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Representation of Dynamical Systems

System Representation
Representation refers to a mathematical model of a system.

System representation can be continuous, discrete or hybrid

The continuous model of a system starting from x(0) = x0 with

f : Rn × Rm × R+ → Rn and g : Rn × Rm × R+ → Rp is given by

ẋ = f(x, u, t), y = g(x, u, t)

The discrete model of a system with f : Rn×Rm×{nT, n ∈ Z} → Rn,

g : Rn × Rm × {nT, n ∈ Z} → Rp, time step T > 0 and x(0) = x0 is

xk+1 = f(xk, uk, k), yk = g(xk, uk, k)

Hybrid Model of a system is given by ẋ = f(x, u, t), yk = g(xk, uk, k)
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Autonomous Dynamical Systems

Autonomous System Representation
Systems do not have a forcing i/p “u”, but evolve autonomously. That

is, ẋ(t) = f(x(t)).

Autonomous LDS is given by ẋ(t) = Ax(t).

x10

x2

x

Ax

Invariant Set S: Once trajectory enters S, it stays in S forever
S ⊂ Rn is invariant under ẋ = Ax if ∀x(t) ∈ S =⇒ x(τ) ∈ S, ∀τ ≥ t.
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Markov Chain - Autonomous System Example

s1 s2

s3

0.1

0.7

0.2
1

0.9 0.1

s1 means system is okay

s2 means system is in failure

s3 means system is under maintenance

s(t+ 1) =


0.9 0.7 1

0.1 0.1 0

0 0.2 0

 s(t)
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Linear Dynamical Systems (LDS)

Continuous Time (CT) LDS
Continuous-time linear dynamical system (CT LDS) has the form

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

t ∈ R denotes time

x(t) ∈ Rn denotes the state, Rn denotes the state space (X )

u(t) ∈ Rm is the control input, Rm denotes the input space (U)

y(t) ∈ Rp is the output, Rp denotes the output space (Y)

A(t) ∈ Rn×n, B(t) ∈ Rn×m are dynamics matrix, input matrix

C(t) ∈ Rp×n, D(t) ∈ Rp×m are sensor matrix, feedthrough matrix
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Time Invariant Dynamical Systems

The shift operator Tτ : U → U is defined as (Tτu)(t) = u(t− τ)

Time Invariant Dynamical System
A dynamical system is said to be time-invariant if

1 U is closed under Tτ ,∀τ

2 ∀t, τ, ∀x0,∀u ∈ U , y = g(x, u, t) = g(f(x0, Tτu, t+ τ), Tτu, t+ τ)

Linear Time-Invariant (LTI) system can be represented as

ẋ = Ax+Bu, y = Cx+Du

Interpretation

Ax: Drift term of ẋ

Bu: Input term of ẋ
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Time Varying Dynamical Systems

Time Varying Dynamical System
A dynamical system is said to be time-varying if the system dynamics

and the output response are parametrised by time.

∀x0,∀u ∈ U , ∃t, τ, s.t y = g(x, u, t) 6= g(f(x0, Tτu, t+ τ), Tτu, t+ τ)

Linear Time-Varying (LTV) system can be represented as

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)

Remarks

A(t), B(t), C(t), D(t) matrices change over time

{LTV Systems} ⊃ {LTI Systems}
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Examples of LTI Systems

Series RLC Circuit - LTI System

States: Current via inductor i(t), voltage across capacitor vc(t)

−
+V

R L

C

Kirchoff Law: V (t) = Ri(t) + Ldi(t)dt + vc(t), where vc(t) = 1
C

∫
i(t)dt di(t)

dt

dvc(t)
dt

 =

−RL −1
L

1
C 0

 i(t)
vc(t)


︸ ︷︷ ︸

x

+

 1
L

0

V (t), Y =
[
0 1

] i(t)
vc(t)
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Linearisation Near Equilibrium Point

Consider the nonlinear TI differential equation ẋ = f(x, u), y = g(x, u).

Equilibrium Point
A pair (x∗, u∗) is called an equilibrium point of the system ẋ = f(x, u) if

f(x∗, u∗) = 0. Once at equilibrium, system stops evolving.

Let u = u∗ + δu, x = x∗ + δx. Then y = y∗ + δy. So, δx, δy evolve as

δẋ = ẋ = f(x, u) = f(x∗ + δx, u∗ + δu)

δy = y − y∗ = g(x, u)− g(x∗, u∗) = g(x∗ + δx, u∗ + δu)− g(x∗, u∗)

Use Taylor expansions of f(·), g(·) and truncate after 1st order terms

δẋ ≈ ∂f(x∗, u∗)
∂x︸ ︷︷ ︸
:=A

δx+ ∂f(x∗, u∗)
∂u︸ ︷︷ ︸
:=B

δu, δy ≈ ∂g(x∗, u∗)
∂x︸ ︷︷ ︸
:=C

δx+ ∂g(x∗, u∗)
∂u︸ ︷︷ ︸
:=D

δu
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Pitfalls of Linearisation Near Equilibrium Point

Remarks:

Linearisation is valid as long as δx, δu remain small

Linearised system not always gives a good idea of the system
behaviour near x∗. For e.g.,
1 ẋ = −x3 near x∗ = 0 with x(0) > 0 =⇒ solution is

x(t) =
(
x(0)−2 + 2t

)− 1
2 and linearised system is δẋ = 0

2 ẋ = x3 near x∗ = 0 with x(0) > 0 =⇒ solution is

x(t) =
(
x(0)−2 − 2t

)− 1
2 and linearised system is δẋ = 0 but has finite

escape time at t = x(0)−2/2

To be precise, the above procedure is referred as local linearisation

of system around an equilibrium point.

Similar procedure exists for discrete time models
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Linearisation of Pendulum
Nonlinear differential equation governing pendulum dynamics is

ml2θ̈ = −mgl sin(θ)

m

`

mg

θ

If states are x =

θ
θ̇

 =⇒ ẋ =

 x2

− gl sin(x1)


Consider the pendulum down (x = 0) equilibrium point. Then the

linearised system near x∗ = 0 is δẋ =

 0 1

− gl 0

 δx
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Linearisation Along Trajectory

Perturb around an arbitrary solution of system instead of an eqlb. pt.

Arbitrary Solutions of ẋ = f(x, u), y = g(x, u)
Suppose xtr : R+ → Rn, utr : R+ → Rm, ytr : R+ → Rp results in

ẋtr(t) = f(xtr(t), utr(t), t), ytr(t) = g(xtr(t), utr(t), t).

u(t) = utr(t) + δu(t), x(t) = xtr(t) + δx(t) =⇒ y(t) = ytr(t) + δy(t).

Use Taylor expansions of f(·), g(·) and truncate after 1st order terms

δẋ(t) ≈ ∂f(xtr(t), utr(t))
∂x︸ ︷︷ ︸

:=A(t)

δx(t) + ∂f(xtr(t), utr(t))
∂u︸ ︷︷ ︸

:=B(t)

δu(t),

δy(t) ≈ ∂g(xtr(t), utr(t))
∂x︸ ︷︷ ︸

:=C(t)

δx(t) + ∂g(xtr(t), utr(t))
∂u︸ ︷︷ ︸

:=D(t)

δu(t)

Remark: Linearisation along trajectory leads to LTV systems
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Pendulum Example - Linearisation Along Trajectory
m

T

`

F = mg
θ

Dynamics: ml2θ̈ = mgl sin(θ)− bθ̇ + T . Linearise around constant

angular velocity trajectory θ̇ = ω, with θ(0) = 0. Then x1 = θ

x2 = θ̇
=⇒

 ẋ1 = x2

ẋ2 = T + g sin(x1)− x2

Constant Angular Velocity Trajectory:

 xsol1 (t) = ωt+ x1(0) = ωt

xsol2 (t) = ω
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Pendulum Example - Linearisation Along Trajectory

m

T

`

F = mg
θ

(xsol1 (t), xsol2 (t)) should satisfy pendulum equation of motion ẋsol1 = xsol2

ẋsol2 (t) = T sol + g sin(xsol1 )− xsol2

=⇒ T sol = −g sin(ωt) + ω

A(t) = ∂f

∂x
(xsol1 (t), xsol2 (t)) =

 0 1

g cos(ωt) −1

 , B(t) = ∂f

∂u
(·, ·) =

0

1
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Impulse Response

Impulse signal is a pulse of zero length (∆→ 0) but unit area.

1
∆

∆0 t

ut

CT Impulse Response with m inputs & p outputs
CT Impulse Response is a matrix valued signal G(t, τ) ∈ Rp×m such

that ∀u, a corresponding output is given by

y(t) =
∫ ∞

0
G(t, τ)u(τ)dτ := (G ? u)(t), ∀t ≥ 0.

=⇒ y(s) = L{y(t)} = L{(G ? u)(t)} = G(s)u(s), s ∈ C
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Impulse Response of a CT LTI System

Consider the continuous time LTI System

ẋ = Ax+Bu =⇒ L{ẋ} = L{Ax+Bu}

=⇒ x(s) = (sI −A)−1x(0) + (sI −A)−1Bu(s)

y = Cx+Du =⇒ L{y} = L{Cx+Du}

=⇒ y(s) = C(sI −A)−1︸ ︷︷ ︸
:=Ψ(s)

x(0) +
(
C(sI −A)−1B +D

)︸ ︷︷ ︸
:=G(s)

u(s)

Taking inverse Laplace transform, we get

y(t) = Ψ(t)x(0) + (G ? u)(t) = Ψ(t)x(0) +
∫ t

0
G(t− τ)u(τ)dτ

G(s): Transfer function

G(t) = L−1{G(s)}: Impulse response (Response with u(s) = 1)
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Impulse Response of a DT LTI System

Consider the discrete time LTI System

xk+1 = Axk +Buk =⇒ Z{xk+1} = Z{Axk +Buk}

=⇒ x(z) = (zI −A)−1x0 + (zI −A)−1Bu(z)

yk = Cxk +Duk =⇒ Z{yk} = Z{Cxk +Duk}

=⇒ y(z) = C(zI −A)−1︸ ︷︷ ︸
:=Ψ(z)

x0 +
(
C(zI −A)−1B +D

)︸ ︷︷ ︸
:=G(z)

u(z)

G(z): Transfer function

G(t) = Z−1{G(z)}: Impulse response (Response with u(z) = 1)
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Realization Theory

Realization of LTI System
Given a transfer function G(s), the CT state space system

ẋ = Ax+Bu, y = Cx+Du

is a realization of G(s) if G(s) = C(sI −A)−1B +D.

For discrete time systems, replace s by z.

Zero-State Equivalence
Many systems may realise the same transfer function

Two state-space systems are said to be zero-state equivalent if they
realise the same transfer function

They exhibit the same forced response to every input
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Equivalent State-Space Systems

Algebraic Equivalence
Two CT or DT LTI systems (A,B,C,D), (Ā, B̄, C̄, D̄) are called

algebraically equivalent if ∃T, det(T ) 6= 0 such that

Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D

The map x̄ = Tx is called similarity or equivalence transformation.

Properties:

With every input signal u, both systems associate the same set of

outputs y (However, not the same output for same initial conditions)

The systems are zero-state equivalent

Algebraic Equivalence ⇒
:

Zero-state Equivalence
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Solutions to Homogenous LTV Systems

Given x(t0) = x0 ∈ Rn, consider the homogenous CT LTV system

ẋ(t) = A(t)x(t), t ≥ 0.

Then, the unique solution to the above system is given by

x(t) = Φ(t, t0)x0, x(t0) = x0 ∈ Rn, t ≥ 0

Φ(t, s) = I +
∫ t

s

A(σ1)dσ1 +
∫ t

s

A(σ1)
∫ σ1

s

A(σ2)dσ1dσ2 + . . .

ΦA(t, t0) ∈ Rn×n - state transition matrix (subscript A often

dropped for brevity)

The Peano-Baker series defining Φ(t, s) converges for arbitrary t, s

A(t) = A =⇒ Φ(t, s) = I + (t− s)A+ (t− s)2

2 A2 + · · · = eA(t−s)
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Solutions to Non-homogenous LTV Systems

Given x(t0) = x0 ∈ Rn, consider the non-homogenous CT LTV system

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t), t ≥ 0.

Then, the unique solution to the above system ∀t ≥ 0 is given by

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

y(t) = C(t)Φ(t, t0)x0︸ ︷︷ ︸
:=yh(t)

+
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)︸ ︷︷ ︸
:=yf (t)

yh(t) Homogeneous (zero-input) response

yf (t) Forced (zero-initial condition) response
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Solutions to Discrete LTV Systems

Given x(t0) = x0 ∈ Rn, the unique solution to the homogenous DT

LTV system ∀t ∈ N, t ≥ t0 is given by

x(t+ 1) = A(t)x(t) =⇒ x(t) = Φ(t, t0)x0,

Φ(t, t0) =

I t = t0

A(t− 1)A(t− 2) . . . A(t0 + 1)A(t0) t > t0

The unique solution to the non-homogenous DT LTV system is

x(t+ 1) = A(t)x(t) +B(t)u(t) y(t) = C(t)x(t) +D(t)u(t),

=⇒ x(t) = Φ(t, t0)x0 +
t−1∑
τ=t0

Φ(t, τ + 1)B(τ)u(τ)dτ

y(t) = C(t)Φ(t, t0)x0 +
t−1∑
τ=t0

C(t)Φ(t, τ + 1)B(τ)u(τ)dτ +D(t)u(t)
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Matrix Differential Equation

Given A(t) ∈ Rn×n, let matrix differential equation in X(t) ∈ Rn×n be

d

dt
X(t) = A(t)X(t), X(t0) = X0.

The unique continuously differentiable solution is

X(t) = ΦA(t, t0)X0.

If X(t0) = X0 = I, then X(t) = ΦA(t, t0).

Exercise
Show that solution of the following adjoint system (more on this later)

d

dt
Z(t) = −A>(t)Z(t), Z(t0) = Z0.

is Z(t) = Φ>A(t0, t)Z0.
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Properties of State Transition Matrix

Φ(t, t0) for CT LTV Systems
d
dtΦ(t, t0) = A(t)Φ(t, t0), d

dt0
Φ(t, t0) = −Φ(t, t0)A(t0) t ≥ t0

Φ(t, t) = I

For t > s > τ, Φ(t, s)Φ(s, τ) = Φ(t, τ) “Semigroup Property”

Φ(t, s)−1 = Φ(s, t) =⇒ Φ(t, s) is non-singular

Φ(t, t0) for DT LTV Systems
Φ(t+ 1, t0) = A(t)Φ(t, t0), Φ(t, t0− 1) = Φ(t, t0)A(t0− 1) t > t0

Φ(t0, t0) = I

For t ≥ s ≥ τ, Φ(t, s)Φ(s, τ) = Φ(t, τ) “Semigroup Property”

Φ(t, s) may be singular!

State Space Representations & Linearization 2-24



Solutions to CT LTI Systems - Matrix Exponential

Given x(t0) = x0 ∈ Rn, consider the homogenous CT LTI system

ẋ = Ax, t ≥ 0.

Then, the unique solution to the above system is given by

x(t) = Φ(t, t0)x0, t ≥ 0

Φ(t, t0) =
∞∑
k=0

(t− t0)k

k! Ak = eA(t−t0)

=⇒ x(t) = eA(t−t0)x0, t ≥ 0

Common Mistake:

A =

1 2

3 4

; eAt =

e1t e2t

e3t e4t

 .
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Solutions to CT LTI Systems - Matrix Exponential

Given x(t0) = x0 ∈ Rn, consider the non-homogenous CT LTI system

ẋ = Ax+Bu, y = Cx+Du, t ≥ 0.

Then, the unique solution ∀t ≥ 0 to the above system is given by

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ)B(τ)u(τ)dτ

y(t) = C(t)eA(t−t0)x0︸ ︷︷ ︸
:=yh(t)

+
∫ t

t0

C(t)eA(t−τ)B(τ)u(τ)dτ +D(t)u(t)︸ ︷︷ ︸
:=yf (t)

Life is easy when A is diagonal

A =

1 0

0 4

⇒ eAt =

e1t 0

0 e4t

 .
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Solutions to DT LTI Systems - Matrix Exponential

Given x(t0) = x0 ∈ Rn, consider the homogenous DT LTI system

x+ = Ax, t ∈ N.

Then, the unique solution to the above system is given by

x(t) = Φ(t, t0)x0 = A(t−t0)x0, t ∈ N

The !solution with x(t0) = x0 ∈ Rn, for non-homogenous DT LTI sys

x+ = Ax+Bu, y = Cx+Du, t ∈ N

=⇒ x(t) = A(t−t0)x0 +
t−1∑
τ=t0

At−1−τBu(τ)

=⇒ y(t) = CA(t−t0)x0 +
t−1∑
τ=t0

CAt−1−τBu(τ) +Du(t)
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Properties of Matrix Exponential

d
dte

At = AeAt, eA·0 = I, t ≥ 0

Generally, e(A+B)t 6= eAteBt.

If AB = BA =⇒ e(A+B)t = eAteBt

eAteAτ = eA(t+τ), ∀t, τ ∈ R Semigroup Property(
eAt
)−1 = e−At

AeAt = eAtA, ∀t ∈ R

Due to Cayley-Hamilton theorem, we see that

eAt =
n−1∑
i=0

αi(t)Ai, ∀t ∈ R

det(eAt) = eTr(A)t
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Computing Matrix Exponential

Continuous Time Case - Use Laplace transform

d

dt
eAt = AeAt =⇒ L

{
d

dt
eAt
}

= L
{
AeAt

}
=⇒ eAt = L−1 [(sI −A)−1]

Hurwitz: Real(eig(A)) < 0 =⇒ lim
t→∞

eAt → 0n×n =⇒ y(t)→ yf (t)

Discrete Time Case - Use Z transform

Z
{
At+1} = z

(
Z
{
At
}
− I
)

=⇒ At = Z−1 [z(zI −A)−1]
Schur: |eig(A)| < 1 =⇒ lim

t→∞
At → 0n×n =⇒ y(t)→ yf (t)
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Stability of LTV Systems

Recall Stability of LTI Systems

Hurwitz: Real(eig(A)) < 0 =⇒ lim
t→∞

eAt → 0n×n =⇒ y(t)→ yf (t)

Schur: |eig(A)| < 1 =⇒ lim
t→∞

At → 0n×n =⇒ y(t)→ yf (t)

Note: While calculating eAt for CT LTI systems, remember to use the

Jordan form when eigenvalues have geometric multiplicity ≥ 2.

Stability of CT and DT LTV Systems
Stability for a CT time-varying system ẋ(t) = A(t)x(t) cannot be

determined by the eigenvalues of A(t)

Location of the eigenvalues λ(A(t)) in LHP ∀t ≥ 0 is neither sufficient

nor necessary condition for stability (more on this topic later)

State Space Representations & Linearization 2-30



State Transition Matrices With Variable Change (CT)

Using the variable change x(t) = P (t)z(t) (with P (t) invertible),

ẋ(t) = A(t)x(t), x(t0) = P (t0)z(t0) = x0 ⇐⇒

ż(t) = [P (t)−1A(t)P (t)− P (t)−1Ṗ (t)]z(t), z(t0) = P (t)−1x0

=⇒ ΦP−1AP−P−1Ṗ (t, t0) = P (t)−1ΦA(t, t0)P (t0)

Proof:

APz = Ax = ẋ = d

dt
(Pz) = Ṗ z + P ż =⇒ P ż = [AP − Ṗ ]z

=⇒ ż = [P−1AP − P−1Ṗ ]z =⇒ z(t) = ΦP−1AP−P−1Ṗ (t, t0)z(t0)

z(t) = P (t)−1x(t) = P (t)−1ΦA(t, t0)x(t0)

= P (t)−1ΦA(t, t0)P (t0)︸ ︷︷ ︸
ΦP−1AP−P−1Ṗ (t,t0)

z(t0)
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State Transition Matrices With Variable Change (DT)

Using the variable change x(k) = P (k)z(k) (with P (k) invertible),

x(k + 1) = A(k)x(k), x(k0) = P (k0)z(k0) = x0 ⇐⇒

z(k + 1) = [P (k + 1)−1A(k)P (k)]z(k)

=⇒ Φz(k, j) = P (k)−1Φx(k, j)P (j)

Proof: Very similar to the continuous case (use Z transform instead of

Laplace transform)
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Abel-Jacobi-Liouville Theorem
Volume Interpretation: The determinant of a matrix A is the oriented

volume of the parallelepiped P whose edges are given by columns of A.

|det(A)| = vol(P )

Abel-Jacobi-Liouville Theorem: Exercise: Prove it.
Let A(t) be continuous. Then,

det(Φ(t, τ)) = e

∫ t
τ

Tr[A(σ)]dσ

d

dt
det(Φ(t, τ)) = Tr[A(t)] det(Φ(t, τ))

Interpretation: Volume contracts. (Recall: Tr(A) =
∑

eig(A))

det(Φ(t, τ)) > 1(< 1,= 1) =⇒ vol. expands (shrinks, stays const.)
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Example

Question
Check if the following oscillative system can be made asymptotically

stable through the use of an output feedback u(t) = −k(t)y(t).

ẋ(t) =

 0 1

−1 0

x(t) +

0

1

u(t), y(t) =
[
1 0

]
x(t).

Solution:

Apply Abel-Jacobi-Liouville theorem to the closed loop system matrix

Ac =

 0 1

−(1 + k(t)) 0

 =⇒ det(Φ(t, 0)) = etTr(Ac) = 1.

System cannot be made asymptotically stable, as Φ(t, 0) 9 0 as t→∞.
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Linear Time Periodic (LTP) Systems

Definition of Periodic Matrices
A matrix A ∈ Rn×n is called T-periodic if ∃T > 0 such that ∀t ≥ 0

A(t+ T ) = A(t)

The smallest T for which above equation holds true is called the period.

CT Linear Time Periodic (LTP) Systems
A state space system Σ : (A,B,C,D) is called T-periodic if all

matrices (A,B,C,D) are T-periodic. For eg.

ẋ(t) = A(t)x(t) is T-periodic LTP system ⇐⇒ A(t+ T ) = A(t)

DT (LTP): x(k + 1) = A(k)x(k) is K-periodic ⇐⇒ A(k +K) = A(k)
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Floquent Decomposition for LTP Systems

CT Floquent Decomposition
For a given T-periodic matrix A ∈ Rn×n, its transition matrix is

Φ(t, τ) = P (t) eR(t−τ) P−1(τ), (1)

R ∈ Rn×n constant (even complex) - Average of A(t) over 1 period.

R is selected such that eRT = Φ(T, 0).

P (t) ∈ Rn×n is differentiable, invertible & T-periodic. P (t) is selected

such that P (t) = Φ(t, 0)e−Rt.

=⇒ Φ(t, τ) is Φ(t, τ) = Φ(t, 0)Φ(0, τ) = P (t) eR(t−τ) P−1(τ)

Eg., A(t) =

[
−1 0

− cos(t) 0

]
=⇒ R =

[
−1 0

− 1
2 0

]
, P (t) =

[
1 0

1
2 (cos(t)− sin(t)− 1) 1

]
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Properties of LTP Systems

Let A(t) ∈ Rn×n be T-periodic. Then, ∀t0 ≥ 0,∃x0 6= 0 such that

solution of ẋ(t) = A(t)x(t) for x(t0) = x0 is T-periodic iff

∃λ(eRT ) = 1.

A solution x(t) of a T-periodic system ẋ(t) = A(t)x(t) + f(t) with

T-periodic matrices A(t), f(t) is T-periodic iff x(t0 + T ) = x(t0).

For a CT LTI system, ẋ(t) = Ax(t) +Bu(t) with x(0) = x0, let

@Real(λ(A)) = 0. Then, ∀ T-periodic input u(t), ∃x0 such that

solution x(t) is T-periodic and unique.

For DT LTP systems, Φ(k, j) = P (k)R(k−j) P−1(j)

State Space Representations & Linearization 2-37


