
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2021-10-26

Grading and points
All answers must include a clear motivation. Answers should be given in English.
Number all your solution sheets and indicate the total number of sheets, e.g., 1/12,
2/12 and so on.

The total number of points is 25. The maximum number of points is specified
for each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
You are allowed to bring lecture slides. You may use the results in the slides unless
the opposite is explicitly stated.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Determine if the following sets are convex or not:

a. S1 = {x ∈ R : x is integer and x ≥ 5}. (1 p)

b. S2 = {x ∈ Rm : ‖x‖2 ≤ 1}. (1 p)

c. S3 = {x ∈ Rn : Ax + b ∈ D} where

D = {y ∈ Rm : ‖y‖2 ≤ 1},

A ∈ Rm×n and b ∈ Rm. (1 p)

d. S4 = {x ∈ R : f(x) ≤ 1} where

f(x) =
{cos x if 0 ≤ x ≤ 2π,

∞ otherwise

for each x ∈ R. (1 p)

Solution

a. S1 is not convex. We have 5 ∈ S1 and 6 ∈ S1, but the convex combination
0.5 · 5 + 0.5 · 6 = 5.5 6∈ S1.

b. S2 is convex since it is a sublevel set of a convex function.

c. S3 is convex since it is the inverse image of a convex set of an affine transfor-
mation.

d. S4 is convex. The function f is less than or equal to 1 on [0, 2π] and greater
than 1 outside this interval. Therefore S4 = [0, 2π], which is convex.

2. Determine whether or not the functions below are convex.

a. f1 : R → R such that

f1(x) = log
(
1 + e−x2)

for each x ∈ R. (1 p)

b. f2 : Sn → R such that

f2(X) = λmax(X)

for each X ∈ Sn, where λmax denotes the largest eigenvalue. (1 p)

c. f3 : Rn → R such that

f3(x) =
r∑

i=1

∣∣∣x〈i〉

∣∣∣
for each x ∈ Rn where 1 ≤ r ≤ n is an integer and x〈i〉 is the component of x
with the ith largest absolute value, meaning that∣∣∣x〈1〉

∣∣∣ ≥ . . . ≥
∣∣∣x〈n〉

∣∣∣ .
(1 p)
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d. f4 : Rn → R ∪ {∞} such that

f4 = ιS

where S ⊆ Rn is given by

S = {x ∈ Rn : ‖x‖0 = r}

where 1 ≤ r ≤ n is a fixed integer and

‖x‖0 = number of nonzero elements in the vector x

for each x ∈ Rn. (1 p)

Solution

a. Not convex. Note that

f1(0.5 · (−1) + (1 − 0.5) · 1)︸ ︷︷ ︸
=log 2

> 0.5f1(−1) + (1 − 0.5)f1(1)︸ ︷︷ ︸
=log(1+e−1)

i.e. f1 does not fulfill the definition of convexity.

b. Convex. Note that

f2(X) = min
x∈Rn

s.t. ‖x‖2=1

xT Xx

for each X ∈ Sn, which shows that f2 is a point-wise supremum of convex
functions and therefore itself convex. Indeed, the mapping

X 7→ xT Xx

in the maximum is linear and therefore convex.

c. Convex. Note that

f3(x) = max
y∈Rn

s.t. ‖y‖1≤r
and −1≤y≤1

yT x

for each x ∈ Rn, which shows that f3 is a point-wise supremum of convex
functions and therefore itself convex.

d. Not convex. The set S is not convex and therefore ιs is not convex. Indeed, if
x ∈ S, then −x ∈ S. However,

0.5x + (1 − 0.5)(−x) = 0 /∈ S.
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x

f(x)

Figure 1 Function f in Problem 3.

3. Consider the function f : R → R such that

f(x) =
{−0.5x if x ≤ 0,

3x if x ≥ 0

for each x ∈ R.

a. Compute the subdifferential ∂f (1 p)

b. Compute proxf (1 p)

c. Compute f∗ (1 p)

d. Compute proxf∗ (1 p)

Solution

a. Note that f is finite-valued, closed and convex. Moreover,

∇f(x) = −0.5, if x < 0,

∇f(x) = 3, if x > 0.

Thus,

∂f(x) = {−0.5}, if x < 0,

∂f(x) = {3}, if x > 0.

Moreover, recall that f is maximally monotone. Thus, ∂f(0) = [−0.5, 3]. There-
fore, we conclude that

∂f(x) =


{−0.5} if x < 0,

[−0.5, 3] if x = 0,

{3} if x > 0.

b. Suppose that

z = proxf (x) = argmin
z̃∈R

(
f(z̃) + 1

2
‖z̃ − x‖2

2

)
.
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Fermat’s rule implies that

0 ∈ ∂f(z) + z − x.

Plugging in the expression for ∂f gives

0 ∈


{−0.5 + z − x} if z < 0,

[−0.5, 3] − x if z = 0,

{3 + z − x} if z > 0.

Solving for z we get that

z = proxf (x) =


x + 0.5 if x < −0.5,

0 if x ∈ [−0.5, 3],

x − 3 if x > 3.

c. Recall that

f∗(s) = sup
x∈R

(sx − f(x))

for each s ∈ R.

• Case s < −0.5: Suppose that x < 0. Then

f∗(s) ≥ (s + 0.5)x → ∞ as x → −∞.

Thus, f∗(s) = ∞.
• Case s > 3: Suppose that x > 0. Then

f∗(s) ≥ (s − 3)x → ∞ as x → ∞.

Thus, f∗(s) = ∞.
• Case s ∈ [−0.5, 3]: Fenchel-Youngs equality gives that s ∈ ∂f(x) if and

only if

f∗(s) = sx − f(x).

Since s ∈ ∂f(0) = [−0.5, 3], we conclude that

f∗(s) = s · 0 − f(0) = 0.

In conclusion, we have that

f∗ = ι[−0.5,3].

d. Moreau decomposition gives that

proxf∗(x) = x − proxf (x)

= x −


x + 0.5 if x < −0.5

0 if x ∈ [−0.5, 3]

x − 3 if z > 3

=


−0.5 if x < −0.5

x if x ∈ [−0.5, 3]

3 if z > 3

for each x ∈ R.
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4. We will consider the problem of selecting an optimal portfolio of stocks using a
mean-variance model. Suppose you wish to invest W SEK, for some W > 0, by
picking among n ∈ N different stocks. Your portfolio of stocks is constructed at
present time by purchasing xi SEK worth of stock i, for each i = 1, . . . , n. The
portfolio can be represented by the vector x = (x1, . . . , xn) ∈ Rn. Naturally,
there is the budget constraint that

1T x = W,

i.e., the sum of the investments equals the investment budget W . We denote
the set of feasible portfolios by

B = {x ∈ Rn : 1T x = W}.

Note that we allow x to have negative components. A negative component xi

corresponds to short-selling stock i, i.e. borrowing the stock and immediately
selling it. The portfolio of stocks is held constant until some predetermined
time in the future when all investments are liquidated (sold). This corresponds
to a one-period investment problem. Let r be n-dimensional, where ri is the
return of stock i over the period. In order to model our uncertainty of the future
stock returns, we let r be a n-dimensional random variable with known expected
value E[r] = µ ∈ Rn and known covariance matrix Var[r] = Σ ∈ Sn

++, i.e. Σ
is a real-valued positive definite n × n matrix. The return of the portfolio, the
expected return of the portfolio, and the variance of the return of the portfolio
are given by

rT x, E
[
rT x

]
= µT x and Var

[
rT x

]
= xT Σx,

respectively. In the mean-variance model we seek the portfolio x that solves
the optimization problem

minimize
x∈B

−µT x + γxT Σx = minimize
x∈Rn

−µT x + γxT Σx + ιB(x) (1)

where γ > 0 is given. The variance of the return of the portfolio xT Σx is a
proxy for the risk inherent in the investment. Therefore, γ is usually called the
risk aversion parameter and is an inverse measure of an investors risk appetite.
For future reference, we define the function f : Rn → R such that

f(x) = −µT x + γxT Σx

for each x ∈ Rn.

a. Prove that f is strongly convex. (0.5 p)

b. Prove that B is convex. What does this imply for ιB? (0.5 p)

c. Why does optimization problem (1) have a unique minimizer? (0.5 p)

d. Compute the subdifferential ∂f . (0.5 p)

e. Show that

∂ιB(x) =
{{α1 : α ∈ R} if x ∈ B,

∅ if x /∈ B

for each x ∈ Rn. (1.5+0.5 p)
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f. Using the subdifferentials in d. and e., find the optimal portfolio according to
the mean-variance model (1).
(You may assume that the expression for ∂ιB in e. holds.) (2 p)

g. Show that the conjugate functions of f and ιB satisfy

f∗(s) = 1
4γ

(s + µ)T Σ−1(s + µ)

for each s ∈ Rn and

ι∗
B(s) =

{
αW if s = α1 for some α ∈ R,

∞ otherwise

for each s ∈ Rn, respectively. (1+1 p)

h. State the dual problem

minimize
s∈Rn

f∗(−s) + ι∗
B(s) (2)

to problem (1) and express it as an optimization problem over a single real
variable. (You may assume that the expressions for f∗ and ι∗

B in g. hold.)
Solve the dual problem (2) over that single variable and relate it to the optimal
α in f. that comes from the subdifferential in e.. Give the dual optimal point
s∗ ∈ Rn. (1 p)

i. Given the optimal point s∗ ∈ Rn of the dual problem (2) in h., show how to
recover the primal solution, i.e. the solution to (1). You are allowed to directly
use any one of the primal dual necessary and sufficient optimality conditions.
Show that the recovered primal solution is the same as in f.. (1 p)

Solution

a. Note that

∇2f(x) = 2γΣ � 2γλmin(Σ)I

for each x ∈ Rn, where λmin(Σ) is the smallest eigenvalue of the covariance
matrix Σ. The second-order condition for strong convexity gives that f is
2γλmin(Σ)-strongly convex, since γ, λmin(Σ) > 0.

b. The set B is a hyperplane and therefore convex, which implies that ιB is convex.

c. The objective function in optimization problem (1) can be written as

f(x) + ιB(x).

Since the sum of a strongly convex function and convex function is strongly
convex, we conclude that the objective function of (1) is strongly convex. Op-
timization problem (1) has a unique minimizer since strongly convex functions
always have an unique minimizer.
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d. We proved above that f is convex. Moreover, f is differentiable with gradient

∇f(x) = −µ + 2γΣx

for each x ∈ Rn. The subdifferential of f is then given by

∂f(x) = {∇f(x)}

for each x ∈ Rn.

e. Alternative 1: By definition, the subdifferential of ιB is given by

∂ιB(x) =
{

s ∈ Rn : ∀y ∈ Rn, ιB(y) ≥ ιB(x) + sT (y − x)
}

(3)

for each x ∈ Rn.
Case x ∈ B: Suppose that y /∈ B. For any choice of s ∈ Rn, the inequality in
(3) holds, since ιB(y) = ∞ and ιB(x) = 0. Therefore, we only need to further
analyze the case when y ∈ B. The inequality in (3) becomes

0 ≥ sT (y − x) (4)

since ιB(y) = 0 and ιB(x) = 0. Moreover, note that 2x − y ∈ B, since 1T (2x −
y) = W . Therefore, (4) must hold when y is replaced by 2x − y, i.e.

0 ≥ sT (x − y). (5)

Combining (4) and (5), we get that s ∈ ∂ιB(x) if and only if

0 = sT (y − x), (6)

for each y ∈ B.
First, suppose that s ∈ {α1 : α ∈ R} ⊆ Rn. Then (6) holds, since 1T (y−x) = 0
for each y ∈ B, which implies that {α1 : α ∈ R} ⊆ ∂ιB(x).
Second, suppose that s ∈ ∂ιB(x). This implies that (6) holds for this s. Note
that (6) can be written as

0 =
(

1T s

n
1 +

(
s − 1T s

n
1
))T

(y − x) =
(

s − 1T s

n
1
)T

(y − x), (7)

for each y ∈ B. Define the vector u ∈ Rn by u = s − (1T s/n)1. Note that
x−u ∈ B since 1T u = 0. Therefore, (7) must hold when y is replaced by x−u,
which gives

0 = ||u||22 ⇔ u = 0 ⇔ s = 1T s

n
1.

This shows that s ∈ {α1 : α ∈ R}. We conclude that {α1 : α ∈ R} = ∂ιB(x).
Case x /∈ B: For any choice of s ∈ Rn, the inequality in (3) fails for the choice
y = (W/n)1 ∈ B, since ιB(y) = 0 and ιB(x) = ∞. Thus, ∂ιB(x) = ∅.
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Summary: Summarizing, we get that

∂ιB(x) =
{{α1 : α ∈ R} if x ∈ B,

∅ if x /∈ B

as desired.
Alternative 2: Note that

ιB(x) = ι{W }(1T x)
= (ι{W } ◦ 1T )(x)

for each x ∈ Rn. Also, we have that

∂ι{W }(a) =
{
R if a = W,

∅ if a 6= W

for each a ∈ R. Since

relint dom ι{W } ◦ 1T = relint B

= B

6= ∅

the subdifferential calculus rules give that

∂ιB(x) = ∂(ι{W } ◦ 1T )(x)
= 1∂ι{W }(1T x)

=
{{α1 : α ∈ R} if x ∈ B,

∅ if x /∈ B

for each x ∈ Rn, as desired.

f. By Fermat’s rule, the point x ∈ Rn is the minimizer of optimization problem
(1) if and only if

0 ∈ ∂ (f + ιB) (x) = ∂f(x) + ∂ιB(x).

The last equality holds since f and ιB are (closed) convex and constraint qual-
ification holds since f has full effective domain and B has nonempty relative
interior. Using d. and e., we get that x ∈ Rn is the minimizer of optimization
problem (1) if and only if

0 = −µ + 2γΣx + α1 ⇔ x = 1
2γ

Σ−1 (µ − α1) ,

for some α ∈ R and x ∈ B. Left multiplying with 1T gives that

W = 1T x = 1
2γ

(
1T Σ−1µ − α1T Σ−11

)
⇔ α = 1T Σ−1µ − 2γW

1T Σ−11 .

Thus, the optimal portfolio is given by

x = 1
2γ

(
Σ−1µ + 2γW − 1T Σ−1µ

1T Σ−11 Σ−11
)

.
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g. Let s ∈ Rn. We have that

f∗(s) = sup
x∈Rn

(
sT x − f(x)

)
= sup

x∈Rn

(
sT x + µT x − γxT Σx

)
= − inf

x∈Rn

(
−sT x − µT x + γxT Σx

)
︸ ︷︷ ︸

=g(x)

= − inf
x∈Rn

g(x).

Note that g has gradient

∇g(x) = −s − µ + 2γΣx

for each x ∈ Rn and is convex, since

∇2g(x) = 2γΣ � 0

for each x ∈ Rn. By Fermat’s rule, x∗ ∈ Rn is a minimizer of g if and only if

0 ∈ ∂g(x∗) = {∇g(x∗)}
⇔

0 = −s − µ + 2γΣx∗

⇔

x∗ = 1
2γ

Σ−1(s + µ).

We get that

g(x∗) = − 1
4γ

(s + µ)T Σ−1 (s + µ)

and therefore

f∗(s) = −g(x∗)

= 1
4γ

(s + µ)T Σ−1 (s + µ)

as desired.
We also have that

ι∗
B(s) = sup

x∈Rn

(
sT x − ιB(x)

)
= sup

x∈B
sT x

for each s ∈ Rn. First, suppose that s = α1 ∈ Rn, for some α ∈ R. Then,
ι∗
B(s) = αW . Next, suppose that s ∈ Rn \ {α1 : α ∈ R}. Let x = t(s −

(1T s/n)1) + (W/n)1 ∈ B and t > 0. Note that

sT x = t

(
‖s‖2

2 − (1T s)2

n

)
︸ ︷︷ ︸

>0

+W

n
1T s → ∞ as t → ∞,
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by the Cauchy-Schwarz inequality and the assumption that s ∈ Rn \ {α1 : α ∈
R}. I.e. ι∗

B(s) = ∞. We summarize the cases as

ι∗
B(s) =

{
αW if s = α1 for some α ∈ R,

∞ otherwise

for each s ∈ Rn, as desired.

h. The dual problem is

minimize
s∈Rn

f∗(−s) + ι∗
B(s) = minimize

α∈R

1
4γ

(α1 − µ)T Σ−1 (α1 − µ) + αW︸ ︷︷ ︸
h(α)

.

The function h is a convex quadratic in α. By Fermat’s rule and that the
subdifferential of a convex differentiable function contains only the gradient,
α⋆ ∈ R minimizes h if and only if

0 = ∇h(α⋆)
⇔

0 = 1
2γ

1T Σ−1(α⋆1 − µ) + W

⇔

α⋆ = 1T Σ−1µ − 2γW

1T Σ−11
which is the same as the optimal α in f.. The dual optimal variable s∗ ∈ Rn is
then

s∗ = 1T Σ−1µ − 2γW

1T Σ−11 1.

i. We use the primal dual necessary and sufficient optimality condition{
x∗ ∈ ∂f∗(−s∗)

x∗ ∈ ∂ι∗
B(s∗).

We will use the first condition in this pair to extract the optimal primal vari-
able x∗ ∈ Rn. Recall that the conjugate f∗ always is convex. Moreover, f∗ is
differentiable with gradient

∇f∗(s) = 1
2γ

Σ−1 (s + µ)

for each s ∈ Rn. The subdifferential of f∗ is then given by

∂f∗(s) = {∇f∗(s)}

for each s ∈ Rn. The first condition then gives that the primal solution is

x∗ = ∇f∗(−s∗)

= 1
2γ

(
Σ−1µ + 2γW − 1T Σ−1µ

1T Σ−11 Σ−11
)

i.e. the same as in f.
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5. Consider the 1-norm regularized SVM problem

minimize
w∈Rn

N∑
i=1

max
(
0, 1 − yiw

T xi

)
︸ ︷︷ ︸

=fi(w)

+λ ‖w‖1 (8)

given the labeled training data set {(xi, yi)}N
i=1, where xi ∈ Rn and yi ∈ {−1, 1}

are training data and labels, respectively.

a. Find the smallest nonnegative constant λ0 ∈ R such that if λ ≥ λ0, then

w = 0

is an optimal point for (8). (2 p)

b. Is the proximal gradient method applicable to find a solution of problem (8)?
Is it applicable to solve a corresponding Fenchel dual problem? (1 p)

Solution

a. Since each function involved in the objective function of (8) is convex and
CQ holds (all functions involved have full domain), Fermat’s rule implies that
w ∈ Rn is an optimal point for (8) if and only if

0 ∈
N∑

i=1
∂fi(w) + λ∂(‖·‖1)(w).

Since we are only interested in the case for which w = 0 is a solution, we
evaluate the subdifferentials only at this point. Note that

‖w‖1 =
n∑

i=1
|wi|

for each w = (w1, . . . , wn) ∈ Rn. Since

∂(|·|)(0) = [−1, 1]

the subdifferential of ‖·‖1 at 0 is

∂(‖·‖1)(0) =


∂(|·|)(0)

...
∂(|·|)(0)



=


[−1, 1]

...
[−1, 1]


= [−1, 1]n.

Let h : R → R such that

h(v) = max(0, 1 − v)
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for each v ∈ R. Then

fi(w) = h
(
yix

T
i w
)

for each w ∈ Rn and for each i = 1, . . . , N . Since h is convex and the CQ holds,
we have

∂fi(w) = yixi∂hi

(
yix

T
i w
)

for each w ∈ Rn and for each i = 1, . . . , N . This implies that

∂fi(0) = yixi∂hi(0)
= {−yixi}

for each i = 1, . . . , N and we get

N∑
i=1

∂fi(0) = {−Xy}

where

y = (y1, . . . , yN ) and X = [ x1 · · · xN ] .

Therefore, according to the optimality condition, w = 0 is an optimal point for
(8) if and only if

Xy ∈ λ[−1, 1]n.

This holds if and only if

λ ≥ max
i=1,...,n

|(Xy)i| = ‖Xy‖∞ = λ0.

b. Neither of the functions in the objective are smooth. Thus, the proximal gradi-
ent method is not applicable. Since neither of the functions in the objective are
strongly convex, their associated conjugate functions are not smooth. There-
fore, the proximal gradient is not applicable to the dual problem either.
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