2. State Space Representations \& Linearization

- Autonomous Dynamical Systems
- State Space Representation
- Linearization of Nonlinear Systems
(1) Around Equilibrium Point
(2) Around Trajectory
- Impulse Response, Transfer Functions \& Realisation Theory
- Solutions to LTV, LTI \& LTP Systems

Representation of Dynamical Systems

System Representation

- Representation refers to a mathematical model of a system.
- System representation can be continuous, discrete or hybrid

The continuous model of a system starting from $x(0)=x_{0}$ with $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{p}$ is given by

$$
\dot{x}=f(x, u, t), \quad y=g(x, u, t)
$$

The discrete model of a system with $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times\{n T, n \in \mathbb{Z}\} \rightarrow \mathbb{R}^{n}$, $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \times\{n T, n \in \mathbb{Z}\} \rightarrow \mathbb{R}^{p}$, time step $T>0$ and $x(0)=x_{0}$ is

$$
x_{k+1}=f\left(x_{k}, u_{k}, k\right), \quad y_{k}=g\left(x_{k}, u_{k}, k\right)
$$

Hybrid Model of a system is given by $\dot{x}=f(x, u, t), \quad y_{k}=g\left(x_{k}, u_{k}, k\right)$

Autonomous Dynamical Systems

Autonomous System Representation

Systems do not have a forcing i/p " u ", but evolve autonomously. That is, $\dot{x}(t)=f(x(t))$.

Autonomous LDS is given by $\dot{x}(t)=A x(t)$.

Invariant Set \mathcal{S} : Once trajectory enters \mathcal{S}, it stays in \mathcal{S} forever $\mathcal{S} \subset \mathbb{R}^{n}$ is invariant under $\dot{x}=A x$ if $\forall x(t) \in \mathcal{S} \Longrightarrow x(\tau) \in \mathcal{S}, \forall \tau \geq t$.

Markov Chain - Autonomous System Example

s_{1} means system is okay
s_{2} means system is in failure
s_{3} means system is under maintenance

$$
s(t+1)=\left[\begin{array}{ccc}
0.9 & 0.7 & 1 \\
0.1 & 0.1 & 0 \\
0 & 0.2 & 0
\end{array}\right] s(t)
$$

Linear Dynamical Systems (LDS)

Continuous Time (CT) LDS

Continuous-time linear dynamical system (CT LDS) has the form

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t) \\
y(t) & =C(t) x(t)+D(t) u(t)
\end{aligned}
$$

- $t \in \mathbb{R}$ denotes time
- $x(t) \in \mathbb{R}^{n}$ denotes the state, \mathbb{R}^{n} denotes the state space (\mathcal{X})
- $u(t) \in \mathbb{R}^{m}$ is the control input, \mathbb{R}^{m} denotes the input space (\mathcal{U})
- $y(t) \in \mathbb{R}^{p}$ is the output, \mathbb{R}^{p} denotes the output space (\mathcal{Y})
- $A(t) \in \mathbb{R}^{n \times n}, B(t) \in \mathbb{R}^{n \times m}$ are dynamics matrix, input matrix
- $C(t) \in \mathbb{R}^{p \times n}, D(t) \in \mathbb{R}^{p \times m}$ are sensor matrix, feedthrough matrix

Time Invariant Dynamical Systems

The shift operator $\mathcal{T}_{\tau}: \mathcal{U} \rightarrow \mathcal{U}$ is defined as $\left(\mathcal{T}_{\tau} u\right)(t)=u(t-\tau)$

Time Invariant Dynamical System

A dynamical system is said to be time-invariant if
(1) \mathcal{U} is closed under $\mathcal{T}_{\tau}, \forall \tau$
(2) $\forall t, \tau, \forall x_{0}, \forall u \in \mathcal{U}, y=g(x, u, t)=g\left(f\left(x_{0}, \mathcal{T}_{\tau} u, t+\tau\right), \mathcal{T}_{\tau} u, t+\tau\right)$

Linear Time-Invariant (LTI) system can be represented as

$$
\dot{x}=A x+B u, \quad y=C x+D u
$$

Interpretation

- $A x$: Drift term of \dot{x}
- Bu: Input term of \dot{x}

Time Varying Dynamical Systems

Time Varying Dynamical System

A dynamical system is said to be time-varying if the system dynamics and the output response are parametrised by time.

$$
\forall x_{0}, \forall u \in \mathcal{U}, \exists t, \tau, \text { s.t } y=g(x, u, t) \neq g\left(f\left(x_{0}, \mathcal{T}_{\tau} u, t+\tau\right), \mathcal{T}_{\tau} u, t+\tau\right)
$$

Linear Time-Varying (LTV) system can be represented as

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), \quad y(t)=C(t) x(t)+D(t) u(t)
$$

Remarks

- $A(t), B(t), C(t), D(t)$ matrices change over time
- \{LTV Systems $\}$ つ \{LTI Systems $\}$

Examples of LTI Systems

Series RLC Circuit - LTI System

States: Current via inductor $i(t)$, voltage across capacitor $v_{c}(t)$

Kirchoff Law: $V(t)=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+v_{c}(t)$, where $v_{c}(t)=\frac{1}{C} \int i(t) d t$

$$
\left[\begin{array}{c}
\frac{d i(t)}{d t} \\
\frac{d v_{c}(t)}{d t}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-R}{L} & \frac{-1}{L} \\
\frac{1}{C} & 0
\end{array}\right] \underbrace{\left[\begin{array}{c}
i(t) \\
v_{c}(t)
\end{array}\right]}_{x}+\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] V(t), \quad Y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
i(t) \\
v_{c}(t)
\end{array}\right]
$$

Linearisation Near Equilibrium Point

Consider the nonlinear TI differential equation $\dot{x}=f(x, u), y=g(x, u)$.

Equilibrium Point

A pair $\left(x^{*}, u^{*}\right)$ is called an equilibrium point of the system $\dot{x}=f(x, u)$ if $f\left(x^{*}, u^{*}\right)=0$. Once at equilibrium, system stops evolving.

Let $u=u^{*}+\delta u, x=x^{*}+\delta x$. Then $y=y^{*}+\delta y$. So, $\delta x, \delta y$ evolve as

$$
\begin{aligned}
& \delta \dot{x}=\dot{x}=f(x, u)=f\left(x^{*}+\delta x, u^{*}+\delta u\right) \\
& \delta y=y-y^{*}=g(x, u)-g\left(x^{*}, u^{*}\right)=g\left(x^{*}+\delta x, u^{*}+\delta u\right)-g\left(x^{*}, u^{*}\right)
\end{aligned}
$$

Use Taylor expansions of $f(\cdot), g(\cdot)$ and truncate after 1st order terms

Pitfalls of Linearisation Near Equilibrium Point

Remarks:

- Linearisation is valid as long as $\delta x, \delta u$ remain small
- Linearised system not always gives a good idea of the system behaviour near x^{*}. For e.g.,
(1) $\dot{x}=-x^{3}$ near $x^{*}=0$ with $x(0)>0 \Longrightarrow$ solution is $x(t)=\left(x(0)^{-2}+2 t\right)^{-\frac{1}{2}}$ and linearised system is $\delta \dot{x}=0$
(2) $\dot{x}=x^{3}$ near $x^{*}=0$ with $x(0)>0 \Longrightarrow$ solution is $x(t)=\left(x(0)^{-2}-2 t\right)^{-\frac{1}{2}}$ and linearised system is $\delta \dot{x}=0$ but has finite escape time at $t=x(0)^{-2} / 2$
- To be precise, the above procedure is referred as local linearisation of system around an equilibrium point.
- Similar procedure exists for discrete time models

Linearisation of Pendulum

Nonlinear differential equation governing pendulum dynamics is

$$
m l^{2} \ddot{\theta}=-m g l \sin (\theta)
$$

If states are $x=\left[\begin{array}{c}\theta \\ \dot{\theta}\end{array}\right] \Longrightarrow \dot{x}=\left[\begin{array}{c}x_{2} \\ -\frac{g}{l} \sin \left(x_{1}\right)\end{array}\right]$
Consider the pendulum down $(x=0)$ equilibrium point. Then the linearised system near $x^{*}=0$ is $\delta \dot{x}=\left[\begin{array}{cc}0 & 1 \\ -\frac{g}{l} & 0\end{array}\right] \delta x$

Linearisation Along Trajectory

Perturb around an arbitrary solution of system instead of an eqlb. pt.
Arbitrary Solutions of $\dot{x}=f(x, u), y=g(x, u)$
Suppose $x_{t r}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}, u_{t r}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}, y_{t r}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{p}$ results in $\dot{x}_{t r}(t)=f\left(x_{t r}(t), u_{t r}(t), t\right), \quad y_{t r}(t)=g\left(x_{t r}(t), u_{t r}(t), t\right)$.
$u(t)=u_{t r}(t)+\delta u(t), x(t)=x_{t r}(t)+\delta x(t) \Longrightarrow y(t)=y_{t r}(t)+\delta y(t)$.
Use Taylor expansions of $f(\cdot), g(\cdot)$ and truncate after 1st order terms

$$
\begin{aligned}
& \delta \dot{x}(t) \approx \underbrace{\frac{\partial f\left(x_{t r}(t), u_{t r}(t)\right)}{\partial x}}_{:=A(t)} \delta x(t)+\underbrace{\frac{\partial f\left(x_{t r}(t), u_{t r}(t)\right)}{\partial u}}_{:=B(t)} \delta u(t), \\
& \delta y(t) \approx \underbrace{\frac{\partial g\left(x_{t r}(t), u_{t r}(t)\right)}{\partial x}}_{:=C(t)} \delta x(t)+\underbrace{\frac{\partial g\left(x_{t r}(t), u_{t r}(t)\right)}{\partial u}}_{:=D(t)} \delta u(t)
\end{aligned}
$$

Remark: Linearisation along trajectory leads to LTV systems

Pendulum Example - Linearisation Along Trajectory

Dynamics: $m l^{2} \ddot{\theta}=m g l \sin (\theta)-b \dot{\theta}+T$. Linearise around constant angular velocity trajectory $\dot{\theta}=\omega$, with $\theta(0)=0$. Then

$$
\left\{\begin{array} { l }
{ x _ { 1 } = \theta } \\
{ x _ { 2 } = \dot { \theta } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=T+g \sin \left(x_{1}\right)-x_{2}
\end{array}\right.\right.
$$

Constant Angular Velocity Trajectory: $\left\{\begin{array}{l}x_{1}^{s o l}(t)=\omega t+x_{1}(0)=\omega t \\ x_{2}^{s o l}(t)=\omega\end{array}\right.$

Pendulum Example - Linearisation Along Trajectory

$\left(x_{1}^{\text {sol }}(t), x_{2}^{\text {sol }}(t)\right)$ should satisfy pendulum equation of motion

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{1}^{\text {sol }}=x_{2}^{\text {sol }} \\
\dot{x}_{2}^{\text {sol }}(t)=T^{s o l}+g \sin \left(x_{1}^{\text {sol }}\right)-x_{2}^{\text {sol }}
\end{array} \Longrightarrow T^{\text {sol }}=-g \sin (\omega t)+\omega\right. \\
& A(t)=\frac{\partial f}{\partial x}\left(x_{1}^{\text {sol }}(t), x_{2}^{\text {sol }}(t)\right)=\left[\begin{array}{cc}
0 & 1 \\
g \cos (\omega t) & -1
\end{array}\right], B(t)=\frac{\partial f}{\partial u}(\cdot, \cdot)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Impulse Response

Impulse signal is a pulse of zero length $(\Delta \rightarrow 0)$ but unit area.

CT Impulse Response with m inputs \& p outputs
CT Impulse Response is a matrix valued signal $G(t, \tau) \in \mathbb{R}^{p \times m}$ such that $\forall u$, a corresponding output is given by

$$
\begin{aligned}
y(t) & =\int_{0}^{\infty} G(t, \tau) u(\tau) d \tau:=(G \star u)(t), \quad \forall t \geq 0 \\
\Longrightarrow y(s) & =\mathcal{L}\{y(t)\}=\mathcal{L}\{(G \star u)(t)\}=G(s) u(s), \quad s \in \mathbb{C}
\end{aligned}
$$

Impulse Response of a CT LTI System

Consider the continuous time LTI System

$$
\begin{aligned}
\dot{x} & =A x+B u \Longrightarrow \mathcal{L}\{\dot{x}\}=\mathcal{L}\{A x+B u\} \\
\Longrightarrow x(s) & =(s I-A)^{-1} x(0)+(s I-A)^{-1} B u(s) \\
y & =C x+D u \Longrightarrow \mathcal{L}\{y\}=\mathcal{L}\{C x+D u\} \\
\Longrightarrow y(s) & =\underbrace{C(s I-A)^{-1}}_{:=\Psi(s)} x(0)+\underbrace{\left(C(s I-A)^{-1} B+D\right)}_{:=G(s)} u(s)
\end{aligned}
$$

Taking inverse Laplace transform, we get

$$
y(t)=\Psi(t) x(0)+(G \star u)(t)=\Psi(t) x(0)+\int_{0}^{t} G(t-\tau) u(\tau) d \tau
$$

$G(s)$: Transfer function
$G(t)=\mathcal{L}^{-1}\{G(s)\}$: Impulse response (Response with $u(s)=1$)

Impulse Response of a DT LTI System

Consider the discrete time LTI System

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k} \Longrightarrow \mathcal{Z}\left\{x_{k+1}\right\}=\mathcal{Z}\left\{A x_{k}+B u_{k}\right\} \\
\Longrightarrow x(z) & =(z I-A)^{-1} x_{0}+(z I-A)^{-1} B u(z) \\
y_{k} & =C x_{k}+D u_{k} \Longrightarrow \mathcal{Z}\left\{y_{k}\right\}=\mathcal{Z}\left\{C x_{k}+D u_{k}\right\} \\
\Longrightarrow y(z) & =\underbrace{C(z I-A)^{-1}}_{:=\Psi(z)} x_{0}+\underbrace{\left(C(z I-A)^{-1} B+D\right)}_{:=G(z)} u(z)
\end{aligned}
$$

$G(z)$: Transfer function
$G(t)=\mathcal{Z}^{-1}\{G(z)\}:$ Impulse response (Response with $u(z)=1$)

Realization Theory

Realization of LTI System

Given a transfer function $G(s)$, the CT state space system

$$
\dot{x}=A x+B u, \quad y=C x+D u
$$

is a realization of $G(s)$ if $G(s)=C(s I-A)^{-1} B+D$.

For discrete time systems, replace s by z.

Zero-State Equivalence

- Many systems may realise the same transfer function
- Two state-space systems are said to be zero-state equivalent if they realise the same transfer function
- They exhibit the same forced response to every input

Equivalent State-Space Systems

Algebraic Equivalence
Two CT or DT LTI systems $(A, B, C, D),(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ are called algebraically equivalent if $\exists T, \operatorname{det}(T) \neq 0$ such that

$$
\bar{A}=T A T^{-1}, \bar{B}=T B, \bar{C}=C T^{-1}, \bar{D}=D
$$

The map $\bar{x}=T x$ is called similarity or equivalence transformation.

Properties:

- With every input signal u, both systems associate the same set of outputs y (However, not the same output for same initial conditions)
- The systems are zero-state equivalent
- Algebraic Equivalence $\underset{\nLeftarrow}{\Rightarrow}$ Zero-state Equivalence

Solutions to Homogenous LTV Systems

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, consider the homogenous CT LTV system

$$
\dot{x}(t)=A(t) x(t), \quad t \geq 0
$$

Then, the unique solution to the above system is given by

$$
\begin{aligned}
x(t) & =\Phi\left(t, t_{0}\right) x_{0}, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, t \geq 0 \\
\Phi(t, s) & =I+\int_{s}^{t} A\left(\sigma_{1}\right) d \sigma_{1}+\int_{s}^{t} A\left(\sigma_{1}\right) \int_{s}^{\sigma_{1}} A\left(\sigma_{2}\right) d \sigma_{1} d \sigma_{2}+\ldots
\end{aligned}
$$

- $\Phi_{A}\left(t, t_{0}\right) \in \mathbb{R}^{n \times n}$ - state transition matrix (subscript A often dropped for brevity)
- The Peano-Baker series defining $\Phi(t, s)$ converges for arbitrary t, s

$$
A(t)=A \Longrightarrow \Phi(t, s)=I+(t-s) A+\frac{(t-s)^{2}}{2} A^{2}+\cdots=e^{A(t-s)}
$$

Solutions to Non-homogenous LTV Systems

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, consider the non-homogenous CT LTV system

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), \quad y(t)=C(t) x(t)+D(t) u(t), \quad t \geq 0 .
$$

Then, the unique solution to the above system $\forall t \geq 0$ is given by

$$
\begin{aligned}
& x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau \\
& y(t)=\underbrace{C(t) \Phi\left(t, t_{0}\right) x_{0}}_{:=y_{h}(t)}+\underbrace{\int_{t_{0}}^{t} C(t) \Phi(t, \tau) B(\tau) u(\tau) d \tau+D(t) u(t)}_{:=y_{f}(t)}
\end{aligned}
$$

$y_{h}(t)$ Homogeneous (zero-input) response
$y_{f}(t)$ Forced (zero-initial condition) response

Solutions to Discrete LTV Systems

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, the unique solution to the homogenous DT
LTV system $\forall t \in \mathbb{N}, t \geq t_{0}$ is given by

$$
\begin{aligned}
x(t+1) & =A(t) x(t) \quad \Longrightarrow x(t)=\Phi\left(t, t_{0}\right) x_{0}, \\
\Phi\left(t, t_{0}\right) & = \begin{cases}I & t=t_{0} \\
A(t-1) A(t-2) \ldots A\left(t_{0}+1\right) A\left(t_{0}\right) & t>t_{0}\end{cases}
\end{aligned}
$$

The unique solution to the non-homogenous DT LTV system is

$$
\begin{aligned}
x(t+1) & =A(t) x(t)+B(t) u(t) \quad y(t)=C(t) x(t)+D(t) u(t), \\
\Longrightarrow x(t) & =\Phi\left(t, t_{0}\right) x_{0}+\sum_{\tau=t_{0}}^{t-1} \Phi(t, \tau+1) B(\tau) u(\tau) d \tau \\
y(t) & =C(t) \Phi\left(t, t_{0}\right) x_{0}+\sum_{\tau=t_{0}}^{t-1} C(t) \Phi(t, \tau+1) B(\tau) u(\tau) d \tau+D(t) u(t)
\end{aligned}
$$

Matrix Differential Equation

Given $A(t) \in \mathbb{R}^{n \times n}$, let matrix differential equation in $X(t) \in \mathbb{R}^{n \times n}$ be

$$
\frac{d}{d t} X(t)=A(t) X(t), \quad X\left(t_{0}\right)=X_{0}
$$

The unique continuously differentiable solution is

$$
X(t)=\Phi_{A}\left(t, t_{0}\right) X_{0} .
$$

If $X\left(t_{0}\right)=X_{0}=I$, then $X(t)=\Phi_{A}\left(t, t_{0}\right)$.

Exercise

Show that solution of the following adjoint system (more on this later)

$$
\frac{d}{d t} Z(t)=-A^{\top}(t) Z(t), \quad Z\left(t_{0}\right)=Z_{0}
$$

is $Z(t)=\Phi_{A}^{\top}\left(t_{0}, t\right) Z_{0}$.

Properties of State Transition Matrix

$\Phi\left(t, t_{0}\right)$ for CT LTV Systems

- $\frac{d}{d t} \Phi\left(t, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right), \quad \frac{d}{d t_{0}} \Phi\left(t, t_{0}\right)=-\Phi\left(t, t_{0}\right) A\left(t_{0}\right) \quad t \geq t_{0}$
- $\Phi(t, t)=I$
- For $t>s>\tau, \Phi(t, s) \Phi(s, \tau)=\Phi(t, \tau)$ "Semigroup Property"
- $\Phi(t, s)^{-1}=\Phi(s, t) \Longrightarrow \Phi(t, s)$ is non-singular
$\Phi\left(t, t_{0}\right)$ for DT LTV Systems
- $\Phi\left(t+1, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right), \quad \Phi\left(t, t_{0}-1\right)=\Phi\left(t, t_{0}\right) A\left(t_{0}-1\right) \quad t>t_{0}$
- $\Phi\left(t_{0}, t_{0}\right)=I$
- For $t \geq s \geq \tau, \Phi(t, s) \Phi(s, \tau)=\Phi(t, \tau)$ "Semigroup Property"
- $\Phi(t, s)$ may be singular!

Solutions to CT LTI Systems - Matrix Exponential

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, consider the homogenous CT LTI system

$$
\dot{x}=A x, \quad t \geq 0 .
$$

Then, the unique solution to the above system is given by

$$
\begin{aligned}
x(t) & =\Phi\left(t, t_{0}\right) x_{0}, \quad t \geq 0 \\
\Phi\left(t, t_{0}\right) & =\sum_{k=0}^{\infty} \frac{\left(t-t_{0}\right)^{k}}{k!} A^{k}=e^{A\left(t-t_{0}\right)} \\
\Longrightarrow x(t) & =e^{A\left(t-t_{0}\right)} x_{0}, \quad t \geq 0
\end{aligned}
$$

Common Mistake:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \nRightarrow e^{A t}=\left[\begin{array}{ll}
e^{1 t} & e^{2 t} \\
e^{3 t} & e^{4 t}
\end{array}\right]
$$

Solutions to CT LTI Systems - Matrix Exponential

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, consider the non-homogenous CT LTI system

$$
\dot{x}=A x+B u, \quad y=C x+D u, \quad t \geq 0 .
$$

Then, the unique solution $\forall t \geq 0$ to the above system is given by

$$
\begin{aligned}
& x(t)=e^{A\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{A(t-\tau)} B(\tau) u(\tau) d \tau \\
& y(t)=\underbrace{C(t) e^{A\left(t-t_{0}\right)} x_{0}}_{:=y_{h}(t)}+\underbrace{\int_{t_{0}}^{t} C(t) e^{A(t-\tau)} B(\tau) u(\tau) d \tau+D(t) u(t)}_{:=y_{f}(t)}
\end{aligned}
$$

Life is easy when A is diagonal

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right] \Rightarrow e^{A t}=\left[\begin{array}{cc}
e^{1 t} & 0 \\
0 & e^{4 t}
\end{array}\right] .
$$

Solutions to DT LTI Systems - Matrix Exponential

Given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, consider the homogenous DT LTI system

$$
x^{+}=A x, \quad t \in \mathbb{N} .
$$

Then, the unique solution to the above system is given by

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}=A^{\left(t-t_{0}\right)} x_{0}, \quad t \in \mathbb{N}
$$

The !solution with $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$, for non-homogenous DT LTI sys

$$
\begin{aligned}
& x^{+}=A x+B u, \quad y=C x+D u, \quad t \in \mathbb{N} \\
& \Longrightarrow x(t)=A^{\left(t-t_{0}\right)} x_{0}+\sum_{\tau=t_{0}}^{t-1} A^{t-1-\tau} B u(\tau) \\
& \Longrightarrow y(t)=C A^{\left(t-t_{0}\right)} x_{0}+\sum_{\tau=t_{0}}^{t-1} C A^{t-1-\tau} B u(\tau)+D u(t)
\end{aligned}
$$

Properties of Matrix Exponential

- $\frac{d}{d t} e^{A t}=A e^{A t}, \quad e^{A \cdot 0}=I, \quad t \geq 0$
- Generally, $e^{(A+B) t} \neq e^{A t} e^{B t}$.
- If $A B=B A \Longrightarrow e^{(A+B) t}=e^{A t} e^{B t}$
- $e^{A t} e^{A \tau}=e^{A(t+\tau)}, \quad \forall t, \tau \in \mathbb{R}$ Semigroup Property
- $\left(e^{A t}\right)^{-1}=e^{-A t}$
- $A e^{A t}=e^{A t} A, \quad \forall t \in \mathbb{R}$
- Due to Cayley-Hamilton theorem, we see that

$$
e^{A t}=\sum_{i=0}^{n-1} \alpha_{i}(t) A^{i}, \quad \forall t \in \mathbb{R}
$$

- $\operatorname{det}\left(e^{A t}\right)=e^{\operatorname{Tr}(A) t}$

Computing Matrix Exponential

Continuous Time Case - Use Laplace transform

$$
\begin{aligned}
\frac{d}{d t} e^{A t} & =A e^{A t} \Longrightarrow \mathcal{L}\left\{\frac{d}{d t} e^{A t}\right\}=\mathcal{L}\left\{A e^{A t}\right\} \\
\Longrightarrow e^{A t} & =\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]
\end{aligned}
$$

Hurwitz: $\operatorname{Real}(\operatorname{eig}(A))<0 \Longrightarrow \lim _{t \rightarrow \infty} e^{A t} \rightarrow 0_{n \times n} \Longrightarrow y(t) \rightarrow y_{f}(t)$
Discrete Time Case - Use Z transform

$$
\begin{aligned}
& \mathcal{Z}\left\{A^{t+1}\right\}=z\left(\mathcal{Z}\left\{A^{t}\right\}-I\right) \Longrightarrow A^{t}=\mathcal{Z}^{-1}\left[z(z I-A)^{-1}\right] \\
& \text { Schur: }|\operatorname{eig}(A)|<1 \Longrightarrow \lim _{t \rightarrow \infty} A^{t} \rightarrow 0_{n \times n} \Longrightarrow y(t) \rightarrow y_{f}(t)
\end{aligned}
$$

Stability of LTV Systems

Recall Stability of LTI Systems

Hurwitz: Real $(\operatorname{eig}(A))<0 \Longrightarrow \lim _{t \rightarrow \infty} e^{A t} \rightarrow 0_{n \times n} \Longrightarrow y(t) \rightarrow y_{f}(t)$
Schur: $|\operatorname{eig}(A)|<1 \Longrightarrow \lim _{t \rightarrow \infty} A^{t} \rightarrow 0_{n \times n} \Longrightarrow y(t) \rightarrow y_{f}(t)$
Note: While calculating $e^{A t}$ for CT LTI systems, remember to use the Jordan form when eigenvalues have geometric multiplicity ≥ 2.

Stability of CT and DT LTV Systems

- Stability for a CT time-varying system $\dot{x}(t)=A(t) x(t)$ cannot be determined by the eigenvalues of $A(t)$
- Location of the eigenvalues $\lambda(A(t))$ in LHP $\forall t \geq 0$ is neither sufficient nor necessary condition for stability (more on this topic later)

State Transition Matrices With Variable Change (CT)

Using the variable change $x(t)=P(t) z(t)$ (with $P(t)$ invertible),

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=P\left(t_{0}\right) z\left(t_{0}\right)=x_{0} \Longleftrightarrow \\
& \dot{z}(t)=\left[P(t)^{-1} A(t) P(t)-P(t)^{-1} \dot{P}(t)\right] z(t), \quad z\left(t_{0}\right)=P(t)^{-1} x_{0} \\
& \quad \Longrightarrow \Phi_{P^{-1} A P-P^{-1} \dot{P}}\left(t, t_{0}\right)=P(t)^{-1} \Phi_{A}\left(t, t_{0}\right) P\left(t_{0}\right)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
A P z & =A x=\dot{x}=\frac{d}{d t}(P z)=\dot{P} z+P \dot{z} \Longrightarrow P \dot{z}=[A P-\dot{P}] z \\
\Longrightarrow \dot{z} & =\left[P^{-1} A P-P^{-1} \dot{P}\right] z \Longrightarrow z(t)=\Phi_{P^{-1} A P-P^{-1} \dot{P}}\left(t, t_{0}\right) z\left(t_{0}\right) \\
z(t) & =P(t)^{-1} x(t)=P(t)^{-1} \Phi_{A}\left(t, t_{0}\right) x\left(t_{0}\right) \\
& =\underbrace{P(t)^{-1} \Phi_{A}\left(t, t_{0}\right) P\left(t_{0}\right)}_{\Phi_{P-1} A P-P^{-1} \dot{P}\left(t, t_{0}\right)} z\left(t_{0}\right)
\end{aligned}
$$

State Transition Matrices With Variable Change (DT)

Using the variable change $x(k)=P(k) z(k)$ (with $P(k)$ invertible),

$$
\begin{aligned}
& x(k+1)=A(k) x(k), \quad x\left(k_{0}\right)=P\left(k_{0}\right) z\left(k_{0}\right)=x_{0} \Longleftrightarrow \\
& z(k+1)=\left[P(k+1)^{-1} A(k) P(k)\right] z(k) \\
& \quad \Longrightarrow \Phi_{z}(k, j)=P(k)^{-1} \Phi_{x}(k, j) P(j)
\end{aligned}
$$

Proof: Very similar to the continuous case (use Z transform instead of Laplace transform)

Abel-Jacobi-Liouville Theorem

Volume Interpretation: The determinant of a matrix A is the oriented volume of the parallelepiped P whose edges are given by columns of A .

$$
|\operatorname{det}(A)|=\operatorname{vol}(P)
$$

Abel-Jacobi-Liouville Theorem: Exercise: Prove it.

Let $A(t)$ be continuous. Then,

$$
\begin{aligned}
\operatorname{det}(\Phi(t, \tau)) & =e^{\int_{\tau}^{t} \operatorname{Tr}[A(\sigma)] d \sigma} \\
\frac{d}{d t} \operatorname{det}(\Phi(t, \tau)) & =\operatorname{Tr}[A(t)] \operatorname{det}(\Phi(t, \tau))
\end{aligned}
$$

- Interpretation: Volume contracts. (Recall: $\left.\operatorname{Tr}(A)=\sum \operatorname{eig}(A)\right)$
- $\operatorname{det}(\Phi(t, \tau))>1(<1,=1) \Longrightarrow$ vol. expands (shrinks, stays const.)

Example

Question

Check if the following oscillative system can be made asymptotically stable through the use of an output feedback $u(t)=-k(t) y(t)$.

$$
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t) .
$$

Solution:

Apply Abel-Jacobi-Liouville theorem to the closed loop system matrix

$$
A_{c}=\left[\begin{array}{cc}
0 & 1 \\
-(1+k(t)) & 0
\end{array}\right] \Longrightarrow \operatorname{det}(\Phi(t, 0))=e^{t \operatorname{Tr}\left(A_{c}\right)}=1
$$

System cannot be made asymptotically stable, as $\Phi(t, 0) \nrightarrow 0$ as $t \rightarrow \infty$.

Linear Time Periodic (LTP) Systems

Definition of Periodic Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is called T-periodic if $\exists T>0$ such that $\forall t \geq 0$

$$
A(t+T)=A(t)
$$

The smallest T for which above equation holds true is called the period.

CT Linear Time Periodic (LTP) Systems

A state space system $\Sigma:(A, B, C, D)$ is called \mathbf{T}-periodic if all matrices (A, B, C, D) are T-periodic. For eg.

$$
\dot{x}(t)=A(t) x(t) \quad \text { is T-periodic LTP system } \Longleftrightarrow \quad A(t+T)=A(t)
$$

DT (LTP): $x(k+1)=A(k) x(k)$ is K-periodic $\Longleftrightarrow A(k+K)=A(k)$

Floquent Decomposition for LTP Systems

CT Floquent Decomposition

For a given T-periodic matrix $A \in \mathbb{R}^{n \times n}$, its transition matrix is

$$
\begin{equation*}
\Phi(t, \tau)=P(t) e^{R(t-\tau)} P^{-1}(\tau) \tag{1}
\end{equation*}
$$

$R \in \mathbb{R}^{n \times n}$ constant (even complex) - Average of $A(t)$ over 1 period.
R is selected such that $e^{R T}=\Phi(T, 0)$.
$P(t) \in \mathbb{R}^{n \times n}$ is differentiable, invertible \& T-periodic. $P(t)$ is selected such that $P(t)=\Phi(t, 0) e^{-R t}$.
$\Longrightarrow \Phi(t, \tau)$ is $\Phi(t, \tau)=\Phi(t, 0) \Phi(0, \tau)=P(t) e^{R(t-\tau)} P^{-1}(\tau)$
Eg., $A(t)=\left[\begin{array}{cc}-1 & 0 \\ -\cos (t) & 0\end{array}\right] \Longrightarrow R=\left[\begin{array}{cc}-1 & 0 \\ -\frac{1}{2} & 0\end{array}\right], P(t)=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2}(\cos (t)-\sin (t)-1) & 1\end{array}\right]$

Properties of LTP Systems

- Let $A(t) \in \mathbb{R}^{n \times n}$ be T-periodic. Then, $\forall t_{0} \geq 0, \exists x_{0} \neq 0$ such that solution of $\dot{x}(t)=A(t) x(t)$ for $x\left(t_{0}\right)=x_{0}$ is T-periodic iff $\exists \lambda\left(e^{R T}\right)=1$.
- A solution $x(t)$ of a T-periodic system $\dot{x}(t)=A(t) x(t)+f(t)$ with T-periodic matrices $A(t), f(t)$ is T-periodic iff $x\left(t_{0}+T\right)=x\left(t_{0}\right)$.
- For a CT LTI system, $\dot{x}(t)=A x(t)+B u(t)$ with $x(0)=x_{0}$, let $\nexists \operatorname{Real}(\lambda(A))=0$. Then, \forall T-periodic input $u(t), \exists x_{0}$ such that solution $x(t)$ is T -periodic and unique.
- For DT LTP systems, $\Phi(k, j)=P(k) R^{(k-j)} P^{-1}(j)$

