is said to be **uniformly BIBO stable** if \forall bounded $u(t), \exists g \in \mathbb{R}_{\geq 0}$ such that its forced response $y_f(t)$ satisfies

$$\sup_{t \in \mathbb{R}_{>0}} \|y_f(t)\| \le g \sup_{t \in \mathbb{R}_{>0}} \|u(t)\|$$

- u(t) is uniformly bounded if $\exists c < \infty$ such that $\forall t \geq 0, ||u(t)|| \leq c$.
- ullet g corresponds to **system gain** & different norms lead to different g.

Time Domain BIBO Stability Condition

Equivalent Statements for CT LTV Systems

- The CT LTV system is uniformly BIBO stable
- ② All entries of feedthrough matrix $\forall i, j, D_{ij}$ is uniformly bounded and

$$\sup_{t \in \mathbb{R}_{>0}} \int_0^t |g_{ij}(t,\tau)| \, d\tau < \infty$$

where $g_{ij}(t,\tau)$ marks the entries of $C(t)\Phi(t,\tau)B(\tau)$

Equivalent Statements for CT LTI Systems

- The CT LTI system is uniformly BIBO stable
- $f vi,j,D_{ij}$ are uniformly bounded & $g_{ij}(
 ho)$ entries of $Ce^{A
 ho}B$

$$\int_0^\infty |g_{ij}(\rho)| \, d\rho < \infty, \quad \rho = t - \tau$$

BIBO vs Lyapunov Stability

Equivalent Statements - Frequency Domain BIBO Condition

- The CT(DT) LTI system is uniformly BIBO stable
- **②** All poles of transfer function $\mathcal{L}[Ce^{At}B](\mathcal{Z}[Ce^{At}B])$ of CT(DT) LTI system have strictly negative real part (magnitude < 1)

Remark: CT LTI system exponentially stable \Rightarrow_{\Leftarrow} it is BIBO stable.

$$\mathsf{Eg.,}\; \dot{x} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} x \implies e^{At} = \begin{bmatrix} e^t & 0 \\ 0 & e^{-2t} \end{bmatrix}$$

 \implies Lyapunov Unstable. But $Ce^{At}B=e^{-2t}\implies$ BIBO Stable

Similar Results DT-LTV:
$$y_f(t) := \sum_{\tau=0}^{t-1} C(t) \Phi(t,\tau+1) B(\tau) u(\tau) d\tau + D(t) u(t).$$

Let's dive deeper! - Uniform Stability (US)

• For a LTV system, $\dot{x}(t) = A(t)x(t)$, $x(t_0) = x_0$, we are interested in bounds on its solutions that hold regardless of choice of t_0 and x_0 .

• Study bounds on $\Phi_A(t,t_0)$. But computing $\Phi(t,t_0)$ is not always easy.

Theorem

The LTV system $\dot{x}(t) = A(t)x(t)$ is **uniformly stable** iff $\exists \gamma > 0$ such that $\|\Phi(t,t_0)\| \leq \gamma, \ \forall t \geq t_0.$

Uniformly Exponential Stability (UES)

• For a LTV system, $\dot{x}(t)=A(t)x(t),\,x(t_0)=x_0$, we impose that for all solutions, $\lim_{t\to\infty}x(t)\to 0$ exponentially.

• Suppose $\exists \alpha > 0$ such that $\forall t, \|A(t)\| \leq \alpha$. Then LTV system is **UES** iff $\exists \beta > 0$ s.t. $\int_{t_0}^t \|\Phi(t,t_0)\| \, d\sigma \leq \beta, \, \forall t \geq t_0$ (as $\|\Phi\| \leq 1 + \alpha\beta$).

Theorem

The LTV system $\dot{x}(t) = A(t)x(t)$ is **UES** iff $\exists \gamma, \lambda > 0$ such that

$$\|\Phi(t,t_0)\| \le \gamma e^{-\lambda(t-t_0)}, \forall t \ge t_0.$$

Sometimes, UES is too much to ask

Consider LTV system $\dot{x}(t) = \frac{-2t}{t^2+1}.$ Then

$$\Phi(t, t_0) = \frac{t_0^2 + 1}{t^2 + 1} \quad \Longrightarrow \quad \lim_{t \to \infty} \Phi(t, t_0) \to 0, \forall t_0.$$

But, LTV is system is not UES! Suppose, if $\exists \gamma, \lambda > 0$ such that

$$\begin{split} \|\Phi(t,\tau)\| &= \frac{\tau^2+1}{t^2+1} \leq \gamma e^{-\lambda(t-\tau)}, \, \forall t \geq t_0 \\ \implies &1 \leq \underbrace{(t^2+1)\gamma e^{-\lambda t}}_{:=RHS}, t \geq 0, \quad (\text{setting } \tau=0) \\ \implies &1 \leq \lim_{t \to \infty} \text{RHS} \to 0, \quad \Longrightarrow \quad (\text{contradiction!}) \end{split}$$

What was wrong with the above example? Solutions went to zero but not exponentially.

Uniformly Asymptotic Stability (UAS)

For a LTV system, $\dot{x}(t)=A(t)x(t),\,x(t_0)=x_0$, is called UAS if it is US and $\forall \delta>0, \exists T>0$ such that $\forall t_0,x_0$, the solution satisfies

$$||x(t)|| \le \delta ||x_0||, \quad t \ge t_0 + T.$$

FACT: T is independent of t_0 .

Theorem

The LTV system $\dot{x}(t) = A(t)x(t)$ is **UAS** iff it is **UES**.

Proof Sketch:

- UES \implies UAS: For a given $\delta>0$, pick T such that $e^{-\lambda T}\leq \frac{\delta}{\gamma}$
- UAS \Longrightarrow UES: Choose $\delta=\frac{1}{2}$ and x_0 such that $\|x_0\|=1$

Why Lyapunov Theory?

- ullet Computing State Transition Matrix $\Phi(t,t_0)$ is hard in general.
- Lyapunov's Idea: Total energy of an unforced dissipative system decreases as system evolves in time. Stability info revealed by energy-like scalar fns of the states V(x). (finding V(x) is hard!).
- Impose conditions for all solutions of $\dot{x}(t) = A(t)x(t), x(t_0) = x_0$ to monotonically decrease as $t \to \infty$. Let $V(x) := \|x(t)\|^2 = x^\top(t)x(t)$.

$$\implies \dot{V}(x) = \dot{x}^\top(t)x(t) + x^\top(t)\dot{x}(t) = x^\top(t)\left[A^\top(t) + A(t)\right]x(t)$$

Why Lyapunov Theory?

- If $(A^{\top}(t) + A(t)) \prec 0, \forall t$, then $||x(t)||^2$ decreases as $t \to \infty$.
- $\bullet \ \text{ If } \forall t, \exists \nu > 0 \text{ s.t. } \left(A^\top(t) + A(t)\right) \preceq -\nu I \text{, then } \lim_{t \to \infty} \left\|x(t)\right\|^2 \to 0.$
- $V(x) := \|x(t)\|_{Q(t)}^2 = x^\top(t)Q(t)x(t)$ is called quadratic Lyapunov function with $Q(t), \forall t$ being symmetric & continuously differentiable.

$$\implies \frac{d}{dt} \left[x^{\top}(t)Q(t)x(t) \right] = x^{\top}(t) \left[A^{\top}(t)Q(t) + Q(t)A(t) + \dot{Q}(t) \right] x(t)$$

 \bullet Look for bounds on $V(x), \dot{V}(x)$ for stability. For eg., if $\exists \eta > 0$, then

$$Q(t) \succeq \eta I \iff x^{\top}(t)Q(t)x(t) \succeq \eta \|x(t)\|^2$$

Study US, UES and Instability using above approach.

Uniform Stability

Uniform Stability - Sufficient Conditions for $\dot{x}(t) = A(t)x(t)$

The above LTV system is **uniformly stable** if $\exists Q(t) \in \mathbb{S}_n, \forall t$ and Q(t) continuously differentiable such that for a given finite constants $\eta, \rho > 0$,

$$\begin{split} \eta I \preceq Q(t) \preceq \rho I, \quad \text{and} \ A^\top(t)Q(t) + Q(t)A(t) + \dot{Q}(t) \preceq 0 \\ \Longrightarrow \ \|x(t)\| \leq \gamma \left\|x(t_0)\right\|, t \geq t_0, \quad \gamma := \sqrt{\frac{\rho}{\eta}} \text{ is independent of } t_0, x(t_0). \end{split}$$

Eg., Consider the LTV system $\dot{x}(t)=\begin{bmatrix}0&1\\-1&-a(t)\end{bmatrix}x(t), t\geq t_0$, where a(t) is a continuous fn $\forall t$. When Q(t)=I, we see that sufficient conditions are satisfied with $\eta=\rho=1$ and $\dot{V}(x)=\begin{bmatrix}0&0\\0&-2a(t)\end{bmatrix}$. If $a(t)\geq 0, \forall t$, then LTV system is uniformly stable.

Uniform Exponential Stability (UES)

UES - Sufficient Conditions for $\dot{x}(t) = A(t)x(t)$

The above LTV system is **UES** if $\exists Q(t) \in \mathbb{S}_n, \forall t \text{ and } Q(t)$ continuously differentiable such that for a given finite constants $\eta, \rho, \nu > 0$,

$$\begin{split} \eta I & \preceq Q(t) \preceq \rho I, \quad \text{and} \ A^\top(t)Q(t) + Q(t)A(t) + \dot{Q}(t) \preceq -\nu I \\ \Longrightarrow & \left\| x(t) \right\|^2 \leq \frac{\rho}{\eta} e^{-\frac{\nu}{\rho}(t-t_0)} \left\| x(t_0) \right\|^2, t \geq t_0, \quad \text{holds } \forall t_0, x(t_0). \end{split}$$

Though \exists large family of Q(t) matrices, selecting the best Q(t) so that a LTV system is UES is hard. Previous eg., with Q(t) = I is not UES.

Theorem

Suppose LTV system is UES and $\exists \alpha \geq 0$ s.t. $\|A(t)\| \leq \alpha, \forall t$. Then,

$$Q(t) = \int_t^\infty \Phi^\top(\sigma,t) \Phi(\sigma,t) d\sigma \quad \text{satisfies sufficient conditions for UES}.$$

Instability

- Quadratic Lyapunov fns can be used to develop instability criteria
- If $\exists t$, where sign-definiteness of Q(t) is violated, then LTV system would not be uniformly stable.

Instability - Sufficient Conditions for $\dot{x}(t)=A(t)x(t)$ Suppose that $\exists Q(t)\in\mathbb{S}_n, \forall t \text{ and } Q(t) \text{ continuously differentiable such that for a given finite constants } \rho,\nu>0,$

$$\|Q(t)\| \leq \rho, \quad \text{and } A^\top(t)Q(t) + Q(t)A(t) + \dot{Q}(t) \leq - \textcolor{red}{\nu I}.$$

Suppose $\exists t_a$ s.t. $Q(t_a) \not\succeq 0$, then, LTV system is **not uniformly stable**.

Time-Invariant System

UES(UAS) - Sufficient Conditions for $\dot{x}(t) = Ax(t)$

If the system matrix $A \in \mathbb{R}^{n \times n}$ of a LTI system $\dot{x}(t) = Ax(t)$ has negative real-part eigenvalues, then $\forall M \in \mathbb{S}_n, \exists !$ solution $Q \in \mathbb{S}_n$ for the **Lyapunov equation** $A^\top Q + QA = -M$ and Q is given by

$$Q = \int_0^\infty e^{A^\top t} M e^{At} dt, \quad \text{and if } M \succ 0 \implies Q \succ 0.$$

For LTI systems, under same setting involving weaker conditions on M, we can have unique positive definite solution for the Lyapunov Eqn.

Additional Stability Results for LTV Systems

- ullet We saw that $\lambda(A(t))$ are indecisive to infer stability of LTV systems.
- But they do give some info. about growth of solution of LTV systems

Upper & Lower bounds for growth of $\|x(t)\|$ of LTV systems For a LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$, denote the largest and smallest point-wise eigenvalues of $A(t)+A^{\top}(t)$ as $\overline{\lambda}(t),\underline{\lambda}(t)$ respectively. Then, $\forall t_0,x(t_0)$ we have

$$e^{\frac{1}{2}\int_{t_0}^t \underline{\lambda}(\sigma)d\sigma} \|x(t_0)\| \le \|x(t)\| \le e^{\frac{1}{2}\int_{t_0}^t \overline{\lambda}(\sigma)d\sigma} \|x(t_0)\|, \quad t \ge t_0.$$

Proof involves using **Rayleigh-Ritz inequality:** For any real $x \in \mathbb{R}^n$,

$$\underline{\lambda} x^\top x \leq x^\top Q x \leq \overline{\lambda} x^\top x, \quad \text{ where } \underline{\lambda}(\overline{\lambda}) = \min(\max)\{\lambda(Q)\}.$$

Conservative Stability of LTV Systems Via Eigenvalues

Uniform Stability (US)

The LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ is uniformly stable if $\exists \gamma\in\mathbb{R}$ such that the $\overline{\lambda}(A^\top(t)+A(t))$ satisfies

$$\int_{\tau}^{t} \overline{\lambda}(\sigma) d\sigma \leq \gamma, \quad \forall t, \tau \text{ and } t \geq \tau.$$

Uniform Exponential Stability (UES)

The LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ is uniformly exponentially stable if $\exists \gamma\in\mathbb{R}, \beta>0$ such that the $\overline{\lambda}(A^\top(t)+A(t))$ satisfies

$$\int_{\tau}^{t} \overline{\lambda}(\sigma) d\sigma \leq \gamma - \beta(t - \tau), \quad \forall t, \tau \text{ and } t \geq \tau.$$

Many LTV systems don't satisfy US/UES condition (very conservative!).

Stability of Perturbed LTV Systems

Study perturbed LTV systems $\dot{z}(t) = [A(t) + F(t)] z(t)$ that are close in some sense to $\dot{x}(t) = A(t)x(t)$ which has certain stability property.

Uniform Stability (US)

Suppose that a LTV system $\dot{x}(t) = A(t)x(t), t \ge t_0$ is uniformly stable.

Then, the perturbed LTV system $\dot{z}(t)=\left[A(t)+F(t)\right]z(t), t\geq t_0$ is also uniformly stable if $\exists \beta\in\mathbb{R}$ such that $\forall \tau$

$$\int_{\tau}^{\infty} \|F(\sigma)\| \, d\sigma \le \beta.$$

Uniform Exponential Stability (UES)

Suppose that LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ is UES and $\exists \alpha\geq 0$ such that $\|A(t)\|\leq \alpha.$ Then, $\exists \beta\in\mathbb{R}$ such that the perturbed LTV system $\dot{z}(t)=[A(t)+F(t)]\,z(t), t\geq t_0$ is UES if $\|F(t)\|\leq \beta.$

Stability of Slowly Varying LTV Systems

Definition: Slowly Varying LTV Systems

A LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ with A(t) continuously differentiable, $\exists \alpha,\mu\geq 0$ such that $\|A(t)\|\leq \alpha, \forall t$ and every point-wise eigenvalues of A(t) satisfying $\mathrm{Re}[\lambda(t)]\leq -\mu$ is referred as **slowly varying system**.

UES of Slowly Varying LTV Systems

Suppose that LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ is a slowly varying LTV system. Then, $\exists \beta\geq 0$ such that if the time derivative of A(t) satisfies $\left\|\dot{A}(t)\right\|\leq \beta, \forall t$, the slowly varying LTV system is UES.

Reference: C. Desoer, "Slowly varying system $\dot{x}=A(t)x$ ", IEEE TAC, 1969. https://ieeexplore.ieee.org/document/1099336

DT Changes for Stability Analysis

- Explanations smoothly carry over from CT to DT Lyapunov Stability.
- Use $\Phi(k, k_0)$ instead of $\Phi(t, t_0)$
- Use $V(k) = x^{\top}(k)Q(k)x(k)$ instead of $V(t) = x^{\top}(t)Q(t)x(t)$. Subsequently, looking for conditions guaranteeing $\dot{V}(t) < 0$ should change to V(k+1) V(k) < 0.
- Use the DT Lyapunov Equation $A^{\top}(k)Q(k+1)A(k) Q(k) \prec 0$ instead of its CT counterpart $QA^{\top} + AQ \prec 0$.
- Bounds of the form " $\leq e^{-\lambda t}, \lambda < 0$ " in the CT will change to " $\leq \lambda^k, \lambda < 1$ ".

BIBO vs Lyapunov Stability - DT LTV Systems

Impulse Response of DT LTV system: $g(k, k_0) = C(k)\Phi(k, k_0 + 1)B(k_0)$

UES & Uniform BIBO stability of DT LTV Systems

Suppose that a DT LTV system is

- ② Assume A(k), B(k), C(k) are bounded and both controller and observer Gramians (to be discussed in the next lecture) satisfy the following inequalities for some $\epsilon > 0$ and $l \in \mathbb{Z}$.

$$C(k-l,k) \succeq \epsilon I$$
, $C(k,k+l) \succeq \epsilon I$.

Then, DT-LTV System is UES ← uniform BIBO stability

Why eg., was Lyapunov Unstable in past slide? Controllability was lost!

Lyapunov Transformation

"Are stability properties of LTV system preserved under state variable changes? **NO** in general. But Lyapunov Transformations do!"

Definition: A $P(t) \in \mathbb{R}^{n \times n}$ that is continuously differentiable & $\exists P^{-1}(t) \forall t$ is called a **Lyapunov Transformation**, if \exists finite $\rho, \eta > 0$ s.t.

$$\|P(t)\| \leq \rho, \quad |\text{det}[P(t)]| \geq \eta, \quad \forall t.$$

Stability Preserved Under Lyapunov Transformation

Suppose that $P(t)\in\mathbb{R}^{n\times n}$ is a **Lyapunov Transformation**. Then the LTV system $\dot{x}(t)=A(t)x(t), t\geq t_0$ is US (UES) iff under the variable change $z(t)=P^{-1}(t)x(t)$, the transformed state equation

$$\dot{z}(t) = \left[P^{-1}(t)A(t)P(t) - P^{-1}(t)\dot{P}(t)\right]z(t) \quad \text{is US(UES)}.$$