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Linear Matrix Inequalities (LMIs)

LMI Definition
A linear matrix inequality (LMI) has the form

F (x) ∆= F0 +
m∑
i=1

xiFi � 0 (1)

x ∈ Rm is the variable

Fi = F>i ∈ Rn×n, i = 0, . . . ,m are given symmetric matrices

1 LMIs can represent a wide variety of convex constraints on x
2 LMIs help us to formulate matrices as optimization variables
3 Multiple LMIs can be expressed as a single LMI

F (1)(x) > 0, . . . , F (p)(x) > 0 ⇐⇒ diag
(
F (1)(x), . . . , F (p)(x)

)
> 0
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History of LMI

Many problems arising in systems & control theory can be reduced to a

few standard convex or quasiconvex optimization problems with LMIs

Lyapunov Theory (1890)
The differential equation ẋ(t) = Ax(t) is stable (i.e., all trajectories

converge to zero) iff ∃P = P> � 0 s.t.

A>P + PA ≺ 0

Important Timelines

1960s - Positive Real Lemma

1980s - Interior-point methods for LMIs
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Lyapunov Theory

Lyapunov Theory: Investigate about trajectories of ẋ = f(x) without

solving differential equation (need not compute Φ(t, t0)).

Lyapunov Theorem (Informal)
If ∃V : Rn → R that satisfies some conditions on V and V̇ , then

trajectories of system satisfy some property. We call such V as the

Lyapunov Function. V indicates a generalised energy fn. for systems.
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Lyapunov Stability of CT-LTV Systems

Consider the CT-LTV system ẋ = A(t)x+B(t)u, y(t) = C(t)x+D(t)u.

Stability in the sense of Lyapunov
Marginally Stable: If ∀x(t0) = x0 ∈ Rn, the homogeneous state

response x(t) = Φ(t, t0)x0, ∀t ≥ 0 is uniformly bounded.

Asymptotically Stable: If in addition, ∀x(t0) = x0 ∈ Rn, we have

x(t)→ 0 as t→∞.

Exponentially Stable: If in addition, ∀x(t0) = x0 ∈ Rn, ∃c, λ > 0

such that

‖x(t)‖ ≤ ce−λ(t−t0) ‖x(t0)‖ , ∀t ≥ 0

Unstable: If it is not marginally stable.
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Lyapunov Stability of CT-LTV Systems

Consider the CT-LTV system ẋ = A(t)x.

Stability in the sense of Lyapunov - Picture
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Eigenvalue Conditions for Lyapunov Stability

Eigenvalue Conditions for CT-LTI Systems ẋ = Ax.
Marginally Stable: Iff ∀i, Re[λi] ≤ 0 and all Jordan blocks

corresponding to Re[λi] = 0 are 1× 1.

Asymptotically Stable: Iff ∀i, Re[λi] < 0.

Exponentially Stable: Iff ∀i, Re[λi] < 0.

Unstable: Iff ∃i, Re[λi] > 0 or the Jordan blocks corresponding to

Re[λi] = 0 is larger than 1× 1.

Using sub-multiplicative norm property, we have for LTI systems

‖x(t)‖ =
∥∥∥eA(t−t0)x0

∥∥∥ ≤ ∥∥∥eA(t−t0)
∥∥∥ ‖x0‖ ≤ ce−λ(t−t0) ‖x0‖ , ∀t ∈ R

=⇒ “Asymptotic & exponential stability are equivalent concepts”
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Lyapunov Stability Theorem

Consider the CT homogeneous LTI system ẋ = Ax, x ∈ Rn.

Lyapunov Theorem
The following 5 conditions are equivalent

1 The CT LTI system is asymptotically stable

2 The CT LTI system is exponentially stable

3 λi(A) < 0,∀i

4 ∀Q � 0,∃!P ∈ S+
n which solves the following Lyapunov equation

A>P + PA = −Q

5 ∃P � 0 for which A>P + PA ≺ 0.
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Lyapunov Stability of DT-LTV Systems

Let DT-LTV system be

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t).

Stability in the sense of Lyapunov
Marginally Stable: If ∀x(t0) = x0 ∈ Rn, the homogeneous state

response x(t) = Φ(t, t0)x0, ∀t ≥ 0 is uniformly bounded.

Asymptotically Stable: If in addition, ∀x(t0) = x0 ∈ Rn, we have

x(t)→ 0 as t→∞.

Exponentially Stable: If in addition, ∀x(t0) = x0 ∈ Rn,

∃c > 0, λ < 1 such that ‖x(t)‖ ≤ cλ(t−t0) ‖x(t0)‖ , ∀t ≥ 0.

Unstable: If it is not marginally stable.
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Eigenvalue Conditions for Lyapunov Stability

Eigenvalue Conditions for DT-LTI Systems x(t + 1) = Ax(t).
Marginally Stable: Iff ∀i, Re[λi] ≤ 1 and all Jordan blocks

corresponding to Re[λi] = 1 are 1× 1.

Asymptotically Stable: Iff ∀i, Re[λi] < 1.

Exponentially Stable: Iff ∀i, Re[λi] < 1.

Unstable: Iff ∃i, Re[λi] > 1 or the Jordan blocks corresponding to

Re[λi] = 1 is larger than 1× 1.

“A matrix is called Schur Stable” if ∀i, Re[λi] < 1.
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Lyapunov Stability Theorem

Consider the DT homogeneous LTI system x(t+ 1) = Ax(t), x ∈ Rn.

Lyapunov Theorem
The following 5 conditions are equivalent

1 The DT LTI system is asymptotically stable

2 The DT LTI system is exponentially stable

3 λi(A) < 1,∀i

4 ∀Q � 0,∃!P ∈ S+
n which solves the following Lyapunov equation

A>PA− P = −Q

5 ∃P � 0 for which A>PA− P ≺ 0.
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Stability of Locally Linearised Systems

Consider the CT homogenous nonlinear system ẋ = f(x), x ∈ Rn

with an equilibrium point x† ∈ Rn such that f(x†) = 0.

Locally linearising system around the x† with δx = x− x† results in

δ̇x = ∂f(x†)
∂x︸ ︷︷ ︸
:=A

δx. (2)

Original nonlinear system inherits some of the desirable stability

properties of (2)

Theorem for Stability of Linearisation
Assume f ∈ C2. If (2) is exponentially stable, then ∃Bx† ⊂ Rn, c, λ > 0

such that

∥∥x(t)− x†
∥∥ ≤ ce−λ(t−t0) ∥∥x(t0)− x†

∥∥ , ∀x(t0) ∈ Bx† ,∀t ≥ t0. (3)
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Stability of Locally Linearised Systems

Theorem for Instability of Linearisation
Assume f ∈ C2. If (2) is unstable, then ∃Bx† ⊂ Rn, c, λ > 0 such that

x(t)→∞, ∀x(t0) ∈ Bx† , as t→∞.

When linearised system is only marginally stable, the stability of the

original nonlinear system cannot be concluded. Consider for example,

ẋ = −x3 and ẋ = x3. (4)

Both the systems have the same local linearisation δ̇x = 0 around the

equilibrium point x† = 0, which is only marginally stable.

However, the 1st system is exponentially stable & latter is unstable.
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Input-Output Stability

Assume x0 = 0 & study the stability of linear systems under forcing

input. Recall for a CT-LTV system, its forced response is given by

yf (t) :=
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

BIBO Stability
A CT-LTV system is said to be uniformly BIBO stable if ∀ bounded

u(t),∃g ∈ R≥0 such that its forced response yf (t) satisfies

sup
t∈R≥0

‖yf (t)‖ ≤ g sup
t∈R≥0

‖u(t)‖

u(t) is uniformly bounded if ∃c <∞ such that ∀t ≥ 0, ‖u(t)‖ ≤ c.

g corresponds to system gain & different norms lead to different g.
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Time Domain BIBO Stability Condition

Equivalent Statements for CT LTV Systems
1 The CT LTV system is uniformly BIBO stable

2 All entries of feedthrough matrix ∀i, j,Dij is uniformly bounded and

sup
t∈R≥0

∫ t

0
|gij(t, τ)| dτ <∞

where gij(t, τ) marks the entries of C(t)Φ(t, τ)B(τ)

Equivalent Statements for CT LTI Systems
1 The CT LTI system is uniformly BIBO stable

2 ∀i, j,Dij are uniformly bounded & gij(ρ) - entries of CeAρB∫ ∞
0
|gij(ρ)| dρ <∞, ρ = t− τ
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BIBO vs Lyapunov Stability

Equivalent Statements - Frequency Domain BIBO Condition
1 The CT(DT) LTI system is uniformly BIBO stable

2 All poles of transfer function L[CeAtB](Z[CeAtB]) of CT(DT) LTI

system have strictly negative real part (magnitude < 1)

Remark: CT LTI system exponentially stable ⇒
:

it is BIBO stable.

Eg., ẋ =

1 0

0 −2

x+

0

1

u, y =
[
1 1

]
x =⇒ eAt =

et 0

0 e−2t


=⇒ Lyapunov Unstable. But CeAtB = e−2t =⇒ BIBO Stable

Similar Results DT-LTV: yf (t) :=
t−1∑
τ=0

C(t)Φ(t, τ + 1)B(τ)u(τ)dτ +D(t)u(t).
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Let’s dive deeper! - Uniform Stability (US)

For a LTV system, ẋ(t) = A(t)x(t), x(t0) = x0, we are interested in

bounds on its solutions that hold regardless of choice of t0 and x0.

Study bounds on ΦA(t, t0). But computing Φ(t, t0) is not always easy.

Theorem
The LTV system ẋ(t) = A(t)x(t) is uniformly stable iff ∃γ > 0 such

that ‖Φ(t, t0)‖ ≤ γ, ∀t ≥ t0.
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Uniformly Exponential Stability (UES)

For a LTV system, ẋ(t) = A(t)x(t), x(t0) = x0, we impose that for

all solutions, lim
t→∞

x(t)→ 0 exponentially.

Suppose ∃α > 0 such that ∀t, ‖A(t)‖ ≤ α. Then LTV system is UES

iff ∃β > 0 s.t.
∫ t
t0
‖Φ(t, t0)‖ dσ ≤ β, ∀t ≥ t0 (as ‖Φ‖ ≤ 1 + αβ).

Theorem
The LTV system ẋ(t) = A(t)x(t) is UES iff ∃γ, λ > 0 such that

‖Φ(t, t0)‖ ≤ γe−λ(t−t0), ∀t ≥ t0.
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Sometimes, UES is too much to ask

Consider LTV system ẋ(t) = −2t
t2+1 . Then

Φ(t, t0) = t20 + 1
t2 + 1 =⇒ lim

t→∞
Φ(t, t0)→ 0,∀t0.

But, LTV is system is not UES! Suppose, if ∃γ, λ > 0 such that

‖Φ(t, τ)‖ = τ2 + 1
t2 + 1 ≤ γe

−λ(t−τ), ∀t ≥ t0

=⇒ 1 ≤ (t2 + 1)γe−λt︸ ︷︷ ︸
:=RHS

, t ≥ 0, (setting τ = 0)

=⇒ 1 ≤ lim
t→∞

RHS→ 0, =⇒ (contradiction!)

What was wrong with the above example ? Solutions went to zero but

not exponentially.
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Uniformly Asymptotic Stability (UAS)

For a LTV system, ẋ(t) = A(t)x(t), x(t0) = x0, is called UAS if it is US

and ∀δ > 0,∃T > 0 such that ∀t0, x0, the solution satisfies

‖x(t)‖ ≤ δ ‖x0‖ , t ≥ t0 + T.

FACT: T is independent of t0.

Theorem
The LTV system ẋ(t) = A(t)x(t) is UAS iff it is UES.

Proof Sketch:

UES =⇒ UAS: For a given δ > 0, pick T such that e−λT ≤ δ
γ

UAS =⇒ UES: Choose δ = 1
2 and x0 such that ‖x0‖ = 1

Internal Stability & Lyapunov Stability Theorems 3-20



Why Lyapunov Theory?

Computing State Transition Matrix Φ(t, t0) is hard in general.

Lyapunov’s Idea: Total energy of an unforced dissipative system

decreases as system evolves in time. Stability info revealed by

energy-like scalar fns of the states V (x). (finding V (x) is hard!).

Impose conditions for all solutions of ẋ(t) = A(t)x(t), x(t0) = x0 to

monotonically decrease as t→∞. Let V (x) := ‖x(t)‖2 = x>(t)x(t).

=⇒ V̇ (x) = ẋ>(t)x(t) + x>(t)ẋ(t) = x>(t)
[
A>(t) +A(t)

]
x(t)
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Why Lyapunov Theory?

If (A>(t) +A(t)) ≺ 0,∀t, then ‖x(t)‖2 decreases as t→∞.

If ∀t, ∃ν > 0 s.t. (A>(t) +A(t)) � −νI, then lim
t→∞

‖x(t)‖2 → 0.

V (x) := ‖x(t)‖2Q(t) = x>(t)Q(t)x(t) is called quadratic Lyapunov

function with Q(t),∀t being symmetric & continuously differentiable.

=⇒ d

dt

[
x>(t)Q(t)x(t)

]
= x>(t)

[
A>(t)Q(t) +Q(t)A(t) + Q̇(t)

]
x(t)

Look for bounds on V (x), V̇ (x) for stability. For eg., if ∃η > 0, then

Q(t) � ηI ⇐⇒ x>(t)Q(t)x(t) � η ‖x(t)‖2

Study US, UES and Instability using above approach.
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Uniform Stability

Uniform Stability - Sufficient Conditions for ẋ(t) = A(t)x(t)
The above LTV system is uniformly stable if ∃Q(t) ∈ Sn,∀t and Q(t)

continuously differentiable such that for a given finite constants η, ρ > 0,

ηI � Q(t) � ρI, and A>(t)Q(t) +Q(t)A(t) + Q̇(t) � 0

=⇒ ‖x(t)‖ ≤ γ ‖x(t0)‖ , t ≥ t0, γ :=
√
ρ

η
is independent of t0, x(t0).

Eg., Consider the LTV system ẋ(t) =

 0 1

−1 −a(t)

x(t), t ≥ t0, where

a(t) is a continuous fn ∀t. When Q(t) = I, we see that sufficient

conditions are satisfied with η = ρ = 1 and V̇ (x) =

0 0

0 −2a(t)

. If
a(t) ≥ 0,∀t, then LTV system is uniformly stable.
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Uniform Exponential Stability (UES)

UES - Sufficient Conditions for ẋ(t) = A(t)x(t)
The above LTV system is UES if ∃Q(t) ∈ Sn,∀t and Q(t) continuously

differentiable such that for a given finite constants η, ρ, ν > 0,

ηI � Q(t) � ρI, and A>(t)Q(t) +Q(t)A(t) + Q̇(t) � −νI

=⇒ ‖x(t)‖2 ≤ ρ

η
e−

ν
ρ (t−t0) ‖x(t0)‖2 , t ≥ t0, holds ∀t0, x(t0).

Though ∃ large family of Q(t) matrices, selecting the best Q(t) so that

a LTV system is UES is hard. Previous eg., with Q(t) = I is not UES.

Theorem
Suppose LTV system is UES and ∃α ≥ 0 s.t. ‖A(t)‖ ≤ α,∀t. Then,

Q(t) =
∫ ∞
t

Φ>(σ, t)Φ(σ, t)dσ satisfies sufficient conditions for UES.
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Instability

Quadratic Lyapunov fns can be used to develop instability criteria

If ∃t, where sign-definiteness of Q(t) is violated, then LTV system

would not be uniformly stable.

Instability - Sufficient Conditions for ẋ(t) = A(t)x(t)
Suppose that ∃Q(t) ∈ Sn,∀t and Q(t) continuously differentiable such

that for a given finite constants ρ, ν > 0,

‖Q(t)‖ ≤ ρ, and A>(t)Q(t) +Q(t)A(t) + Q̇(t) � −νI.

Suppose ∃ta s.t. Q(ta) � 0, then, LTV system is not uniformly stable.
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Time-Invariant System

UES(UAS) - Sufficient Conditions for ẋ(t) = Ax(t)
If the system matrix A ∈ Rn×n of a LTI system ẋ(t) = Ax(t) has

negative real-part eigenvalues, then ∀M ∈ Sn,∃! solution Q ∈ Sn for the

Lyapunov equation A>Q+QA = −M and Q is given by

Q =
∫ ∞

0
eA
>tMeAtdt, and if M � 0 =⇒ Q � 0.

For LTI systems, under same setting involving weaker conditions on M ,

we can have unique positive definite solution for the Lyapunov Eqn.
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Additional Stability Results for LTV Systems

We saw that λ(A(t)) are indecisive to infer stability of LTV systems.

But they do give some info. about growth of solution of LTV systems

Upper & Lower bounds for growth of ‖x(t)‖ of LTV systems
For a LTV system ẋ(t) = A(t)x(t), t ≥ t0, denote the largest and

smallest point-wise eigenvalues of A(t) +A>(t) as λ(t), λ(t)

respectively. Then, ∀t0, x(t0) we have

e
1
2

∫ t
t0
λ(σ)dσ ‖x(t0)‖ ≤ ‖x(t)‖ ≤ e

1
2

∫ t
t0
λ(σ)dσ ‖x(t0)‖ , t ≥ t0.

Proof involves using Rayleigh-Ritz inequality: For any real x ∈ Rn,

λx>x ≤ x>Qx ≤ λx>x, where λ(λ) = min(max){λ(Q)}.
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Conservative Stability of LTV Systems Via Eigenvalues

Uniform Stability (US)
The LTV system ẋ(t) = A(t)x(t), t ≥ t0 is uniformly stable if ∃γ ∈ R

such that the λ(A>(t) +A(t)) satisfies∫ t

τ

λ(σ)dσ ≤ γ, ∀t, τ and t ≥ τ.

Uniform Exponential Stability (UES)
The LTV system ẋ(t) = A(t)x(t), t ≥ t0 is uniformly exponentially

stable if ∃γ ∈ R, β > 0 such that the λ(A>(t) +A(t)) satisfies∫ t

τ

λ(σ)dσ ≤ γ − β(t− τ), ∀t, τ and t ≥ τ.

Many LTV systems don’t satisfy US/UES condition (very conservative!).
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Stability of Perturbed LTV Systems

Study perturbed LTV systems ż(t) = [A(t) + F (t)] z(t) that are close in

some sense to ẋ(t) = A(t)x(t) which has certain stability property.

Uniform Stability (US)
Suppose that a LTV system ẋ(t) = A(t)x(t), t ≥ t0 is uniformly stable.

Then, the perturbed LTV system ż(t) = [A(t) + F (t)] z(t), t ≥ t0 is also

uniformly stable if ∃β ∈ R such that ∀τ∫ ∞
τ

‖F (σ)‖ dσ ≤ β.

Uniform Exponential Stability (UES)
Suppose that LTV system ẋ(t) = A(t)x(t), t ≥ t0 is UES and ∃α ≥ 0

such that ‖A(t)‖ ≤ α. Then, ∃β ∈ R such that the perturbed LTV

system ż(t) = [A(t) + F (t)] z(t), t ≥ t0 is UES if ‖F (t)‖ ≤ β.
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Stability of Slowly Varying LTV Systems

Definition: Slowly Varying LTV Systems
A LTV system ẋ(t) = A(t)x(t), t ≥ t0 with A(t) continuously

differentiable, ∃α, µ ≥ 0 such that ‖A(t)‖ ≤ α,∀t and every point-wise

eigenvalues of A(t) satisfying Re[λ(t)] ≤ −µ is referred as slowly

varying system.

UES of Slowly Varying LTV Systems
Suppose that LTV system ẋ(t) = A(t)x(t), t ≥ t0 is a slowly varying

LTV system. Then, ∃β ≥ 0 such that if the time derivative of A(t)

satisfies
∥∥Ȧ(t)

∥∥ ≤ β,∀t, the slowly varying LTV system is UES.

Reference: C. Desoer, “Slowly varying system ẋ = A(t)x”, IEEE TAC,

1969. https://ieeexplore.ieee.org/document/1099336
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DT Changes for Stability Analysis

Explanations smoothly carry over from CT to DT Lyapunov Stability.

Use Φ(k, k0) instead of Φ(t, t0)

Use V (k) = x>(k)Q(k)x(k) instead of V (t) = x>(t)Q(t)x(t).

Subsequently, looking for conditions guaranteeing V̇ (t) < 0 should

change to V (k + 1)− V (k) < 0.

Use the DT Lyapunov Equation A>(k)Q(k + 1)A(k)−Q(k) ≺ 0

instead of its CT counterpart QA> +AQ ≺ 0.

Bounds of the form “≤ e−λt, λ < 0” in the CT will change to

“≤ λk, λ < 1”.
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BIBO vs Lyapunov Stability - DT LTV Systems

Impulse Response of DT LTV system: g(k, k0) = C(k)Φ(k, k0 + 1)B(k0)

UES & Uniform BIBO stability of DT LTV Systems
Suppose that a DT LTV system is

1 Uniform BIBO stable ⇐⇒ ∃ρ s.t.
∑k−1
i=k0
‖g(k, i)‖ < ρ, ∀k ≥ k0 + 1.

2 Assume A(k), B(k), C(k) are bounded and both controller and

observer Gramians (to be discussed in the next lecture) satisfy the

following inequalities for some ε > 0 and l ∈ Z.

C(k − l, k) � εI, O(k, k + l) � εI.

Then, DT-LTV System is UES ⇐⇒ uniform BIBO stability

Why eg., was Lyapunov Unstable in past slide? Controllability was lost!
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Lyapunov Transformation
“Are stability properties of LTV system preserved under state vari-

able changes ? NO in general. But Lyapunov Transformations do!”

Definition: A P (t) ∈ Rn×n that is continuously differentiable &

∃P−1(t)∀t is called a Lyapunov Transformation, if ∃ finite ρ, η > 0 s.t.

‖P (t)‖ ≤ ρ, |det[P (t)]| ≥ η, ∀t.

Stability Preserved Under Lyapunov Transformation
Suppose that P (t) ∈ Rn×n is a Lyapunov Transformation. Then the

LTV system ẋ(t) = A(t)x(t), t ≥ t0 is US (UES) iff under the variable

change z(t) = P−1(t)x(t), the transformed state equation

ż(t) =
[
P−1(t)A(t)P (t)− P−1(t)Ṗ (t)

]
z(t) is US(UES).
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