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Representation of Dynamical Systems

System Representation
@ Representation refers to a mathematical model of a system.

@ System representation can be continuous, discrete or hybrid

The continuous model of a system starting from z(0) = z( with

F R xR™ xRy — R"and g: R" x R™ x Ry — RP? is given by
:,t.:f(x’u,t)7 y:g(x7u7t)

The discrete model of a system with f : R" x R™ x {nT,n € Z} — R",
g:R*" xR™ x {nT,n € Z} — RP, time step T > 0 and z(0) = z¢ is

Try1 = f(op, up, k),  yr = g(Tr, ur, k)

Hybrid Model of a system is given by & = f(z,u,t), yr = g(ak, ug, k)
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Autonomous Dynamical Systems

Autonomous System Representation

Systems do not have a forcing i/p “u", but evolve autonomously. That

is, @(t) = f(x(t)).

Autonomous LDS is given by i(t) = Axz(t).

T2

Ax

A

0 T

Invariant Set S: Once trajectory enters S, it stays in S forever
S C R” is invariant under & = Az if Vz(t) € S = z(7) € S, V7 > t.J
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Markov Chain - Autonomous System Example
0.9 0.1
0.7
0.1

$1 means system is okay
So means system is in failure

53 means system is under maintenance

09 07 1
st+1)= (0.1 0.1 0] s(t)
0 02 0
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Linear Dynamical Systems (LDS)
Continuous Time (CT) LDS
Continuous-time linear dynamical system (CT LDS) has the form
&(t) = A(t)z(t) + B(t)u(t)
y(t) = C(&)z(t) + D(t)u(t)

o ¢t € R denotes time

e xz(t) € R™ denotes the state, R denotes the state space (X)
o u(t) € R™ is the control input, R™ denotes the input space (i)
e y(t) € RP is the output, RP denotes the output space ())

A(t) e R™*™ B(t) € R™™™ are dynamics matrix, input matrix

C(t) € RP*™ D(t) € RP*™ are sensor matrix, feedthrough matrix
25




Time Invariant Dynamical Systems
The shift operator 7, : U — U is defined as (Tru)(t) = u(t — 7)

Time Invariant Dynamical System

A dynamical system is said to be time-invariant if

@ U is closed under T, VT
Q Vi, 1,Vxo,Yu € U,y = g(z,u,t) = g(f(zo, Tru,t + 1), Tru,t + 7)

Linear Time-Invariant (LTI) system can be represented as

&= Ax+ Bu, y=Cz+ Du

Interpretation
o Ax: Drift term of &

@ Bu: Input term of &

State Space Representations & Linearization
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Time Varying Dynamical Systems

Time Varying Dynamical System
A dynamical system is said to be time-varying if the system dynamics

and the output response are parametrised by time.

VLL’O,VU € uv EltaTa sty = g(:i:,u,t) %g(f(xﬂa 7;-U,t + T)37;'U7t+ T)

v

Linear Time-Varying (LTV) system can be represented as
a(t) = A(t)z(t) + B(t)u(t), y(t) = C(t)z(t) + D(t)u(t)
Remarks

e A(t),B(t),C(t), D(t) matrices change over time

o {LTV Systems} D {LTI Systems}
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Examples of LTI Systems

Series RLC Circuit - LTI System

States: Current via inductor i(t), voltage across capacitor v (t)

R L
/1000

v p—

i(t)dt

Ql=

Kirchoff Law: V() = Ri(t) + Ldil(f) +vc(t), where v (t) = & [
di(t) —R —1 . .
“ar T T | i(t)
= + V), Y=10 1
[—d“sf”] [ ¢ 0 ] L(t)] b [ ]
——

ve(t)
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Linearisation Near Equilibrium Point

Consider the nonlinear Tl differential equation = = f(z,u),y = g(x, u).
Equilibrium Point
A pair (z*,u*) is called an equilibrium point of the system & = f(z,u) if

f(z*,u*) = 0. Once at equilibrium, system stops evolving.

Let u = u* 4+ du,z = * + dx. Then y = y* + dy. So, dx, Iy evolve as
0t =& = f(x,u) = f(z" + dz,u* + du)
by =y—y" =g(x,u) —g(@",u") = g(z" + 0z, u” + 6u) — g(z", u")
Use Taylor expansions of f(-),g(-) and truncate after 1st order terms

. Of(x",u”) Of(x,u”) _, Og(a™,u”) dg(z”, u”)
0 ~ o ox + 5 ou, 0oy~ pp or + 5 ou
=A =B =C =D
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Pitfalls of Linearisation Near Equilibrium Point

Remarks:
@ Linearisation is valid as long as dx, du remain small
@ Linearised system not always gives a good idea of the system

behaviour near z*. For e.g.,
@ i = —2% near 2" = 0 with 2(0) > 0 = solution is
z(t) = (917(0)’2 + Zt)i% and linearised system is 6= = 0
@ i = 2% near z* = 0 with £(0) > 0 = solution is
z(t) = (912(0)’2 — Qt)ié and linearised system is 64 = 0 but has finite
escape time at t = 2(0)72/2
@ To be precise, the above procedure is referred as local linearisation

of system around an equilibrium point.

@ Similar procedure exists for discrete time models

State Space Representations & Linearization
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Linearisation of Pendulum

Nonlinear differential equation governing pendulum dynamics is

mi?0 = —mgl sin()

0 . i)
If statesarez = | | = 4=

0 —% sin(ml)
Consider the pendulum down (z = 0) equilibrium point. Then the

1
linearised system near x* =0 is 04 = ox

0

~ka

State Space Representations & Linearization
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Linearisation Along Trajectory

Perturb around an arbitrary solution of system instead of an eqlb. pt.
Arbitrary Solutions of & = f(x,u),y = g(z,u)
Suppose ¢ : Ry — R™ uy : Ry — R™, s : Ry — RP results in

jTtr (t) = f(:rtr (t)a Uty (t)) t)a Ytr (t) = g(xtr (t)a Uty (t)a t)

u(t) = w(t) + u(t), 2(t) = 24 (t) + 02(t) = y(t) = yer(t) + 5y (2).
Use Taylor expansions of f(-),g(-) and truncate after 1st order terms
L @) o N0 (0)

§i(t)

Oz ou
=A(t) :=B(t)
Syt) ~ 39($tr(§)l: uir(t)) Su(t) + ag(xtr(;z; uir (1)) Sult)
:=C(t) :=D(t)

Remark: Linearisation along trajectory leads to LTV systems
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Pendulum Example - Linearisation Along Trajectory

Dynamics: mi26 = mglsin(f) — b + T. Linearise around constant
angular velocity trajectory 6 = w, with 6(0) = 0. Then
1 = 0 jll = X2

29 =10 o =T + gsin(zy) — @9

23°U(t) = wt + 21(0) = wt

Constant Angular Velocity Trajectory:
230 (t) = w

State Space Representations & Linearization
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Pendulum Example - Linearisation Along Trajectory

(x3°(t), 25°!(t)) should satisfy pendulum equation of motion

ssol __ ,.sol
L1 = Ta

— T%! = —gsin(wt) +w
i.gol(t) — Tsol + gSil’l((EiOl) _ Z.;ol

A(t)=a—(wi°l(t),fv§°l(t))= goos(wt) -1 Bt)=5-() =

State Space Representations & Linearization
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Impulse Response

Impulse signal is a pulse of zero length (A — 0) but unit area.

Ut
1
A

OAt

CT Impulse Response with m inputs & p outputs

CT Impulse Response is a matrix valued signal G(t,7) € RP*™ such

that Vu, a corresponding output is given by
y(t) = / G(t,m)u(r)dr := (G *u)(t), Vt>0.
0

= y(s) = L{y(H)} = LUGxu) (D)} = G(s)u(s), seC

State Space Representations & Linearization
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Impulse Response of a CT LTI System
Consider the continuous time LTI System
& =Ar+ Bu = L{i} = L{Ax + Bu}
= x(s) = (s — A)"'z(0) + (s — A) "' Bu(s)
y=Cx+ Du = L{y}=L{Cx+ Du}

= y(s) = C(sI — A" 2(0) + (C(sI — A)"'B+ D) u(s)
=T(s) :=G(s)

Taking inverse Laplace transform, we get

y(t) = ¥ (t)z(0) + (G u)(t) = ¥(t)z(0) + /0 G(t = T)u(r)dr

G(s): Transfer function

G(t) = L7 G(s)}: Impulse response (Response with u(s) = 1)
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Impulse Response of a DT LTI System

Consider the discrete time LTIl System

Tri1 = Axy + Buy, = Z{xp41} = Z{Ax) + Buy}
— 2(2) = (2 — A) " tzg + (21 — A) "' Bu(z)
yr = Cap + Duy, = Z{yr} = Z{Cxy, + Duy}
= y(z) =C(2f — A) ' 29+ (C(2 — A)"'B+ D) u(z)
N

=V(z) =G (z)

G(z): Transfer function

G(t) = Z7{G(2)}: Impulse response (Response with u(z) = 1)

State Space Representations & Linearization
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Realization Theory

Realization of LTI System

Given a transfer function G(s), the CT state space system
&= Az + Bu, y=Cz+ Du

is a realization of G(s) if G(s) = C(s[ — A)"'B+ D.

For discrete time systems, replace s by z.

Zero-State Equivalence

@ Many systems may realise the same transfer function

@ Two state-space systems are said to be zero-state equivalent if they

realise the same transfer function

o They exhibit the same forced response to every input
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Equivalent State-Space Systems

Algebraic Equivalence
Two CT or DT LTI systems (A, B,C, D), (A, B,C, D) are called
algebraically equivalent if 37, det(7T") # 0 such that

A=TAT ', B=TB,C=CT',D=D

The map z = Tz is called similarity or equivalence transformation.

Properties:

@ With every input signal u, both systems associate the same set of
outputs y (However, not the same output for same initial conditions)

@ The systems are zero-state equivalent

o Algebraic Equivalence ?5 Zero-state Equivalence
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Solutions to Homogenous LTV Systems

Given z(tg) = zo € R"™, consider the homogenous CT LTV system

Then, the unique solution to the above system is given by
z(t) = D(t, to)xo, x(to) =xz0 €R™, >0

t t o1
D(t,s) = I+/ A(oy)doy +/ A(ol)/ A(og)dordos + . ..

o $y(t,tp) € R™*™ - state transition matrix (subscript A often

dropped for brevity)
o The Peano-Baker series defining ®(t, s) converges for arbitrary t, s

AB) = A — D(ts) =+ (t—s)A+ L= 2)A2 A
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Solutions to Non-homogenous LTV Systems

Given z(tg) = xg € R™, consider the non-homogenous CT LTV system
i(t) = A(W(t) + Bu(t), y(t) = CO() + D(Bu(t), 0.
Then, the unique solution to the above system V¢ > 0 is given by

x(t) = O(t, to)xo —|—/ O(t, 7)B(T)u(r)dr

to

y(t) =Ct)P(t, to)xo+ | C)P(t, 7)B(T)u(T)dr + D(t)u(t)

to

=yn ()
=y (1)
yn(t) Homogeneous (zero-input) response

yr(t) Forced (zero-initial condition) response

State Space Representations & Linearization

2-21



Solutions to Discrete LTV Systems

Given z(tp) = z¢ € R™, the unique solution to the homogenous DT
LTV system Vt € N, t > ¢t is given by
z(t+1)=At)x(t) = z(t) = D(t,t0)x0,
I t=to

q’(t,to) =
At —1)A(t—2)... Ato + 1) A(to) t>to

The unique solution to the non-homogenous DT LTV system is

z(t+1) =At)x(t) + B(t)u(t) y(t) = Ct)x(t) + D(t)u(t),

t—1
— a(t) = B(t, to)zo + Z ®(t, 7 + 1)B(r)u(r)dr
y(t) = C(t)D(t, to)zo + Z Ct)®(t, 7+ 1)B(r)u(r)dr + D(t)u(t)

T=tg
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Matrix Differential Equation

Given A(t) € R™ ", let matrix differential equation in X (¢) € R"*" be

%X(t) — A®)X (), X(to) = Xo.

The unique continuously differentiable solution is
X(t)=Da(t, to)Xo.

If X(to) = Xo = I, then X(t) = D A(t, to).

Exercise

Show that solution of the following adjoint system (more on this later)

d

Ez(t) = —AT()Z(t), Z(to) = Zo.

is Z(t) = ®}(to, t) Zo.
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Properties of State Transition Matrix
O(t,ty) for CT LTV Systems
o 4d(t,to) = A)B(t, to), F=B(t to) = —D(t,t0)A(to) t > to
o B(t,t) =1
e Fort> s>, ®(t,s)®(s,7) = D(¢,7) “Semigroup Property”

o O(t,5)"! = d(s,t) = d(¢,s) is non-singular

O(t,t) for DT LTV Systems

o B(t+1,t)) = A)D(tty), ®(t,to—1) = B(t,to)Alto—1) t>to

(] @(to,to) =1
e Fort>s>r, ®(t,s)®(s,7) = D(¢t,7) “Semigroup Property”

o &(t, s) may be singular!

State Space Representations & Linearization
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Solutions to CT LTI Systems - Matrix Exponential
Given z(tp) = xo € R™, consider the homogenous CT LTI system
z=Ax, t>0.
Then, the unique solution to the above system is given by
x(t) = ®(t, to)xg, t>0

_ = (t_to)k k _ JA(t—to)
‘I’(tato) - Z TA =e€
k=0 ’

— z(t) =gy >0
Common Mistake:

A: + e =

State Space Representations & Linearization 2-25



Solutions to CT LTI Systems - Matrix Exponential
Given z(tg) = zo € R™, consider the non-homogenous CT LTI system
& =Ax+ Bu, y=Cz+ Du, t>0.

Then, the unique solution V¢ > 0 to the above system is given by

t
z(t) = eAtt0) g —I—/ AT B(r)u(r)dr

to

y(t) = C(t)er =)y + t C(t)eA=7) B(r)u(r)dr + D(t)u(t)
S———— to

=y (t)
=y ()
Life is easy when A is diagonal
1
A= = et = 0
0 4 0 et
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Solutions to DT LTI Systems - Matrix Exponential
Given z(tg) = zo € R™, consider the homogenous DT LTI system
xt =Ax, teN.
Then, the unique solution to the above system is given by
z(t) = ®(t, to)zg = ATay, teN
The !solution with z(tg) = z¢ € R™, for non-homogenous DT LTI sys

v =Ar+Bu, y=Cx+Du, teN

t—1
= z(t) = APy + Z AT Bu(T)
T=1o
t—1
= y(t) = CA"ao+ Y~ CA™'"7 Bu(r) + Dul(t)
T=to
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Properties of Matrix Exponential

o LAl — feMt A0 =]

o Generally, e(AtB)t oL oAteBL

, 120

o If AB=BA = (A+B)t — (At Bt

0 eAteAT — eA(tJr'r)’ Vt,7 € R Semigroup Property
° (eAt)_l = e_At

o AeAt = eAtA’ vt c R

@ Due to Cayley-Hamilton theorem, we see that
n—1
et = Z a;(t)A', VteR
i=0
o det(edt) = (At

State Space Representations & Linearization
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Computing Matrix Exponential
Continuous Time Case - Use Laplace transform

d a4 A d a| _ At
dte = Ae® — L dte —L{Ae }

= eM =L [(sI-A)7

Hurwitz: Real(eig(4)) <0 = tli)m e = Opxn = y(t) — yyp(t)
o0

v

Discrete Time Case - Use Z transform

Z{AT )} =2(2{A'}-1) = A'=Z7"'[2(z1 - A)7"]

Schur: |eig(A)| <1 = tlim AY = Opxn = y(t) = ys(t)
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Stability of LTV Systems

Recall Stability of LTI Systems

Hurwitz: Real(eig(4)) <0 = tli_{n e = 0pun = y(t) = ys(t)
(oo}
Schur: |eig(4)| <1 = tlim A" = Opun = y(t) = yy(t)
[ee]

Note: While calculating e for CT LTI systems, remember to use the

Jordan form when eigenvalues have geometric multiplicity > 2.

Stability of CT and DT LTV Systems

o Stability for a CT time-varying system @(t) = A(t)z(t) cannot be
determined by the eigenvalues of A(t)

@ Location of the eigenvalues A(A(t)) in LHP V¢ > 0 is neither sufficient

nor necessary condition for stability (more on this topic later)
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State Transition Matrices With Variable Change (CT)
Using the variable change z(t) = P(t)z(t) (with P(t) invertible),
i(t) = A(t)z(t), a(t) = Plto)z(to) = zo <=
(1) = [P() MA@ P(t) = P() T P(1)]=(1),  2(to) = P(t) "o
= Pp1ap_p-1p(tito) = P(t) " @alt o) P(to)
Proof:
%(Pz) =Pz+P; = P:=[AP - Pz
= =[P AP - P 'Plz = 2(t) = ®p_14p_p-1p(t,t0)z(t0)

2(t)

APz = Ax =1 =

Pt) 'a(t) = P(t) " ®a(t, to)xz(to)

= P(t) ' ®4(t, to) P(to) 2(to)

D1 4p_p1p(tito)
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State Transition Matrices With Variable Change (DT)

Using the variable change (k) = P(k)z(k) (with P(k) invertible),

z(k+1) = A(k)z(k), x(ko) = P(ko)z(ko) = z0 <=
2k +1) = [P(k+ 1) A(k)P(k))=(k)

— &,(k,j) = P(k)"'®,(k,j)P(j)

Proof: Very similar to the continuous case (use Z transform instead of

Laplace transform)
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Abel-Jacobi-Liouville Theorem

Volume Interpretation: The determinant of a matrix A is the oriented

volume of the parallelepiped P whose edges are given by columns of A.

|det(A)| = vol(P)

Abel-Jacobi-Liouville Theorem: Exercise: Prove it.
Let A(t) be continuous. Then,

det(®(t, 7)) = el AN

%det(@(t, 7)) = Tr[A()] det(®(t, 7))

o Interpretation: Volume contracts. (Recall: Tr(A) =Y eig(A))

o det(®(t,7)) > 1(< 1,=1) = vol. expands (shrinks, stays const.)
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Example

Question
Check if the following oscillative system can be made asymptotically

stable through the use of an output feedback u(t) = —k(t)y(?).

Solution:

Apply Abel-Jacobi-Liouville theorem to the closed loop system matrix

0 1
Ac = — det(®P(t,0)) = M) = 1,

—(1+k(t) O

System cannot be made asymptotically stable, as ®(¢,0) - 0 as t — 0.
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Linear Time Periodic (LTP) Systems

Definition of Periodic Matrices
A matrix A € R™*" is called T-periodic if 37 > 0 such that V¢ > 0

A(t+T) = A(t)

The smallest T' for which above equation holds true is called the period.

CT Linear Time Periodic (LTP) Systems
A state space system X : (A4, B,C, D) is called T-periodic if all
matrices (A4, B,C, D) are T-periodic. For eg.

#(t) = A(t)z(t) is T-periodic LTP system < A(t+T) = A(¢)

v

DT (LTP): z(k + 1) = A(k)x(k) is K-periodic <= A(k+ K) = A(k)
235



Floquent Decomposition for LTP Systems

CT Floquent Decomposition

For a given T-periodic matrix A € R"*", its transition matrix is

®(t,7) = P(t) "7 P7H(r), (1)

R € R™™™ constant (even complex) - Average of A(t) over 1 period.

R is selected such that e®T" = ®(T,0).

P(t) € R™*"™ is differentiable, invertible & T-periodic. P(t) is selected
such that P(t) = ®(t,0)e Ft.
— O(t,7) is ®(t,7) = ®(¢,0)2(0,7) = P(t) =7 P~1(7)

Eg., A(t) = BT R P(t) = ! 0
& B —cos(t) O B 7% ol a %(cos(t)fsin(t)fl) 1
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Properties of LTP Systems

o Let A(t) € R™*"™ be T-periodic. Then, Yty > 0,3z # 0 such that
solution of &(t) = A(t)x(t) for z(tg) = xo is T-periodic iff
IN(EhT) =1.

@ A solution z(t) of a T-periodic system #(t) = A(t)x(t) + f(t) with
T-periodic matrices A(¢), f(t) is T-periodic iff z(tg + T) = z(to).

e For a CT LTI system, &(t) = Axz(t) + Bu(t) with z(0) = xo, let
PReal(A(A)) = 0. Then, V T-periodic input u(t), 3z such that
solution z(t) is T-periodic and unique.

o For DT LTP systems, ®(k, j) = P(k) R*=7) P~1(4)

State Space Representations & Linearization
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